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Abstract. We propose in this paper a decomposition theorem for the
timed automata introduced by Alur and Dill [3,4]. To this purpose, we
define a new simple and natural composition operation, indexed by the
set of clocks to be reset, on timed automata generalizing the classical
untimed concatenation.

Then we extend the famous Kleene’s and Biichi’s theorems on classical
untimed automata by simply changing the basic objects to take time into
account, keeping the union operation and replacing the concatenation,
finite and infinite iterations by the new timed concatenations and their
induced iterations.

Thus, and on the contrary of the interesting result of [8], we do not
need neither intersection nor renaming. Therefore, and up to our knowl-
edge, our result provides the simplest known algebraic characterization
of recognizable timed languages.

1 Introduction

We are interested in this paper in the basic and natural model of so-called timed
automata proposed by Alur and Dill [3,4] to modelize real-time systems. Since
its introduction, this model has been largely studied under several aspects: de-
terminization [5], minimization [1], power of clocks [2,15], of e—transitions [12],
extensions of the model [6,9] and logical characterization [18] have been consid-
ered in particular. Moreover this model has been successfully used for verification
and specification of real-time systems [11,19,16].

But there is a lack of algebraic characterizations of timed languages or timed
automata. On the contrary to the untimed case, there does not exist a notion
of timed finite semi-groups and a notion of timed recognizing morphisms. Even
the famous Kleene’s theorem [17] and its extension of w—languages by Biichi
[14] has only partial counterparts in the framework of timed languages. The
most interesting result, due to Asarin, Caspi and Maler [8], proposes such a
Kleene theorem for a slightly different notion of timed languages. But the main
drawback of their characterization is that it uses in a crucial way the operations
of intersection and renaming.

The aim of this paper is to propose, at least up to our knowledge for the
first time, a simple Kleene-Biichi theorem for usual timed automata. Precisely,



we define a natural composition operation on timed automata, indexed by a
subset of clocks. Roughly, the composition of two timed automata is the classical
concatenation in which the values of the specified clocks - and only these ones
- are reset. We also introduce the finite and infinite iterations corresponding to
this composition. Then we prove that any timed automaton is equivalent to a
timed automaton built in a modular way from some basic automata using these
operations and the classical union operation. Hence our result is very closed
from Kleene’s and Buchi’s theorem, we have just changed the basic objects to
take time into account, keep the union operation and replace the concatenation,
finite and infinite 1terations by timed concatenations based naturally on clocks
and their induced iterations.

Our proof generalizes one of the proof of Kleene’s theorem based on the
resolution of equations on set of words, see e.g. [13]. The idea to solve equations
on timed languages - in the simple case of automata with a unique clock - was
already proposed by Asarin in [7] who gave a new proof of the main result of [8].
Here, we solve equations on multi-clock automata.

This paper is organized as follows. Section 2 recall the notion of timed words
and timed automata. But note that, on the contrary with the classical way, we
associate with a timed automaton not only one timed language but a family of
languages indexed by the initial clock valuation. This idea simple, but powerful,
will help deeply in the presentation of the operators. Then the technical notion of
constrained generators is introduced. Section 3 is devoted to the introduction of
the new composition operations and of the induced iterations. We also claim our
main result at the end of this section. In section 4, we propose all the technical
staff on constrained generators. We extend the operators to these objects and we
show how to solve a simple equation on constrained generators. Then, Section
5 proposes a proof of our main theorem. Finally, a small conclusion proposes a
promising direction of research.

For lack of space, this extended draft does not contain all the proofs.

2 Timed automata and constrained generators

In this section, we briefly recall the basic definitions and notations for timed
words and finite automata with timing constraints, as well as classical properties
of the corresponding families of timed languages. They come mostly from [3]

and [4].

2.1 Timed words and clocks

Let Z be any set. We write Z1 (respectively Z“) the set of non-empty finite
(respectively infinite) sequences of elements in Z, with ¢ for the empty sequence,
and Z%° = Zt U Z* the set of all sequences of elements in Z.

Throughout this paper, we consider a time domain T which is either the set of
non-negative integers N or the set of non-negative rationals Q. A time sequence



over T is a finite or infinite divergent non decreasing sequence ™ = (ti)i21 of
elements in T.

