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volume 1644 of Lecture Notes in Computer Science, pages 210−219. Springer, 1999.Decomposition and composition of timedautomataPatricia Bouyer and Antoine PetitLSV, CNRS UMR 8643, ENS de Cachan, 61 av. du Pr�es. Wilson,F-94235 Cachan Cedex, France,bouyer,petit@lsv.ens-cachan.frAbstract. We propose in this paper a decomposition theorem for thetimed automata introduced by Alur and Dill [3,4]. To this purpose, wede�ne a new simple and natural composition operation, indexed by theset of clocks to be reset, on timed automata generalizing the classicaluntimed concatenation.Then we extend the famous Kleene's and B�uchi's theorems on classicaluntimed automata by simply changing the basic objects to take time intoaccount, keeping the union operation and replacing the concatenation,�nite and in�nite iterations by the new timed concatenations and theirinduced iterations.Thus, and on the contrary of the interesting result of [8], we do notneed neither intersection nor renaming. Therefore, and up to our knowl-edge, our result provides the simplest known algebraic characterizationof recognizable timed languages.1 IntroductionWe are interested in this paper in the basic and natural model of so-called timedautomata proposed by Alur and Dill [3,4] to modelize real-time systems. Sinceits introduction, this model has been largely studied under several aspects: de-terminization [5], minimization [1], power of clocks [2,15], of "�transitions [12],extensions of the model [6,9] and logical characterization [18] have been consid-ered in particular. Moreover this model has been successfully used for veri�cationand speci�cation of real-time systems [11,19,16].But there is a lack of algebraic characterizations of timed languages or timedautomata. On the contrary to the untimed case, there does not exist a notionof timed �nite semi-groups and a notion of timed recognizing morphisms. Eventhe famous Kleene's theorem [17] and its extension of !�languages by B�uchi[14] has only partial counterparts in the framework of timed languages. Themost interesting result, due to Asarin, Caspi and Maler [8], proposes such aKleene theorem for a slightly di�erent notion of timed languages. But the maindrawback of their characterization is that it uses in a crucial way the operationsof intersection and renaming.The aim of this paper is to propose, at least up to our knowledge for the�rst time, a simple Kleene-B�uchi theorem for usual timed automata. Precisely,



we de�ne a natural composition operation on timed automata, indexed by asubset of clocks. Roughly, the composition of two timed automata is the classicalconcatenation in which the values of the speci�ed clocks - and only these ones- are reset. We also introduce the �nite and in�nite iterations corresponding tothis composition. Then we prove that any timed automaton is equivalent to atimed automaton built in a modular way from some basic automata using theseoperations and the classical union operation. Hence our result is very closedfrom Kleene's and B�uchi's theorem, we have just changed the basic objects totake time into account, keep the union operation and replace the concatenation,�nite and in�nite iterations by timed concatenations based naturally on clocksand their induced iterations.Our proof generalizes one of the proof of Kleene's theorem based on theresolution of equations on set of words, see e.g. [13]. The idea to solve equationson timed languages - in the simple case of automata with a unique clock - wasalready proposed by Asarin in [7] who gave a new proof of the main result of [8].Here, we solve equations on multi-clock automata.This paper is organized as follows. Section 2 recall the notion of timed wordsand timed automata. But note that, on the contrary with the classical way, weassociate with a timed automaton not only