
PARALLEL IMAGE PROCESSING
AND COMPUTER VISION ARCHITECTURE

By

JAMES GRECO

A UNDERGRADUATE THESIS PRESENTED TO THE ELECTRICAL AND
COMPUTER ENGINEERING DEPARTMENT

OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
BACHELOR OF SCIENCE SUMMA CUM LAUDE

UNIVERSITY OF FLORIDA

2005

Copyright 2005

by

James Greco

I dedicate this work to the three people who have had a profound effect on my

life. To my parents, James and Joyce, for always believing in me and to my fiance,

Sarah, for showing me importance of life outside of work.

ACKNOWLEDGMENTS

This work would not be possible without the support of the Machine Intelli-

gence Laboratory. Aaron Chinault, shares an equal level of recognition for his work

on the hardware vision project. Eric Schwartz, the laboratory’s associate director,

has been a trusted mentor, academic adviser and friend.

I’d also like to thank my thesis adviser, Dapeng Wu, for making graduate

school at UF an exciting opportunity.

4

TABLE OF CONTENTS
page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 6

LIST OF FIGURES . 7

ABSTRACT . 8

CHAPTER

1 INTRODUCTION . 9

2 ARCHITECTURE OVERVIEW . 12

2.1 Advantages and Disadvantages of Specialized Hardware 12
2.2 Module Design . 13
2.3 Technology Overview . 15

3 NUMERICAL ANALYSIS OF THE ARCHITECTURE 17

3.1 Vertical Sobel Filter . 17
3.2 High Pass Threshold Filter . 19
3.3 3 x 3 Erosion . 19
3.4 Pipelining . 20

4 ARCHITECTURE EXPERIMENTS . 23

4.1 Tracking an object by color properties 23
4.1.1 Bandpass Threshold . 24
4.1.2 Centroid . 25
4.1.3 Crosshairs . 25
4.1.4 Downsample . 26
4.1.5 Interfaces . 26

4.2 Micro air vehicle horizon detection 27

5 FUTURE WORK . 30

6 CONCLUSION . 31

7 REFERENCES . 32

BIOGRAPHICAL SKETCH . 33

5

LIST OF TABLES
Table page

3–1 P4 and FPGA timing comparison for three operators 17

3–2 P4 and FPGA (1 data path) cumulative timing comparison 21

3–3 The threshold function with N Sub Images performs at N times the
speed. 21

3–4 P4 and FPGA (4 data paths) cumulative timing comparison 22

6

LIST OF FIGURES
Figure page

2–1 Modularity example. (a) The camera data is passed through two pipelined
functions (b) A gamma correction function is inserted into the pipeline.
This inserted function has nearly no effect on the computational
time of the algorithm or interferes with the timing of other mod-
ules in the chain. 13

2–2 The standard inputs and outputs used in our architecture 14

2–3 The most basic implementation of an logic cell contains a LUT for
combinatorial output and flip flop for registered output 15

3–1 The absolute value of the output of the Sobel gradient module em-
phasizes the edges in the previous image. 19

3–2 The output of the threshold module is a binary (Two color) image. . 19

3–3 3 x 3 erode function: The circled block is the current pixel being ex-
amined. (a) Some of the surrounding pixels are false (black), so
the resulting pixel is set to false. (b) All of the surrounding pixels
are true (white), so the center pixel is kept true. 20

3–4 Output of the erode module . 20

4–1 A simple implementation of our architecture is used to find the cen-
ter of a uniformly colored object based on it’s color properties. . . . 23

4–2 The bandpass threshold module produces a binary image that repre-
sents the two classes of data (blue bowling pin and not a blue bow-
ing pin) . 25

4–3 The crosshairs module receives input from two previous modules -
Centroid and RGB decoder . 25

4–4 A group of sixteen pixels is converted to four pixels by averaging each
region of four pixels. The clock frequency is also quartered. 26

