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Abstract

In this paper we propose a routing strategy for enabling
publish-subscribe communication in a sensor network. The
approach is semi-probabilistic, in that it relies partly onthe
dissemination of subscription information and, in the areas
where this is not available, on random rebroadcast of event
messages. We illustrate the details of our approach, con-
cisely describe its implementation in TinyOS [14] for the
MICA2 platform [1], and evaluate its perfomance through
simulation. Results show that our approach provides good
delivery and low overhead, and is resilient to connectivity
changes in the sensor network, as induced by the temporary
standby necessary to preserve the energy of sensor nodes.

1. Introduction

The miniaturization of computing, sensing, and wireless
communication devices recently enabled the development
of wireless sensor networks(WSN), a new form of dis-
tributed computing where sensors deployed in the environ-
ment communicate wirelessly to gather and report informa-
tion about physical phenomena. Several successful applica-
tions of WSNs are reported in the literature [2,3,5].

A fundamental issue in realizing a WSN is how to route
the applicative data, i.e., the messages controlling the op-
eration of the various sensors and the data gathered by
them. Most of the existing approaches assume the existence
of a single data sink—typically, a centralized monitoring
station— interested in the sensed data and focus on opti-
mizing multi-hop communication among sensors to route
messages efficiently to and from the sink. In general, how-
ever, multiple data sinks may exist in the system, potentially
interested in monitoring different phenomena whose behav-
ior however can be derived by analyzing the same set of raw
sensed data. This is evident in the case where multiple mon-
itoring stations, possibly mobile as in [10], are deployed in
the system. However, it is even more poignant in a vari-
ation of WSN that is rapidly attracting interest among re-

searchers and practitioners, namely,wireless sensor and ac-
tor networks(WSAN) [4]. In this case, the devices deployed
in the environment are not only able to sense environmen-
tal data, but also to react by affecting the environment with
their actuators. However, to do so they usually play the role
of data sinks, in that they rely on the data sensed and dis-
seminated by the other devices in the network.

Despite the rapid development of this research field, the
state of the art shows how programming sensor network ap-
plications is still done by and large in an ad hoc fashion. As
usual, software evolves slower than hardware, and although
the first middleware and platforms for sensor networks are
beginning to appear (e.g., [13, 20, 23]), most of the efforts
are still devoted to the core OS and network functionality,
with little attention to higher-level abstractions that simplify
distributed programming without sacrificing performance.

In this context, the publish-subscribe interaction
paradigm naturally resonates with sensor networks.
Publish-subscribe middleware is organized as a collec-
tion of client components, which interact bypublishing
messages and bysubscribing to the classes of mes-
sages they are interested in. The core component of the
middleware, thedispatcher, is responsible for collect-
ing subscriptions and forwarding messages from publish-
ers to subscribers. In sensor network context, for instance,
an actuator may be interested in receiving all the mes-
sages concerning a temperature greater than 30 degrees,
to activate a fan; similarly, a node hosting a tempera-
ture sensor may subscribe to all the messages carrying ap-
plication queries for temperature data. The implicit and
asynchronous communication paradigm that character-
ize publish-subscribe fosters a high degree of decoupling
among the components, which is beneficial since the sys-
tem configuration often changes as the devices enter power
saving mode.

Clearly, the difficulty is how to implement efficient rout-
ing strategies for a distributed dispatcher implementation.
Our research group has been recently very active in tackling
this problem in contexts with a dynamic topology, including
MANETs (see e.g., [8, 19]). In particular, we recently de-



vised a routing strategy [9] that exploits a semi-probabilistic
approach. Message subscriptions are propagated determin-
istically only in the immediate vicinity (in terms of number
of hops) of the subscribing node. When a message is pub-
lished, it is routed using this deterministic information—if
available. If there is no such information to determine the
next hop, the decision is taken probabilistically, by forward-
ing the message along a randomly selected subset of the
available links. Being based on probabilistic decision, our
approach exhibits very low overhead, but cannot guarantee
100% delivery in all situations. Nevertheless, it is gearedto-
wards highly dynamic scenarios where the cost of provid-
ing full delivery guarantees are prohibitive—when a solu-
tion exists. The simulations in [9] confirm that the approach
performs well (i.e., high delivery and low overhead) even in
very dynamic scenarios, and better than a purely probabilis-
tic (or deterministic) approach.