The observable actions of the processes we consider are given by a finite set
Y. A timed word is an element of (X' x T)*, w = (a;,%;);>1, also written as a pair
w = (0, 7), where ¢ = (a;)i>1 isa word in J* and 7 = (¢;);>1 is a timed sequence
in T of same length than ¢. For instance, (a, 1.5)(b, 2)(a, 7)(b,3.9)(a,3.9) is a
finite timed word, while ((ab)*, (i 4+ 1/4);>1) is an infinite timed word.

The concatenation of a finite timed word « = (a;,%;)1<i<n and of a finite
or infinite timed word v = (a},t})1<; is defined only if t, < t) and is equal

[ R

to the timed word u - v = (ai,t})1<; with (af,t]) = (a;, ;) if 1 < i < n and

(af ) = (a_,,, ti_,) if n < 4.
Let X be a set of variables with values in T, called clocks. Among X, we
distinguish a special clock @y which will denote the absolute time.

The guards over X are the formulas defined by the grammar:
gue=Tlo~cle—y~clgVglghg|yg

where @ and y are clocks, ¢ € T and ~ is a binary operator in {<,=,>}. The
set of all guards over X is denoted by Guards(X).

A clock valuation a : X — T is a mapping that assigns to each clock = a
time value a(z). The set of all clock valuations is denoted T*. We write o = ¢
when the clock valuation « satisfies the clock constraint g. If Y a subset of X,
the valuation «[Y := 0] is defined by, for each clock # in X, («[Y :=0])(x) =0
if # €Y, a(x) otherwise.

2.2 Timed automata and runs

A Biichi timed automaton over X, T and X is a tuple A = (Q, T, I, F, R), where
Q is a finite set of states, 7' C @ x [Guards(X) x X x P(X)] x Q is the set
of transitions, I C ) 1s the subset of initial states, /¥ C @ is the subset of
final states' and R C @ is a subset of repeated states corresponding to a Biichi
condition, as recalled below. Thus, a transition has the form (p, ¢, a, r, ¢), where
g 1s a guard, a 1s an action in X and r C X is the subset of clocks to be reset.
We assume that the special clock z is never reset.

The set of all timed automata over the set of actions X, the timed domain
T and the set of clocks X is denoted by TA(X, T, X).

In order to define how a timed word is recognized by a timed automaton, we
recall the notions of path and of timed run through a path. A path in A is a non
empty finite or infinite sequence of consecutive transitions:

g1,81,71 g2,a2,72
P=q q1

qz...

where (¢;—1,¢i, ai,7i,¢;) € T for all i > 0. The path P is accepting, if it starts in
an initial state and either it is finite ending in a final state or it is infinite and a

! For sake of simplicity, we will always assume that I N F = §



Biichi condition holds: inf(P) N R is nonempty, where inf(P) is the set of states
which occur infinitely often in P.

A run of the automaton through the path P and from the initial clock val-
uation o € TX is a triple R = («, P, (¢;)i>0) where (¢;);50 is a non-decreasing
sequence of dates of same length than P; ¢; 1s the time at which transition
gi—1 222" 45 has been executed. Intuitively, this transition can be performed,
only if the guard g; is satisfied by the current clock valuation and the clocks
in r; are reset at that time. More precisely, the value of clock x at time ¢
is written z(t), so that the clock valuation at time ¢ can be written as the
tuple X(t) = (2(1))zex. Beginning with time t; = a(xg) and clock values
z(tg) = a(x), for all z,% the clock valuation at time ¢ is completely determined
by the run: for each 7 > 1,

" i
x(ti):{o fzxer

z(ti1) +t; —t;_1  otherwise

and z(t) = #(ti—1) +t — ti—y for ;1 < t < t;. Moreover, we require that
X(ti_l) +t, — 11 ': g; for all 7 > 1.

With every finite (infinite resp.) run we can associate in a natural way a finite
(infinite resp.) timed word, designed as the label of R, by

E(R) = (al,tl)(az,tz) s e (Z X T)Oo

If R is finite of length n, we define also the clock valuation Ends(R) € TX “at
the end of R” in the following way:

0 ifzer,

Ends(R)(z) = {

z(t,) otherwise

Note that since we have assumed that the clock xp i1s never reset, it holds
Ends(R) (o) = tn.

2.3 Timed automata and constrained generators

With our definition, we therefore associate not only one timed language with a
timed automaton .4 but a family of timed languages indexed by the initial clock
valuations. Precisely, for any clock valuation o € T, we define

La(e) ={¢(R) | R = («, P, (t;)s>0) for some accepting path P in A}

For sake of simplicity, we denote L 4(a) for La(a) N (X x T)* and L4 ()
for La(a) N (X x T)«.