one timed language but a family oflanguages indexed by the initial clock valuation. This idea simple, but powerful,will help deeply in the presentation of the operators. Then the technical notion ofconstrained generators is introduced. Section 3 is devoted to the introduction ofthe new composition operations and of the induced iterations. We also claim ourmain result at the end of this section. In section 4, we propose all the technicalsta� on constrained generators. We extend the operators to these objects and weshow how to solve a simple equation on constrained generators. Then, Section5 proposes a proof of our main theorem. Finally, a small conclusion proposes apromising direction of research.For lack of space, this extended draft does not contain all the proofs.2 Timed automata and constrained generatorsIn this section, we brie
y recall the basic de�nitions and notations for timedwords and �nite automata with timing constraints, as well as classical propertiesof the corresponding families of timed languages. They come mostly from [3]and [4].2.1 Timed words and clocksLet Z be any set. We write Z+ (respectively Z!) the set of non-empty �nite(respectively in�nite) sequences of elements in Z, with " for the empty sequence,and Z1 = Z+ [ Z! the set of all sequences of elements in Z.Throughout this paper, we consider a time domainTwhich is either the set ofnon-negative integers N or the set of non-negative rationalsQ+. A time sequence2



over T is a �nite or in�nite divergent non decreasing sequence � = (ti)i�1 ofelements in T.The observable actions of the processes we consider are given by a �nite set�. A timed word is an element of (��T)1, w = (ai; ti)i�1, also written as a pairw = (�; � ), where � = (ai)i�1 is a word in�1 and � = (ti)i�1 is a timed sequencein T1 of same length than �. For instance, (a; 1:5)(b; 2)(a; �)(b; 3:9)(a; 3:9) is a�nite timed word, while ((ab)!; (i+ 1=i)i�1) is an in�nite timed word.The concatenation of a �nite timed word u = (ai; ti)1�i�n and of a �niteor in�nite timed word v = (a0i; t0i)1�i is de�ned only if tn � t01 and is equalto the timed word u � v = (a00i ; t00i )1�i with (a00i ; t00i ) = (ai; ti) if 1 � i � n and(a00i ; t00i ) = (a0i�n; t0i�n) if n < i.Let X be a set of variables with values in T, called clocks. Among X, wedistinguish a special clock x0 which will denote the absolute time.The guards over X are the formulas de�ned by the grammar:g ::= > j x � c j x� y � c j g _ g j g ^ g j :gwhere x and y are clocks, c 2 Tand � is a binary operator in f<;=; >g. Theset of all guards over X is denoted by Guards(X).A clock valuation � : X ! T is a mapping that assigns to each clock x atime value �(x). The set of all clock valuations is denoted TX. We write � j= gwhen the clock valuation � satis�es the clock constraint g. If Y a subset of X,the valuation �[Y := 0] is de�ned by, for each clock x in X, (�[Y := 0])(x) = 0if x 2 Y , �(x) otherwise.2.2 Timed automata and runsA B�uchi timed automaton over �;Tand X is a tuple A = (Q; T; I; F;R), whereQ is a �nite set of states, T � Q � [Guards(X) � � � P(X)] � Q is the setof transitions, I � Q is the subset of initial states, F � Q is the subset of�nal states1 and R � Q is a subset of repeated states corresponding to a B�uchicondition, as recalled below. Thus, a transition has the form (p; g; a; r; q), whereg is a guard, a is an action in � and r � X is the subset of clocks to be reset.We assume that the special clock x0 is never reset.The set of all timed automata over the set of actions �, the timed domainTand the set of clocks X is denoted by TA(�;T;X).In order to de�ne how a timed word is recognized by a timed automaton, werecall the notions of path and of timed run through a path. A path in A is a nonempty �nite or in�nite sequence of consecutive transitions:P = q0 g1;a1;r1�����! q1 g2;a2;r2�����! q2 � � �where (qi�1; gi; ai; ri; qi) 2 T for all i > 0. The path P is accepting, if it starts inan initial state and either it is �nite ending in a �nal state or it is in�nite and a1 For sake of simplicity, we will always assume that I \ F = ;3