In this paper, we start from the same premises of employ-
ing a semi-probabilistic approach. Its characteristics oflow
overhead and resilience to changes in the network topol-
ogy make it amenable to sensor networks, where in many
cases (e.g., continuous monitoring) probabilistic guarantees
are enough. Nevertheless, in this paper we tailor our origi-
nal solution to the peculiar characteristics of our new tar-
get scenario. First of all, we adopt a different communi-
cation model. In [9] we assumed communication to take
place along the links of a graph-shaped overlay network:
here, instead, the broadcast facility provided by sensors is
our only communication media. Moreover, the overlay net-
work completely masked the mechanics of the underlying
network communication: here, instead, by relying directly
on wireless broadcast we need to take into account packet
collisions, to avoid depleting the sensors’ power on use-
less retransmissions. Finally, sensors often operate in a duty
cycle, by alternating processing and communication with
stand-by periods, therefore saving battery power. This in-
troduces a particular form of dynamicity in the network,
even in absence of mobility. To evaluate our routing strategy
we implemented it on Crossbow’s MICA2motesrunning
TinyOS [14], and emulated its behavior with TOSSIM [16]
in scenarios with up to 400 nodes. The research contribution
of this paper is therefore twofold. First, we extend, adapt,
and evaluate our semi-probabilistic approach for broadcast
communication in the context of sensor networks. Second,
our implementation can be effectively regarded as a novel
publish-subscribe middleware for sensor networks.

The paper is organized as follows. Section 2 presents
the details of our approach, while Section 3 concisely de-
scribes its TinyOS implementation. Section 4 reports about
the evaluation of our approach using thetossim emulator
in several scenarios. Section 5 places our work in the con-
text of related efforts. Finally, Section 6 ends the paper with
brief concluding remarks.

2. Approach

In this section we provide a complete, albeit informal,
description of our approach. In the following we assume
wireless broadcast is the only communication media used,
and also assume that each (active) sensor takes part in
routing, regardless of whether it is currently interested in
publishing and/or subscribing. Finally, we observe that a
distinction is usually drawn betweensubject-basedsys-
tems, where subscriptions are specified by selecting a topic
among many defined a priori, andcontent-basedsystems,
where instead subscriptions are defined usingfiltersover the
actual message content. Content-based publish-subscribe
systems are much more expressive, but often demand a
more complex implementation1. In the specific case of our
approach, the difference is entirely confined in the format
of the subscription message, and therefore both variants of
publish-subscribe can be implemented equally easily.

2.1. Disseminating and Managing Subscriptions

The subscriptions issued by the application components
disseminate in the network deterministic information that
is going to be used for routing events. When the applica-
tion running on a node issues a subscription, our middle-
ware broadcasts the corresponding filter. This information
is rebroadcast by the subscriber neighbors to an extent de-
fined by thesubscription horizonφ. In our original, link-
based approach [9],φ was measured as the number of hops
travelled by a subscription message along the links of the
graph overlay. In this paper, instead,φ represents the num-
ber of times the subscription message is (re)broadcast. A
valueφ = 0 means that no subscription is ever transmit-
ted by the subscriber node, and therefore the corresponding
information is only stored locally in the subscription table.
As we discuss next, this implies that events are routed in a
purely probabilistic fashion. Ifφ > 0, the subscriber broad-
casts the subscription; the neighbors receiving the message
update their subscription table accordingly. Ifφ = 1, no fur-
ther action is taken. Otherwise, the subscription is rebroad-
cast by the neighbors to the extent mandated byφ.

In a publish-subscribe system, subscriptions can be is-
sued and removed dynamically by using proper middleware
constructs, to reflect the changing interests of applications.
Clearly, the information held by the middleware infrastruc-
ture, and in particular the content of the subscription tables,
must be updated accordingly. In [9], we exploited the stan-
dard technique of dealing with (un)subscriptions explicitly,
by using control messages propagated whenever a node de-
cides to (un)subscribe. The same technique is used to deal
with appearing or vanishing links, by treating the disap-

1 See [12] for a comparison and more detailed discussion.



pearing endpoint as if it were, respectively, subscribing or
unsubscribing. Here, we use a different strategy that asso-
ciatesleasesto subscriptions, and require the subscriber to
refresh subscriptions by re-propagating the corresponding
message2. If no message is received before a lease expires,
the corresponding subscription is deleted.