2 In most papers on timed automata, all the clocks, and in particular the absolute
time, are initialized to 0. Therefore our definition generalizes the classical one.



Remark 1. It is not difficult to prove that for any timed automaton .4 and any
clock valuation «, there exists a timed automaton 8 such that L4(a) = Lz(0) -
where 0 denotes the clock valuation defined by 0(x) = 0 for any clock #. Indeed,
it suffices to add some e—transitions before the initial states and to use the
results of [12] to suppress these e—transitions.

The fonction Ends on runs allows also to define the set of possible clock
valuations after accepting a finite timed word. Precisely, for any timed word
u € (¥ x T)T and any initial clock valuation a € TX, we set

Ends (o, u) = {Ends(R) | R = (a, P, (t)i>0)
for some accepting path P in A such that {(R) = u}

Note that if u ¢ L4 4(a), it holds Ends 4 (v, u) = (). This new function Ends 4
can be viewed as a constraint on the timed words of L4 4 («).

We now define the notion of constrained generator as a generalization of these
functions L4 and Endsy4. This notion will be a fundamental tool in the sequel.
A constrained generator is a couple (G, A) such that

L G:TY — P((Z x T)>)
2. A:TX x (¥ x T)t — P(TH)
3. Vue (U x Tt ue Ga) = Ala,u) £ 0

From the results above, it is clear that for any timed automaton A, the couple
(La,Endsg) is a constrained generator. It will be denoted by A and refered as
the constrained generator associated with A.

Two timed automata A and B are equivalent, we then denote A = B if their
associated constrained generators A and B are equal. In this case, it holds in
particular L4(0) = Lg(0).

3 Composition of timed automata

3.1 Union

The union of two timed automaton A = (@1, 71, I1, F1, R1) and B = (Q2, T3, I2, Fa, R2)
with Q1 N Q2 = B is simply the timed automaton A+ B = (Q1 UQ2, Ty UTs, ;U
Iy, F1 U Fy, Ry U R2).

3.2 Composition

We propose in this section a basic operation of composition of timed automata.
The concatenation of two usual - i.e. untimed - automata is a classical operation
widely used in the modelization of untimed systems. When we deal with timed
systems, the main problem comes from the clocks. Assume that we want to
concatenate two timed automata A and B. Then, entering in 53, the two extreme



possibilities are either to reset all the clocks of A or on the contrary to not reset
any clock of A. For instance, it is the way chosen by Asarin, Caspi and Maler in
[8] in the particular framework of automata with a unique clock.

But on many real examples, these extreme possibilities are unsatisfactory.
Assume for instance that we want to built a complex product under some global
timing constraints and that the construction is made in several parts, each of
them having its own timing constraints. Then it is much more natural to allow in
the concatenation of timing automata modelizing the subsystems to reset some
clocks and to not reset some other clocks.

Following this simple, but powerful, idea, we propose to define the concate-
nation of two timed automata depending on a fixed set of clocks. Assume that
two timed automata A and B and a set of clocks C' are given. Intuitively, the
concatenation A B is given by the following picture (y is a new clock neither

used in A nor B).

The use of e—transitions is not allowed in our model. Nevertheless, it 1s easy
to verify that A B can be defined formally, without such transitions, in the
following way. Let A = (Q1,T1, 11, F1, R1) and B = (Q2, T3, I, Fa, R2) with
Q1N Qs = (. We consider a copy E of Iy, disjoint of Q1 U Qo. Then A B is
the timed automaton® (Q1 U Q2 U Iy, T, I1, Fa2, Ry U Ry) with,

T=1
U 15

U {(q1,91,a1,m UC, fi) | fr € F1, (g1, 91, 01,71, f1) € Th}
UA{(f1,92,a2,7r2,¢2) | Jin € 1o, (i, g2, a2, 72, ¢2) € Tn}

3.3 Iterations

We now derive in a natural way two iterations, a finite one and an infinite one,
from this composition operator . Let A = (Q, 7)1, F, R) be a timed automaton
and let C' be a subset of clocks. We consider a copy F' of F, disjoint from .

3 Recall that by hypothesis, 1 NFi =L N =0



Then the timed automaton .Ag is defined as follows, .Ag =(QUF,T',I,F R)
with
=T
U{(g,9,a,rUC, )| f€F (q.9,ar f)eT}
U{(f,g,a,mq)[Fi €l (i,9,a,1,q) €T}

In a similar way, the infinite iteration of .4, denoted AS is defined by A =
(QUF, T, 1,0, RUF) where T" is defined as just above.