B�uchi condition holds: inf (P )\R is nonempty, where inf (P ) is the set of stateswhich occur in�nitely often in P .A run of the automaton through the path P and from the initial clock val-uation � 2 TX is a triple R = (�; P; (ti)i>0) where (ti)i>0 is a non-decreasingsequence of dates of same length than P ; ti is the time at which transitionqi�1 gi;ai;ri����! qi has been executed. Intuitively, this transition can be performed,only if the guard gi is satis�ed by the current clock valuation and the clocksin ri are reset at that time. More precisely, the value of clock x at time tis written x(t), so that the clock valuation at time t can be written as thetuple X(t) = (x(t))x2X . Beginning with time t0 = �(x0) and clock valuesx(t0) = �(x), for all x,2 the clock valuation at time t is completely determinedby the run: for each i � 1,x(ti) = (0 if x 2 rix(ti�1) + ti � ti�1 otherwiseand x(t) = x(ti�1) + t � ti�1 for ti�1 � t < ti. Moreover, we require thatX(ti�1) + ti � ti�1 j= gi for all i � 1.With every �nite (in�nite resp.) run we can associate in a natural way a �nite(in�nite resp.) timed word, designed as the label of R, by`(R) = (a1; t1)(a2; t2) � � � 2 (� �T)1:If R is �nite of length n, we de�ne also the clock valuation Ends(R) 2 TX \atthe end of R" in the following way:Ends(R)(x) = (0 if x 2 rnx(tn) otherwiseNote that since we have assumed that the clock x0 is never reset, it holdsEnds(R)(x0) = tn.2.3 Timed automata and constrained generatorsWith our de�nition, we therefore associate not only one timed language with atimed automaton A but a family of timed languages indexed by the initial clockvaluations. Precisely, for any clock valuation � 2TX, we de�neLA(�) = f`(R) j R = (�; P; (ti)i>0) for some accepting path P in AgFor sake of simplicity, we denote LA;+(�) for LA(�) \ (� �T)+ and LA;!(�)for LA(�) \ (� �T)!.2 In most papers on timed automata, all the clocks, and in particular the absolutetime, are initialized to 0. Therefore our de�nition generalizes the classical one.4



Remark 1. It is not di�cult to prove that for any timed automaton A and anyclock valuation �, there exists a timed automaton B such that LA(�) = LB(0) -where 0 denotes the clock valuation de�ned by 0(x) = 0 for any clock x. Indeed,it su�ces to add some "�transitions before the initial states and to use theresults of [12] to suppress these "�transitions.The fonction Ends on runs allows also to de�ne the set of possible clockvaluations after accepting a �nite timed word. Precisely, for any timed wordu 2 (� �T)+ and any initial clock valuation � 2TX, we setEndsA(�; u) = fEnds(R) j R = (�; P; (ti)i>0)for some accepting path P in A such that `(R) = ugNote that if u 62 LA;+(�), it holds EndsA(�; u) = ;. This new function EndsAcan be viewed as a constraint on the timed words of LA;+(�).We now de�ne the notion of constrained generator as a generalization of thesefunctions LA and EndsA. This notion will be a fundamental tool in the sequel.A constrained generator is a couple (G; �) such that1. G :TX �! P((� �T)1)2. � : TX � (� �T)+ �! P(TX)3. 8u 2 (� �T)+; u 2 G(�)() �(�; u) 6= ;From the results above, it is clear that for any timed automatonA, the couple(LA;EndsA) is a constrained generator. It will be denoted by Â and refered asthe constrained generator associated with A.Two timed automata A and B are equivalent, we then denote A � B if theirassociated constrained generators Â and B̂ are equal. In this case, it holds inparticular LA(0) = LB(0).3 Composition of timed automata3.1 UnionThe union of two timed automatonA = (Q1; T1; I1; F1; R1) and B = (Q2; T2; I2; F2; R2)with Q1\Q2 = ; is simply the timed automaton A+B = (Q1[Q2; T1[T2; I1[I2; F1 [ F2; R1 [R2).3.2 CompositionWe propose in this section a basic operation of composition of timed automata.The concatenation of two usual - i.e. untimed - automata is a classical operationwidely used in the modelization of untimed systems. When we deal with timedsystems, the main problem comes from the clocks. Assume that we want toconcatenate two timed automata A and B. Then, entering in B, the two extreme5