Clearly, there are tradeoffs involved. Without a leased
approach the (un)subscription traffic is likely to be signifi-
cant, due to the need to reconcile routing information when-
ever a link appears or disappears. The leased approach re-
markably reduces the communication overhead, by remov-
ing this need. On the other hand, if subscriptions are stable,
bandwidth is unnecessarily wasted for refreshing leases.
However, in sensor networks the former case is much more
likely to happen than the latter, since nodes typically alter-
nate work and sleep periods to save energy.

Moreover, the combination of leased subscriptions and
broadcast communication remarkably simplifies the man-
agement of the subscription table, and drastically reduces
the associated computational and memory overhead. In [9],
to properly reconcile subscription information upon con-
nectivity changes, we kept a different table for each value
of φ, where each row contained the subscription filter and
the link the subscription referred to. Here, instead, all we
need is to store the subscription filter together with a times-
tamp used for managing leases. Differentiating according
to φ is no longer needed, since subscriptions simply expire,
and broadcast removes the need for information about links.

2.2. Routing Events

In [9], the effectiveness of event routing is controlled by
means of theevent propagation thresholdτ , which is a frac-
tion of the links available at a given node. For instance,
τ = 0.5 means that an event is always forwarded along half
of the links available at each node. If subscription informa-
tion is available, this is used first. If this deterministic in-
formation is not enough to fulfill the propagation threshold,
the remaining links are selected at random among those the
event has not been forwarded along. Clearly, higher values
of τ increase not only delivery but also overhead. The sim-
ulations in [9] analyze the effect of this parameter in con-
junction with the subscription horizonφ.

Nevertheless, in this paper we assume broadcast commu-
nication, therefore this strategy must be adapted slightlybe-
cause there is no concept of link, actually leading to an even
simpler strategy. If an event is received3 for which a match-
ing filter exists in the subscription table, the event is simply

2 Optimizations are possible, e.g., to broadcast the subscription hash,
and transmit the entire one only if missing on the receiving node.

3 Clearly, events that have already been processed and that are received
again because of routing loops are easily discarded based ontheir iden-
tifier.

rebroadcast. On the other hand, if no matching subscrip-
tion is found, the event is rebroadcast with a probabilityτ .
The parameterτ , therefore, still limits the extent of propa-
gation, but more indirectly than in [9], as it comes into play
only when no deterministic information is available.

The effectiveness of our approach is clearly proportional
to the number of forwardersF , i.e., the neighbors which re-
ceive and retransmit an event. Based on the procedure we
described so far, in absence of deterministic information
F = τ · η holds, beingη the number of neighbors. As a
consequence, a small value ofη (e.g., in sparse networks)
must be compensated by increased values ofτ , as we dis-
cuss in Section 4.

Moreover, while in [9] the event always got routed along
the fraction of links mandated byτ , here instead we have
a non-zero probability that none of the neighbors will re-
broadcast the event. More precisely, in absence of determin-
istic information, ifη is the average number of neighbors,
the probability of stopping the propagation of the event is
(1− τ)η. If no subscriber is in the immediate vicinity of the
event publisher andτ is small, there is a significant possi-
bility that event propagation immediately stops. To ensure
that a reasonable amount of event messages are injected into
the network, we mark event messages with a flag stating
whether they have been just published or instead they al-
ready travelled through the network. In the first case, the re-
ceiver behaves as ifτ = 1 and rebroadcasts the event in
any case. This mechanism guarantees that at leastη copies
of the event message are injected in the network and propa-
gate independently.

2.3. Dealing with Collisions

Wireless broadcast is subject to packet collisions, which
occur when two or more nodes in the same area send data
at the same time. Since in our approach the propagation of
subscriptions and events both rely on wireless broadcast, it
becomes crucial to reduce the impact of collisions by avoid-
ing wasting precious energy on useless retransmissions.

TinyOS [14] adopts a very simple scheme to recover
from collisions where, after a broadcast message has been
sent, the sender waits for an acknowledgment from at least
one of its neighbors. If none is received before the asso-
ciated timeout expires, the message is resent. The evident
weakness of this solution is that it does not take into ac-
count the actual number of neighbors. If only one neighbor
received and acknowledged successfully the message, the
transmission is assumed successful, regardless of the pos-
sibly many nodes that did not receive the message. More-
over, it does not try to limit in any way the number of col-
lisions. More sophisticated MAC protocols has been pro-
posed in literature [18] but none is currently supported by
the Crossbow MICA2 [1], our target platform.