3.4 Modular constructions of timed automata

For any guard g € Guards(X) and any action a € ¥, we denote by A4y, the
simple timed automaton described in Figure 3.4. For any clock valuation o € TX
and any ¢ € T, denote by a + t the clock valuation defined by, for any clock =z,
(a+1t)(x) = a(z) +t. Then it is immediate to verify that Lasa, (a) is equal to
{(a,?) [ a+1 = g}. Moreover Endsy,,, (o,a) ={a+t|a+1E g}

Fig. 2. Automate A<5a>g

From these basic automata and the composition operators define below, we
define now a modular family of timed automata as follows.

Definition 2. Let Mod(X, T, X) be the smallest subset of timed automata of
TA(X, T, X) generated by the following grammar:

A:::A(5a>g | A+ A | Ac A | Ag | "48

with @ an action in X, g € Guards(X) a guard over X and C' C X a subset of
clocks such that zy ¢ C.

The main result of this paper is to prove that any timed automaton is equiv-
alent to some timed automaton of Mod(X, T, X). This result can be seen as a
Kleene-Biichi theorem for timed automata. Note that contrary to the results of
the paper of Asarin, Caspi and Maler [8], we do not need neither intersection
nor renaming.

Theorem 3. Any timed automaton of TA(X, T, X) is equivalent to an automa-
ton of Mod(X, T, X).

This theorem will be proved by solving systems of equations on constrained
generators. Since we can not assume, a priori, that the solution is always a
constraint generator associated with some timed automaton, we need first some
technical material on operations on constrained generators.



4 Composition of constrained generators

This section is devoted to the definitions of the composition of constrained gen-
erators. Even if these definitions are a bit technical, they are easy to understand
keeping in mind that the goal is to obtain definitions such that the following
proposition holds.

Proposition 4. Let A and B be two timed automata in TA(X, T, X) and C C X
be a subset of clocks. Then it holds:

AT B=A+8B
eB=AsB

1
2.
9. A
/.

=

3
a+

(l
o

o~

AS

(l
e
Qe

Throughout this section, (G, A) and (G', A’) are two constrained generators
and C' C X is a subset of clocks.

4.1 Union of constrained generators

The union of (G, 4) and (G’, A’), denoted by (G, A) + (G’, A’) is naturally the
constrained generator (G”, A”) where, for any clock valuation o € TX and any
finite timed word w € (¥ x T)*, ¢"(a) = G(a) UG’ () and A" (a, u) = A(a, u)U
Aa, u).

4.2 Composition of constrained generators

We define the composition (G, A) & (G, A’) as the constrained generator (G", A”)
where, for any clock valuation a € TX and any finite timed word* w € (X' x T)*,

G"a)={u-v|uegG(a)n (X x T)* and
v e G (BC :=0])N (X x T)™ for some 3 € A(a,u)}

and

A, w) = {A(B[C := 0],v) | there exisst some u € G(a)
with w =u-v and 8 € A(a,u)}

* Recall that the concatenation of two timed words is a partial operation which has
been defined in Section 2.1



4.3 Iterations of a constrained generator

We define now inductively, the constrained generator, (G, A)(é ) for i > 1, by

i1

(G, A)(e) = (G, A) and (G, M) = (G, A) (G, A)e)

and we set (g,/l)g = Ti51(G, M)
Finally, let (G, A) be a constrained generator and let (G1, A1) = (G, A)g. We

define (G, A)° = (G”, A"} by, for any clock valuation a € T* and any finite
timed word w € (¥ x T)*,

G"(0) = (G1(a) N (Z x T)¥) U
{uo -uy -+ | there exists a sequence (a;);>0 of clock valuations
with ag = a and for any i > 1, uj41 € G(ay) N (T x T)F
and a;y1 € Aoy, u;)}

and A’ (a, w) = 0.

With these definitions, the proof of Proposition 4 is now technical but without
major difficulty.

4.4 Basic properties

The following result summarizes the properties of the operators ¢ and & needed
in the following.

