
Two New Continuous-time Models for the Scheduling

of Multistage Batch Plants with Sequence Dependent

Changeovers

Pedro M. Castro,*,† Ignacio E. Grossmann‡ and Augusto Q. Novais†

†Departamento de Modelação e Simulação de Processos, INETI, 1649-038 Lisboa, Portugal

‡Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

This paper presents two new multiple-time grid, continuous-time mixed integer linear program

(MILP) models for the short-term scheduling of multistage, multiproduct plants featuring equipment

units with sequence dependent changeovers. Their main difference results from the explicit

consideration of changeover tasks as model variables rather than implicitly through model

constraints. The former approach is more versatile in terms of type of objective function that can be

efficiently handled (minimization of total cost, total earliness and makespan) and, despite generating

larger mathematical problems, it is also a better performer in single stage problems. The latter is

better suited for multistage problems, where the former approach has some difficulties even in

finding feasible solutions, particularly as the number of stages increases. The performance of both

formulations is compared to other mixed integer linear program and constraint programming

models. The results show that multiple time grid models are better suited for single stage problems

or when minimizing total earliness, that the constraint programming model is the best approach for

* To whom correspondence should be addressed. Tel.: +351-210924109. Fax: +351-217167016. E-

mail: pedro.castro@ineti.pt

1

makespan minimization and that the continuous-time model with global precedence variables is the

best overall performer.

1. Introduction

Scheduling problems can be tackled by a variety of optimization approaches as well as other

solution methods1. For instance, mathematical programming (MP) models, usually leading to mixed

integer linear programming (MILP) problems, have received considerable attention in the literature.

The focus has ranged essentially from specific to general types of network configurations, from pure

batch to pure continuous type of processes, from short-term to periodic modes of operation and from

discrete to continuous representations of time. While some are more robust than others, small

changes in the characteristics of the problem can make some MP models highly inefficient, even

non-applicable. Constraint programming (CP)2, originally developed to solve feasibility problems,

has also been extended to solve optimization problems, particularly scheduling problems. CP and

MP approaches have complementary strengths3 and some researchers4-8 have already taken full

advantage of this, by developing hybrid methods that are considerable more efficient than the

standalone approaches.

Most of the recent MP scheduling models are based on a continuous-time representation5,9-16.

Those employing one or more time grids9-12,14,16 focus on general multipurpose plants and on the

development of increasingly efficient models. An important recent advance was the introduction by

Sundaramoorthy and Karimi16 of a formulation without big-M constraints that proved more efficient

than other competing methods. Discrete-time formulations for scheduling of multipurpose plants go

further back in time starting with the seminal paper of Kondili et al.17 that also had the merit of

introducing the state-task network (STN) process representation, and which was soon followed by

the resource-task network (RTN) based model of Pantelides18. Discrete and continuous-time

approaches have complementary strengths and a mixed-time representation model has recently been

presented by Maravelias19 for the simultaneously optimization of scheduling and supply chain

management problems.

While recent reviews1,20 have appeared in the literature that discuss the relative merits of the

various MP and CP approaches, they rely on performance data that often involve different problems

2

and distinct hardware and software tools. This paper avoids such limitations by following a more

hands-on approach, where as much as six alternative models are tested on the solution of a large set

of example problems concerning the short-term scheduling of single/multistage, multiproduct batch

plants, featuring sequence dependent changeovers. Also analysed is the influence of the objective

function on model performance.

This paper can be viewed as the third part of an extensive comparative study, where the previous

two have focused on single stage21 and multistage22 problems featuring either sequence independent

changeovers (setup times) or none at all. However, this paper goes beyond a mere comparison

between different methods, since two of them are new. Both are multiple time grid continuous-time

models that are extensions to the one presented by Castro and Grossmann22 with respect to the

handling of sequence dependent changeovers. They are conceptually different on how changeover

tasks are handled: either explicitly, which is a more general approach in terms of variety of objective

functions that can be handled efficiently, or implicitly in the model constraints, which has the

advantage of generating smaller sized models. Another important novel aspect is the combination of

processing and changeover tasks into a single set of tasks, which contributes to both reduction in the

number of model variables and solution degeneracy, and this is done for one of the new continuous-

time models, as well as for the discrete-time model. The other approaches involved in the

comparison include a continuous-time model with global precedence sequencing variables5 (SV), a

CP model based on OPL Studio modelling language23 and a hybrid MILP/CP model (single stage

only). Not included is the single grid, continuous-time model of Castro et al.14, simply because it

was shown to be a poor performer in the previous studies21-22 and due to the fact that the number of

event points required to find the optimal solution would increase even more with the consideration

of changeover tasks, which would inevitably lead to even larger MILPs. Other uniform time grid

continuous-time formulations11,16 are expected to have similar drawbacks and thus are also not

considered.

The rest of the paper is structured as follows. Section 2 defines the scheduling problem under

consideration. Section 3 gives a thorough description of the problem highlighting some of the

conceptually different approaches that can be used to model it. Concerning the handling of

3

changeovers, two alternative, continuous-time modelling options will be identified leading to the

development of two new MILP models that are presented in sections 4 and 5. The other featured

approaches are described in section 6, while section 7 presents the detailed computational studies.

The strengths and limitations of each approach are summarized in section 8, while the conclusions

are left for section 9.

2. Problem definition

In this paper, the short-term scheduling problem of multistage, multiproduct batch plants is

considered. Given are: a set of product orders i∈I that must follow a sequence of processing stages,

k∈K, to reach the condition of final products; a set of available equipment units m∈M, each

belonging to a single stage, with set Mk including those units belonging to stage k. Given also are the

duration of the processing tasks, pi,m, and those of the cleaning tasks, cli,i’,m; the release, ri and due

dates, di, all being enforced as hard constraints. Additional data consisting of the processing cost of

order i in machine m, ci,m, is required whenever the objective is the minimization of the total cost.

It is assumed that all orders go through all stages, that there is a unique sequence of stages for all

orders, and that unlimited intermediate storage (UIS) is available between stages. Non-zero

processing times are required to allow for an order to be processed on a given machine. Hence, the

set of orders that can be processed in machine m is defined by }0:{ , MmpIiI mim ∈∀>∈= . It is

also assumed that any given order is only executed once over the time horizon. This makes it

possible to define cli,i,m=0.

3. Conceptual representation: process vs. model entities

Processes involving sequence dependent changeovers are generally more difficult to model than

those involving sequence independent setup times or no setup times at all. Some models, like those

using global precedence sequencing variables (SV) (see section 6.1) or based on constraint

programming (CP) (see section 6.3) hardly require any changes. In contrast, time-grid based

approaches need to be significantly altered, both discrete- (DT) and continuous-time approaches, the

latter irrespective of being single or multiple time grid models. Naturally, model adaptability to a

different type of problem is directly related to the types of variables and constraints that are used,

4

which in turn are derived from some conceptualization. When developing a model, the modeler must

make a few fundamental decisions that will have a major impact on its structure and performance.

For this specific type of scheduling problem there are two main decisions. The first concerns the

way in which the processing and cleaning tasks are modeled. The second concerns the treatment of

time.

The processing and cleaning tasks can be handled either explicitly, as model variables, or

embedded in some of the model constraints. Time grid-based approaches consider the processing

tasks explicitly and binary variables are used to identify their starting time point on the grid.

Concerning changeover tasks, discrete-time17-18 and continuous-time RTN-based24 models define

them explicitly whereas continuous-time STN-based9-12 as well as constraint programming models2

consider them implicitly. Continuous-time models based on sequencing variables5,13 consider all

types of tasks implicitly.

The two new multiple time grid continuous-time models that are given in the next couple of

sections handle changeover tasks in an opposite way. The first, and more general one (in terms of

variety of objective functions that it can handle), uses a set of binary variables tmiiN ,,', that identify

the execution of order i in unit m starting at time point t, together with the changeover task to allow

for order i’ to immediate follow on the same equipment. This grouping of processing and cleaning

tasks into a single set of variables, instead of considering them separately, is a novel idea that

improves the performance of the model due to the use of fewer variables and reduces the degeneracy

since the cleaning task is performed immediately after the processing task has ended. Note also that

it is possible to have i=i’ in cases where i will be the last order to be processed on the machine under

consideration (the duration of the combined task is equal to that of just the processing task since

cli,i,m=0), although it is not mandatory that all the machines end with such tasks since many will be

non-limiting machines that can have cli,i’,m≠0 without compromising the optimal solution.

3.1. Resource task network process representation

The use of combined processing and changeover tasks (named DO in the illustrations) gives rise to

the Resource Task Network2 (RTN) process representations given in Figure 1 and Figure 2, which

5

are the basis of both the multiple time grid continuous-time formulation (see section 4) and the

discrete-time representation (see section 6.2). It is important to emphasize that the tasks time index

(t) is not important for the representation, meaning that the RTNs are valid despite the fact that index

t has a slightly different meaning in each formulation, as it will be seen later on. Thus, three indices

remain (two order indices and one machine index). The execution of a task involves

consumption/production of several resources that, although treated in exactly the same way by the

mathematical formulations, are split into three different types to facilitate model understanding: a)

the equipment resources (the elements of set M); b) the material states, which are directly associated

to the order i under consideration and to the stage k where the material is produced; c) the cleaning

states, which are linked to the order (i) that equipment unit m is ready to handle. Due to large

number of resources involved and for the sake of clarity, we have divided the overall RTN into two

superstructures. While Figure 1 focuses on the first two resource types and on the material states

modifications due to the processing part of the task, Figure 2 focuses on cleaning states changes

caused by the changeover part of the task. The former RTN applies for a given order (i.e. I1), while

the latter for a given machine (i.e. M1).

DO_I1_I1_M|M1|
Duration=p1,|M1|

I1,K1

M1

M|M1|

.

.

.

Stage 1

DO_I1_I1_M(|M1|+1)
Duration=p1,|M1|+1

DO_I1_I1_M(|M1|+|M2|)
Duration=p1,|M1|+|M2|

I1,K2

M(|M1|+1)

Stage 2

M(|M1|+|M2|)

... I1,K(|K|-1)

DO_I1_M(|M|-|Mk|+1)
Duration=p1,|M|-|Mk|+1

DO_I1_I1_M|M|
Duration=p1,|M|

I1,K|K|

M(|M|-|Mk|+1)

Stage K

M|M|

DO_I1_I1_M1
Duration=p1,1

DO_I1_I2_M1
Duration=p1,1+cl1,2,1

DO_I1_I|I|_M1
Duration=p1,1+cl1,|I|,1

...

DO_I1_I|I|_M|M1|
Dur.=p1,|M1|+cl1,|I|,|M1|

...

DO_I1_I2_M(|M1|+1)
Dur.=p1,|M1|+1+cl1,2,|M1|+1

DO_I1_I|I|_M(|M1|+1)
Dur.=p1,|M1|+1+cl1,|I|,|M1|+1

...

...

DO_I1_I|I|_M(|M1|+|M2|)
Dur.=p1,|M1|+|M2|+cl1,|I|,|M1|+|M2|

.

.

.

DO_I1_I2_M(|M|-|Mk|+1)
Dur.=p1,|M|-|Mk|+1+cl1,2,|M|-|Mk|+1

DO_I1_I|I|_M(|M|-|Mk|+1)
Dur.=p1,|M|-|Mk|+1+cl1,|I|,|M|-|Mk|+1

DO_I1_I|I|_M|M|
Dur.=p1,|M|+cl1,|I|,|M|

...

...

.

.

.

Figure 1. RTN process representation for order I1, featuring a total of |M| machines and |K| stages
(changes on the units cleaning states omitted for simplification).

6

In Figure 1, the equipment units and material states (circles) are represented within the boundaries

of the corresponding stage (vertical dash lines). For example, stage 2 (K2) includes all machines

belonging to set M2, whose elements are those of set M with numbers (if equipment numbering is

based on an ordered distribution of units among stages) ranging from |M1|+1 to |M1|+|M2|. A

particular combined task, represented as a rectangle (e.g. DO_I1_I2_M(|M1|+1), consumes both the

equipment unit (e.g. M(|M1|+1)) where it is processed and the corresponding material state, which is

associated to the stage prior to the one the task belongs to (e.g. I1,K1). Both resources are consumed

when the task begins. The same task also produces two resources, but now these events can occur at

different points in time. While the same equipment unit is produced when the task ends (e.g.