Therefore, we conceived a simple yet effective solution
that decreases significantly the number of collisions, with-
out requiring any synchronization among nodes. The idea
can be regarded as a sort of simplified TDMA protocol
where each node, upon startup, sets a timer whose value
is a global configuration parameter. Sending messages (i.e.,
subscriptions and events) takes place only upon timer expi-
ration, while receiving is in principle always enabled. Since
each node in the network bootstraps at a different time, it
is highly unlikely that two nodes in range of each other end
up with synchronized timers. The simulations in Section 4
show that this trivial idea goes a long way in drastically re-
ducing the amount of collisions.

2.4. Avoiding Unnecessary Propagation

Without a way to limit forwarding, an event propagates a
long way—i.e., until it reaches a node that already received
it, at which point it gets dropped. This unconstrained propa-
gation is likely to generate unnecessary overhead. In [9] we
addressed the problem by setting a time-to-live (TTL) on
each event, incremented at each hop. However, our simula-
tions showed that this solution is much less effective with
broadcast propagation. In fact, even when an event travels
for a small number of hops, the number of nodes it reaches
is great, and therefore the impact of TTL is limited.

To address this issue, we modified slightly the retrans-
mission strategy described in Section 2.3. Let us assume
a nodeA waiting to broadcast an evente hears one of
its neighbors, sayB, transmittinge beforeA’s timer ex-
pires. If the set ofA’s neighbors partially overlaps withB’s
neighbors, it is likely that most ofA’s neighbors receive the
event fromB’s transmission, therefore makingA’s broad-
cast largely useless. Some ofA’s neighbors may not hear
aboute from B but, given the epidemic nature of our algo-
rithm, they are very likely to get it through other routes.

Based on this observation, in our approach (which we
calleddelay-drop) we would simply letA safely removee
from its transmission queue. In doing this, not only we limit
propagation—our initial rationale for this modification—
but also reduce communication and therefore save battery
power. A downside of this approach is a potentially higher
latency, as the event may go through longer routes before
reaching its recipients. Nevertheless, in principle this delay-
drop mechanism could be only one of many alternatives
specified at the application or middleware layer, therefore
enabling to tradeoff latency for overhead as needed.

3. Implementation

We implemented our approach for the Crossbow
MICA2 [1] platform, using theNesC [11] language pro-
vided by TinyOS [14]. A TinyOS application is composed

configuration MHopRoutePubSub {
provides {
interface StdControl;
interface Receive[uint8_t id];
interface Send as SendSub[uint8_t id];
interface Send as SendUnsub[uint8_t id];
interface Send as SendPub[uint8_t id];

}
uses {
interface ReceiveMsg as ReceiveMsgPub[uint8_t id];
interface ReceiveMsg as ReceiveMsgSub[uint8_t id];

}
}
implementation {
components
MHopRoutePubSubM,
GenericCommPromiscuous as Comm,
QueuedSend, TimerC, RandomLFSR;

SendSub = MHopRoutePubSubM;
SendUnsub = MHopRoutePubSubM;
SendPub = MHopRoutePubSubM;
Receive = MHopRoutePubSubM;
StdControl = MHopRoutePubSubM;
ReceiveMsgSub = MHopRoutePubSubM;
ReceiveMsgPub = MHopRoutePubSubM;
MHopRoutePubSubM.SubControl -> QueuedSend.StdControl;
MHopRoutePubSubM.CommStdControl -> Comm;
MHopRoutePubSubM.CommControl -> Comm;
MHopRoutePubSubM.Random -> RandomLFSR;
MHopRoutePubSubM.SendMsg -> QueuedSend.SendMsg;
MHopRoutePubSubM.Timer -> TimerC.Timer[unique("Timer")];

}

Figure 1. NesC configuration for
MHopRoutePubSub.

of modules, containing the actual code, andconfigura-
tions, which are essentially module containers (compo-
nents) describing how modules are wired together, and
exporting interfaces that provides access to the over-
all component functionality. An interface contains function
signatures, divided incommands(implemented by the in-
terface provider) andevents(implemented by the interface
user).