4–5 Downsample module block diagram 27

4–6 The horizon line is approximated for several test images. Performance
of the algorithm can be increased or decreased based on the num-
ber of possible horizons tested. 29

7

Abstract of Undergraduate Thesis Presented to the Electrical and Computer
Engineering Department

of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Bachelor of Science summa cum laude

PARALLEL IMAGE PROCESSING
AND COMPUTER VISION ARCHITECTURE

By

James Greco

May 2005

Chair: Dapeng Wu
Major Department: Electrical and Computer Engineering

Real-time image processing is limited with modern microprocessors. This

thesis presents a novel method for the implementation of image processing and

computer vision algorithms in hardware. Using pipelining methods from computer

architecture, our system provides a flexible and fast platform for the development

of image processing algorithms. The architecture’s computational power over a

Pentium 4 microprocessor is shown through an analytical analysis of the simulated

performance. Two demonstrations of the architecture’s implementation in a Field

Programmable Gate Array are provided - The position of an object is tracked

by using the object’s color properties and the micro air vehicle on-board horizon

tracking problem is solved.

CHAPTER 1
INTRODUCTION

The tremendous amount of data required for image processing and computer

vision applications presents a significant problem for conventional microprocessors.

In order to process a 640 x 480 full-color image at 30 Hz, a data throughput of 221

Mbs is required. This does not include overhead from other essential processes such

as the operating system, control loops or camera interface. While a conventional

microprocessor such as the Pentium 4 has a clock speed of nearly 4 GHz, running a

program at that speed is highly dependent upon continuous access of data from the

processor’s lowest level cache. The level 1 cache is on the order of kilobytes, which

is far to small to hold the data required for computer vision applications. Even

most modern level 2 caches are not large enough to store entire images. Memory

access times from the system’s main memory, usually Synchronous DRAM, is an

order of magnitude slower than the processor’s cache and thus the large amount of

data required for image processing will always be limited by memory access time

and not the processor’s clock speed. [1]

The disparity between memory access times and the processor’s clock speed

will only widen with time. While transistor counts and microprocessor clock speed

have traditionally scaled exponentially with Moore’s Law, memory access times

have scale linearly. This is not to say a Pentium 4 is unable to handle many image

processing algorithms in real time, but there is less growth room as applications

require greater resolutions. Medical imaging in particular requires the processing of

images in the megapixel range. [2]

In this thesis we propose an expandable architecture that can easily adapt

to these challenges. As has been previously done, we move the development of

9

10

image processing and computer vision algorithms from software to hardware. The

move from software to hardware introduces several challenges: Traditionally linear

algorithms must be rewritten to take advantage of the parallel structure afforded by

implementation in hardware; Hardware high-level languages (Verilog and VHDL)

are far less advanced than software languages (C/C++, Java, Basic, etc.); The

compilers for the logic devices are orders of magnitude slower.

In addition to moving the algorithms from software to hardware, a parallel

architecture has been developed to pipeline successive image processing functions.

In much the same way a pipeline will speed up a processor, the architecture allows

us to run many image processing operations in parallel. With this we can achieve a

much higher data throughput than traditional computing systems. The architecture

has been designed for implementation in two types of logic chips - The Field

Programmable Gate Array (FPGA) and Application Specific Integrated Circuit

(ASIC) - that afford power and size requirements [3] that are significantly lower

than the smallest of Pentium motherboards.

The advantage of the parallel architecture over a traditional computer is shown

through a quantitative analysis of a few simulated image processing functions.

Speeds that are twenty-two times faster than modern microprocessors are possible

with the simplest implementation of our architecture. It is further shown that the

speed increase can be magnified by a factor of N by implementing N redundant

data paths.

Beyond simulations, two experiments were tested on an Altera Cyclone FPGA.

The first, a simple color tracking algorithm, interfaces with a CMOS camera to

find the location of an object at thirty frames per second. In order to achieve these

results, seven image processing and interface modules are connected in parallel.

