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Abstract

Building on simple information-theoretic concepts, wedstiwo quan-
titative models of information leakage in the pi-calculuBhe first model
presupposes an attacker with an essentially unlimited ctetipnal power.
The resulting notion oabsolute leakagemeasured in bits, is in agreement
with secrecy as defined by Abadi and Gordon: a process hassauéd
leakage of zero precisely when it satisfies secrecy. Thenseomwdel as-
sumes a restricted observation scenario, inspired by gtiegeequivalence
framework, where the attacker can only conduct repeatecksseor-failure
experiments on processes. Moreover, each experiment hast inderms
of communication effort. The resulting notion of leakagée, measured in
bits per action, is in agreement with the first model: the mman amount of
information that can be extracted by repeated experimeitsicles with the
absolute leakaga of the process. Moreover, the overall extraction cost is at
leastA/R, whereRis the rate of the process. The compositionality properties
of the two models are also investigated.

Keywords: process calculi, secrecy, information leakage, inforomathe-
ory.

1 Introduction

In the field of language-based security, properties like-inberference [17] have
traditionally been studied in a functional, all-or-nothiformulation. Only in re-

cent years have models been proposed that enable formsmtftgtize reasoning
on such properties. Our interest here is in measuring lea&hgensitive informa-
tion due to program execution. For a sequential prograns, natural to quantify
this leakage by measuring the flow of information betweemretgChigh”) and

public ("low") variables induced by the computed functiddn elegant theory of
guantitative non-interference in this vein has been pregdxy Clark et al. [10, 12].
A comparison with this and other proposals in the literatamdeferred to the con-
cluding section.

*Extended and revised version of [4]. Author’s address: Bipeento di Sistemi e Informatica,
Viale Morgagni 65, 1-50134 Firenze, Italy. Email: boreal@g®unifi.it.



In this paper, we study quantitative models of informatieaklage in concur-
rent programs, that is processes described in a procesdusaldProcesses come
with no natural notion of computed function. Indeed, givepracess, one is typ-
ically interested in quantifying the leakage arising frot® interaction with the
environment, hence in itsbservable behaviourThe difference in intent with re-
spect to sequential programs can be illustrated by thewoillp analogy. A smart-
card implements a function that takes documents as inputededses documents
signed with a secret key as output. However, typical attéaigeting the secret
key do not focus on the function itself, but rather on the beha of the card,
in terms e.g. of observable time variance of basic operatj@f], or observable
power consumption [21].

The starting point of our study is the notionsdcrecyas formalized by Abadi
and Gordon [1]. We will subsequently refer to this particdtarmulation asac-
secrecy. This is a fairly general concept, although in [W}as defined in connec-
tion with the spi- and, limited to some introductory exansplthe pi-calculus. In
this paper, we shall stick for simplicity to the pi-calculuaformally, AG-secrecy
holds of a procesP whose code mentions a parametaepresenting a piece of
sensitive information, if the observable behaviouPaloes not depend on the ac-
tual values< may take on. In other words, an attacker cannot infer angtaboutx
by interacting withP. The notion of "observable behaviour" is formalized in term
of a suitable behavioural equivalence, such as may testjniyaence [14, 5].

Although elegant and intuitiveyg-secrecy is in practice too strict. The behav-
iour of virtually any useful program that protects a seusipiece of information
depends nontrivially on this information. Neverthelessngnsuch programs are
considered secure, on the grounds that the amount of leaf@thiation is,on av-
erage negligible. The average is taken here over all possibleegathe sensitive
information may take on. ConsiderraN-checking proces®(x) that receives a
code from a user and checks it against a 4-digits secke, in order to authorize,
or deny, a given operation. An attacker could easily subrspexcific code of its
choice toP(x), say 4811, receive a deny and hence acquire negative iniorma
aboutx, i.e. " is not 4811". However, assuminghas been chosen at random,
such a small leak of information should be of no concern. lotlaer scenario, an
attacker could be allowed to query repeateBlx), so that, given enough time,
he/she could determinewith certainty. In this case, one is interested in quanti-
fying the overall effort, in terms of interaction units (&cts), necessary for the
attacker to do so. Or, in other words, one’s interest is iembaining at which rate
P(x) leaks sensitive information.

In the present paper, we propose two quantitative modelsakalge for
processes that address the issues outlined above. The didsll is designed for
measuringabsoluteleakage ofP, while the second model is designed for measur-
ing the rate at which information is leaked bf?. As explained below, the two
models correspond to different assumptions on the contrattacker can exercise
overP. The connections between these two models will also befieldriWe will
take anunconditional securitpproach. Roughly, a "small leak" implies absence
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of attacks, while a "large leak" points to existence of &saavithout implying
that such attacks can be mounted in practice. A more precigaiat of our work
follows.

After quickly reviewing a few notions from Information Thegothat will be
used in the paper (Section 2), we introduce our referencgulage, a pi-calculus
with data values (Section 3). In the first model (absolut&dga), we presuppose
an attacker with full control over the process. Implicitlye assume the attacker:
(a) knows the process co&x), and (b), can, at no cost, produce as many copies as
desired of the instance 8funder consideration and run them. The role of these two
strong assumptions is twofold: on the one hand, they set uprst\gase scenario,
providing security guarantees independent from the coatiomial power of actual
attackers; on the other hand, they help to simplify the ineat of nondeterminism
in processes. In particular, a consequence of assumpt)ois tbat all possible
ways in whichP’s nondeterminism can be resolved should be experiencelleby t
attacker. Idealizing this, one can say that the attackertelrhe equivalence
class (of behaviours) the observed instanc® @kelongs to. A third assumption,
commonly found when reasoning about protection of confidedata, is that: (c)
the probability distribution of the datais known to the attacker.