possibilities are either to reset all the clocks of A or on the contrary to not resetany clock of A. For instance, it is the way chosen by Asarin, Caspi and Maler in[8] in the particular framework of automata with a unique clock.But on many real examples, these extreme possibilities are unsatisfactory.Assume for instance that we want to built a complex product under some globaltiming constraints and that the construction is made in several parts, each ofthem having its own timing constraints. Then it is much more natural to allow inthe concatenation of timing automata modelizing the subsystems to reset someclocks and to not reset some other clocks.Following this simple, but powerful, idea, we propose to de�ne the concate-nation of two timed automata depending on a �xed set of clocks. Assume thattwo timed automata A and B and a set of clocks C are given. Intuitively, theconcatenation A _C B is given by the following picture (y is a new clock neitherused in A nor B).A Bf1���� i2����PPPPqg;a; r [ fyg -y = 0; "; C := 0i1����- Fig. 1. Automaton A _C BThe use of "�transitions is not allowed in our model. Nevertheless, it is easyto verify that A _C B can be de�ned formally, without such transitions, in thefollowing way. Let A = (Q1; T1; I1; F1; R1) and B = (Q2; T2; I2; F2; R2) withQ1 \ Q2 = ;. We consider a copy fF1 of F1, disjoint of Q1 [ Q2. Then A _C B isthe timed automaton3 (Q1 [Q2 [fF1; T; I1; F2; R1 [R2) with,T = T1[ T2[ f(q1; g1; a1; r1 [C; ~f1) j f1 2 F1; (q1; g1; a1; r1; f1) 2 T1g[ f( ~f1; g2; a2; r2; q2) j 9i2 2 I2; (i2; g2; a2; r2; q2) 2 T2g3.3 IterationsWe now derive in a natural way two iterations, a �nite one and an in�nite one,from this composition operator _C . Let A = (Q; T; I; F;R) be a timed automatonand let C be a subset of clocks. We consider a copy ~F of F , disjoint from Q.3 Recall that by hypothesis, I1 \ F1 = I2 \ F2 = ;6



Then the timed automaton A+C is de�ned as follows, A+C = (Q [ ~F; T 0; I; ~F;R)with T 0 = T[ f(q; g; a; r [C; ~f) j f 2 F; (q; g; a; r; f) 2 Tg[ f( ~f ; g; a; r; q) j 9i 2 I; (i; g; a; r; q) 2 TgIn a similar way, the in�nite iteration of A, denoted A!C is de�ned by A!C =(Q [ ~F; T 0; I; ;; R[ ~F ) where T 0 is de�ned as just above.3.4 Modular constructions of timed automataFor any guard g 2 Guards(X) and any action a 2 �, we denote by Ah�aig thesimple timed automaton described in Figure 3.4. For any clock valuation � 2TXand any t 2 T, denote by � + t the clock valuation de�ned by, for any clock x,(�+ t)(x) = �(x) + t. Then it is immediate to verify that LAh�aig (�) is equal tof(a; t) j �+ t j= gg. Moreover EndsAh�aig (�; a) = f�+ t j �+ t j= gg.����- ����--g; a; ;Fig. 2. Automate Ah�aigFrom these basic automata and the composition operators de�ne below, wede�ne now a modular family of timed automata as follows.De�nition 2. Let Mod(�;T;X) be the smallest subset of timed automata ofTA(�;T; X) generated by the following grammar:A ::= Ah�aig j A +A j A _CA j A+C j A!Cwith a an action in �, g 2 Guards(X) a guard over X and C � X a subset ofclocks such that x0 62 C.The main result of this paper is to prove that any timed automaton is equiv-alent to some timed automaton of Mod(�;T;X). This result can be seen as aKleene-B�uchi theorem for timed automata. Note that contrary to the results ofthe paper of Asarin, Caspi and Maler [8], we do not need neither intersectionnor renaming.Theorem 3. Any timed automaton of TA(�;T;X) is equivalent to an automa-ton of Mod(�;T; X).This theorem will be proved by solving systems of equations on constrainedgenerators. Since we can not assume, a priori, that the solution is always aconstraint generator associated with some timed automaton, we need �rst sometechnical material on operations on constrained generators.7