Proposition 5. Let (G, A), (G', A') and (G, A”) three constrained generators
and let C', D two subsets of clocks. Then it holds:

LG, A e (@A) + (9", A7) = ((G,4) & (9", ) + (G, 4) (6", A7)
2 (G, A) + (9", X)) & (67, A7) = (G, A) & (67, A7) + (67, A) e (67, A7)
3. ((G,4) & (9, ) 5 (67, 4") = (G, 4) & (6", ) 5 (67, A7)

4 (

z

G, A)" (", A) = Tisa (G, A &) o (G, A)

4.5 Equations on constrained generators

We consider two constrained generators (Gy, A1) and (G2, A2) and a subset C' of
clocks. The following lemma is the fundamental result allowing to solve systems
of equations on constrained generators.

Lemma 6. The equation on constrained generators
(G, A) = (G1, A1) & (G, A) + (G2, A2)

+
has for unique solution the constrained generator (Gi, A1) & (Ga, A2) + (Ga, As).



Note that even if the constrained generators (Gi, A1) and (G2, As) are asso-
ciated with some timed automata, we can not assume, a priori, that a solution
of the equation, if any, is also associated with a time automaton. It is the reason
why we had to introduce all the technical staff on constrained generators.

The proof of this lemma can be found in Appendix A.

5 Decomposition of timed automata

We are now ready to prove our main result, Theorem 3. Let A = (@, 7,1, F, R)
be a timed automaton. We assume that for any state ¢ there exists some subset
Cy C X such that for any transition (¢’,g,a,r,¢), it holds » = C,. Note that,
changing the set of states @ into the cartesian product @ x P(X), it is easy to
transform any timed automaton into an equivalent timed automaton verifying
this property. We will propose now an algorithm to find a timed automaton B
in Mod(X, T, X) which is equivalent to A.

For any states ¢, f € Q, we set A; ; = (Q,T,{i},{f},0) and we consider the

constrained generator A; ; associated with A; ;. From the definition of run in a
timed automaton (see Section 2), it is easy to verify that the following equation

holds
~ —— —— /\C"d
A= Z Aip + Z Ai g, Agq ’
iel,feF iel,geR

which, in terms of timed automata and using Proposition 4, can be rewritten
equivalently in

A= D A+ Y0 Aige,Asy (1)
iel, feF t€l,gER
Therefore, in order to prove that A is equivalent to some automaton in Mod (X, T, X'),
it suffices to prove that for any ¢,¢’ € @, the automaton A, belongs to
Mod(X, T, X).

__Assume now that f € @Q is fixed, then the family of constrained generators
(Ag f)geq verifies the system of equations on constrained generators - where
(0a), denotes the constrained generator associated with the basic timed au-
tomaton A(s,), defined in Section 3.4:

{Aqy‘f o Z(qvg,achlyql)ET<6a>g ;‘Aqlvf if 9= f
Ag s = Z(q,g,a,cq/,q')eT<6a>9 » Ay ¢ otherwise

Consider now an arbitrary order ¢1 < ¢2 < ... < ¢ on the elements of Q.
Then the equation with left member A, ; is solved, with A, ; as unknown,
using the fundamental Lemma 6 - ¢ has to be added if ¢, = f:

+
Cq

n

Agg = So Ga)y | o |ear 3 Ayt

(4n,9,0,Cqp 9n)ET (4n,9,0,C1,9" )ET,q'#4qn

10



We thus replace .,4/(1; by this formula in the n — 1 other equations. Step by
step, we solve the system using the fundamental Lemma 6. The last step proves
that the constrained generator .,4/ch can be expressed using the elementary
constrained generators (da), and the composition operators, which is similar to
say that the automaton Ay, ; is equivalent to some automaton of Mod (X, T, X).
We thus deduce that Ag, ; and then Ay, ;,... Aq, ; are also equivalent to some
automata of Mod(X, T, X).

Finally, for any ¢,¢" € @, every automaton A, , is equivalent to some au-
tomaton of Mod(X, T, X) and thus, using the equation (}), A is also equivalent
to some automaton of Mod(X, T, X). Theorem 3 is therefore proved.

This method 1s illustrated on an example in Appendix B.