We are interested in the average amount of information abth#t is leaked
to the attacker b¥? under these assumptions. The average is taken over albvalue
may take on. In the language of unconditional security,sbenario can be formal-
ized as follows. A piece of sensitive information is modedesca random variable,
sayX. The a prioriuncertaintyof an adversary abot is measured by the Shannon
entropy HX), expressed in bits [13]. For full generality, it is assumieat tsome
"side-information™Y, possibly related tX, is publicly available: the conditional
entropyH (X | Y) measures the uncertainty abougiven thaty is known. To illus-
trate these notions in a concrete case, considarithehecking example. Ther,
represents a randomly chosen 4-digits secret code, efXe=log(10*) ~ 13.29
bits. Y might represent whethet = 4811 or not, a piece of information the attacker
might easily learn. Note that observing the evedt= 4811 reduces the uncer-
tainty aboutX to 0, while observindX # 4811) rules out one possibility reducing
the uncertainty to logl0* — 1): on the average, observiigreduces the uncertainty
of the attacker tdd (X | Y) = 0-Pr(X = 4811) + log(10* — 1) - (1— ) ~ 1313,

Any processP(x,y) and any two r.v.sX andY induce a new a random vari-
ableZ = P(X,Y): following the discussion above, it is reasonable to stfmil
that Z takes as values "observable behaviours”, that is, equisalelasses of a
fixed behavioral equivalence (Section 4). Now, the condéli@ntropyH (X \ Y,Z)
guantifies the uncertainty oX left after observing botly andZ. Hence the dif-
ferencel =H(X | Y)—H(X | Y,Z) is the amount of uncertainty aboXtremoved
by observingZ = P(X,Y), that we take as the absolute leakagePaklative to
X,Y (Section 5). We prove that this notion is in full agreemerttwtine functional
notion of AG-secrecy. In the special case when there is no side-infasmathis
means thaP(x) respectG-secrecy if and only iP(X) has an absolute leakage of
0 for every random variablX. We also offer two alternative characterizations of

3



zero-leakage, hopefully more amenable to automatic chgcki

Next, we discuss the significance of absolute leakage itioel#o certain se-
curity measures well-known from the literature (Section®pecifically, we show
how to relate absolute leakage to the attackersr probability of guessing the
secretX givenZ, and to theguessworlof X givenZ, which measures the average
number of attempts before correctly guesskgin a scenario similar to that of
dictionary attacks against password systems.

The second model we consider (rate of leakage, Sectionfifgsdhe previous
scenario by introducing a notion obst Adapting the testing equivalence frame-
work from [14], we stipulate that an attacker can only condymon P repeated
testsTy, To,... each yielding a binary answer, success or failure. Tlaeker has
full control — in the sense of the first model — over the compbaystemsP||T;,
but not overP itself. The security measure we are interested in is theativenm-
ber of synchronizations witP necessary for the adversary to extract one bit of
information aboutX. Hence we define thete at which P leaks information in
terms of the maximal number of bits of information per visilgiction conveyed
by an experiment®||T;. We then give evidence that this is indeed a reasonable
notion. First, we establish a relationship with the first mipdhowing that the ab-
solute leakag@ coincides with the maximum amount of information ab¥uhat
can be extracted by repeated experiment$pand that this costs the adversary
at leastA/R, whereR is the rate ofP. Second, in the vein of testing equivalence,
we give an experiment-independent characterization efttet only depends on
the visible traces of the observed process. Extending soaisision of the absolute
leakage model, we also clarify the relation of rate of leaktmthe attacker’s error
probability and guesswork after an effortfsynchronizations.

The search for principles of compositional reasoning is ppnraotivation for
studying information leakage in a process calculus settimgboth models, we
show that the leakage (rate) attributable to a global systmmot exceed the sum
of those imputable to individual sub-systems (with the etiom of the parallel
composition operator, in the case of rate of leakage). Weepttwat under suitable
conditions iteration does preserve rate, in the sensetbatte of«P equals that
of P, which is expected from a sensible notion of rate.

We will illustrate the application of the proposed modelsataon-trivial ex-
ample, a message-routing system inspired by anonymitypq@otd in the style of
Crowds [28] (Section 8).

Some discussion on the limitations of the present approaamarks on further
research and a discussion on related works conclude the (&gxetion 9). A table
summarizing the main notations used throughout the papgrasiew technical
definitions and proofs are reported in separate appendiggsdices A, B, C).



2 Preliminary notions

We briefly recall a few concepts from probability and eleragpinformation The-
ory; see e.g. [13, 33] for full definitions and underlying mations. Recall that a
random variable (r.v.) is a functiod : Q — U whereQ is a probability spacd)
(called thestate spackgis the carrier of ar-algebraF and for each elemeift € 7,
X~1(F) is an event of2 (otherwise saidX is measurable). In this paper, we shall
confine ourselves tdiscreterandom variables, that is, random variable in which
is an at most countable set afidis the power-set-algebra ovelJ: this amounts
to requiring that for eactic U, X ~1(u) is an event of2. We letX,Y, ... range over
discrete random variables. We say that a Xvis of type U, and writeX : U, if

U is the state space of (i.e. X(Q) C U); we call elements off outcomesf X.