M(|M1|+1)), thus regenerating the equipment resource (the associated dashed lines have arrows in

both ends), the material state (e.g. I1,K2) can be produced earlier (whenever cli,i’,m≠0), exactly pi,m

time units after the task has started. This is the reason why the origin of the arrow that denotes the

production of the material resource is further to the left. It is also worth noting that the explicit

consideration of material states as model variables is only possible when using a single time grid,

like for the discrete-time formulation (see section 6.2). The multiple time grid continuous-time

formulation (see section 4) uses different sets of variables and constraints.

I|I|,M1

I2,M1

I1,M1

M1

DO_I1_I1_M1
Duration=p1,1

DO_I1_I2_M1
Duration=p1,1+cl1,2,1

DO_I1_I|I|_M1
Duration=p1,1+cl1,|I|,1

DO_I2_I2_M1
Duration=p2,1

DO_I2_I1_M1
Duration=p2,1+cl2,1,1

DO_I2_I|I|_M1
Duration=p2,1+cl2,|I|,1

DO_I|I|_I2_M1
Dur.=p|I|,1+cl|I|,2,1

DO_I|I|_I1_M1
Dur.=p|I|,1+cl|I|,1,1

DO_I|I|_I|I|_M1
Duration=p|I|,1

...

.

.

.

Figure 2. RTN process representation for unit M1, showing all possible cleaning states (changes on
the orders material states omitted for simplification).

For the combined task to be executed in an equipment unit, it must be in an appropriate cleaning

state. For unit M1, the several possibilities are illustrated in Figure 2. Tasks with the same order

index (i=i’) consume and produce the same cleaning state (besides the equipment resource),

respectively at the start and end of the task. However, tasks involving different orders are more

7

frequent and involve different cleaning states. For example, task DO_I2_I1_M1 consumes resources

M1 and I2,M1 at its start and produces resources M1 and I1,M1 at its end. The initial cleaning state

of every equipment will be a variable of the model in order for the most convenient ones to be

selected.

The second novel multiple time grid continuous-time formulation (see section 5) handles

changeover times implicitly so that only the processing tasks are considered. As a consequence,

cleaning states are not required and the binary variables that identify the execution of the task

involve only one order index Ni,m,t. The RTN representation of the process featuring those tasks is a

simplified version of the one shown in Figure 1 and is exactly the same as the one used for handling

the same type of problem without sequence dependent changeovers. Such superstructure can be

found in Castro and Grossmann22.

3.2. Handling of time

The several formulations considered in this paper treat time differently. The two new multiple

time grid continuous-time formulations, as well as the RTN-based discrete-time formulation, divide

the time horizon into a fixed number, |T|-1, of time intervals. The number of tasks that can fit into

the time horizon is greatly dependent on the number of time points in time-grid based continuous-

time formulations (also sometimes called event points), and less so in discrete-time formulations.

Fewer time points are also used by the former type of approach (a dozen is a practical upper bound),

while the latter usually rely on tens or even hundreds of them. Another major difference is that while

the discrete-time formulation features equal length (δ) intervals, meaning that the time

corresponding to each time point is known a priori, continuous-time formulations treat those times

as model variables.

The new multiple time grid continuous-time formulations use, as the name suggests, several time

grids to locate the tasks. More specifically, |M| unit specific time grids are employed. It is assumed

that all time grids feature the same number of event points although it is straightforward to adapt

them to a different number per grid. The rationale behind this option is that the use of a unit

dependent value for |T| increases the number of a priori decisions to make that can affect the quality

of the final solution, and also because that option has been found to be an efficient one in single

8

stage21 and multistage22 multiproduct scheduling problems similar to those considered here.

Nevertheless, in some problems, it may pay off to develop a set of rules leading to the specification

of a different number of time points for the several time grids but this is beyond the scope of this

paper.

The selection of the cardinality of set T involves the following trade-off: too few points makes it

impossible to find the global optimum, and too many makes the problem intractable. Although only

the final iteration will be reported for each example problem, a few MILPs usually need to be solved

in sequence, by using single increments in |T|, until no further improvements in the objective

function are observed. Due to the property of every order lasting exactly one time interval, a useful

lower bound on the optimal value of |T| is the following: ⎡ ⎤ 1)||/||(max +
∈ kKk

MI . The continuous-time

grid associated to each equipment unit is given in Figure 3, where the minimum release date is the

lower bound on the absolute time of the first time point and the maximum due date as the upper

bound on the absolute time of the last time point.

1 T
2 3 T-2 T-1

,[min i
Ii

r
∈

]max, iIi
d

∈

Interval 1 Interval 2 Interval T-2 Interval T-1

Figure 3. Continuous-time grid employed (one for each equipment unit).

In the discrete-time formulation all the events report to a single time grid and the intervals are

often called global time intervals1. The length of each interval, δ, is often chosen as the greatest

common factor between times pi,m and pi,m+cli,i’,m since, as explained in section 3.1, there will be

events occurring at these relative (to the start of the task) times. Whenever the greatest common

factor leads to too many time intervals, meaning problem intractability, a higher value of δ is used

and all the data is rounded up to its next integer multiple. The partial and total duration of the

combined tasks are converted from actual time units to a time interval basis by using:

, ⎡ ⎤δτ /,, mimi p= ⎡ δτ /)(,',,,', miimimii clp += ⎤ . As for the release and due dates, they remain on the real

time scale: ⎡ ⎤ δδ ⋅= /ii rr and ⎡ ⎤ δδ ⋅= /ii dd . Note that rounding the problem data implies the

consideration of an approximated version of the problem that may or may not lead to the true

9

optimal solution. Furthermore, to ensure feasibility, it would have been more appropriate to use

⎣ ⎦ δδ ⋅= /ii dd . The uniform discrete-time grid is given in Figure 4.

1 T
2 4 T-2 T-1

Interval 1

3δ

iIi
r

∈
min iIi

d
∈

max

Interval 2 Interval 3 Interval T-2 Interval T-1

Figure 4. Uniform discrete-time grid.

The other featured continuous-time formulation does not rely on explicit time grids. Instead of

allocating tasks to different time intervals, a totally different concept is exploited that relies on

sequencing variables to ensure that every machine only handles one order at a time. As will be seen

in section 6.1, the model variables and constraints feature no time index, giving it an important

advantage when compared to the other continuous-time and discrete-time formulations: no decisions

that may eventually compromise its solution need to be taken before solving the problem. That is,

the model needs only to be solved once and the resulting solution will always† be an exact and

global optimal solution (if solved to a zero optimality gap). The same can be said for the CP

formulation, although this is more accurately classified as a discrete-time model since all the

activities (i.e. tasks) must have integer durations.

4. New general multiple-time-grid continuous formulation, featuring four-index variables

(CT4I)

While the two new multiple-time grid continuous-time formulations are novel in the sense that

they can handle sequence dependent changeovers, they share many characteristics with their single

stage21 and multistage22 predecessors. Thus, instead of entering a detailed explanation of every

aspect of the formulations and drawing comparisons with other multiple time grid formulations9-

10,12,25, which are given in those recent papers, we will focus mostly on the aspects relating to the

novel feature.

† An exception may occur as discussed in section 7.1.2.

10

The formulation uses the already mentioned 4-index binary variables tmiiN ,,', to assign the

execution of the combined processing and changeover task, to a particular machine and also to a

certain time point. The other set of binary‡ variables used are the excess resource variables Rm,t that

identify equipment availability (=1) at a given event point. The remaining variables, all nonnegative,

are the timing variables Tt,m and TDi,k, which represent the absolute time of time points t and m and

the transfer time of order i in stage k, respectively, and also the new variables Ci,m,t and . While

C

0
,miC

i,m,t are also excess resource variables that, when equal to 1, indicate that equipment m is ready to

handle order i at time point t, the latter arise from the need to define an initial state.

Figure 5 gives an overview of how the formulation works. For simplicity, it considers only one

equipment unit per stage, three orders and three stages. One important property of the mathematical

formulation is that each combined task only lasts for a single time interval, meaning that the

required number of time points on each machine is equal to the number of orders assigned to that

machine plus 1, which for this illustrative example implies 4 time points. Although each task lasts

one time interval, it does not necessarily mean that when starting at t, it ends exactly at time point

t+1. For instance, the execution of order I1 followed by cleaning to order I2, i.e. combined task

(I1,I2), which starts at the first event point, ends well before the time of the second event point both

in M1 (first stage) and M2 (second stage). Note again, as already emphasized when describing

Figure 1, that the beginning of (I2,I3) in stage 2 occurs exactly after the end, in stage 1, of the

processing part of the combined task (at T2,2=T2,1+p2,1) but before its full completion

(T2,2≤T2,1+p2,1+cl2,3,1). The changeover part of the task only affects events occurring on the same

machine, meaning that the appropriate cleaning time must be considered between the processing of

different orders. In the first stage, the time corresponding to the start point of the task must be

greater than the release date of the order, ri. Accordingly, in the last stage, orders must be concluded

before their due dates, di. The transfer time of materials from stage k to stage k+1 must be greater

than the ending time of the order’s processing part of the task at stage k and must be lower than the

‡ They can also be defined as continuous variables since the model constraints ensure that
Rm,t={0,1}. However, based on experience, it is better to define them as binary variables.

11

order starting time at stage k+1. In Figure 5, the transfer time of order I1 in stage 1 (TD1,1) can be

any value ∈[T1,1+p1,1,T1,2] (this time span is represented as a gray-filled rectangle), whereas that of

order 2 in stage 1 (TD2,1) is equal to both its lower and upper bounds: T2,1+p2,1=T2,2. As it was

mentioned in section 3, it is not required for the last task to be processed to feature equal order

indices although this will be true if such task is executed in the last time interval (in Figure 5 all

equipment units end with (I3,I3)). The other features that are worth mentioning are that the time of

the first and last time points, respectively in the first and last stage, do not need to match neither the

origin (minimum release date) nor the time horizon (maximum due date), and that order sequencing

can vary from one stage to the other, as seen for unit M2, which has I1-I2-I3, and unit M3, which

has an I2-I1-I3 sequence.

M1

M2

M3

iIi
r

∈
min HdiIi

=
∈

max

(I1,I2) (I2,I3)

11,1 rT ≥ 21,2 rT ≥

1d≤

1,1p 1,2p

2,1p 2,2p

3,2p

33,4 dT ≤

(I3,I3)

1,3p

1,4T31,3 rT ≥

2,1T 2,4T

2,3TD

1,2,1cl 1,3,2cl

1,2TD1,1TD 1,3TD
(I1,I2) (I2,I3) (I3,I3)

2,2,1cl

2,1TD

2,3,2cl

2,2T

2,2TD
2,3T

2,3p

(I2,I1) (I1,I3) (I3,I3)

3,1T
3,1,2cl

2d≤
3,2T

3,3,1cl

3,3T
3,3p3,1p

Figure 5. Possible solution from multiple-time grid, continuous-time formulation F1 (|I|=3, |M|=3,
|K|=3, and |T|=4).

There are other characteristics of CT4I that are not apparent from Figure 5. More specifically, the

number of time intervals can exceed the optimal number of tasks executed on a given machine or, in

other words, there can be time points where no tasks are started. As a consequence, those time

intervals can have a duration ranging from zero to the full (if no orders are assigned to the machine

at hand) time span, and can be located anywhere, e.g. at the first, second or last time intervals. We

took full advantage of this property when developing the objective function for total earliness

minimization20, which basically forces all dummy time intervals to have zero duration and be the

last ones of the corresponding time grid. For other objective functions, the assignment of orders to

12

time points from first to last, which is illustrated in Figure 6, is enforced by an appropriate set of

constraints (see eq 9).