The second experiment is the implementation of a horizon tracking algorithm used

by the University of Florida’s Micro Air Vehicle (MAV) project. [4] Currently the

11

MAV uses a radio transmitter to download the data from the on-board camera

to a laptop. [5] The demonstration shows that completely autonomous flight

stabilization is possible without the need for a large radio transmitter or ground

station.

CHAPTER 2
ARCHITECTURE OVERVIEW

2.1 Advantages and Disadvantages of Specialized Hardware

System designers are faced with conflicting goals of reuseability and perfor-

mance. Systems that are reusable in a number of different applications will be

slower than a system tailored to a single specific task. [6] This principle is true for

both hardware and software design.

A simple example to show the advantages of custom designed hardware for

a specific task is the summation of four numbers. Most modern microprocessors

are limited to adding only two numbers in the same clock cycle because they only

have a single ALU and adding four numbers requires three distinct uses of an ALU.

Alternatively, a customized digital circuit of three adders in parallel can be used

to calculate the sum in a single clock cycle. Although this new circuit is three

times faster, three times the hardware is needed. There is some flexibility in this

as the amount of hardware can be customized to the number of bits required by

the addition - If only 8-bit addition is needed, the amount of required hardware for

three 8-bit adders is significantly less than a single 32-bit adder. [7]

It is generally accepted that additional hardware used to solve a small set of

problems is not worth implementing in modern microprocessors. [8] If we have an

instruction dedicated to adding four numbers, why not have one that calculates the

y coordinate in the line equation? (y = mx + b) This operation would require the

microprocessor to multiply two numbers and add a third to the result. The seldom

need for this operation in code does not justify including it in the processor. It is

likely the operation will cause the processor to require a longer worst case delay

and thus run most programs slower overall. Unless the microprocessor is designed

12

13

specifically for a program that requires this calculation continuously, implementing

the function with two smaller instructions (a multiply and then an add) will have a

higher data throughput.

2.2 Module Design

While a microprocessor favors generality over instructions that are more

limited in scope, our architecture is much more specific to image processing. The

small instruction set of additions and multiplications are replaced by a set of image

processing tools. Each of the tools has it’s own internal RISC (Reduced Instruction

Set Computer) structure to keep speed above a minimum desired rate and give

a set of common inputs and outputs that allow for module reuseability and the

pipelining of consecutive modules.

Figure 2–1: Modularity example. (a) The camera data is passed through two
pipelined functions (b) A gamma correction function is inserted into the pipeline.
This inserted function has nearly no effect on the computational time of the algo-
rithm or interferes with the timing of other modules in the chain.

By having a common set of inputs and outputs, a module can be dropped

anywhere in the pipeline without affecting the rest of the system. This is important

in any embedded system that has a timing critical application.

Definition of the signals in Figure 2-2:

• Pixel Clock - The internal state machine of the module runs off the pixel

clock. The RGB Data is also valid on the rising edge of the clock assuming

Local Enable 1, Local Enable 2, Global Enable are all true.

14

Figure 2–2: The standard inputs and outputs used in our architecture

• RGB Data - A 24-bit signal that represents the pixel data. This signal does

not have to be RGB, but can instead use HSV, grayscale, or an arbitrarily

defined pixel format.

• Pixel Count - Running count of the pixel position in the image.

• Width - Number of pixel columns in the image.

• Height - Number of pixel rows in the image.

• Local Enable 1 - Signal from the previous module to determine if the RGB

data is valid. The Internal state machine can continue if not dependent upon

data from the previous module.

• Local Enable 2 - Feedback signal from the next module to determine if the

module should hold data processing. The Internal state machine can continue

if not dependent upon data from the previous module.

• Global Enable - Input signal from a main arbiter, external interrupt or global

reset that will stop all modules. The internal state machines should continue

to be reset while the signal is high.

• Mask - Used by some modules when dealing with two or more classes of data.