4 Composition of constrained generatorsThis section is devoted to the de�nitions of the composition of constrained gen-erators. Even if these de�nitions are a bit technical, they are easy to understandkeeping in mind that the goal is to obtain de�nitions such that the followingproposition holds.Proposition 4. Let A and B be two timed automata in TA(�;T;X) and C � Xbe a subset of clocks. Then it holds:1. \A+ B = Â+ B̂2. \A _C B = Â _C B̂3. cA+C = Â+C4. cA!C = Â!CThroughout this section, (G; �) and (G0; �0) are two constrained generatorsand C � X is a subset of clocks.4.1 Union of constrained generatorsThe union of (G; �) and (G0; �0), denoted by (G; �) + (G0; �0) is naturally theconstrained generator (G00; �00) where, for any clock valuation � 2 TX and any�nite timed word w 2 (��T)+, G00(�) = G(�)[G0(�) and �00(�; u) = �(�; u)[�0(�; u).4.2 Composition of constrained generatorsWe de�ne the composition (G; �) _C (G0; �0) as the constrained generator (G00; �00)where, for any clock valuation � 2TX and any �nite timed word4 w 2 (��T)+,G00(�) = fu � v j u 2 G(�) \ (� �T)+ andv 2 G0(�[C := 0]) \ (� �T)1 for some � 2 �(�; u)gand�00(�;w) = f�0(�[C := 0]; v) j there exisst some u 2 G(�)with w = u � v and � 2 �(�; u)g4 Recall that the concatenation of two timed words is a partial operation which hasbeen de�ned in Section 2.1 8



4.3 Iterations of a constrained generatorWe de�ne now inductively, the constrained generator, (G; �)( _C )i , for i � 1, by(G; �)( _C )1 = (G; �) and (G; �)( _C )i+1 = (G; �) _C (G; �)( _C )iand we set (G; �)+C = �i�1(G; �)( _C )i .Finally, let (G; �) be a constrained generator and let (G1; �1) = (G; �)+C. Wede�ne (G; �)!C = (G00; �00) by, for any clock valuation � 2 TX and any �nitetimed word w 2 (� �T)+,G00(�) = (G1(�) \ (� �T)!) [fu0 � u1 � � � j there exists a sequence (�i)i�0 of clock valuationswith �0 = � and for any i � 1, ui+1 2 G(�i) \ (� �T)+and �i+1 2 �(�i; ui)gand �00(�;w) = ;.With these de�nitions, the proof of Proposition 4 is now technical but withoutmajor di�culty.4.4 Basic propertiesThe following result summarizes the properties of the operators _C and +C neededin the following.Proposition 5. Let (G; �), (G0; �0) and (G00; �00) three constrained generatorsand let C;D two subsets of clocks. Then it holds:1. (G; �) _C ((G0; �0) + (G00; �00)) = ((G; �) _C (G0; �0)) + ((G; �) _C (G00; �00))2. ((G; �) + (G0; �0)) _C (G00; �00) = ((G; �) _C (G00; �00)) + ((G0; �0) _C (G00; �00))3. ((G; �) _C (G0; �0)) _D (G00; �00) = (G; �) _C ((G0; �0) _D (G00; �00))4. (G; �)+C _C (G0; �0) =Pi�1(G; �)( _C )i _C (G0; �0)4.5 Equations on constrained generatorsWe consider two constrained generators (G1; �1) and (G2; �2) and a subset C ofclocks. The following lemma is the fundamental result allowing to solve systemsof equations on constrained generators.Lemma 6. The equation on constrained generators(G; �) = (G1; �1) _C (G; �) + (G2; �2)has for unique solution the constrained generator (G1; �1)+C _C (G2; �2) + (G2; �2).9