Architecture. Our implementation essentially provides a
replacement of the standard TinyOS routing component,
MultiHopRouter. The nesCconfiguration of the new
module, calledMHopRoutePubSub, is shown in Figure 1.

The first two blocks of the configuration define the inter-
faces provided and used by this component. The commands
SendPub, SendSub, andSendUnsub are instances of
the built-in genericSend interface defined by TinyOS, and
deal with sending an event, a subscription, and an unsub-
scription, respectively. By “remapping” these interfaceson
Send we are able to reuse a significant part of the lower-
level code dealing directly with communication.Receive
is also a standard TinyOS interface, and provides a way for
the routing component to signal the application whenever
a matching publish-subscribe event has been received. The
ReceiveMsg interface, instead, is provided by the under-
lying communication component, and is used to signal the



typedef struct MultiHopMsgSub {
uint16_t srcaddr; //source address
uint8_t msgid; //message identifier
uint8_t subject; //subject identifier
uint8_t hopcount; //subscription hopcount
uint8_t lease; //subscription lease

} __attribute__ ((packed)) TOS_MHopMsgSub;

typedef struct MultiHopMsgPub {
uint16_t srcaddr; //source address
uint8_t msgid; //message identifier
uint8_t subject; //subject identifier
uint16_t data; //event data

} __attribute__ ((packed)) TOS_MHopMsgPub;

Figure 2. Subscription and event messages.

routing component that a new network message has arrived.
As in the case ofSend, we “remap” this (TinyOS event)
interface onto two different ones:ReceiveMsgPub and
ReceiveMsgSub. Finally, StdControl is a common
interface used to initialize and start all TinyOS modules.

The last block of the configuration specifies the
list of modules used by this one, and how their in-
terfaces are wired together. The main component is
MHopRoutePubSubM which implements all the inter-
faces provided byMHopRoutePubSub. The others are
TinyOS built-in modules:GenericCommPromiscuous
and QueuedSend support message communication,
TimerC provides the timer functionality necessary for
leases and communication, andRandomLFSR pro-
vides the ability to generate random numbers.

Message structure. We defined two message types, one
for subscriptions and another for events, shown in Fig-
ure 2. They both include the message source and a unique
message identifier, which together enable duplicate detec-
tion. Also, our current implementation is subject-based, and
therefore both messages include a subject identifier. An ex-
tension to content-based is straightforward. Besides these
common fields, each subscription message also includes a
hopcount field, which is initialized with the chosen value
of the horizonφ and decremented at each hop, and alease
field, which contains the value in seconds during which
a subscription is considered valid. Instead, event message
contains adata field.

Handling subscriptions and events. Whenever the appli-
cation issues a subscription, the corresponding subject is
stored in a local subscription table. Moreover, a subscrip-
tion message is broadcast to all the neighbors, with the
hopcount initialized toφ. Subscriptions are kept alive by
using a timer. When it fires, a new subscription message is
sent for each subject in the local subscription table. An un-
subscription simply consists of removing the corresponding
subject from the local subscription table.

Non-local subscriptions are managed in a different sub-
scription table. When a subscription message for a given

Network Size N = 200

Number of Neighbors η = 5

Percentage of Receiversρ = 10%

Publish Rate 2 event/s
Transmission Interval 1 s

Table 1. Default values used in simulations.

subject is received, it is inserted in the table, possibly
overwriting obsolete information for that subject with the
new one containing a more recent lease. Moreover, if the
hopcount is not zero, the subscription is enqueued, wait-
ing to be rebroadcast according to the strategy we discussed
in Section 2.3. Periodically, subscriptions whose lease ex-
pired are removed.

To handle events,MHopRoutePubSubM maintains a
list of those most recently received. When an event mes-
sage is received, this list is checked to see whether the event
is a duplicate. In this case, the message is simply dropped.
Otherwise, it is first inserted in the list, and then its sub-
ject is checked against the local subscriptions, to deter-
mine whether its receipt must be signaled to the application
through theReceive interface. Then, it is checked against
the non-local subscription table. If a subscription is found,
the event message is inserted in the sending queue. Other-
wise, a random number is drawn and, according toτ , ei-
ther the event message is inserted in the sending queue or it
is simply dropped.