The horizon tracking algorithm uses this signal to mask whether the incoming

pixel is sky or ground.

• Data Valid - Output signal that feeds into the following module’s Local

Enable 1. If the output RGB Data is valid, this bit will be true.

15

• Halt - Output signal that feeds into the previous module’s Local Enable 2. If

the module (or modules further in the pipeline) need more time to process

data, a halt signal is issued to stop the previous module from losing data.

The rest of the system’s structure is revealed in the following sections.

2.3 Technology Overview

Before discussing specific applications of the design, an introduction to the

technology used in the implementation of our architecture is warranted. There

are only two technologies that are appropriate to the implementation of our

architecture - The Application Specific Integrated Circuit (ASIC) and Field

Programmable Gate Array (FPGA).

FPGAs were used in the design of our architecture because they offer a cost-

effective solution for small-volume productions. FPGAs are an advanced type

of programmable logic device (PLD) that use an SRAM-based programmable

array of interconnections to network thousands of logic cells together. Each logic

cell contains a look up table (LUT) and a flip flop to perform combinatorial and

registered operations. [9]

Figure 2–3: The most basic implementation of an logic cell contains a LUT for
combinatorial output and flip flop for registered output

When a design is compiled for an FPGA, the internal connections are routed

horizontally and vertically through the chip. Modern FPGAs contain DSP blocks,

embedded multipliers, megabits of internal ram and PLLs as advanced features.

[3] Recent technology has also moved toward the integration of entire systems -

multiple processors, glue logic, I/O interfaces - on an FPGA. This technology,

called System on Chip (SoC), is especially needed for applications that require

16

the integration of a controller, image processing, glue logic and sensor readings on

a single IC for power and size constraints. Specifically a micro air vehicle could

take advantage of this technology by combining the on-board controller and the

off-board vision processing onto a single FPGA.

FPGAs not only offer orders of magnitude greater data throughput than an

x86 processor, but also significant reductions in the power requirements and size

that is necessary for an embedded system. For our development platform we are

using the Altera Cyclone EP1C12F256 (17 mm x 17 mm), which is only slightly

larger than the ATMega128 microcontroller (16 mm x 16 mm) used on the current

iteration of the micro air vehicle project. The Cyclone family is a low-cost FPGA

that can operate at speeds up to 166 MHz. Typically chips in the family cost

between $10 and $100 retail. Advanced Altera FPGA families (Stratix, Stratix II)

are capable of running internal logic and RAM at 500 MHz.

ASICs can be thought of as high-volume productions of FPGAs. The logic

element structure is replaced by gates that are dedicated to the ICs specific task.

Instead of routing an programmable array of interconnections, the connections are

burned into the ASIC. Thus ASICs are not repogrammable, but are much faster

than FPGAs. ASICs can be far cheaper than FPGAs, but only in mass quantities.

A typical ASIC order is in the millions of dollars.

CHAPTER 3
NUMERICAL ANALYSIS OF THE ARCHITECTURE

Table 1 demonstrates the advantage of individual operations in our architec-

ture over conventional microprocessors. These tests were conducted on a 1.6 GHz

Pentium 4 with 768 MB of RAM. Operations were made as efficient as possible

with vector-optimized compiled Matlab functions. The FPGA results were sim-

ulated on an Altera Cyclone EP1C12-8 running at a pixel clock of 75 MHz. The

same 8-bit 640 x 480 grayscale image was used on both platforms.

Operation P4 (ms) FPGA (ms) Ratio
Vert. Sobel Filter 50.0 4.10 12.2
Highpass Threshold 10.0 4.10 2.44
3 x 3 Erode 30.0 4.10 7.32

Table 3–1: P4 and FPGA timing comparison for three operators

Area operations such as the vertical Sobel filter and the 3 x 3 erode have the

greatest impact on the FPGA to P4 speed ratio. The vertical Sobel filter requires 6

multiplies to be performed sequentially, while the FPGA can handle all six at once.