M1

M2

M3

1,2T1,1T 1,3T

2,1T 2,2T 2,3T

HTTT === 3,33,23,1

Figure 6. Possible solution from multiple-time grid, continuous-time formulation F1 (|I|=3, |M|=3,
|K|=1 and |T|=3). Orders are assigned from the first to last time points.

The constraints that compose the multiple-time grid formulation are given next, but first we will

define some additional sets and parameters that allow to reduce the number of variables and hence

make the formulation more efficient. We start by determining the lowest time, lbi,m, at which order i

can start to be processed in unit m. If the machine belongs to the first stage, then the lower bound is

the release date of the order, otherwise we have to add up to this value the minimum processing time

in previous stages (eq 1).

i
Kk

kk
Kk

mi
Mm
Mmimi MmIiprlb

m i
k

∈∈∀+= ∑ ∑
∈

<
∈ ∈

∈
, min

'
'

',
'
',

'

 (1)

An upper bound (eq 2) can also be defined for order i but now this will depend on the order that is

processed next.

'

',',',,

'
'

','
'
'',

'
'

',
'
',',

,',

)min,minmin(
'
''

ii

iimimiimi
Kk

kk
Kk

mi
Mm
Mmimi

Kk
kk
Kk

mi
Mm
Mmimii

MMmIii

pclppdppdub
m i

k
m i

k

∩∈∈∀

−−−−−−=
≠

∈
>
∈ ∈

∈
∈

>
∈ ∈

∈ ∑ ∑∑ ∑
 (2)

Thus, the new parameter, ubi,i’,m, features three time indices and its value can be set by either order

i or i’. More specifically, if order i is the limiting one, the highest time at which the task can start is

determined after subtracting from its due date, the minimum processing time on all subsequent

stages plus the order processing time in unit m. If, instead, order i’ is the limiting one, a similar

approach is followed in terms of i’. Nevertheless, additional terms are required to include pi,m and

also cli,i’,m. Note also that pi’,m is only considered whenever i≠i’.

Eq 3 defines set Ii’,m, which contains all orders that can precede order i’ in machine m.

13

',,',,' ,' }:{ imimiimmi MmIilbubIiI ∈∈∀≥∈= (3)

Eq 4 defines the earliest time at which unit m can become active, lbmm,t and is determined for all

time points.

||,,)1()(minmin min
,,,, TtTtMmtclplblbm mimiIimiIitm

mm

≠∈∈∀−⋅++=
∈∈

 (4)

For t=1, it is equal to the minimum possible starting time of all orders, while for t>1 we need to

take into account the duration of the shortest combined task (note that) as many

times as the number of existing time intervals up to time point t. We could even be more thorough

and replace the second term of eq 4 by the sum of the two smallest terms for t=3, the

three smallest terms for t=4 and so on.

miiiimi clcl ,','

min
, min

≠
=

min
,, mimi clp +

Finally, all this information can be combined into the definition of set Ii’,m,t (see eq 5), generating

the domain of the binary variables tmiiN ,,', . Note that in the last time interval (tasks starting at t=|T|-

1) only tasks with the same order index can be executed since there are not enough time intervals to

process any more tasks.

||,,,')}'1||(:{ ',,',,',,' TtTtMmIiiiTtlbmubIiI itmmiimitmi ≠∈∈∈∀=∨−≠∧≥∈= (5)

4.1. Excess resource balance constraints

The excess resource balances are typical multiperiod material balance expressions, in which the

excess amount at point t is equal to the excess amount at point t-1 adjusted by the amounts

produced/consumed by all tasks starting or ending at t. For the equipment resources it can be said

that the unit is not being used at time point t, i.e. is available in excess (Rm,t=1), if no order starts to

be processed in it at t, otherwise there is no excess resource (Rm,t=0). The constraints are as follows.

TtMmNR
m tmiIi Ii

tmiitm ∈∈∀−= ∑ ∑
∈ ∈

, 1
'

,,',,
,',

 (6)

The constraints related to the cleaning states are slightly more complex simply because the

execution of a given task usually involves production and consumption of different states.

Furthermore, the initial resource availability for all equipment units is no longer 1, and are in fact

14

actual model variables, which only appear in constraints belonging to the first time point (first term

on the right hand side of eq 7).

TtMmIiNNCCC i

Ii
Ii

tmii
Ii

tmiittmitmitmi

tmi
mtmi

∈∈∈∀−++= ∑∑
∈
∈∈

−≠−=
−

,,

,',
1,, '

,,',
'

1,,,'11,,1

0
,,, (7)

Eq 8 ensures that there is but one initial equipment state for each machine.

MmC
mIi

mi ∈∀=∑
∈

 10
, (8)

To reduce solution degeneracy and to improve the performance of the model, we enforce tasks to

be allocated to time points with as low an index as possible. This is the same as saying that

equipment availability increases from start to finish.

1,, 1,, ≠∈∈∀≥ − tTtMmRR tmtm (9)

4.2. Timing constraints

The difference between the absolute times of any two time points must be greater than the

duration of the combined task.

||,,])([
'

,',,,,',,,1
,',

TtTtMmclpNTT
m tmiIi Ii

miimitmiimtmt ≠∈∈∀+⋅≥− ∑ ∑
∈ ∈

+ (10)

Eq 11 ensures that the absolute time of time point t in unit m is greater than its predetermined

lower bound (see eq 1). Note that for machines belonging to the first stage we get release date

constraints. The global lower bound, as already shown in Figure 3, is the minimum release date (eq

12).

||,,
'

,,,',,
,',

TtTtMmlbNT
m tmiIi Ii

mitmiimt ≠∈∈∀≥ ∑ ∑
∈ ∈

 (11)

TtMmrT iIimt
m

∈∈∀≥
∈

, min, (12)

The next constraint is the equivalent upper bound constraint, where ubi,i’,m is calculated through eq

2. This is a big-M constraint, meaning that is only active when there is a task starting at t, in unit m,

otherwise it is relaxed to its global upper bound, eq 14.

||,,)1(
'

,,',
'

,',,,',,
,',,',

TtTtMmNHubNT
m tmim tmi Ii Ii

tmii
Ii Ii

miitmiimt ≠∈∈∀−+≤ ∑ ∑∑ ∑
∈ ∈∈ ∈

 (13)

15

TtMmdHT iIimt
m

∈∈∀=≤
∈

, max, (14)

For multistage problems, we need to relate the absolute times of consecutive stages by means of

the transfer time variables TDi,k. While eq 15a ensures that the order transfer time in stage k-1 is

earlier than its starting time in stage k, eq 16a states that its transfer time in stage k must be greater

than the order completion time (just the processing part of the task) in that stage (processed in

machine m∈Mk). Both are big-M constraints that only become active if the task starts at event point t

belonging to time grid m. Eqs 15a-16a can be replaced by constraints 15-16, which usually lead to a

better performance. These include more binary variables inside the big-M term, which is possible

since order i can only be processed once on each machine (see eq 21). Thus, eq 15 includes all tasks

(from order i) that start at or before t making them tighter when solving the relaxed model, and

hopefully getting partition of the tasks over fewer time intervals, which facilitates branching.

||,1,,,,)1(

,',

'
,,',,1, TtkTtIiMmKkNHTTD mk

Ii
Ii

tmiimtki

tmi
m

≠≠∈∈∈∈∀−+≤ ∑
∈
∈

− (15a)

|||,|,,,,)1(

,',,',

'
,,',

'
,,,',,, TtKkTtIiMmKkNHpNTTD mk

Ii
Ii

tmii

Ii
Ii

mitmiimtki

tmi
m

tmi
m

≠≠∈∈∈∈∀−−+≥ ∑∑
∈
∈

∈
∈

 (16a)

||,1,,,,)1(
'
' '

',,',,1,

',',

TtkTtIiMmKkNHTTD mk

tt
Tt

Ii
Ii

tmiimtki

tmi
m

≠≠∈∈∈∈∀−+≤ ∑ ∑
≤
∈

∈
∈

− (15)

|||,|,,,,)1(

||'
'
' '

',,',
'

,,,',,,

',',,',

TtKkTtIiMmKkNHpNTTD mk

Tt
tt
Tt

Ii
Ii

tmii

Ii
Ii

mitmiimtki

tmi
m

tmi
m

≠≠∈∈∈∈∀−−+≥ ∑ ∑∑
≠
≥
∈

∈
∈

∈
∈

(16)

Whenever the objective is makespan minimization, a new variable is required (MS) that must be

greater than the ending time of all tasks. Eq 17 is a constraint that ensures this goal by relating the

variable to the starting time of all time points. It can be described as follows. When applied to stage

k, unit m, and time point t, the second term on the right-hand side is only active when k≠|K| and

represents the processing time of the order starting at time point t in unit m plus its minimum

processing time in the following stages. It is equivalent to the term used for multistage plants

without sequence dependent changeovers22. On the other hand, the third term on the RHS is only

active when dealing with the last stage, and represents the duration of all combined tasks starting in

unit m at or after time point t. Its origin results from performance tests performed while solving

16

single stage plants and it is a new term since the objective of makespan minimization was not

considered in Castro and Grossmann21.

||,,,])([

])min([

||'
'
' '

||

,',,',,',

'
|| '

'
',

'
',,,',,

',',

,',
'

TtTtMmKkclpN

ppNTMS

k

Tt
tt
Tt Ii

Kk
Ii

miimitmii

Ii
Kk

Ii
kk
Kk

mi
Mm
Mmmitmiimt

m tmi

m tmi i
k

≠∈∈∈∀+⋅

++⋅+≥

∑∑ ∑

∑ ∑ ∑

≠
≥
∈ ∈

=
∈

∈
≠

∈
>
∈ ∈

∈

 (17)

The makespan variable can also be related to the transfer time variables by a similar constraint.

Although not strictly necessary, eq 18 improves the performance of the formulation.

||,,
'
'

||
'

,,,',,
'

,',

KkKkIipNTDMS
kk
Kk

Mm
Mm

Tt
Tt

Ii
Ii

mitmiiki

i
k

tmi
m

≠∈∈∀+≥ ∑ ∑ ∑ ∑
>
∈

∈
∈

≠
∈

∈
∈

 (18)

The final sets of timing constraints are also both efficient and optional. They act as lower and

upper bounds on the transfer times and are conceptually equivalent to eqs 11 and 13, although now,

since the constraints are per order and not per unit, the processing times are multiplied by the

appropriate binary variables instead of considering the minimum possible values (which are implicit

in parameters lbi,m and ubi,i’,m, see eqs 1-2). Note also that no big-M terms are required for the upper

bound constraints.

||,,
|| '

' '
,,,',,

'
',',

KkKkIipNrTD
Tt
Tt

kk
Kk

Mm
Mm

Ii
Ii

mitmiiiki

i
k

tmi
m

≠∈∈∀+≥ ∑∑ ∑ ∑
≠
∈

≤
∈

∈
∈

∈
∈

 (19)

||,,
|| '

' '
,,,',,

'
',',

KkKkIipNdTD
Tt
Tt

kk
Kk

Mm
Mm

Ii
Ii

mitmiiiki

i
k

tmi
m

≠∈∈∀−≤ ∑∑ ∑ ∑
≠
∈

>
∈

∈
∈

∈
∈

 (20)

4.3. Operational constraints

The single set of operational constraints states that all orders must be processed exactly once in

every stage.

KkIiN
Tt
Tt Mm

Ii
Ii

tmii
k

tmi
m

∈∈∀=∑ ∑ ∑
≠
∈ ∈

∈
∈

, 1
||

'
,,',

,',

 (21)

17

4.4. Objective functions

The mathematical formulation can handle the three alternative objective functions considered in

this paper. These are total cost minimization, eq 22, total earliness minimization, eq 23, and

makespan minimization, eq 24.