4. Evaluation

In this section we evaluate several aspects of our ap-
proach using TOSSIM [16], the simulation tool provided
with TinyOS. TOSSIM emulates all the operating system
layers and therefore works by reusing directly the code de-
ployed on the motes, and described in the previous section.

Simulation Setting. Table 1 shows the most relevant pa-
rameters of our simulations, and their default values. Each
simulation run lasted 60 simulated seconds, with an extra
second devoted to “booting” the network, as performed au-
tomatically by TOSSIM. Transmission occurs by using our
simple delay technique to avoid collisions. The impact of
this technique, as well as of its delay-drop variant, is ana-
lyzed later in this section.

For each run we plot the event delivery (i.e., the ratio be-
tween the events expected to be received and the events ac-
tually received) and the overhead (i.e., the collective num-
ber of sent messages, including both events and subscrip-
tions). To focus on these two performance metrics and re-
duce further bias, we ran our simulations with a stable set of
subscriptions (i.e., no refresh needed) and a stable network
connectivity (apart from the changes induced by duty cy-
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Figure 3. Delivery vs. network size.

cle). Moreover, we analyze the behavior of our algorithms
with different combination ofτ andφ to estimate their im-
pact. Our upper and lower bounds areflooding(τ = 1) and
a purely probabilistic approach (φ = 0). Flooding deliv-
ers all the events but with very high overhead, while a fully
probabilistic approach exhibits low overhead but at the cost
of poor event delivery.

Network Size. The first parameter we analyze is the size of
the network, which we ranged from 100 to 400. To main-
tain a steady publishing load and receiver density, we in-
creased them proportionally by ranging the former from 1
to 4 evt/s, and keeping the latter at 10% (yielding from 10
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Figure 4. Overhead vs. network size.

to 40 receivers).
The results depicted4 in Figure 3 confirm our expecta-

tions, showing that event delivery is only marginally de-
pendent from the network size—at least forτ = 0.5 and
τ = 0.75. This is not surprising, since the probabilis-
tic component of our approach tends to distribute the load
equally on each node and, therefore, the more the network
grows (and the more receivers need to be reached), the more
nodes participate in delivering the events. Notably, in some
cases event delivery is even increased as more routes be-
come available. On the other hand, as shown in Figure 4 the

4 We use Bezier interpolation to better evidence the trends.



overhead increases too, since the number of receivers and
the publishing load augments linearly, i.e., there are more
events to deliver to more recipients. Nevertheless, the two
increments share the same trends, that is, no additional over-
head is introduced by the size. This, again, stems from the
fact the the effort imposed on each node by our algorithm is
constant.

As the charts show,τ is tightly related to event deliv-
ery, since it controls the degree of propagation in the sys-
tem. With values close to 1 (see Figure 3(c)), the system is
able to improve event delivery up to 100% with the down-
side of an increase in network traffic (Figure 4(c)). In the
extreme case ofτ = 1 (flooding) no event gets lost, but
the network becomes overwhelmed by messages, since each
node rebroadcasts all the events. Besides, with high values
of τ collisions may drastically grow, thus hampering deliv-
ery. Therefore, the right value forτ is a tradeoff among de-
livery, overhead, and collisions.

On the other hand, the reason of the low performance
achieved by usingτ = 0.25 lies in the fact that, as discussed
in Section 2.2, the probability that no neighbor broadcasts
an event is(1− τ)η = 0.755 = 0.23, i.e., one in four events
are dropped by all neighbors. Figure 4(a) reflects this, by
showing that the overhead is less than 20% of the flooding
one.

As for φ, it is interesting to see thatφ = 1 andφ = 2
exhibit a different behavior. WhenN = 100, φ = 2 per-
forms worse thanφ = 1, most likely due to the fact that the
smaller size increases the likelihood of creating loops. As
N increases, however, the additional deterministic informa-
tion provided byφ = 2 becomes precious in steering events
towards the receivers in a sparser network.

Finally, the comparison with flooding is also worth com-
menting. Indeed, the delivery withτ equal to 0.5 and 0.75 is
essentially comparable, but overhead is sensibly lower. This
is particularly evident forτ = 0.5, which in this scenario
represents the best tradeoff for costs and performance, be-
ing able to deliver about the 90% of events with about 25%
of the overhead introduced by flooding.