Similarly the 3 x 3 erode requires 9 comparison operations. A detailed discussion of

the implementation of these functions is given in the following sections.

3.1 Vertical Sobel Filter

If the image is defined as 2-D matrix Im(y, x), The vertical Sobel filter

provides a discrete approximation to the first partial derivative of the image with

respect to y. Similarly, the horizontal Sobel filter provide a discrete approximation

to the first partial derivative of the image with respect to x. The first derivative of

the image in either direction will emphasize sharp transitions, or ‘edge’ features.

This feature extraction method can be combined with a shape finding algorithm,

17

18

such as the Hough Transform, to find the position and size of arbitrarily defined

shapes in the image.

The first derivative of the image can be approximated using a 2-D convolution

of a kernel and image data.

Im′(y, x) =
M∑

j=1

N∑
i=1

k(i, j) ∗ Im(y + j −M/2− 1, x + i−M/2− 1) (1)

Where M and N represent the size of the kernel (3 x 3 for the Sobel filter).

The kernel (k) for a vertical Sobel filter is defined as

k =

−1 0 1

−2 0 2

−1 0 1

 (2)

The two tests achieved exactly the same output, but the FPGA had a speed

advantage of 12.2 times the Pentium 4.

Operation P4 (ms) FPGA (ms) Ratio

Vert. Sobel Filter 50.0 4.10 12.2

There was one minor difference in implementation of the methods. The 3

x 3 Sobel filter was optimized for the Pentium platform by splitting the 2-D

convolution into two 1 x 3 convolutions. Since our implementation performs all

9 multiplications at the same time, this modification is unnecessary. The reason

for the performance increase over a 3 x 3 convolution is beyond the scope of this

discussion.

19

Figure 3–1: The absolute value of the output of the Sobel gradient module empha-
sizes the edges in the previous image.

3.2 High Pass Threshold Filter

The high pass threshold filter, which transforms the image from grayscale to

binary (or a single color channel to binary) based on a threshold value, is defined

using a simple comparison operator.

Im′(y, x) =

 true Im(y, x) > Threshold

false o.w.

 (3)

Figure 3–2: The output of the threshold module is a binary (Two color) image.

3.3 3 x 3 Erosion

The final operation is a 3 x 3 erosion of the image. The erode operator low

pass filters an image by removing point features resulting from the previous

threshold stage. The erode operator tests a 3 x 3 region of a binary image to see if

any of the pixels in the region are false. If any of the pixels in the region are false,

the center element is also set to false.

20

Figure 3–3: 3 x 3 erode function: The circled block is the current pixel being exam-
ined. (a) Some of the surrounding pixels are false (black), so the resulting pixel is
set to false. (b) All of the surrounding pixels are true (white), so the center pixel is
kept true.

Mathematically this can be expressed as

Im′(y, x) =

 1
M∑

j=1

N∑
i=1

Im(y + j −M/2− 1, x + i−N/2− 1) = M ∗N

0 o.w.

 (4)

Where M and N represent the size of the region of interest (3 x 3).

Figure 3–4: Output of the erode module

3.4 Pipelining

In the individual operations tested here, the FPGA outperforms the Pen-

tium by a factor of 2.44 to 12.20. While this advantage is significant on its own,

pipelining the functions in hardware provides even more of an advantage for the

FPGA over conventional microprocessors. When pipelining techniques were used to

21

chain the three modules together in series, the FPGA outperformed conventional

microprocessors by a factor of nearly 22.

Operation P4 Cum. (ms) FPGA Cum. (ms) Ratio Cum.
Vert. Sobel Filter 50.0 4.10 12.2
Highpass Threshold 60.0 4.10 14.6
3 x 3 Dilate 90.0 4.10 22.0
Table 3–2: P4 and FPGA (1 data path) cumulative timing comparison

The advantage of the FPGA over the Pentium is for a continuous 8-bit

grayscale stream only. An RGB color image sees a three-fold increase in speed

because our architecture is designed to handle 24-bits of data per clock cycle.