∑∑∑ ∑
≠
∈ ∈ ∈ ∈

||
'

,,,',
,',

 min
Tt
Tt Mm Ii Ii

mitmii
m tmi

cN (22)

)]1|(||||[|)(min ||

||
'

,,,',,
|| ,',

−⋅−−+−∑ ∑ ∑ ∑∑
≠
∈ ∈ ∈ ∈∈

TMIHpNTd K

Tt
Tt Mm Ii Ii

mitmiimt
Ii

i
K m tmi

 (23)

MS min (24)

In summary, the formulation features constraints 6-16 and 19-21 as its building block. The

objective of total cost minimization also requires eq 22, that of total earliness minimization, eq 23,

while makespan minimization also uses eqs 17, 18 and 24.

5. New multiple-time-grid continuous formulation, featuring three-index variables (CT3I)

The second new continuous-time formulation uses binary variables with just three indices, Ni,m,t,

and as a consequence gives rise to much smaller mathematical formulations than CT4I. The most

significant conceptual difference comes from the fact that it does not need to consider explicit

cleaning states for the equipment units since some of the timing constraints make sure that the

appropriate cleaning time is taken into consideration. Because of this, it is closer to the multiple time

grid formulation of Castro and Grossmann22 for multistage plants without sequence dependent

changeovers. However, as will be described next, the strategy used for implicitly handling

changeovers is completely opposite to the one used for minimizing total earliness meaning that the

previously developed form of this objective function (as given in eq 23) is incompatible with the

new formulation.

Figure 7 illustrates how CT3I works with a simple single stage example since the differences from

CT4I occur within the equipment units (the transfer of material between stages is similar). Before

going into the details, two new sets of parameters need to be defined. First, the maximum

changeover time from order i in unit m is calculated through eq 25. Then, eq 26, determines the

difference between the maximum and actual changeover times from order i to i’ in unit m. With a

18

view to account for the actual process and changeover time an indirect procedure is used. Assigning

order i to unit m at time point t makes the length of interval t (if not the last) to equal at least

pi,m+ , which corresponds to consider the worst case scenario in terms of changeovers. To get

the true changeover time to order i’ we must subtract , if task i’ is to be performed at t+1, as

can be seen between orders I1 and I4 in M1 and also I5 and I2 in M2. It is worth noting that the

difference between the absolute times of two consecutive time points may even be greater if, for

example, the release date of the following product is located further ahead in time (see I2 in

max
,micl

Δ
miicl ,',

Figure

7). This technique makes it more advantageous for two consecutive orders to be executed in

consecutive time intervals. Furthermore, all possible feasible solutions are covered since the

maximum changeover term is not considered for tasks starting at the last time interval since in such

case only the processing time is used. This can be seen for orders I4, I2 and I3. As a consequence,

orders will typically be assigned from the last but one, to the first time points, in an opposite manner

to F1.

mmiiIimi IiMmclcl
m

∈∈∀=
∈

, max ,','

max
, (25)

mmiimimii IiiMmclclcl ∈∈∀−=Δ ',, ,',
max
,,', (26)

M1

M2

M3

iIi
r

∈
min HdiIi

=
∈

max

I1 I4

11,1 rT ≥ 41,2 rT ≥ 41,3 dT ≤1d≤
I5 I2

52,1 rT ≥ 2d≤ 2,3T

I3

3,3T

1,1p 1,4p

2,5p 2,2p

3,3p

max
1,1cl

Δ
1,4,1cl

max
2,5cl
Δ

2,2,5cl

5d≤ 22,2 rT =2,2T≤

3,1T 33,2 rT ≥ 3d≤

Figure 7. Possible solution from multiple-time grid, continuous-time formulation F2 (|I|=5, |M|=3,
|K|=1 and |T|=3). Orders are assigned from the last but one to the first time points.

19

The constraints of the three-index binary variables, continuous time formulation are given next.

When compared to Castro and Grossmann,22 only those that were modified, to account for sequence

dependent changeovers, are explained, together with new sets of constraints.

TtMmNR
Tt
Ii

tmitm
m

∈∈∀−= ∑
≠
∈

, 1
||

,,, (27)

| (28) |,1,, 1,, TttTtMmRR tmtm ≠≠∈∈∀≤ −

Equation 28 is analogous to eq 9 and leads to improved performance. The idea is once again to

reduce the number of degenerate solutions, now by forcing all orders to be assigned from the last to

the first time interval. As a consequence, unit availability will decrease from start to finish with the

exception of the last time point, which corresponds to the end of the time horizon, where all

equipment units become available.

||,,,)(
1||

'
,',1,,'1||

max
,,,

'
,',,',,1 TtTtIiMmclNclNpNTT m

Tt
Ii

miitmiTtmitmi
Ii

mitmimtmt
mm

≠∈∈∈∀−+≥− ∑∑
−≠

∈

Δ
+−≠

∈
+ (29)

Equation 29 is the root of CT3I and has already been described while explaining Figure 7. The

handling of sequence dependent changeovers makes order aggregation no longer possible so the

domain of eq 29 now features three indices: i, m and t. The first term on the RHS can be replaced by

Ni,m,t·pi,m, which has the advantage of making the constraint easier to understand but has the

disadvantage of making it less tight and hence less efficient.

||,, ,,,, TtTtMmlbNT
mIi

mitmimt ≠∈∈∀≥ ∑
∈

 (30)

i
Kk

kk
Kk

mi
Mm
Mmmiimi MmIippdhb

m i
k

∈∈∀−−= ∑ ∑
∈

>
∈ ∈

∈
, min

'
'

',
'
',,

'

 (31)

||,,)1(,,,,,, TtTtMmNHhbNT
mm Ii

tmi
Ii

mitmimt ≠∈∈∀−+≤ ∑∑
∈∈

 (32)

Parameter hbi,m represents the highest time at which order i can start to be processed on unit m and

is used in eq 32 to define upper bounds for the absolute time of the several time points. Note that eq

32 translates into the due date constraint, whenever m∈M|K|.

||,1,,,,)1(
'
'

',,,1, TtkTtIiMmKkNHTTD mk

tt
Tt

tmimtki ≠≠∈∈∈∈∀−+≤ ∑
≤
∈

− (33)

20

| (34) ||,|,,,,)1(

||'
'
'

',,,,,,, TtKkTtIiMmKkNHpNTTD mk

Tt
tt
Tt

tmimitmimtki ≠≠∈∈∈∈∀−−+≥ ∑
≠
≥
∈

mmii
ii

Iimi IiMmclcl
m

∈∈∀=
≠
∈

, min ,',
'

'

min
, (35)

||,,,])([

)]min([

||'
'
'

||

1||
min
,,',,

| '
'

',

'
',,,,

'

TtTtMmKkclpN

ppNTMS

k

Tt
tt
Tt

Kk
Ii Ttmimitmi

Kk
Ii

kk
Kk

mi

Mm
Mmmitmimt

m

m i
k

≠∈∈∈∀+⋅

++⋅+≥

∑ ∑

∑ ∑

≠
≥
∈

=
∈

−≠

≠
∈

>
∈ ∈

∈

 (36)

| (37) |,,
'
'

||

,,,,
'

KkKkIipNTDMS
kk
Kk

Mm
Mm

Tt
Tt

mitmiki

i
k

≠∈∈∀+≥ ∑ ∑ ∑
>
∈

∈
∈

≠
∈

||,,
|| '

'
,,,,

'

KkKkIipNrTD
Tt
Tt

kk
Kk

Mm
Mm

mitmiiki

i
k

≠∈∈∀+≥ ∑∑ ∑
≠
∈

≤
∈

∈
∈

 (38)

||,,
|| '

'
,,,,

'

KkKkIipNdTD
Tt
Tt

kk
Kk

Mm
Mm

mitmiiki

i
k

≠∈∈∀−≤ ∑∑ ∑
≠
∈

>
∈

∈
∈

 (39)

KkIiN
Tt
Tt

Mm
Mm

tmi

k
i

∈∈∀=∑ ∑
≠
∈

∈
∈

, 1
||

,, (40)

Equation 36 is equivalent to eq 17, but while we can use the actual changeover time in the last

term on the RHS of the latter, for the former, since changeovers are modelled implicitly, we are

limited to use the minimum cleaning time, as calculated by eq 35.

∑∑∑
≠
∈ ∈ ∈

||

,,, min
Tt
Tt Mm Ii

mitmi
m

cN (41)

The mathematical formulation can handle as the objective function, the minimization of either the

total cost or the makespan, eqs 41 and 24, respectively. Its core consists of constraints 12, 14, 27-30,

32-34 and 38-40, plus eq 41 for total cost, and eqs 24, 36 and 37, for makespan.

6. Other approaches

The two new continuous-time formulations will be compared to other four conceptually different

approaches. These include a continuous-time formulation based on global precedence variables (SV)

instead of relying on an explicit time grid; a uniform time grid, discrete-time formulation (DT), a

constraint programming (CP) model and, for total cost minimization of single stage plants, a hybrid

21

MILP/CP approach. In this section, we highlight their main features and present the changes

required to efficiently tackle the problems under consideration.

6.1. Continuous-time formulation with global precedence sequencing variables (SV)

The other featured continuous-time formulation also gives rise to an MILP and is essentially the

one of Harjunkoski and Grossmann5, without the operational design variables. Binary variables yi,m

are employed to assign order i to unit m and binary sequencing variables xi,i’,k are used to identify the

global precedence of order i over i’ in stage k. Based on these, the ending times of any two

orders can be related through the big-M constraints given in eqs 42-43. These now feature an extra

term (the third on the RHS) to account for the sequence dependent changeover times, which the

model by Harjunkoski and Grossmann

f
kiT ,

5 did not consider. Other improvements concerning the

efficient handling of other objective functions that are relevant to this work can be found in Castro

and Grossmann22.

iiMMMmKkIiiyyxHxclpTT kiimimikiikiimiimi
f
ki

f
ki >∩∩∈∈∈∀−−−−⋅++≥ ',,,',)3(',',,',,',,',,',,' (42)

iiMMMmKkIiiyyxHxclpTT kiimimikiikiimiimi
f
ki

f
ki >∩∩∈∈∈∀−−−−−⋅++≥ ',,,',)2()1(',',,',,',,,',,',

 (43)

6.2. RTN-based discrete-time formulation (DT)

The discrete-time formulation used is based on the original work of Pantelides18 despite the fact

that the different types of resources are not aggregated. It relies on the Resource Task Network

process representation like CT4I and CT3I and thus it has a few similar features with its continuous-

time counterparts. More so with CT4I since it also considers combined tasks and the same type of

binary variables tmiiN ,,', . The discrete-time grid, however, relies on a single and uniform time grid,

making it easier to consider alternative material states (through variables Si,k,t) and also avoiding the

use of timing variables.

Due to the fact that the time corresponding to each time point is known a priori, we can determine

the lowest and highest points at which each task can start. Despite referring to time points instead of

actual time values, eqs 44 and 45 are similar in concept to eqs 1 and 2. In eqs 44 note that δ/min '' iIi
r

∈

22

represents the time of the first time point in terms of number of time intervals (see also Figure 4).

Since the third term on the RHS calculates the minimum possible duration in previous stages (also in

number of time intervals), the first and third term in eq 44 in fact determine the number of time

intervals between the lowest possible starting point of the task and the first time point. If there are no

intervals in between, then the task can start at the first time point, and this is the reason why we add

a 1 (second term in the RHS). The domain of the model binary variables is then calculated through

eq 46.

i
Kk

kk
Kk

mi
Mm
MmiIiimi MmIirrbl

m i
k

∈∈∀++−= ∑ ∑
∈

<
∈ ∈

∈∈
, min1/)min(

'
'

',
'
''',

'

τδ (44)

'''

',',',

'
'

','
'
'',

'
'

',
'
',',

,', 1/min

)min/,min/min(
'
''

iiiIi

iimimii
Kk

kk
Kk

mi
Mm
Mmimi

Kk
kk
Kk

mi
Mm
Mmimii

MMmIiir

ddbu
m i

k
m i

k

∩∈∈∀+−

−−−−−=

∈

≠
∈

>
∈ ∈

∈
∈

>
∈ ∈

∈ ∑ ∑∑ ∑

δ

τττδττδ
 (45)

TtIiMmbutblIiI mmiimimtmi ∈∈∈∀≤≤∈= ,', }:{ ,',,,,' (46)

The discrete-time formulation can be written in a very compact form. It uses 5 sets of variables

and constraints (eq 47-50 and eq 8) plus the objective function: eq 51 for total cost minimization and

eq 52 for total earliness minimization. The model constraints are given below and with the exception

of the excess resource balances for the cleaning states (variables Ci,m,t), which are new, are similar to

those of Castro and Grossmann22. The reader is directed to this reference for a detailed explanation

of the model constraints and also for the technique used for makespan minimization, which involves

solving the problem several times, for different cardinalities of T, while minimizing total earliness.