Unless otherwise stated, we shall assumetlefinite. We defingX| as the num-

ber of possible outcomes o, that is|X| def [{u € U|Pr(X = u) > 0}|. We shall

make use of the concepts of independent and uniformly biiged (u.d.) random
variable, defined as usual. As a function, every random blriaduces a partition
into events of its domaif®, which is{X~1(u) |u € X(Q)}: we say that two random
variablesX andY areequivalentif they induce onQQ the same partition (this does
not imply thatX andY coincide). A vector of random variabléé = (X1 -3 Xn)s
where theX; : U; for 1 <i < nare r.v.'s defined on the same probability speces
just ar.v. of typdJy x --- x Up.

Let X : U andY :V be r.v. Theentropyof X and theconditional entropy of X
given Yare defined respectively as:
H (X) def Sueu Pr(X =u)-log(Pr(X =u))
HX|Y) € s HX|Y =v)-PriY =v)

where all logarithms are taken to the base of 2, by converitidog 0= 0 and for
any eveneof Q, H (X \ e) is the conditional entropy of givene, defined as

H(X |e) &' - }UPr(xzu|e).|og(Pr(xzu\e)).

Example 2.1. Let X represent the random choice ofe-code between 1 and.
Our a priori uncertainty abo is measured by its entropy

N
H(X) = —_;%Iog(%) =logN.

Assume that, although ignoring the valueXofwe get to know its parity, odd or
even. Lety be the r.v. that yields 1 X is odd, O otherwise. Then, assumiNgs
even, our uncertainty abot after observing = 0 is measured by

HX|Y=0) = —JicinPr(X=i|Y=0)log(Pr(X=ilY =0))
= —YiclN,iodd Ni/zl()g(,\%/z) =log(%y) =logN -1
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that is, observingY = 0 reduces our uncertainty by 1 bit. Similarkt(X \ Y =
1) =logN — 1. Hence, the average uncertainty after obserirg

1 1
H (X |Y) :EH(X\Y:O)JFEH(X |Y:1) =logN—1.
Note that two equivalent random variables exhibit the sanmti@py and condi-

tional entropies. For a vectdKj, ..., X,) of random variables, we shall abbreviate
H((X1,...,Xn) ) @sH(Xg,...,Xn). The following fundamental (in)equalities hold:

0 < H(X) < log|X| (1)
H(X,Y) =H(X[Y)+H(Y) (chain rule) (2)

where: in (1), equality on the left holds ¥ is a constant, and equality on the right
holds iff X is u.d. on{u € U|Pr(X = u) > 0}; in (3), equality holds iff theX;’s are
pairwise independent. Note that by (2) and (3)X|Y) = H(X) iff X andY are
independent. 1% = F(X) for some functiorF thenH (Y|X) = 0. Information on
X conveyed by Yaka,mutual information between X and ¥

1(X;Y) ETH(X) —H(X | Y).

By the chain ruleJ (X;Y) = 1(Y;X), andI(X;Y) = 0 iff X andY are indepen-
dent. Mutual information can be generalized by conditignam another r.v.Z:
1(X;Y | Z) £'H(X | Z) —H(X | Z,Y). Conditioning onZ may in general either
increase or decrease mutual information betwéendY. Note that entropy of a
r.v. only depends on the underlying probability distribuati thus any probability
vectorg= (P, ..., pn) (P >0, 3; pi = 1) determines a single entropy value denoted
H(p). We shall often abbreviate the binary entrdpyp,1— p) asB(p).

3 A process calculus

3.1 Syntax

We assume a countable sewafiables? = {xy, ...}, a family of non-empty, finite
value-setdl = {U,V,...}, and a countable set ohmes\_ = {a,b, ...}, partitioned
into a family ofsorts$, 5, .... We letu,v be generic elements of a finite value-set.
We assume a fixed function that maps each varialbbtesomeT € UU{S,5',...},
written x : T, and say thax hastype T, we assume the inverse image of edcls
infinite. These notations are extended to tuples as expezgdorX= (Xy,...,Xn)
andT = (Ty,...,Tp), X: T means«; : Ty, ..., %, : Th. By slight abuse of notation, we
sometimes denote Bl the cartesian produdt x - -- x T.

An evaluationo is a partial map from to Uy iU U A that respects typing,
that is, for eachx € dom(g), x: T impliesa(x) € T. We denote byd/] the eval-
uation mapping o d component-wise. Byo, wheret is a term over an arbitrary
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signature with free variables ) C 7/, we denote the result of replacing each free
variablex € dom(o) Nfv(t) with o(x).

We assume a language of logidarmulae @, ,.... We leave the language
unspecified, but assume it includes a first order calculub wariables?/, that
function symbols include all values # and names as constants, and that the set
of predicates includes equalifx =y]. For @ ando s.t. domo) D fv(g), we
write 0 = @ if @o is valid (i.e. a tautology). lo = ¢ for all evaluationso s.t.
dom(o) D fv(@), then we write= @. As usual,@=- ¢ means= @ — . We will
often write@(X) to indicate that the free variables@re included irx,;"and, in that
case, abbreviatg[J/x] as(().