Number of Receivers. Another interesting view on our ap-
proach is the impact ofρ, the percentage of receivers. As
shown in Figure 5, delivery withφ = 0 is nearly unaffected
by ρ and is about constant despite the increasing receivers.
This is reasonable, since purely probabilistic routing makes
essentially “blind” decisions, regardless of the presenceof
receivers. Conversely, withφ > 0, delivery improves signif-
icantly with the number of receivers, as more deterministic
information is available to each host. Figure 5(c) shows that
indeed this information is increasingly exploited to steer
events towards receivers asρ increases. Also, it shows that
ρ = 20% of receivers is enough to obtain, whenφ = 2, a
routing that is basically entirely deterministic.
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Figure 5. Number of receivers ( τ = 0.5).

Number of Neighbors. Another key factor that greatly im-
pacts the performance of our approach is the network den-
sity, defined by the average numberη of neighbors for each
node. Not surprisingly, our approach performs worse in a
sparse network, as fewer nodes participate in the event rout-
ing. Figure 6 analyzes the performance by ranging from
η = 3 to η = 15, for τ = 0.25. This value ofτ is par-
ticularly interesting, since in Figure 3 it led to the worst
performance. Instead, Figure 6(a) show how the increase in
η boosts performance remarkably. The bottomline is rep-
resented by the purely probabilistic approach, which expe-
riences a linear increase in delivery. The reason is that, as
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Figure 6. Number of neighbors ( τ = 0.25).

stated earlier, delivery is directly proportional to the num-
ber of forwardersF , which in turn depends directly onη
andτ . Therefore, low values ofτ are sufficient in a dense
network. Moreover, the curves withφ > 0 converge much
faster to a 100% delivery, showing that deterministic infor-
mation definitely improves delivery. At the same time, Fig-
ure 6(b) shows how this is achieved by keeping overhead
reasonably low.

The effect is still observable, although less marked, with
greater values ofτ , not reported here. In this case, even with
a sparse network the number of forwardersF is sufficient
to achieve a satisfactory event delivery. Indeed, we verified
that the performance withτ = 0.25 andη = 10 is about the
same of the one obtained withτ = 0.5 andη = 5. Given
this analysis, it should be noted how our choice ofη = 5 as
the default value in our simulations is rather conservative.

Collisions and Rebroadcast. In Section 2.3 and 2.4 we de-
scribed two simple techniques for, respectively, reducing
collisions and avoiding useless rebroadcasts.

The effect of these techniques on the system is shown
in Figure 7 forτ = 0.5 andη = 10. Figure 7(a) shows
that the delivery is largely unaffected, with a small decrease
in the case of delay-drop. On the other hand, Figure 7(c)
shows that our simple mechanism for avoiding collisions is
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Figure 7. Collisions and delay-drop ( τ = 0.5,
η = 10).

very effective, since it more than halves the number of col-
lisions. The delay-drop mechanism does not improve much
in terms of collisions. Instead, by avoiding useless rebroad-
casts, this latter technique drastically reduces overhead, as
shown in Figure 7(b). Although we do not have simulations
linking directly these results to the power consumption, it
is evident how the combination of these two simple tech-
niques not only improves the performance of our approach,
but also yields remarkable savings in communication, there-
fore enabling a longer life of the overall sensor network.
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Figure 8. Sleeping nodes ( τ = 0.5, η = 10).

Duty Cycle. A prominent feature of our approach is the re-
silience to changes in the underlying topology and connec-
tivity. Most approaches for content dissemination and group
communication for sensor networks rely on exact routes
that must be recalculated each time the topology is mod-
ified. However, this is an important limitation, since sen-
sors are often supposed to regularly switch from active to
sleeping, to preserve battery and extend the system lifetime.
Therefore, unless some kind of synchronization is in place,
routes become invalid and must be recomputed, with con-
sequent overhead. Conversely, our approach does not make
any assumption on the underlying topology, as it “explores”
it semi-probabilistically. Therefore, it can tolerate sleeping
nodes (or even crashed, or moving) nodes, without any par-
ticular trick.

In the simulations in Figure 8, we used a simple model
where each node is active for a periodTa, followed by a
sleeping periodTs. All nodes are initially active: after a ran-
dom time (which temporally scatters them) they are regu-
larly switched off and reactivated afterTs. To obtain mean-
ingful results, sleeping nodes are not considered in the event
delivery, which is then computed by taking into account
only the active subscribers. Also, since the temporal scatter-
ing among nodes is completely random, it may happen that
under certain combination ofTa, Ts andη, the network be-

comes not connected. Then, a delivery of 100% is not mean-
ingful because, if no path exists among two nodes, there is
no way to correctly deliver the event. Consequently, our up-
per bound is represented by the delivery of flooding.