TtMmNNRR
m miitmi

mii

m tmi Ii Ii
tmii

Ii Ii
tmiittmttm ∈∈∀+−+= ∑ ∑∑ ∑

∈ ∈
−

∈ ∈
≠−=

−

,)1(
'

,,',
'

,,',11,1,

',,,',

',,

,', τ

τ (47)

TtKkIiNNSS

i
k

mitmi

mi

i
k

tmi Mm
Mm

Ii
Ii

tmii

Mm
Mm

Ii
Ii

tmiitkitki ∈∈∈∀+−= ∑ ∑∑ ∑
∈
∈

∈
∈

−

∈
∈

∈
∈

−

−
+

,,

,,',

,

1
,',

'
,,',

'
,,',1,,,,

τ

τ (48)

TtMmIiNNCCC i
Mm Ii

tmii
Mm

Ii
Ii

tmiittmiti,mtmi
i miitmi

mii

i
tmi

m

∈∈∈∀+−+= ∑ ∑∑ ∑
∈ ∈

−
∈

∈
∈

≠−=
−

,,)(
,',,,

,',

,',

'
,,,'

'
,,',11,,1

0
,,

τ

τ (49)

KkIiN

k
i

tmi
m

Mm
Mm Tt

Ii
Ii

tmii ∈∈∀=∑ ∑ ∑
∈
∈ ∈

∈
∈

, 1

,',

'
,,', (50)

∑∑∑ ∑
∈ ∈ ∈ ∈Tt Mm Ii Ii

mitmii
m tmi

cN
'

,,,',
,',

 min (51)

23

[]∑ ∑ ∑ ∑∑
∈ ∈ ∈ ∈

∈
∈

−+⋅−⋅−=
Tt Mm Ii Ii

mitmiiiIiIi
i

K m tmi

tNrId
|| ,','

,,,',''
)1(min|| Zmin τδ (52)

6.3. Constraint programming formulation (CP)

The constraint programming (CP) formulation used is basically the one presented by Harjunkoski

and Grossmann5, which is based in ILOG’s OPL Studio modelling language23. However, the issue of

sequence and machine dependent changeovers is difficult to implement in OPL Studio code and

could only be handled after advice from ILOG support staff. For this reason we find it relevant to

include the full model. The reader is also directed to Maravelias and Grossmann4 for a brief

description of OPL Studio global constraints and special constructs specifically developed for

scheduling applications.

The two main components of scheduling models in OPL Studio are activities and resources. The

activities correspond to the processing tasks and are referred to a given order i (belonging to the

enumerated type Orders) and to a given stage k (belonging to Stages, ranging from 1 to Nstages).

Since an appropriate changeover time must pass between consecutive activities, we define a

transition type that will access the transition matrix given the appropriate element, in this case i, see

eq 53. The transition matrix is given by parameter chgover[Units,Orders,Orders] (equivalent to

cli,i’,m) and is associated to the appropriate equipment unit m belonging to the range type Units. The

units are defined as unary resources since they can only be used by one activity at a time (eq 54) and

are also the elements of the group of Machines, the alternative resources (eq 55). Note that in eq 54,

the transition matrix is referenced with only one (m) of its three indices. Also, declaring that the

several units are alternative from an activity standpoint, is absolutely vital to ensure an efficient CP

model. Further relevant declarations involve the binary assignment variable y[i,m] and the

boundaries of the time horizon, which are related to the minimum release and the maximum due

dates (eqs 57-58).

Activity DO[i in Orders, k in Stages] transitionType i; (53)

UnaryResource unit[m in Units] (chgover[m]); (54)

AlternativeResources Machines(unit); (55)

var int y[Orders,Units] in 0..1; (56)

24

scheduleOrigin=min(i in Orders) r[i]; (57)

scheduleHorizon = max(i in Orders) d[i]; (58)

The model constraints are given next. Eq 59 states that order i can only start to be processed on the

first stage after its release date. The execution of order i in the last stage must also end before its due

date, eq 60. Each activity needs to be performed in one equipment belonging to the group of

alternative resources, eq 61. The duration of activities belonging to stage k is then, in effect,

bounded by the minimum and maximum processing times of the order in that stage (eq 62). Eq 63,

states that if unit m is selected to process order i in stage k, then the duration of the activity must

equal the matching processing time. Also, the corresponding assignment variable must equal 1. If

unit m does not belong to stage k, or cannot process order i, then it cannot be selected to perform the

activity, eq 64. Finally, eq 65 states that order i can only be processed in stage k after going through

the previous stage.

DO[i,1].start≥r[i] ∀i∈I (59)

DO[i,Nstages].end≤d[i] ∀i∈I (60)

DO[i,k] requires Machines ∀i∈I, ∀k∈K (61)

KkIimipkimip
i
k

i
k

Mm
Mm

Mm
Mm

∈∈∀≤≤
∈
∈

∈
∈

,],[maxduration].,[DO],[min (62)

ki MMmKkIimiymipi,k
mi,k

∩∈∀∈∀∈∀==
⇒

,, 1],[&],[duration].[DO
])unit[Machines,,][esource(DOsSelectedRactivityHa

 (63)

ki MmMmKkIimi,k ∉∨∉∀∈∀∈∀ ,,])unit[Machines,],[esource(DOsSelectedRactivityHanot
 (64)

DO[i,k] precedes DO[i,k+1] ∀i∈I, ∀k∈K,k≠|K| (65)

Three alternative objective functions, eqs 66-68, for total cost, total earliness and makespan

minimization, are respectively given by:

∑ ∑
∈ ∈

⋅
Ii Mm i

micmiy],[],[min (66)

∑
∈

−
Ii

iDOid)end].Nstages,[][(min (67)

end].Nstages,[maxmin iDOZ
Ii∈

= (68)

25

6.4. Hybrid formulation (MILP/CP)

The hybrid model of Jain and Grossmann6 together with the knapsack constraints of Maravelias

and Grossmann7 to improve the integer cuts, is also an efficient option for single stage problems

where the objective is total cost minimization. It uses a simplified version of model SV, one where

only the assignment variables are considered, to determine optimal assignments of orders to

machines. Since no sequencing variables are used, some assignments may be infeasible, something

that is checked through the solution of a CP feasibility problem for each equipment unit. For each

infeasible unit, integer cuts are added to avoid getting the same assignments on the next solution of

the MILP. Several iterations are usually required until all machines are proved feasible meaning that

the optimal solution has been found. Although the same decomposition strategy can be used with

other objective functions for single stage problems, the method is likely to worsen as the CP is

required to solve an optimization rather than a feasibility problem. For multistage problems and for

total cost minimization, Harjunkoski and Grossmann5 also tried a hybrid MILP/CP method and

found that, unlike in single stage problems, valid cuts are rather weak and that a large number of

iterations can be expected before the optimal solution is found. Although the authors devised

stronger heuristic cuts, they sometimes cut off the true optimal solution. In view of the above, the

use of the hybrid MILP/CP approach was not considered in cases other than total cost minimization

for single stage problems.

7. Computational Results

In this section, the performance of the six different approaches is illustrated through the solution

of 39 example problems. These are identified by a number and two additional characters, where the

last identifies the objective function being considered, e.g., C for total cost, E for total earliness, and

M for makespan minimization. Most of the data has been taken from the example problems given in

Castro and Grossmann21-22, although the changeover times where generated randomly (up to a

maximum of 60% of the units average processing time). Since these changeover times take up a lot

of space in tables, we have opted not include the data in the paper and give it instead as supporting

information (most challenging examples only: P5-P6, P11-P13).

26

For solving the MILPs resulting from the continuous and discrete-time models (CT4I, CT3I, SV,

DT) we have used commercial solver GAMS/CPLEX 9.1, with a relative tolerance of 1E-6, and all

problems were solved to optimality, unless otherwise stated. The constraint programming (CP) and

hybrid (MILP/CP) models where implemented and solved in ILOG’s OPL Studio 3.7.1. Concerning

hardware, a computer consisting of a Pentium-4 3.4 GHz processor with 1 GB of RAM and running

Windows XP Professional was used.

The results have been grouped by type of problem under consideration, single or multistage, and

then by objective function. An overview of the computational effort is given in Tables 1,3-5,7-8,

while more detailed computational statistics for some of the problems are left for Tables 2 and 6.

The discussion of the results is given in sections 7.1 and 7.2, by type of problem.

7.1. Single Stage Problems

The single stage problems under consideration range from 12 orders in 3 equipment units to 20

orders in 5 units. Although a greater number of problems could be considered, the large amount of

computational resources used suggests this set corresponds to a representative set.

7.1.1. Total cost minimization

As can be seen from Table 1, the two new multiple time grid continuous formulations are the best

performers for total cost minimization by a significant margin in relation to all but the hybrid

MILP/CP model. We were surprised by the fact that CT4I was more efficient than CT3I, particularly

in P5C. In Table 2, one can see that CT4I exceeds the number of binary variables employed in CT3I

by a factor of 10, has a slightly lower but similar integrality gap and is solved faster by almost two

orders of magnitude. Model SV required even fewer binary variables and although it can always find

the global optimal solution, it failed to prove optimality in three cases (P3C, P5C and P6C), either

because the maximum resource limit was achieved, or because the solver ran out of memory. The

CP model exhibited a better performance than SV but failed to find the optimal solution for P5C. At

the bottom of the list comes the discrete-time formulation (DT), which, due to the large number of

time points that are required to handle the exact problem data, could only solve approximate

versions of the problems. For instance, P2C needs 191 time points for δ=2, which results in a good

27

approximation of the problem data. For δ=5 the combined processing times are somewhat

overestimated but despite this, the optimal solution can still be found in some cases (P3C, P5C).

7.1.2. Total earliness minimization

For total earliness minimization, CT4I continues to be the best performer even though it fails to

find the optimal solution for P6E, see Table 3. For this problem we have to rely on DT, which is also

a very good performer. In particular, all example problems except P5E (δ=5) could be solved with

the exact problem data, which led to a maximum of 471 time points in P1E and a very large problem

size with 381 time points and a total of 343143 binary variables, 383279 single variables and 40031

constraints, for P6E. The other two formulations that can handle this objective function, have a

significant decrease in performance when compared to total cost minimization. SV generates search

trees that explode in size rather rapidly and hence lead to the solver running out of memory (P3E-

P6E). CP performs slightly better since, while also failing to find the optimal solutions for P3E, P5E

and P6E, finds better solutions for the former examples. Furthermore, it solves P1E-P2E

significantly faster. Problem P3E is the most interesting problem of the lot, since the CP formulation

terminated with an optimal solution (561) that is in fact suboptimal. This fact allowed us to identify

the most significant limitation of the CP formulation, which is also a limitation of model SV.