The process language is a standard pi-calculus with vadadhd data values.
We assume a countable setidéntifiers AB,... and useg,€... to range over an
unspecified set ofxpressionsthat can be formed starting from variables, values
and names. The syntax of procesBd3, ... is given by the constructors ofaction,
silent prefix, input prefix, output prefix, boolean guard, deterministic choice,
restriction, parallel compositiomnd process identifieraccording to the grammar
below.

m = x|a
PQ = 0| TP |mKX.P|m&P | @P | P+P | (Vo)P | PIP | A§).
Each identifierA has an associated defining equation of the fé(%) e, Input
prefixm(X). and restriction'vb) are binders fox andb, respectively, thus, notions

of free variables (fv) and free names (fn) arise as expeddidentify processes
up to alpha-equivalence. We assume a few constraints orytit@xsabove x’is a

tuple of distinct elements in input prefix andAX) %'p and in the latter fP) C

X; @is quantifier-free. We assume a fixed sorting syséelaMilner. In particular,
each sorfS has an associatesbrt object olo.S) = (T4, ..., Tx) (k > 0). Here, each;

is either a sorfs or a value-set from the universel. Informally, a process obeys
this sorting system if in every input and output prefix, a namgable m of sort

S carries a tuple of objects of the sort specifiedoyS); we omit the details that
are standard. We leP° the set of processes (possibly containing free variables)
obeying these conditions arf its subset otlosedprocesses. Notationally, we
shall often omit trailind's, writing e.g.a.b. instead of.b.0, we shall writeS . ; B

for nondeterministic choicB; + - - - + P,, and let replicationP denote the process

defined by the equationP!Z'P|!P.

3.2 Semantics

We assume ovePC the standar@arly operational semantics of pi-calculus. Transi-
tions are the fornP - P/, wherepis one oft (invisible action),acT(input action)

or (v&)ad with & C d\ {a} (output action) andi ::= a | u (nhame or value). We
let d range over tuples of elements of names and/or values)(lgtdenote the
set of names occurring ipand define the set of bound nameguais: brip) = ¢
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if u= (vé)a(f and br{y) = 0 otherwise. An evaluation functiofis presupposed
that maps closed expressions and formulae to values/namlet® étrue, false},
respectively, with the proviso that each name is mappeds#ifi@a | a). This is
extended to tuples of expressions componentwise.

The operational semantics #f is given by the rules reported in Table 1. Sym-
metric versions of rulessUm1), (PAR1) and COM;) are not shown for brevity.

a:S5 d:oh(s)

(INP) — - = (ouT) Ldj (TAU) —
a(x).p 2L pdi P p TP —P
LN PELP b fn(Q) =0
(sumy) P—F;QTPIP’ (PAR}) TS n&_}“);'g(Q)
(cony PELP_enmi@ =0 o
PIQ — (vO)(P'IQ)
(vo)ad / 'y
(OPEN) P—>P(vcak.))§:db bed (RE9) P—>P’ub¢n(/)
(vb)p =22, p! (Vb)P — (vb)P
oltrue PSP AREP %:f d:F Pdg P
(PHI) cpPLP’ (IDE) (N)L -

Table 1: Operational semantics Bf.

A few standard notations will be made use of. In particular, dachvisible
(different fromt) actiona, P == P’ meansP(—)* —— (——)*P’. This notation is
extended to any sequence of visible actispsas - - -, (i.e. atrace), P =P, as
expected. FinallyP = means that there B s.t. P == P.

In the rest of the paper, we let be a fixed equivalence relation ov&f and
denote byQ]- the <-equivalence class of proce For the moment, we leave
= unspecified, but assume it is includediace equivalencgb], it includesstrong
bisimulation[29], it preserves all operators of the calculus, excepsibds input
prefix, and it satisfies the monoid laws ferand| with 0 as unit. We will have
more to say on the role played by specific behavioural ecerivas later on (see
Section 5.2).

Another concept we shall rely upon is thatrobst general boolearborrowed
from [19, 6], that is, the most general condition under whialo given open
processes are equivalent.

Definition 3.1 (mgb) Let P(X) and Q¥) be two open processes, with U and
§:V. We denote byngh(P(X), Q(¥)) a chosen formulap(X, §) s.t. for eachi € U
and¥ e V: P({) =< Q(V) if and only if(0,¥) is true.



It is worthwhile to notice that, under certain assumptiangp’s for a pair of
open pi-processes can be automatically computed relyirggmbolicoperational
semantics [19 6]. Let us recall that a symbolic transititso @arries a logical for-

mula: P —— P’. Informally, @represents the exact condition on the free variables
of P under which the given transition is enabled. For example,las

([x=yJ2uP) | y(w).Q Y=, piQpvn].
In [19], an algorithm is described to compute mgb'’s for a pdiprocesses both
havingfinite symbolic transition systems, in the case of strong bisnityla

4 Processes as random variables

This section is devoted to presenting a technical devideall@vs us to transform
(open) processes into random variables. Let us defingpen processs a pair
(P,X), written P(X), such thakis a tuple of distinct variables of some typeC &l
andP € P° is such that fyP) C X. When no confusion abowt drises, we shall
abbreviateP[U/X] asP(0) and(P[Y/X)(¥) asP(¥) (¥ a tuple of distinct variables.)

Definition 4.1 (open processes as random varlabldzs)t P(x) be an open process
andX be a vector of random variables, wigh U and X : U, for one and the same
U. Let F:U — P°/ < be the functionii — [P(i)]~. We denote by (X) the
random variable FX).