By comparing Figure 8(a) atTa = 3Ts and Figure 6(a),
it can be noted how the event delivery is quite similar, al-
though a significant fraction of the nodes (about 20%) is un-
able to receive or forward events5. If more nodes are sleep-
ing at the same time, delivery falls to 60%, since the num-
ber of forwarders is too low. However, increasingτ is suffi-
cient to achieve a high delivery while maintaining a reason-
able overhead.

These results are not surprising, since what we stated ear-
lier about density holds here as well. Indeed, the effect of
sleeping nodes is to reduce the density, expressed in terms
of the numberη of neighbors. Therefore, since our algo-
rithm tolerates low densities up to a given extent, it is re-
silient to sleeping nodes as well. The validity of this state-
ment is shown by observing that 50% of the nodes sleeping
in a network withη = 10 is roughly equivalent to a net-
work where all nodes are active andη = 5.

5. Related Work

Although sensor networks have been studied for some
years, research has focused only recently on the develop-
ment of reusable middleware platforms as opposed to all-in-
one solutions. As a consequence, there are several promis-
ing works (e.g., [13,20,23]), many of which, however, focus
on architecture design or run-time language support rather
than routing issues.

A more meaningful comparison is with works address-
ing multicast or group communication in sensor networks.
Unfortunately, the target scenario pursued by these middle-
ware is mostly characterized by a set of sensors spread in
the environment that cooperate to deliver the sensed data to
a fixed node acting as base station or, alternatively, to en-
able communication from the base station towards all the
sensors (e.g to perform a query or to force a network re-
programming). This hampers these solutions to be success-
fully exploited in the situations where sensors require data
from other nodes to execute their task (as in the aforemen-
tioned WSAN networks) or to perform in-network process-
ing and aggregation.

By and large, two main approaches have been investi-
gated in literature:flooding[15] andtree-based routing[17,
21]. Flooding is a simple approach that offers the lowest
control overhead at the expense of generating very high data

5 In most scenarios found in literature, sensor nodes sleep for most time
and switch on only for a short amount of time. However, in our sce-
nario, sensor nodes are essential not only to acquire data from the en-
vironment but also to participate in their propagation. Hence it seems
reasonable that the ratioTa

Ts

is greater than (or at least equal to) 1.



traffic in a wireless environment as we have shown in Sec-
tion 4. The tree-based approach, on the other hand, gen-
erates minimal data traffic in the network, but tree main-
tenance and updates require many control messages and,
more importantly, a stable network. A more refined algo-
rithm [6] spreads nodes’ interests across the whole network
to create a reverse path from a publisher to receivers. How-
ever, again, no details are provided about how to deal with a
dynamic network, as in the case of mobile or sleeping sen-
sors, and failures.

The possibility of temporarily switching off nodes is par-
ticularly amenable in sensor networks as the battery is not
easily replaceable. At the same time, however, the network
must maintain its functionality through a connected sub-
network, i.e., it should be able to correctly deliver events
despite the lack of some nodes. Some works [7,22] address
this issue by introducing synchronization of the sleeping
patterns to minimize the energy spent without affecting net-
work connectivity. The weakness of this solution, however,
is that other kinds of topological reconfiguration (e.g., mo-
bility or failures) are not tolerated. In these cases, the (ex-
pensive) synchronization procedure must be restarted, with
added overhead. Conversely, our approach does not require
any synchronization protocol and yet tolerates arbitrary re-
configurations.

6. Conclusions and Future Work

In this paper we proposed a routing approach enabling
publish-subscribe on sensor networks. The routing strategy
is semi-probabilistic, in that it relies on deterministic sub-
scription information being disseminated close to the sub-
scriber and, where this is absent, resorts to random rebroad-
cast. The approach described in this paper is inspired by
our earlier work [9], which we adapted and extended here
to better suit the peculiarity of the wireless sensor network
environment. The results show that our approach provides
good performance in terms of high delivery and low over-
head, and is resilient to changes in connectivity, therefore
making it amenable to our target deployment scenario.
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