Note that even if the constrained generators (G1; �1) and (G2; �2) are asso-ciated with some timed automata, we can not assume, a priori, that a solutionof the equation, if any, is also associated with a time automaton. It is the reasonwhy we had to introduce all the technical sta� on constrained generators.The proof of this lemma can be found in Appendix A.5 Decomposition of timed automataWe are now ready to prove our main result, Theorem 3. Let A = (Q; T; I; F;R)be a timed automaton. We assume that for any state q there exists some subsetCq � X such that for any transition (q0; g; a; r; q), it holds r = Cq. Note that,changing the set of states Q into the cartesian product Q� P(X), it is easy totransform any timed automaton into an equivalent timed automaton verifyingthis property. We will propose now an algorithm to �nd a timed automaton Bin Mod(�;T;X) which is equivalent to A.For any states i; f 2 Q, we set Ai;f = (Q; T; fig; ffg; ;) and we consider theconstrained generator dAi;f associated with Ai;f . From the de�nition of run in atimed automaton (see Section 2), it is easy to verify that the following equationholds Â = Xi2I;f2F dAi;f + Xi2I;q2RdAi;q _Cq dAq;q !Cqwhich, in terms of timed automata and using Proposition 4, can be rewrittenequivalently in A � Xi2I;f2F Ai;f + Xi2I;q2RAi;q _Cq A !Cqq;q (y)Therefore, in order to prove thatA is equivalent to some automaton in Mod(�;T;X),it su�ces to prove that for any q; q0 2 Q, the automaton Aq;q0 belongs toMod(�;T;X).Assume now that f 2 Q is �xed, then the family of constrained generators(dAq;f )q2Q veri�es the system of equations on constrained generators - whereh�aig denotes the constrained generator associated with the basic timed au-tomaton Ah�aig de�ned in Section 3.4:( dAq;f = " +P(q;g;a;Cq0 ;q0)2T h�aig _r[Aq0 ;f if q = fdAq;f =P(q;g;a;Cq0 ;q0)2T h�aig _r[Aq0 ;f otherwiseConsider now an arbitrary order q1 < q2 < : : : < qn on the elements of Q.Then the equation with left member\Aqn;f is solved, with\Aqn;f as unknown,using the fundamental Lemma 6 - " has to be added if qn = f :\Aqn ;f = 0@ X(qn;g;a;Cqn ;qn)2T h�aig1A +Cqn _Cqn 0@"q;f + X(qn;g;a;Cq0 ;q0)2T;q0 6=qn[Aq0;f1A10



We thus replace \Aqn ;f by this formula in the n � 1 other equations. Step bystep, we solve the system using the fundamental Lemma 6. The last step provesthat the constrained generator [Aq1;f can be expressed using the elementaryconstrained generators h�aig and the composition operators, which is similar tosay that the automaton Aq1;f is equivalent to some automaton of Mod(�;T;X).We thus deduce that Aq2 ;f and then Aq3 ;f ; : : : ;Aqn;f are also equivalent to someautomata of Mod(�;T;X).Finally, for any q; q0 2 Q, every automaton Aq;q0 is equivalent to some au-tomaton of Mod(�;T; X) and thus, using the equation (y), A is also equivalentto some automaton of Mod(�;T; X). Theorem 3 is therefore proved.This method is illustrated on an example in Appendix B.6 ConclusionWe have proposed in this paper a Kleene-B�uchi's theorem for timed languages.We have precisely prove that any timed automaton is equivalent to a timedautomaton built on a modular way form basic objects using the operations ofunion, timed concatenations through subsets of clocks and their induced �niteand in�nite iterations. For such an automaton constructed in a modular way,the classical emptiness procedure [3,4] can also be done in a modular way inparallel with the construction of the automaton, see [10]. Even if the complexityin the worst case is PSPACE (Alur and Dill have shown that the problem isPSPACE-complete), this procedure has given promising much simpler results onsome non trivial examples.References1. R. Alur, C. Courcoubetis, D.L. Dill, N. Halbwachs, and H. Wong-Toi. Minimizationof timed transition systems. In Proceedings of CONCUR'92, number 630 in LectureNotes in Computer Science. Springer Verlag, 1992.2. R. Alur, C. Courcoubetis, and T.A. Henzinger. The observational power of clocks.In Proceedings of CONCUR'94, number 836 in Lecture Notes in Computer Science,pages 162{177. Springer Verlag, 1994.3. R. Alur and D.L. Dill. Automata for modeling real-time systems. In Proceedingsof ICALP'90, number 443 in Lecture Notes in Computer Science, pages 322{335.Springer Verlag, 1990.4. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,126:183{235, 1994.5. R. Alur, L. Fix, and T.A. Henzinger. A determinizable class of timed automata. InProceedings of CAV'94, number 818 in Lecture Notes in Computer Science, pages1{13. Springer Verlag, 1994.6. R. Alur and T.A. Henzinger. Back to the future: towards a theory of timed regularlanguages. In Proceedings of FOCS'92, Lecture Notes in Computer Science, pages177{186. Springer Verlag, 1992. 11