Similarly, with N redundant data paths (dividing the image into N number

of blocks that all process separately), N times the performance is possible. The

only drawback is N times the hardware is required. Table 3-3 shows the results of

dividing the screen into 2, 4, and 8 separate images for the threshold function. This

operation is not possible on a conventional microprocessor.

N Sub Image Resolution FPGA (ms)
1 640 x 480 4.10
2 640 x 240 2.05
4 320 x 240 1.03
8 160 x 120 0.51

Table 3–3: The threshold function with N Sub Images performs at N times the
speed.

Table 4-4 contrasts the cumulative results of dividing the image into four

sections against a traditional implementation. 87.4 times the performance is

registered.

22

Operation P4 Cum. (ms) FPGA Cum. (ms) Ratio Cum.
Vert. Sobel Filter 50.0 1.03 48.5
Highpass Threshold 60.0 1.03 58.3
3 x 3 Dilate 90.0 1.03 87.4
Table 3–4: P4 and FPGA (4 data paths) cumulative timing comparison

CHAPTER 4
ARCHITECTURE EXPERIMENTS

Our system has been taken beyond the simulated results in two different

experiments that were implemented on a mid-range Altera Cyclone. The first, a

color-tracking algorithm, shows the novel interactions of seven image processing

and interface modules. The second, the MAV horizon detection algorithm, provides

an on-board solution for an application that is restricted by weight, power and size.

4.1 Tracking an object by color properties

To keep the color-tracking experiment simple we decided to track only solid

color objects that are easily parameterized. Specifically, the following examples

show how the centroid of a blue bowling pin is found. We used an Omnivision

OV7620 as a camera input device. The OV7620 is a low-cost CMOS camera that is

capable of resolutions of 640 x 480 pixels. A popular computer vision interface for

robotic hobbyists, the CMUCam, uses the OV7620 in it’s design.

Figure 4–1: A simple implementation of our architecture is used to find the center
of a uniformly colored object based on it’s color properties.

23

24

4.1.1 Bandpass Threshold

It is our goal to separate the image into two classes: Blue bowling pin and

not a blue bowling pin. We have arranged the problem such that the object can

be detected by it’s color properties alone. Thus it is unnecessary to consider

the shape or texture in the detection of the object. A thresholding operator can

successfully segment the image into the two classes by exploiting the unique color

of the bowling pin relative to the rest of the image.

The bandpass threshold is similar to the high-pass threshold presented in the

previous section although two comparisons are done to check if the RGB value

is between a lower and a upper threshold. A high-pass threshold on each color

channel would result in all red, green and blue objects being detected. Simply

ignoring the red and green channels and passing the blue channel through a high-

pass threshold will give erroneous results for white objects. As with the previous

threshold module, a binary image is produced from the result.

Im′(i, j) =

 true THigh > Im(i, j) > TLow

false o.w.

 (5)

The comparison in equation 5 is done for different values of TLow and THigh

on each color channel. The threshold values were determined from a model of

the object’s RGB properties. If all three channels are between the TLow and

THigh values then the pixel is set to true, otherwise the pixel is set to false. The

architecture has an even greater advantage over a conventional microprocessor in

this module - A bandpass threshold would require two separate clock cycles for

the comparison stage to check if the value is greater than TLow and then less than

THigh. Instead, both comparisons are done in parallel.

25

Figure 4–2: The bandpass threshold module produces a binary image that repre-
sents the two classes of data (blue bowling pin and not a blue bowing pin)

4.1.2 Centroid

Finding the centroid of the blue pin can be easily found if the previous step

misclassified relatively few pixels. The mean of all pixels classified as a blue

bowling pin will give X-Y image coordinates of the object’s center.