6 Conclusion

We have proposed in this paper a Kleene-Biichi’s theorem for timed languages.
We have precisely prove that any timed automaton is equivalent to a timed
automaton built on a modular way form basic objects using the operations of
union, timed concatenations through subsets of clocks and their induced finite
and infinite iterations. For such an automaton constructed in a modular way,
the classical emptiness procedure [3,4] can also be done in a modular way in
parallel with the construction of the automaton, see [10]. Even if the complexity
in the worst case is PSPACE (Alur and Dill have shown that the problem is
PSPACE-complete), this procedure has given promising much simpler results on
some non trivial examples.
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A  Proof of Lemma 6

Proof. First let us show that (G, /11)g & (G2, A2) + (G2, Ag) is indeed a solution.
Using Proposition 5 1), 2) and 3), it holds

(G1, A1) & (61, M1)° & (G, As) + (G, As)) + (G, o)
= ((G1, A1) & (g1,/11)g +(G1, A1) & (G2, A2) + (G2, As)
= (g1,/11)g & (Ga, A2) + (Ga, A2)

Now let (G, A) be a solution, then (Ga, A3) C (G, A) ®. And thus (G1, A1) & (Ga, A2) C
(G, A) and by an immediate induction, for any i > 1, (G1, A1){(¢)" & (Ga, As) C
(G, A). Therefore Zm((gl,/ll)(é)' & (G2, A2)) C (G, A). Hence using Proposi-

tion 5 4), we deduce that (gl,/ll)éé (G2, A2) C (G, A). Finally, any solution
+
contains (G1, A1) & (G2, A2) + (G2, Aa).

Conversely assume that (G, A) is a solution which contains strictly (G, /11)g & (G2, A2)+
(Ga, As). We introduce the following notations (G', A') = (G1, A1) & (G, A), (Ga, Aa) =

+
(G1, A1) & (G2, A2) + (G2, A2) and (G3, A3) = (G1, A1) & (G4, Aa). Note that since
(G4, A4) is a solution of the equation, it holds (Gz, A3) C (G4, A4). Several cases
are possible.

1. There exists some clock valuation o and some timed word u such that u €
G(o) but u & Gy4(a).
Assume that u is minimal among these words i.e., for any clock valuation £
and any timed word v such that |v| < |ul, if v € G(5) then v € G4(3).
Since (G, A) is solution of the equation, it holds either u € Ga(«) or u € G’ ().
The case u € Ga(«v) is impossible since Ga(«) C G4(@). If v € G’ (), it holds
v =wv-w with v € Gi(«) and w € G(B[C := 0]) for some § € A;(v). But
since Gy(«) does not contain the empty word, |w| < |u|. Therefore, from
the minimality of u, we deduce that w € G4(B[C' := 0]). Thus v = v - w €
Gs(a) C G4(a) which is in contradiction with the hypothesis. This first case
is thus impossible.

2. There exist some clock valuations «, f and some timed word u such that
B € Ala, u) but 8 & Ag(ev, u).
Assume that u is minimal among these words 1.e., for any clock valuation ~
and any timed word v such that |v| < |u|, A(y,v) = As(7y,v).
Since (G, A) is solution of the equation, it holds either 5 € As(a,u) or
B € A'(a,u). The case § € Asz(a, u) is impossible since Ag(a, u) C Aq(ev, u).
If g € AMNayu), 8 € A(¥[C := 0], w) for some word w € G(y[C := 0]) such
that there exists some v € Gi(a) with v = v - w and vy € Ay(a,v). But

5 With the natural definition that a constrained generator (g, /1) is included in another
one (G', A') if for any clock valuation « and any finite timed word u, it holds G(«) C
G'(a) and A(a,u) C A'(a, u).

13



since Gy(«) does not contain the empty word, |w| < |u|. Therefore, from
the minimality of u, we deduce that 8 € A4(y[C := 0], w). But from the
first case, it holds w € G(«) = Ga(a). Therefore § € Az(a,u) and since
(G4, A4) is solution of the equation, we deduce that 5 € A4(a, u) which is in
contradiction with the hypothesis. This second case is thus also impossible.

B Example

We illustrate the algorithm on the following example of automaton.

Fig. 3. Automate A

This automaton defines the following system of equations on constrained
generators:

Xo = (0a) v+ iy X1

X1 = e+ (0b)g+xq11 s X2+ (00)0x0+s X3
Xo = {dc)oarx0+o X3

X = (8d)1,1001x0+ 8 X3 + (3a)g+x[o1] iy X1

Using the algorithm presented in Section 5, we obtain as solution:

+
Xo = Gagpage ir €+ (@0arainys Ochpatears 2 + 0oapars 2) )

with
+

7 = (e + (<5d>]1;+oo[x@+) m) i (0a)g+x[o1]

This defines a decomposition of A in basic timed automata as .,4(5@)@

Ase)

Fxet’

[osi[xet’ "7
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