Before going into the detailed explanation let us provide some relevant problem data. The optimal

solution of P3E features an optimal sequence I3-I14-I11-I10 in M1. The processing times are given

by p3,1=113, p14,1=23, p11,1=83, p10,1=73, the corresponding changeover times by cl3,14,1=2, cl14,11,1=8,

cl11,10,1=2, the release dates by r3=40, r10=10, r11=50, r14=60 and the due dates by d3=310, d14=200,

d11=300, d10=370. Also required is the data element cl3,11,1=39, and the orders optimal delivery

dates: 175, 200, 295 and 370, respectively. The optimal schedule for unit M1 is given in Figure 8

together with the best solution that can be obtained by models CP and SV. The difference between

the two schedules is minimal, in the optimal solution (shown above) the starting time of order I3 is

delayed up to an absolute time of 62, allowing it to end 2 time units later, where 2 is the exact

difference between the optimal total earliness values (559 vs. 561). So why cannot order I3 start

earlier in the solution of models F3 and F5? The reason lies in other model constraints that relate it

28

to its global successors and prevent this from happening. Based on SV (for CP the explanation is the

same although such constraint is implicit), eq 42, when applied to the orders and equipment unit in

question, explicitly states that , meaning that the difference between the ending

times of orders I11 and I3 must be greater than 122 (the processing time of order I11 plus the

changeover time from I3 to I11). Thus, we cannot take full advantage of the fact that there is one

order, I14, that can fit between I3 and I11. Although it is unlikely that such combination of

processing data occurs in a real industrial environment, this example clearly highlights one of the

strengths of time grid-based models when compared to approaches based on explicit or implicit

sequencing of tasks.

1221,31,11 ≥− ff TT

M1

I3

62

I14 I11 I10

177 208 212 297 370
I3

60

I14 I11 I10

177
208 212 297 370175173

391,11,3 =cl

Figure 8. Part of the optimal schedule for example P3E. Optimal solution (above) and suboptimal
solution (below) from continuous-time MILP with global precedence sequencing variables and CP
models.

7.1.3. Makespan Minimization

The objective of makespan minimization is the most difficult for the multiple time grid continuous

formulations. However, CT4I and CT3I can always find good solutions to the problem, see Table 4.

Due to its significantly larger size, the MILPs resulting from CT4I tend to originate faster growing

branch and bound search trees meaning that the solver runs out of memory faster for the two most

difficult problems (P5M-P6M). Nevertheless, and despite the larger size, CT4I seems again to be

slightly better despite CT3I being almost three orders of magnitude faster for P4M. The other

continuous-time formulation, SV, has a similar performance when compared to the multiple time

grid formulations and also suffers from the same problem of generating fast-growing trees.

The CP model is the best overall performer for makespan minimization since it is the fastest for

P1M-P3M and can also find the best solution for P5M, for which the optimal solution is still

29

unknown. Note, however, that its performance for P6M is rather weak, since the best solution found

after more than 15 h of computational time, 237, is still far from the best known solution of 164. It is

also clear from Table 4, that, as the number of orders and equipment units increases, so does the

computational effort.

The DT model has the merit of finding the best solution for P6M and doing so while solving an

approximated version of the problem (δ=2). It is fair to say, based on the values of δ that can be

used, that the performance of DT for makespan minimization lies between that observed for total

earliness and total cost minimization. The fact that it is better than for total cost minimization is

somewhat surprising since makespan minimization usually involves several iterations22,26 before the

optimal solution is found. In this respect it is worthwhile mentioning that the observed DT peak

performance for P4M is simply because the predicted minimum number of time intervals ensures

feasibility and hence only one iteration is required in the search for the optimal solution. This

unusual behavior (for example P1M requires a total of 53 iterations) is simply because the

bottleneck for P4M lies with the release date of a particular order. In other words, the optimal

makespan is equal to the earliest possible ending time of that order.

7.2. Multistage Problems

The seven multistage problems under consideration range from 8 orders in 6 units and 2 stages (16

batches) to 15 orders in 4 units and 2 stages (30 batches) and to 8 orders in 8 units and 4 stages (32

batches).

7.2.1. Total Cost Minimization

The results given in Table 5 show that the CP and SV models are the best performers for total cost

minimization. While CP was always able to prove optimality, SV failed to do so for P9C (the solver

ran out of memory after more than 12000 CPUs) but managed to solve all other problems in less

than 7 CPUs. The continuous-time formulations were able to find the global optimal solutions for all

problems except P12C. For that problem, both CT4I and CT3I could not find even a feasible

solution up to the maximum resource limit of 48000 and 60000 CPUs, respectively. This behavior

was not totally unexpected since the multiple time grid model from which they originate exhibited

30

the same difficulties22 when solving a problem also involving 4 stages. Finally, the discrete-time

formulation is by far the worst performer and the gap is more significant than for single stage

problems. Only relatively coarse (δ=5) time grids could be considered and even that value generated

very difficult mathematical problems for P9C (no feasible solution) and P13C (unable to prove

optimality after 100,000 CPUs). It is worth noting that we know for sure that P9C is feasible for

(δ=5) since we were able to find a feasible solution for P9E for the same δ value (see Table 7).

7.2.2. Total Earliness Minimization

Like for single stage problems, the new CT4I formulation is the best performer for total earliness

minimization (see Table 7). All problems can be solved to optimality in less than one hour and it

was able to find the best solution for P13E. However, since optimality was proved for 9 time points

only, we do not know for sure if this is in fact the global optimal solution. The other approaches

were unable to confirm this finding: both SV and CP can only get to inferior solutions and DT can

only solve an approximated version of the problem. We can assume that the best solution found for

P11E is the global optimal solution since CT4I obtained the same result both for 6 (values reported

in Table 7) and 7 (optimality proved in 5900 CPUs) time points. Concerning the discrete-time

formulation, this objective enables us to use finer time grids (δ=2 for P7E and P8E) than for the two

others but it is the worst formulation of the group.

7.2.3. Makespan Minimization

The results of Table 8 show that the CP model emerges as the best approach for makespan

minimization since all problems can be solved to optimality in approximately one hour. With the

exception of P13M, the SV model is also successful at finding the optimal solutions but fails to

prove optimality for P8M, P11M and P13M. Concerning the novel multiple time grid formulations,

CT3I is at least as competitive as SV and better than CT4I, which returned slightly worse solutions

for P11M and P13M.

31

8. Overview of Main Features of Alternative Formulations

In order to mark the end of an extensive comparison between several conceptually different

approaches, of which this paper is the third part, we find it convenient to summarize their main

characteristics and suggest a ranking. Table 9 provides the most relevant conclusions.

8.1. Time Grid-based Continuous-Time Formulations

The research21,22 has shown us that the use of a single time grid to solve single/multistage

problems, not involving shared resources such as utilities or manpower, is clearly a bad option. The

results were based on the RTN formulation of Castro et al14, which involves the need to specify both

the number of time points and the number of time intervals that any task can span. Although recent

developments16 have brought a formulation that does not need the latter specification to achieve a

good performance in multipurpose problems, we believe that the main drawback of such single time

grid formulations lies with the large value of |T| that is required to find global optimal solutions to

the problem. This problem can become more severe when sequence dependent changeover tasks are

involved, since the end of the processing task and its subsequent cleaning task will generally occur

at different time points. Naturally, the use of a single time grid is more advantageous to model the

transfer of material between consecutive stages, so it can still be useful in small problems involving

shared resources and not featuring sequence dependent changeovers.

In view of the above, the development of multiple time grid formulations was the next logical

step. Their ability to fit any task, be it just processing or combined processing and changeover, into a

single time interval, was a significant achievement, since it allowed to consider the minimum

possible number of time points per grid, i.e. one time interval per order allocated to the equipment

unit in question. Using a smaller number of time points in any given time grid seems to be the key

issue since the developed multiple time grid formulation actually requires more time points in total

(|T|×|M|), than those used by single time grid formulations. The use of multiple time grids also

allowed for a very efficient way of dealing with the objective of total earliness minimization, mainly

because it is the only continuous-time mathematical programming approach, to the best of our

knowledge, for which the solution of the relaxed problem (LP) can differ from zero, corresponding

32

to the lowest integrality gaps. Despite the fact that it requires substantial changes to deal with

sequence dependent changeovers, it was found to be the best performer in single stage problems. In

multistage problems, it becomes more difficult to model the transfer of material between

consecutive stages and this becomes evident by its increasingly poor performance as the number of

stages increases. Other important characteristics are its overall consistency irrespective of the

objective function under consideration and solution dependency on the selected number of time

points, which inevitably leads to an iterative procedure in the search for the optimal solution.

8.2. Continuous-Time Formulation based on Global Precedence Sequencing Variables

Not having to rely on explicit time grid(s) has the obvious advantage of needing to solve every

problem only once in the search for the global optimal solution. The use of global precedence

sequencing variables also leads to mathematical problems involving fewer binary variables.

Furthermore, the model is basically the same irrespective of sequence dependent changeovers being

involved or not. Its main advantage is the ability to find very good solutions, very fast, which when

allied to sufficient computational effort, translates into the formulation being able to often find the

global solutions for these test problems, even though it is sometimes impossible, due to rapidly

growing tree sizes, to prove optimality. As a result, it has to be considered the best approach for

multistage problems, even though, as it was shown, it has an important limitation since in

exceptional cases involving sequence dependent changeovers, it may cut-off the optimal solution

from the feasible space.

8.3. Discrete-time formulation

The discrete-time formulation is not a clear-cut case. For problems without sequence dependent

changeovers it should always be considered as an option. The fact that it relies on a single time grid,

which facilitates the modelling of shared resources, together with its characteristically low

integrality gap, when compared to the continuous-time formulation, makes it very efficient even for

very large problem sizes, particularly for total earliness minimization in single stage problems.

Naturally, there is always the issue of discretizing the time horizon, which is often viewed as a

disadvantage since it usually means considering approximate versions of the problem by rounding

33

its data. However, it can also be regarded as an advantage, since it gives an obvious way of relaxing

the problem (by increasing the interval length and hence decreasing the number of time intervals)

and still come up with very good solutions if feasibility is not compromised by the rounding errors.

For this reason, the computational performance is less dependent than its continuous-time

counterparts on issues like number of orders, units and stages. The addition of sequence dependent

changeovers leads to a significant increase in the number of binary variables to be considered and

consequently in the model size, causing a significantly decrease in performance, more so in

multistage problems. Another disadvantage of the discrete-time formulation is that it needs an

iterative procedure for makespan minimization that may involve several iterations and a large

amount of computational resources before the optimal solution is found.

8.4. Formulations relying on Constraint Programming

Constraint programming formulations are a good option since OPL Studio global constraints and

special constructs make the model quite competitive. When compared to the alternative approaches

it is significantly better when sequence dependent changeovers are involved. Concerning the

different objective functions, it is clear that the performance of the CP model improves as the

number of variables involved in the objective function decreases, excelling for makespan

minimization, which is in agreement with observations by Hooker3. Similarly to the single time grid

approaches, handling of shared resources should not be a problem. Its main disadvantage lies in the

fact that the first feasible solutions are usually not as good as those of the mathematical

programming approaches, and that the optimal solution is usually found much later in the search,

which implies that considerable computational time may be required to find a good suboptimal

solution (note that search strategies other than the default for the MILP and CP solvers may

eventually lead to different conclusions). Also, it only handles integer data, a limitation that

although easily overcome by a change of basis to consider real numbers, leads to a significant

decrease in performance, in what is a very similar effect to that observed in the discrete-time

formulation when the number of time intervals is increased.

Finally, the hybrid MILP/CP model is a very good alternative particularly for single stage

problems where the objective function depends solely on the assignment variables and not on the

34

sequencing variables, e.g. total cost minimization. The problem is divided into two parts, the first

(master problem) finds the optimal assignments of orders to equipment units, which may or not be

feasible in one or more units. Feasibility is then checked by solving CP feasibility problems for

every equipment unit. Several iterations are usually required before the first feasible assignments,

which are also optimal, are found. This is a clear disadvantage since for large problems, the

simplified MILP can still be very difficult to solve, which means going through just a small number

of iterations in considerable computational time and yet the possibility of ending up with no feasible

solution at all. For other problem types, hybrid MILP/CP models have not proved as powerful.

Overall, the development of successful hybrid methods is directly linked to the finding of a tight

MILP master problem, the relaxed scheduling problem, which necessarily includes valid and

efficient integer cuts resulting from the solution of the CP subproblem (either a feasibility or an

optimization problem) in previous iterations (see Hooker27 and Maravelias and Grossmann4).