Xmu =

N∑
j=1

M∑
i=1

i ∗ I(j, i)

N∑
j=1

M∑
i=1

I(j, i)

Ymu =

N∑
j=1

M∑
i=1

j ∗ I(j, i)

N∑
j=1

M∑
i=1

I(j, i)

(6)

Equation 6 will work for a binary image only.

4.1.3 Crosshairs

Figure 4–3: The crosshairs module receives input from two previous modules -
Centroid and RGB decoder

The results from the centroid module are then used by the crosshairs function

to paint a visual cue on the original image. (Figure 4-3) Unlike previously discussed

26

modules which operate in series, the crosshairs module receives inputs from two

modules. (The RGB decoder and centroid modules. The parallel branch that is

taken before the crosshairs function is one of the unique parts of our architecture

that can not be duplicated on conventional microprocessors.

4.1.4 Downsample

Our system was limited by the small amount of external RAM that is needed

to store the image resulting from the crosshairs module. We downsample the image

by four (from 320 x 240 pixels to 160 x 120) and store the result in RAM.

Figure 4–4: A group of sixteen pixels is converted to four pixels by averaging each
region of four pixels. The clock frequency is also quartered.

The downsample function averages a region of four pixels to produce one pixel.

This divides the image and slows the clock down by a factor of four. The pixel

data is arriving in ‘real-time’ so unlike a conventional microprocessor that has

the entire image data stored in RAM, a single row of pixels must be buffered in

the internal memory. Multiple downsample functions can be chained together to

further decrease the resolution.

4.1.5 Interfaces

In addition to the algorithms, several interface modules had to be developed.

They are described briefly bellow.

• The RGB decoder transforms the 640 x 240 16-bit interlaced video signal

from the OV7620 camera into a 320 x 240 24-bit progressive-scan RGB signal

27

Figure 4–5: Downsample module block diagram

used internally. This module also keeps track of the current pixel’s index

relative to the first pixel in the image.

• An external RAM interface was necessary because the large amount of image

data was impossible to store internally. A 320 x 240 full color image requires

1.84 Mbs of memory - the Altera Cyclone EP1C12 has only 240 kbs of

internal memory [3]. In addition to the storage capacity, we used the interface

to emulate dual-port memory so the in-line nature of our algorithms could be

exploited.

• Finally, a serial interface was developed to transmit the images from the

FPGA to a computer for display. The serial protocol is translated to a USB

protocol using an external serial to USB converter chip. This is the major

bottleneck of our system as the serial interface was found to have a max

bandwidth of 1.5 Mbs.

4.2 Micro air vehicle horizon detection

The micro air vehicles project at the University of Florida is a multi-

disciplinary team of electrical, mechanical and material engineers. MAVs present a

significant engineering challenge as they have wingspans of 4.5-24 inches and have

payload that is in the hundreds of grams. The ultimate goal of the MAV project is

28

autonomous urban combat missions. As a first step, the MAV project has devel-

oped algorithms for vision assisted flight. Currently, a radio transmitter is used to

download the data from the on-board camera to a laptop for processing.

The detection of the horizon line must be done in order to assist the operator

in correcting the roll and pitch of the MAV. Ettinger proposed that while the

specific color of sky and ground is not constant throughout the day or in different

weather conditions, sky pixels will look similar to other sky pixels and ground

pixels will look similar to other ground pixels.

The following cost function will quantify the color assumption.

J = 1
|Σg |+|Σs| (7)

We evaluate, J, across 36 possible orientations of φ and 12 possible lengths

of σ in line parameter space. The maximum value of J represents the minimum

statistical variation from the mean of sky and ground pixels. Further details of the

algorithm can be found in [10]. Using the architecture described in this paper, we

have successfully implemented the algorithm on an Altera Cyclone EP1C12F256

with a pixel clock rate of 60 MHz. With the integration of a controller and sensors,

it is possible to have completely autonomous flight as the IC is only slightly bigger

than the current MAV ATMega128 controller.