In essence, the above definition tells us how to "plug" a randariable X
into an open procedd(x) thus obtaining a new random variali®X). Note that
this definition does not involve anything like textual reggenent ofx by X in-
side P(x). What we do is simply taking the functida : U — ?°¢/ <, defined as
F(u) = [P(u)]= for eachu, and composing it with the random variat{eseen as a
function. Doing so, we obtain a new random variableX, written P(X), that has
P°/ < as a state space — that is, the outcomeB(&f) are <-equivalence classes.
The semantical aspects of the definition are subsumes.byhe definition itself
is parametrié with the actual choice ok: different choices forx may correspond
to different assumptions on the observational power of tteeker. We shall elab-
orate on this point in subsection 5.2.

The next example is very simple and only serves to convey satmigion about
the above definition.

Example 4.1(PiIN-checking) A PIN-checking process can be defined as follows.
Here,x,z: 1..k for some integek andx represents the secret code. The situation is
modeled where an observer can freely interact with the ¢hggkocess.

ChecKx) def a(2).([z= xokChecKx) + [z+# xJno.ChecKXx)). 4)

l~Stri(:t|y speaking, we should make the dependencP(o?) from = explicit by writing e.g.
P (X), but we shall omit to do so unless strictly necessary.
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In this case, the range of the functibn u+— [ChecKu)]~ mentioned in Definition
4.1 hask distinct elements, as+# U impliesChecKu) % ChecKu'): for instance,
ChecKu) has the tracau- ok, whichChecKu') has not. As a consequence, for ar.v.
X : 1.k, the distribution ofP(X) mirrors exactly that oK. E.g., if X is uniformly
distributed on 1k, thenZ = P(X) is u.d. over{[ChecK1)]_,...,[ChecKk)]-}, i.e.
the probability of each outcome d@fis 1/k.

In the sequel, the following two facts will turn out to bg ugdefFirst, from
Definition 4.1, it is immediate to see that the distributidnPgX) is given by the
following, for eacho = [Q]-:

Pr(P(R)=0) = Y Pr(X=0) 5)

G: P(0)<Q

Second, note that, B({) = Q(0) for eachu; then, for anyX, P(X) andQ(X) are
the same random variable.

5 Absolute leakage

Throughout the section and unless otherwise stated, we(%e¥) be an arbitrary
open process, witk:U andy V, while X : U and¥ :V are two vectors of random
variables, an& = P(X,V).

5.1 Definitions and basic properties

Definition 5.1 (absolute leakage)Let P(X, ) be an open proces¥ andY be r.v.
and let Z= P(X,Y). The (absolute)nformation leakage fronX to P givenY is
defined as:

aP;x | ¥) L

(X;Z|Y)=HX|Y)-H(X|Y,2).

WhenY is empty, we simply write absolute leakage@@; X). A first useful
fac} on the definition e}bove is that leakage is nothing butuheertainty about
P(X,Y) after observing .

Lemma 5.1. Let P(%, ) be an open proces¥ andY be r.v. and let Z= P(X,Y).
ThenA(P;X | Y) =H(Z|Y). In particular, if § is empty,4(P; X) = H(Z).

PROOE This is a simple application of the chain rule (2). By symmeif mutual
information!, we havea(P; X | ¥) =1(X; Z | Y)=H(Z|Y)—H(Z | X,Y). But
Z=P(X,Y)is afunctlon ofX andY, henceH Z \ x Y)=0. O

Example 5.1(PIN-checking) The proces€heckx) defined in (4) leaksll infor-
mation abouk. For example, iX is u.d on 1.k thenZ = P(X) is u.d. over a set of
k outcomes. Hence, using Lemma 54(CheckX) = H(Z) = logk = H (X).
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Suppose now the adversary cannot interact freely @hleck rather he can
observe the outcome of a user’s interacting once @hhck The adversary knows
the codey tried by the user. We represent the user simpl@aashence the new
system is

OneTryx,y) %' (va)(Checkx)[ay). (6)
Clearly, for any r.vX,Y : 1..k, the random variabl& = OneTryX,Y) has only two
possible outcomes, that [gok/~ and[t.ngl-. These outcomes have probabilities
Pr(X =Y) and P(X #Y), respectively. In the case wheXeandY are uniformly
distributed and independent, these probabilities gkeahd 1— 1/k, respectively.
We are interested it (OneTry X | Y). Easy calculations show thatandY are
independent: indeed, far= [t.0K- and anyi € 1.k, P(Z=0|Y =i) =Pr(X =
i) = £, while P(Z =0) =Pr(X =Y) = £, and similarly foro = [t.ng]-, that is
PrZ=o | Y =i) =Pr(Z = 0). For the sake of concreteness, let us asskimd0.
Using Lemma 5.1 we can compute absolute leakage as

AOneTryX | Y)=H(Z|Y)=H(Z) = ‘B(%)

In this case, knowledge of brings no advantage to the adversary.

~ 0.4609.

Example 5.2(a mobile object) Consider an object that can freely move within a
grid of coordinatek x k, starting from a secret location at coordinéxe, xz) (X1
row, X column). For some reason, only td@ections (w,e,n,s) of the object’s
moves are observable. Considerxgx, : 1,...,k, we have (please note that™
denotes nondeterministic choice below):

o
Pl

€

Mobile(xq, %2) [x1 > Jw.Mobile(x; — 1,x2)

= [x1 < Kle.Mobile(x1 + 1,x2)
+ [ < Kn.Mobile(x1,x2 + 1)

[X2 > 1]s.Mobile(x1,xp — 1) .