9. Conclusions

This paper has presented two new continuous-time formulations for the short-term scheduling of

single/multistage, multiproduct batch plants, where equipment units are subject to sequence

dependent changeovers and product orders to both release and due dates. The formulations rely on

the use of multiple time grids, one per equipment resource and are extensions of previous work21,22.

Their main difference lies on the consideration of changeover tasks. While one formulation uses

binary variables linked to such tasks, giving rise to 4-index binary variables, the other maintains the

3-index binary variables of the previous model22 and changes one set of constraints to make it

possible to handle sequence dependent changeovers. The form of such constraints forces tasks to be

assigned to time points in a decreasing order, which is contrary to the technique developed21 for total

earliness minimization since it relies on tasks being assigned to time points in an increasing order,

i.e. in the opposite way. Both formulations were shown to be very efficient in single stage problems

with the most surprising result coming from the fact that the 4-index binaries formulation was found

to be slightly better than its 3-index binaries counterpart, despite featuring a number of binary

variables that can be up to one order of magnitude larger. This behaviour results from the use of

tighter timing constraints (measured by a lower integrality gap) by the former, where all tasks that

35

can be executed in a given unit and time interval are aggregated into the same set of constraints,

whereas the 3-index binaries formulation has the corresponding constraint disaggregated due to the

need to consider one task defining order index in the constraint domain. As the number of stages

increases, the performance of the developed multiple time grid formulations decrease steadily and

feasibility may even be compromised.

The other goal of the paper has been to provide a critical review of other approaches that are

suitable for this specific type of scheduling problem. These included an RTN-based discrete-time

formulation18, a continuous-time model with global precedence sequencing variables5, a constraint

programming model5 and a hybrid MILP/CP model6 (this last one just for single stage and total cost

minimization problems). A total of 39 examples were solved and the results, together with those of

the two previous works21-22, allowed us to identify the main features, strengths and weaknesses of

each approach, which were thereafter summarized in a comprehensive table.

Finally, it is reasonable to present our views on what we believe to be the best model, the

continuous-time formulation with global precedence sequencing variables. Even though other

approaches may perform significantly better in some problems, in particularly the multiple time grid

formulation when minimizing total earliness and the constraint programming model when

minimizing makespan, there are a few arguments that give an edge to that formulation, the most

important being its ability to always find very good solutions with modest computational effort. This

will be a critical point when considering real-world applications consisting of hundreds of batches,

dozens of pieces of equipment and long scheduling periods, where to guarantee optimality is no

longer the major issue. Preliminary work has shown that decomposition techniques based on that

same model can be applied for the efficient solution of industrial based problems and this will be the

subject of our future work on this subject.

Nomenclature

Sets/Indices
I/i, i’= process orders
Ii’,m=orders that can precede order i’ in unit m
Ii’,m,t, tmiI ,,' =orders that can be followed by order i’ in unit m starting at time point t

Im= orders to be processed in unit m
K/k=process stages

36

Km=stage where unit m belongs
M/m= process equipment units
Mi=machines that can process order i
Mk=machines belonging to stage k
T/t, t’,t’’=Points of the time grid

Parameters
ci,m=processing cost of order i in machine m

min
,micl =minimum changeover time from order i in unit m
max
,micl =maximum changeover time from order i in unit m
Δ

miicl ,', =difference between maximum and actual changeover from order i to i’ in unit m

cli,i’,m=duration of changeover task from order i to i’ in unit m
di=due date of order i

id =normalised due date of order i

H=time horizon
hbi,m= highest time at which order i can start to be processed in unit m
lbi,m=lowest time at which order i can start to be processed in unit m

mibl , = lowest possible starting point of order i in unit m

lbmm,t=lowest time at which unit m at time point t can become active
pi,m=processing time of order i in machine m
ri=release date of order i

ir =normalised release date of order i

ubi,i’,m=highest time at which order i (followed by order i’) can start to be processed in unit m

miibu ,', =highest starting point of order i (followed by order i’) in unit m

δ=duration of each time interval in the discrete-time grid
τi,m=processing time of order i on machine m as an integer multiple of δ

mii ,',τ = duration of combined processing and cleaning task of order i to i’ in unit m as an integer

multiple of δ

Variables
Ci,m,t=excess amount of equipment state associated to order i of unit m at time point t

0
,miC =initial amount of equipment state associated to order i of unit m

MS=makespan
Ni,m,t=binary variable that assigns the start of order i in unit m to time point t

tmiiN ,,', =binary variable that assigns the start of order i (followed by i’) in unit m at time point t

Rm,t=excess amount of machine m at time point t
Si,k,t=excess amount of material resulting for order i produced at stage k at time point t

f
kiT , =ending time of order i in stage k

Tt,m=absolute time of event point t in unit m
TDi,k=transfer time of order i in stage k
xi,i’,k=binary global precedence sequencing variable of order i over i’ in stage k
yi,m=binary assignment variable of order i to unit m

37

List of Tables

Table 1. Single stage problems: Overview of computational performance (CPU s) for total cost
minimization.

problem/model optimum CT4I CT3I SV DT CP MILP/CP
P1C (|I|=12, |M|=3) 101 10.0 11.5 118 713d 0.75 13.4
P2C (|I|=12, |M|=3) 87 5.42 2.73 33.1 1250e 0.19 1.11
P3C (|I|=15, |M|=5) 121 23.2 28.8 20000a 1395e 133 37.4
P4C (|I|=15, |M|=5) 106 3.80 1.88 510 2602f 15.1 6.81
P5C (|I|=20, |M|=5) 163 66.9 4996 12217b 551g 57000i 6935
P6C (|I|=20, |M|=5) 146 27.9 39.9 15844c 2084h 7620 83.3

AS=approximate solution of the problem, δ value within brackets where 1 corresponds to
considering the exact problem data. FTP=fewer time points were used than those required to find the
optimal solution, |T| value within brackets. BPS=best possible solution at the time of termination.
MRL=maximum resource limit exceeded. NS=no solution found. OM=solver ran out of memory.
SO= suboptimal solution returned.

aMRL, BPS=119.09.bOM, BPS=155.42. cOM, BPS=143.14. dAS (δ=5), SO=105. eAS(δ=2).
fAS(δ=2), SO=107. gAS(δ=5). hAS(δ=5), SO=147.iMRL, SO=166.

Table 2. Computational statistics for problem P5C

model CT4I CT3I SV DT CP MILP/CP
|T| 6 6 - 87 - -

discrete variables 6924 530 290 45360 - -
single variables 7655 561 311 54596 120 -

constraints 731 621 1946 9161 180 -
RMIP 157.59 155.78 152.45 160.36 - -
Obj 163 163 163 163b 166 163
CPU 66.9 4996 12217a 551 57000c 6935

nodes/choice points/major
iterations

2141 1.69E6 2.34E6 178 1.84E8 211

aOM, BPS=155.42. bAS(δ=5). cMRL.

38

Table 3. Single stage problems: Overview of computational performance (CPU s) for total earliness
minimization.

problem/model optimum CT4I SV DT CP
P1E (|I|=12, |M|=3) 690 4.28 427 451 2.36
P2E (|I|=12, |M|=3) 146 4.11 653 190 92.1
P3E (|I|=15, |M|=5) 559 17.9 6842b 4506 11146g

P4E (|I|=15, |M|=5) 54 4612 9059c 169 3058
P5E (|I|=20, |M|=5) 1187 208 9821d 3614f 83000h

P6E (|I|=20, |M|=5) 150 62.3a 6259e 522 142000i

aSO=164, FTP(|T|=5), OM for |T|=6 with worse solution. bOM, SO=667, BPS=0. cOM, BPS=0.
dOM, SO=1458, BPS=0. eOM, SO=190, BPS=0. fAS(δ=5), SO=1230. gSO=561, although solver
solved to optimality (special case). hMRL, SO=1214. iMRL, SO=767.

Table 4. Single stage problems: Overview of computational performance (CPU s) for makespan
minimization.

problem/model optimum CT4I CT3I SV DT CP
P1M (|I|=12, |M|=3) 409 15.5 193 17.5 8073g 0.98
P2M (|I|=12, |M|=3) 171 3.55 11.7 14.9 29509 0.84
P3M (|I|=15, |M|=5) 291 201 8373 17255 980h 122
P4M (|I|=15, |M|=5) 147 1435 1.76 2.42 61.5 702
P5M (|I|=20, |M|=5) 337? 8782a 36692c 8011e 8311i 54000k

P6M (|I|=20, |M|=5) 164? 6290b 20000d 16062f 13891j 55000l

aOM, SO=338, BPS=330. bOM, SO=168, BPS=158. cOM, SO=347, BPS=319. dMRL, SO=166,
BPS=150. eOM, SO=347, BPS=290. fOM, SO=167, BPS=147. gAS(δ=2), SO=410. hAS(δ=5),
SO=295. iAS(δ=5), SO=340. jAS(δ=2). kMRL, best solution=337. lMRL, SO=237.

Table 5. Multistage problems: Overview of computational performance (CPU s) for total cost
minimization.

problem/model optimum CT4I CT3I SV DT CP
P7C (|I|=8, |M|=6, |K|=2) 18 3.76 0.64 0.5 440d 17.2
P8C (|I|=8, |M|=6, |K|=2) 1087 0.91 1.95 2.3 262d 159
P9C (|I|=8, |M|=6, |K|=3) 82 1481 1773 12014c 55500e 49.7
P10C (|I|=8, |M|=6, |K|=3) 647 3.97 1.62 0.38 13754f 70.2
P11C (|I|=12, |M|=6, |K|=2) 71 112 5.88 6.20 1181d 11623
P12C (|I|=8, |M|=8, |K|=4) 125 48000a 60000b 4.81 304g 1075
P13C(|I|=15, |M|=4, |K|=2) 96 481 85.6 2.88 100000h 924

aMRL, NS, BPS=121.4. bMRL, NS, BPS=118.3. cOM, BPS=79.2. dAS(δ=5). eMRL, NS(δ=5).
fAS(δ=5), SO=649. gAS(δ=5), SO=132. hMRL, AS(δ=5), SO=101, BPS=95.53.

39

40

Table 6. Computational statistics for problem P12C

problem/model CT4I CT3I SV DT CP
|T| 6 6 - 56 -

discrete variables 1796 368 176 5648 -
single variables 2317 441 209 11537 160

constraints 1153 1041 545 5865 360
RMIP 111.14 111 111 123.86 -
Obj - - 125 132c 125
CPU 48000a 60000b 4.81 304 1075

nodes/choice points 389500 6.34E6 8866 362 4351343
aMRL, NS, BPS=121.4. bMRL, NS, BPS=118.3. cAS(δ=5), SO=132.

Table 7. Multistage problems: Overview of computational performance (CPU s) for total earliness
minimization.

problem/model optimum CT4I SV DT CP
P7E (|I|=8, |M|=6, |K|=2) 88 1.56 2.76 16672c 5.58
P8E (|I|=8, |M|=6, |K|=2) 90 1.38 48.2 1339c 8.41
P9E (|I|=8, |M|=6, |K|=3) 217 19.7 15.3 1258d 127
P10E (|I|=8, |M|=6, |K|=3) 99 3.09 278 187e 8.66
P11E (|I|=12, |M|=6, |K|=2) 209 216 60000a 520f 60000i

P12E (|I|=8, |M|=8, |K|=4) 150 143 315 163g 2963
P13E (|I|=15, |M|=4, |K|=2) 571? 3448 2500b 60000h 55000j

aMRL, BPS=196. bOM, SO=600, BPS=157. cAS(δ=2). dAS(δ=5), SO=230. eAS(δ=5), SO=105.
fAS(δ=5). gAS(δ=5, obj=148). hMRL, AS(δ=5), SO=950, BPS=597.6. iMRL, SO=243. jMRL,
SO=848.