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A Proof of Lemma 6Proof. First let us show that (G1; �1)+C _C (G2; �2) + (G2; �2) is indeed a solution.Using Proposition 5 1), 2) and 3), it holds(G1; �1) _C ((G1; �1)+C _C (G2; �2) + (G2; �2)) + (G2; �2)= ((G1; �1) _C (G1; �1)+C + (G1; �1)) _C (G2; �2) + (G2; �2)= (G1; �1)+C _C (G2; �2) + (G2; �2)Now let (G; �) be a solution, then (G2; �2) � (G; �) 5. And thus (G1; �1) _C (G2; �2) �(G; �) and by an immediate induction, for any i � 1, (G1; �1)( _C )i _C (G2; �2) �(G; �). Therefore Pi�1((G1; �1)( _C )i _C (G2; �2)) � (G; �). Hence using Proposi-tion 5 4), we deduce that (G1; �1)+C _C (G2; �2) � (G; �). Finally, any solutioncontains (G1; �1)+C _C (G2; �2) + (G2; �2).Conversely assume that (G; �) is a solution which contains strictly (G1; �1)+C _C (G2; �2)+(G2; �2). We introduce the followingnotations (G0; �0) = (G1; �1) _C (G; �), (G4; �4) =(G1; �1)+C _C (G2; �2) + (G2; �2) and (G3; �3) = (G1; �1) _C (G4; �4). Note that since(G4; �4) is a solution of the equation, it holds (G3; �3) � (G4; �4). Several casesare possible.1. There exists some clock valuation � and some timed word u such that u 2G(�) but u 62 G4(�).Assume that u is minimal among these words i.e., for any clock valuation �and any timed word v such that jvj < juj, if v 2 G(�) then v 2 G4(�).Since (G; �) is solution of the equation, it holds either u 2 G2(�) or u 2 G0(�).The case u 2 G2(�) is impossible since G2(�) � G4(�). If u 2 G0(�), it holdsu = v � w with v 2 G1(�) and w 2 G(�[C := 0]) for some � 2 �1(v). Butsince G1(�) does not contain the empty word, jwj < juj. Therefore, fromthe minimality of u, we deduce that w 2 G4(�[C := 0]). Thus u = v � w 2G3(�) � G4(�) which is in contradiction with the hypothesis. This �rst caseis thus impossible.2. There exist some clock valuations �; � and some timed word u such that� 2 �(�; u) but � 62 �4(�; u).Assume that u is minimal among these words i.e., for any clock valuation 
and any timed word v such that jvj < juj, �(
; v) = �4(
; v).Since (G; �) is solution of the equation, it holds either � 2 �2(�; u) or� 2 �0(�; u). The case � 2 �2(�; u) is impossible since �2(�; u) � �4(�; u).If � 2 �0(�; u), � 2 �(
[C := 0]; w) for some word w 2 G(
[C := 0]) suchthat there exists some v 2 G1(�) with u = v � w and 
 2 �1(�; v). But5 With the natural de�nition that a constrained generator (G; �) is included in anotherone (G0; �0) if for any clock valuation � and any �nite timed word u, it holds G(�) �G0(�) and �(�;u) � �0(�;u). 13



since G1(�) does not contain the empty word, jwj < juj. Therefore, fromthe minimality of u, we deduce that � 2 �4(
[C := 0]; w). But from the�rst case, it holds w 2 G(�) = G4(�). Therefore � 2 �3(�; u) and since(G4; �4) is solution of the equation, we deduce that � 2 �4(�; u) which is incontradiction with the hypothesis. This second case is thus also impossible.B ExampleWe illustrate the algorithm on the following example of automaton.
0����- 1����?

2���� 3����-x > 0, a, y := 0 �����������y = 1, b AAAAAAAAAAUx < 1, cqx < 1, ci y < 1, a, y := 0 k x > 1, dFig. 3. Automate AThis automaton de�nes the following system of equations on constrainedgenerators: 8>><>>:X0 = h�aiQ+��Q+ _fygX1X1 = �+ h�biQ+�f1g _;X2 + h�ci[0;1[�Q+ _;X3X2 = h�ci[0;1[�Q+ _;X3X3 = h�di]1;+1[�Q+ _;X3 + h�aiQ+�[0;1[ _fygX1Using the algorithm presented in Section 5, we obtain as solution:X0 = h�aiQ+��Q+ _fyg ��+ �h�biQ+�f1g _; h�ci[0;1[�Q+ _;Z + h�ci[0;1[�Q+ _;Z� +fyg�with Z = ��+ �h�di]1;+1[�Q+�+;� _; h�aiQ+�[0;1[This de�nes a decomposition of A in basic timed automata as Ah�aiQ+� �Q+ ,Ah�ci[0;1[�Q+ , : : : 14