(7)
The "game" here is the adversary’'s guessing the secretidachy only ob-
serving the sequence of movement directions. Note (irgiip) # (Uj,u5) im-
plies Mobile(u,up) % Mobile(uy,u,). Hence, for any two random variables
X1, X2 1 1.k, Z = Mobile(X1,Xz) is a random variable whose distribution mir-
rors that of (X1,Xz). Hence in this case there is a total leakage of informa-
tion. E.g., if X; and X, are uniformly distributed and independent, then, by
(3), A(Mobile; X3,X2) = H(Z) = H(X,Y) = 2-logk. Suppose a "confounder"
processC def w.C + eC is inserted into the system, that is, consider the system
Mobile|C (note that no synchronization can take place betw@mile and C,
their actions are merely interleaved). The presence ofccmufer makes two ob-
jects lying in the same row indistinguishabMobile(u, v)|C =< Mobile(u',V)|C iff
u=Uu. As a consequence, the information conveyed by the newrsyisthalved:
A(Mobile|C ; X1, X2) = logk.

_|_
_l’_

The next result asserts that absolute leakage is compaitio the following
sense: the amount of information leaked by a global systemataexceed the
overall information leaked by individual sub-systems oted in isolation. There

11



is a technical condition on the the side information Yasust be decomposable
into independent pieces, each of which is related only tagisisub-system (at the
moment, we do not know whether this condition can be relax€¢ proof of the
result is a consequence of inequality (3) and of (an instaficine so called "data
processing"” inequality [13]. The latter implies that foyarv. W and functionF
of appropriate domairil (F(W)) < H(W).

Fix a sequence of distinct process variables (placeholftargrocesses)
X1,%,,.... Recall that an-holes) contexts a process term containing at least
one occurrence of process variallg for each 1< i < n (the X; represents the
"holes"). We writeC[-,...,-] for a generic context an@[Pi, ..., ] for the process
obtained by replacing, X2, ... with P, P,,.... We say thaC|-,...,-| preserves<
if wheneverP, < P for 1 <i < nthenC[Py,...,P)] <C[P;,...,P}].

Proposition 5.1 (compositionality) Let C[,...,-] be a n-holes context that pre-
serves=, and let Q(X,¥;) be open processe9,< i <n, wherey = (Y1,...,¥n).
Let P(X,§) = C[Q1(X, Y1), .., Qn(X, Yn)]- LetY = (Yl, Yn) with theY;’s pairwise
independent. Let & 4(P; X | Y)and |, = 4(Q; X | Y,) for 1<i<n. Then

n
LM L. (8)
o
PROOF LetG: (?°/ x)" — P°/ =< be the function defined byP1 |-, ..., [Pn]=) —
[CIPL,....,Ry]] (note that this is well-defined sinc@[| is <-preserving). For

1<i<nletz=Q(X,¥). ThenP(X,Y) = G(Zy,...,Z,). Thereforea(P; X |'Y) Y)
can be written a$d (G(Zy, ... +Zn), Y) —H(Y). By the data- processing inequal-
ity and independence of th&, the last term is< H(Zy,...,Zn,Y1,....Yn) —
Sic1. nHMY). By inequality (3) the last term is in turd 3_; H(Z,,\?i) —
() Z|1 ..... ZI|Y QI’X‘Y 0

In the case of parallel composmon, the inequality (8) spems to
APIQ; X | V) < A(P; X | Y1) +4(Q; X | Y2). Moreover, (8) implies that
leakage is never increased by unary operators presexvitig the case of replica-
tion ! this leads to the somewhat unexpected conclusion¢lwholds provided=
is preserved by !

AP X [ Y)y<aP; X | V).

The intuition underlying the above inequality can be expddi under the assump-
tions informally discussed the Introduction: once theckita is givenP, he/she
can produce as many copieshas desired and possibly run them in parallel, thus
simulating P if necessary, while the converse is not in general possilae given

IP it is not possible in general to simulafe see also Example 5.3 below). In gen-
eral, instances of inequality (8) may hold strict or not, lasven by the following
example.

Example 5.3. ConsiderP(x) = ([x = 0]a)
same set. Then £ 4(P;X) > A4('P;X) = 0. The reason for the last equality is

12



that forv € {0,1}, 'P(v) <!a, that is, the behaviour of(x) does not depend og
soH (P(X))=0.

On the other hand, consid€(x) = [x = 2]a + [x = 4]a and P,(x) = [x =
1jb + [x = 2]b, where this timex: 1..4, andX is u.d. on the same set. Then
A(PL|P2; X) = A(Py; X) + A(P; X) = B(3) + B(3) = 2

Our next task is to investigate the situation of zero leakagée start from
Abadi and Gordon’ definition of Secrecy [1]. According tosthliefinition, a process
P(X) keepsx“secret if the observable behaviour BfX) does not depend on the
actual valuesx may take on. Partly motivated by the non-interference so@na
[17, 16, 34], where variables are classified into "low" anidhh, we find it natural
to generalize the definition of [1] to the case where the bielawf P may also
depend on further parametgr&riown to the adversary.

Definition 5.2 (generalized secr~ecy)Ne say that X, ) keepsxsecret givery Tf,
for eachV € V, and for eachie U and (' € U, it holds that R(,V) < P({', V).

The main result of the section states agreement of diversenscof secrecy:
functional (definition above), quantitative (zero leaKeaed logical (independence
of mgb’s fromxj. The last definition appears to be more amenable to automati
checking, because, as mentioned, a mgb can be effectivetputed in many
cases. We also offer an "optimized" version of the quantéatotion, by which it
is sufficient to check zero-leakage relatively to uniforrdigtributed and indepen-
dentX andY.