Table 8. Multistage problems: Overview of computational performance (CPU s) for makespan
minimization.

problem/model optimum CT4I CT3I SV DT CP
P7M (|I|=8, |M|=6, |K|=2) 542 60.2 33.9 21.8 156h 2.06
P8M (|I|=8, |M|=6, |K|=2) 584 40.9 8.89 55000e 228i 0.27
P9M (|I|=8, |M|=6, |K|=3) 915 778 8.83 71.5 150000j 60.1
P10M (|I|=8, |M|=6, |K|=3) 914 87.3 18.0 1439 66118k 2.00
P11M (|I|=12, |M|=6, |K|=2) 233 60000a 14082 23408f 15430l 1013
P12M (|I|=8, |M|=8, |K|=4) 265 36541 54440 496 11315m 732
P13M (|I|=15, |M|=4, |K|=2) 273 60000c 60000d 8714g 60000n 3721

aMRL, SO=234, BPS=231. cMRL, SO=313, BPS=270.7. dMRL, SO=299, BPS=263. cOM,
BPS=79.2. eMRL, BPS=571. fOM, BPS=220.1. gOM, SO=294, BPS=247.7. hAS(δ=5), SO=550.
iAS(δ=2), SO=586. jMRL, NS(δ=10). kAS(δ=10), SO=930. lAS(δ=5), SO=240. mAS(δ=5), SO=280.
nMRL, NS(δ=5).

41

Table 9. Overview of the main characteristics of the tested approaches for the short-term scheduling of single/multistage multiproduct batch plants

Type of model Continuous-time Discrete-time CP Hybrid MILP/CP
Feature/Based on Single time grid Multiple time grids Global precedence

sequencing variables
Single, uniform time grid Global constraints and

special constructs
Sequence of

assignment and
feasibility problems

Sequencing of tasks Implicit through assignment of tasks to ordered
time points

Explicit through model
variables

Implicit through
assignment of tasks to

ordered time points

Implicit through activities starting and ending
times

Modeling of material
transfer between stages

Explicit through excess
resource variables

------------Implicit in model constraints------------ Explicit through excess
resource variables

Implicit through global
constraint precedes

N.A.

Modeling of
changeovers

Explicit through
processing and cleaning

extent variables

Either explicit through
binary variables or
implicitly in model

constraints

Implicitly in model
constraints

Explicit through combined
processing and cleaning

extent variables

Implicitly through transition matrices associated to
activities

Objective functions
handled

--Minimization of total cost, total earliness and makespan-- Total cost minimization

A priori decisions that
can affect final solution

Number of time points;
number of intervals any

task can span

Number of time points
of each time grid

None Duration of uniform time
intervals

None None

Single stage
performance

Very poor Very good Good Good Good Very good

Multistage performance Poor Good Very good Fair Good N.A.
Strengths Handling of shared

resources
Minimization of total

earliness; overall
consistency for other

objectives

Ability to find very
good solutions very

fast; generates
relatively small
problem sizes

Ability to solve
approximated versions of a
problem; minimization of
total earliness; handling of

shared resources

Minimization of
makespan; handling of

shared resources

Minimization of total
cost in single stage

problems

Limitations Solution is highly
dependent on a priori
decisions; only useful

for very simple
problems

Solution dependency
on number of time

points; inadequacy to
handle shared

resources; can fail to
find feasible solutions
in problems involving

several stages

Minor chance of
leading to suboptimal

solutions when dealing
with sequence

dependent changeovers;
global optimality can

be hard to prove;
shared resources can be

difficult to handle

Solution dependence on the
chosen interval length; can
lead to prohibitively large

problem sizes when
sequence dependent

changeovers are involved;
requires iterative procedure
for makespan minimization
where optimal solution is

the first feasible one

Minor chance of
leading to suboptimal

solutions when dealing
with sequence

dependent changeovers;
can stuck in poor
solutions since

optimization goes from
bad to good solutions;
handles integer data

only

Only efficient for total
cost minimization in

single stage problems;
can fail to find feasible

solutions whenever
simplified assignment
problem is difficult to

solve; first feasible
solution is optimal;
handles integer data

only

References

(1) Méndez, C.A.; Cerdá, J.; Grossmann, I.E.; Harjunkoski, I.; Fahl, M. State-of-the-art Review of

Optimization Methods for Short-Term Scheduling of Batch Processes. Comp. Chem. Eng. 2006. In

press.

(2) Hentenryck, P.V. Constraint satisfaction in logic programming; MIT Press: Cambridge, MA,

1989.

(3) Hooker, J.N. Logic, optimization and constraint programming. INFORMS J. Comput. 2002,

14, 295.

(4) Maravelias, C.T.; Grossmann, I.E. A Hybrid MILP/CP Decomposition Approach for the

Continuous-time Scheduling of Multipurpose Batch Plants. Comp. Chem. Eng. 2004, 28, 1921.

(5) Harjunkoski, I.; Grossmann, I.E. Decomposition Techniques for Multistage Scheduling

Problems using Mixed-integer and Constraint Programming Methods. Comp. Chem. Eng. 2002, 26,

1533.

(6) Jain, V.; Grossmann, I.E. Algorithms for Hybrid MILP/CP Models for a Class of Optimization

Problems. INFORMS Journal on Computing. 2001, 13, 258.

(7) Maravelias, C. A Decomposition Framework for the Scheduling of Single and Multistage

Processes. Comp. Chem. Eng. 2006, 30, 407.

(8) Roe, B.; Papageorgiou, L.G:, Shah, N. A hybrid MILP/CP algorithm for multipurpose batch

process scheduling. Comp. Chem. Eng. 2005, 29, 1277.

(9) Giannelos, N.F.; Georgiadis, M.C. A Simple Continuous-Time Formulation for Short-Term

Scheduling of Multipurpose Batch Processes. Ind. Eng. Chem. Res. 2002, 41, 2178.

(10) Giannelos, N.F.; Georgiadis, M.C. A Novel Event-Driven Formulation for Short-Term

Scheduling of Multipurpose Continuous Processes. Ind. Eng. Chem. Res. 2002, 41, 2431.

42

(11) Maravelias, C.T.; Grossmann, I.E. New General Continuous-Time State-Task Network

Formulation for Short-Term Scheduling of Multipurpose Batch Plants. Ind. Eng. Chem. Res. 2003,

42, 3056.

(12) Janak, S.L.; Lin, X.; Floudas, C.A. Enhanced Continuous-Time Unit-Specific Event-Based

Formulation for Short-Term Scheduling of Multipurpose Batch Processes: Resource Constraints and

Mixed Storage Policies. Ind. Eng. Chem. Res. 2004, 43, 2516.

(13) Méndez, C.A.; Cerdá J. An efficient MILP continuous-time formulation for short-term

scheduling of multiproduct continuous facilities. Comp. Chem. Eng. 2002, 26, 687.

(14) Castro, P.M.; Barbosa-Póvoa, A.P.; Matos, H.A.; Novais, A.Q. Simple Continuous-time

Formulation for Short-Term Scheduling of Batch and Continuous Processes. Ind. Eng. Chem. Res.

2004, 43, 105.

(15) Gupta, S.; Karimi, I.A. An Improved MILP Formulation for Scheduling Multiproduct

Multistage Batch Plants. Ind. Eng. Chem. Res. 2003, 42, 2365.

(16) Sundaramoorthy, A.; Karimi, I.A. A simpler better slot-based continuous-time formulation

for short-term scheduling in multipurpose batch plants. Chem. Eng. Sci. 2005, 60, 2679.

(17) Kondili, E.; Pantelides, C.C.; Sargent, R. A General Algorithm for Short-Term Scheduling of

Batch Operations I. MILP Formulation. Comp. Chem. Eng. 1993, 17, 211.

(18) Pantelides, C.C. Unified Frameworks for the Optimal Process Planning and Scheduling. In

Proceedings of the Second Conference on Foundations of Computer Aided Operations; Cache

Publications: New York, 1994; pp 253.

(19) Maravelias, C.T. Mixed-Time Representation for State-Task Network Models. Ind. Eng.

Chem. Res. 2005, 44, 9129.

(20) Floudas, C.A:; Lin, X. Continuous-time versus discrete-time approaches for scheduling of

chemical processes: A review. Comp. Chem. Eng. 2004, 28, 2109.

(21) Castro, P.M.; Grossmann, I.E. An Efficient MILP Model for the Short-Term Scheduling of

Single Stage Batch Plants. Comp. Chem. Eng. 2006. In press.

43

(22) Castro, P.M.; Grossmann, I.E. New Continuous-Time MILP Model for the Short-Term

Scheduling of Multistage Batch Plants. Ind. Eng. Chem. Res. 2005, 44, 9175.

(23) Hentenryck, P.V. The OPL Optimization Programming Language. MIT Press: Cambridge,

MA, 1999.

(24) Castro, P. M.; Barbosa-Póvoa, A.P.; Novais, A.Q. A Divide and Conquer Strategy for the

Scheduling of Process Plants Subject to Changeovers Using Continuous-Time Formulations. Ind.

Eng. Chem. Res. 2004, 43, 7939.

(25) Pinto, J.; Grossmann, I. A Continuous Time Mixed Integer Linear Programming Model for

the Short-Term Scheduling of Multistage Batch Plants. Ind. Eng. Chem. Res. 1995, 34, 3037.

(26) Maravelias, C.; Grossmann, I.E. Minimization of the Makespan with a Discrete-Time State-

Task Network Formulation. Ind. Eng. Chem. Res. 2003, 42, 6252.

(27) Hooker, J. N. A Hybrid Method for Planning and Scheduling. In Lecture Notes in Computer

Science, Vol. 3258. Editor: M. Wallace, Springer, 2004, pp 305-316.

44

List of captions for figures

Figure 1. RTN process representation for order I1, featuring a total of |M| machines and |K| stages
(changes on the units cleaning states omitted for simplification).

Figure 2. RTN process representation for unit M1, showing all possible cleaning states (changes on
the orders material states omitted for simplification).

Figure 3. Continuous-time grid employed (one for each equipment unit).

Figure 4. Uniform discrete-time grid.

Figure 5. Possible solution from multiple-time grid, continuous-time formulation F1 (|I|=3, |M|=3,
|K|=3, and |T|=4).

Figure 6. Possible solution from multiple-time grid, continuous-time formulation F1 (|I|=3, |M|=3,
|K|=1 and |T|=3). Orders are assigned from the first to last time points.

Figure 7. Possible solution from multiple-time grid, continuous-time formulation F2 (|I|=5, |M|=3,
|K|=1 and |T|=3). Orders are assigned from the last but one to the first time points.

Figure 8. Part of the optimal schedule for example P3E. Optimal solution (above) and suboptimal
solution (below) from continuous-time MILP with global precedence sequencing variables and CP
models.

45

	1. Introduction
	2. Problem definition
	3. Conceptual representation: process vs. model entities
	3.1. Resource task network process representation
	3.2. Handling of time

	4. New general multiple-time-grid continuous formulation, featuring four-index variables (CT4I)
	4.1. Excess resource balance constraints
	4.2. Timing constraints
	4.3. Operational constraints
	4.4. Objective functions

	5. New multiple-time-grid continuous formulation, featuring three-index variables (CT3I)
	6. Other approaches
	6.1. Continuous-time formulation with global precedence sequencing variables (SV)
	6.2. RTN-based discrete-time formulation (DT)
	6.3. Constraint programming formulation (CP)
	6.4. Hybrid formulation (MILP/CP)

	7. Computational Results
	7.1. Single Stage Problems
	7.1.1. Total cost minimization
	7.1.2. Total earliness minimization
	7.1.3. Makespan Minimization

	7.2. Multistage Problems
	7.2.1. Total Cost Minimization
	7.2.2. Total Earliness Minimization
	7.2.3. Makespan Minimization

	8. Overview of Main Features of Alternative Formulations
	8.1. Time Grid-based Continuous-Time Formulations
	8.2. Continuous-Time Formulation based on Global Precedence Sequencing Variables
	8.3. Discrete-time formulation
	8.4. Formulations relying on Constraint Programming

	9. Conclusions