It should be noted that the original algorithm also includes the RGB eigenval-

ues of the ground and sky regions. Our experiments show that similar results are

obtained without the need for this step.

29

Figure 4–6: The horizon line is approximated for several test images. Performance
of the algorithm can be increased or decreased based on the number of possible
horizons tested.

CHAPTER 5
FUTURE WORK

Future development of the parallel computer vision and image processing

architecture should focus on optimizations for applications such as the micro air

vehicle project. To ease the significant amount of development time required,

work must be done to automatically compile a series of linear functions into the

parallel structure. If the micro air vehicle project is to move toward on-board

vision processing, the architecture must be integrated with on-board sensors and

controllers. The use of an inexpensive Digital Signal Processor (DSP) as the

primary controller and an FPGA co-processor would give the architecture enough

power to implement far more advanced algorithms than presented here.

30

CHAPTER 6
CONCLUSION

In this paper we have presented a hardware architecture that provides orders

of magnitude greater performance for some computer vision problems. A parallel

and pipelined approach was used in the design so that data throughput could

be maximized. The architecture, implemented on modern FPGAs, has been

successfully used to solve the micro air vehicle horizon tracking problem. If pursued

further, the architecture could allow for completely autonomous on-board vision

processing in the MAV and other small autonomous vehicles.

31

CHAPTER 7
REFERENCES

[1] S. Brown and J. Rose, Architecture of FPGAs and CPLDs: A Tutorial, IEEE

Transactions on Design and Test of Computers, 1996

[2] P. Hillman, J. Hannah and D. Renshaw, Alpha Channel Estimation in High

Resolution Images and Image Sequences, Proceedings of Computer Vision and

Pattern Recognition, 2001

[3] Altera, Cyclone FPGA Family Data Sheet, 2003

[4] S. Ettinger, M. Nechyba, P. Ifju and M. Waszak, Vision-Guided Flight Stability

and Control for Micro Air Vehicles, Proceedings IEEE International Conference on

Intelligent Robots and Systems, 2002.

[5] J. Grzywna, J. Plew, M. Nechyba and P. Ifju, Enabling Autonomous MAV

Flight, Florida Conference on Recent Advanced in Robotics, 2003.

[6] B. Draper, R. Beveridge, W. Bhm, C. Ross and M. Chawathe, Accelerated

Image Processing on FPGAs, IEEE Transactions on Image Processing, 2003

[7] J. Greco, Parallel Computer Vision Architecture, IEEE SoutheastCon, 2005.

[8] D. Patterson and J. Hennessy, Computer Organization and Design: The

Hardware/software Interface, 2005.

[9] Altera, Nios II Software Development Handbook, 2004

[10] S. Ettinger, M. Nechyba, P. Ifju and M. Waszak, Towards Flight Autonomy:

Vision-Based Horizon Detection for Micro Air Vehicles, Florida Conference on

Recent Advanced in Robotics, 2002.

32

BIOGRAPHICAL SKETCH

James Greco is a member of the Machine Intelligence Laboratory. There he

has worked on or led many autonomous robotic projects including a land rover

based on the ’97 Mars Sojourner and Gnuman the three-wheeled tour guide.

He is currently leading a team of undergraduate and graduate students on the

SubjuGator 2005 project, which is the University of Florida’s entry into the annual

AUVSI autonomous submarine competition.

He has won numerous awards while at the University of Florida including the

Electrical and Computer Engineering department’s highest honor, the Electrical

E award, and the College of Engineering’s highest honor, the Outstanding Gator

Scholar award. His studies have been supported by the Sias Scholarship, the Wayne

Chen Scholarship and the Florida’s Bright Futures Scholarship.

After graduating, James plans to begin doctoral studies at the University

of Florida’s department of Electrical and Computer Engineering. He has been

awarded a prestigious four-year alumni fellowship from the department to support

his studies.