Theorem 5.1(secrecy) Let P(X,¥) be an open process. The following assertions
are equivalent:

1. P(X,y) keepsX secret givery.

2. For someX* : U and Y* : V uniformly distributed and independent
A(P; X* | Y*)=0.

3. maxg.y v A(P; X | Y) =o0.

4. @<= 3K ., wherep=mgb(P(X, ), P(X,¥)), for X andy tuples of distinct
variables disjoint fronk andy, but of the same type.

PROOF We show that (4= (3) = (2) = (1) = (4). In what follows, for ease
of notation, we will denote by, T, ... generic outcomes of, by V.. ... generic
outcomes of and byw,w', ... generic outcomes a = P(X,Y). Moreover we
shall use such shorthands @) for Pr(X = ), p(w | @) for P(Z =w | X = 0),
and so on.

e (4) = (3). By contradiction, assume for som¥ and Y it holds

AP; X | Y) =H(Z | ¥) > 0. By definition ofH(Z | ¥), this implies that
there is somev 3uch thatH(Z | Y = V) > 0. The latter, by definition of

13



conditional entropy, implies that there are at le@agt distinctoutcomes of
Z corresponding t@,sayw; = [P({1,V)]= andw, = [P(0p, V)]~ (and it also
implies that 1> p(w; | ¥) > 0, fori = 1,2). ThatisP(ly, ) # P({, V). Now,

consider the substitutioa = [b1/%, O2/%, VA7, V47]. By definition of the mgb
¢, we have that |= 3%X.¢@ (that is, @o is a tautology), whileo (= @: this

contradictsp < XK ..

e (3) = (2). Obvious.

e (2) = (1). By contradiction, assunt®(X,y) does not keep Secret givery.”
In other words, assume there ararid distinctuz, 0y such thatP((y,V) %
P(02,V). Letw; = [P(G, V)], fori =1,2. By independence and uniform
distribution of X* andY*, we have that, for both= 1, 2:

(wi | 9) =" p(wi | 0,7)-p(0) > p(wi | G, 7)- p(Gi) = p(Gi) >0
U

(in the rightmost equality above we have used the fact gag \ Gi, V) =

1). This inequality also implies thai(w; \ V) <1, fori =1,2. Thus we
have shown that & p(w; | V) < 1, fori = 1,2. By definition of conditional
entropy, this implies thati (Z | Y =) > 0, henceH (Z \Y ) >0, asp(V) >

This fact contradicts the assumptlon thEP; X \ Y)

e (1) = (4). By contradiction, assume (4) does not hold. Hence ittrbas
IXK .@ % @, as the opposite logical implication always holds. This nsea
that there is a substitutiom with dom(g) D fv(@) s.t. o = XX .@ando £ @.
Let U= o(X) andUd = o(X), andv'= o(§). Then, by definition of mgb,
P(G,V) # P({', V), which contradicts the assumption.

Example 5.4. Consider the following process, whetg/ : 1..4.

Qux.y) & (vo) (c|fy = 1ea) + [x=Zra.

It is immediate to see th&) does not keep secret, givery. E.g., if the adversary
gets to know thay # 1 and observes the behavidura)- then he/she can infer that
x = 2. In fact, the mgb given by the theorem above is in this case

o= (y=1v[x=2) < (¥ =1v[X=2)

and clearly @+ 3IxX.@. As an example, foK,Y independent and u.d on.4, the
leakage fromX to Q givenY can be computed as follows. L&t= P(X.,Y).

e If Y =1 thenZ does not depend aX, as for alli and j: Q(i,1) < Q(j,1) <
1.a. HenceH(Z |Y =1) =0;
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e If Y =i+# 1thenifX =2 (which happens with probabilit%) thenZ = [t.a]-,
otherwiseZ = [0]. HenceH (Z | Y =i) = B(3), fori # 1.

As a consequence

H(Z|Y):_iH(Z\Y:i)-Pr(Y:i):Q%(%)-ZzO.GOS.

The proces€) (x,y) = Q(x,y) + [y # 1]1.a keepsx secret givery.
The next example shows a simple form of timing-dependerkiiga.

Example 5.5(modular exponentiation)The modular exponentiation algorithm,
used in implementations of public-key cryptographic scegffior computing pow-

ersa‘ modn, can be described as follows. Let"(x¢_1,...,Xo) be the binary rep-

resentation of a (secrel}bit exponentx andA an integer variable initially storing

1. The final value oA is that returned by the algorithm:

E(X) ®ftor i=k—1 downto 0 do {A=A%2 mod n; if x=1 then A=a*A nod n} .
We consider two different abstract versiongmnfwhere just the elapse of time can
be observed. The basic operationsEofire squaringh=A> mod n and multiplica-
tion A=a*A nod n. Assume that an attacker can observe the duration of individ
executions of such operations (admittedly, a strong assamp Assume further
that there is a discrete range of durations, hence it is Ipless represent each du-
ration as a distinct visible action. In the first abstractian of E, we suppose that
the time taken by each operation is a constdhtlow,f or is just used as syntactic
sugar):

E1(X) ®tor i=k—1 downto 0 do (t.[ =1)t) .

In the second version, each squaring operation takesid each multiplicatioty:

Ex(X) %t or i=k—1 downto 0 do (t1.[x = 1t2) .
It is easy to see thd; (0) =< E;(V) if and only if 0 andVv have the same number
of 1 digits (the same Hamming weight), which makes entromy ¢a determine
analytically if X is u.c®. E.g. assuming = 4, we getH (E1(X)) ~ 2.03. Not
surprisingly,E, leaks all information abolX, as &, action at iteration numbaeiis

observed if and only iX; = 1: henceH (Ex(X)) = H(X). Under the assumptions
above k= 4, X u.d), this value is 4.

2More preciselyE; (X) hask+ 1 possible outcomes; the outcome corresponding to an erpone
k
X with i "1" digits has probabilityp; = % fori € 0..k.
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5.2 Behavioural equivalences and attacker’'s observatiom@ower

To a large extent, our results on absolute leakage do nohdapethe choice of the
behavioural equivalence — contrary to the case of rate of leakage, which we study
in Section 7, where we will have to commit to trace equivaderieven the numeric
values in the examples we have considered so far do not depetite choice of
=, as trace equivalence and strong bisimilarity, the twoesnés in between which
= is supposed to lie, coincide in those cases.

In general, however, choosing a specific equivalence ammdonassigning a
specific observational power to the attacker: the finer (naiseriminating) the
equivalence, the stronger the observational power of ttaekar, that is, his/her
ability to tell apart different behaviours induced by diffat outcomes oX. This
is the content of the next proposition. In what follows, fotational simplicity, we
consider individual r.v.’X andY rather than vectors of them. We shall indicate by
A, the leakage function computed wheris set to the equivalence;. Similarly,
we indicate byP-, (X;Y) the r.v. induced by, X andY when setting= to x;.

Proposition 5.2. Let <; and =, be two behavioural equivalences over closed
processes and suppose C =». Let R(x,y) be an open process and, X be r.v.
ThenA., (P; X |Y) > 4,(P; X |Y).

Proof. Let U be the set of outcomes &f. For generic total functiong andg
defined ovelJ, let us write

f<g iff foreachuandyv, g(u)=g(v)impliesf(u)= f(v).

Equivalently, f < g iff for each u € U there is a seV C U s.it. f~1(u) =
Uvev 97 1(v). Note that if f < g theng(u) determinesf (u): indeed, f maps any
element ofg~1(g(u)) to one and the sam&u). Now, for any two random vari-
ablesR; andR,, we have the following equality, which is a consequence ef th
chain rule

H(R) =H(Re) +H(Ri | R) ~H(Re | Ry).

Applying the above equality tB; = g(X) andR, = f(X), we get thaH (g(X)) =
H(f(X))+H(g(X) | (X)), asH(f(X) | g(X)) = 0: indeed, the value of(X)
determines that of (X). Hence, we have obtained that

f <g implies H(g(X))>H(f(X)).

Now, fix any outcomev of Y and consider the functiong : u — [P(u,v)]x,
and f : u— [P(u,v)]~,. Clearly f <g. Applying the inequality above, we
getH (P, (X,v)) > H(P-,(X,v)). ButH(P(X,v)) = H(P< (X,Y) \Y =v), for

i =1,2, so we have actually shown that

H(P-,(X,Y) | Y =v) > H(P,(X,Y) | Y =Vv).
Averaging on allv's, we getH (P, (X,Y) | Y) > H(P,(X,Y) | Y), that is, by
Lemma5.1,4-,(P; X | Y) > 4-,(P; X | Y). O
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We give below a simple example involving strong bisimulatio and trace
equivalence~.

Example 5.6. Recall that~ takes into account only sequences of (weak) traces:
indeed,P ~ Q holds true if and only if for each trace P == iff Q ==. On
the other hand, strong bisimilarity takes into account the branching structure
arising from nondeterminism, and is more discriminatingrthrace equivalence.
Specifically,~ is defined as the largest equivalence relation over closszkbpses
such that wheneve? ~ Q andP - P’ then there is a transitio@ —— Q' such that
P’ ~ Q. (Another difference between these two semantics is theetequivalence
is T-abstracting while strong bisimilarity is not, but this fa& not going to play a
role in the example below). Consider now

Px) €'ab + [x=0la
wherex: 0..1. TakeX u.d. on 0.1. Let us set to testing equivalence:. What is
A(P; X)? Clearly,P(0) ~ P(1) ~ a.b, thus the function — [P(i)]~, fori=0,1, is
a constant and?(P; X) = H(P(X)) = 0. Let us now sek to ~. It is immediate
to check thaP(0) ¢ P(1): indeed,P(0) - 0, a move thaP(1) cannot simulate.
As a consequence, in this céeX ) takes two distinct value$P(0)].. and[P(1)].,
each with probability;. Hence,4(P; X) = H (P(X)) = 1.

6 Absolute leakage in relation to other security measures

The use of entropy as a measure of uncertainty in Cryptograpltes back to
Shannon [30]. The relationship of Shannon entropy to "gonggdifficulty" is also
somehow folklore: the higher the entropy, the more diffidolt an attacker to
correctly guess, say, a secret key (see [3]). Althoughctiiecidenceof entropy
and guessing difficulty has been questioned (see e.g. [{Piépe is no doubt that
these two notions are intimately connected, as witnessezktigin results in In-
formation Theory. Below, we review these results and usmtteerelate absolute
leakage to certain security measures that account forrdtibesrror probability or
the guessing effort of an attacker that tries to infer semsibformation fromP.
Before examining those results closely, though, it is inguurto stress one
general reason why Shannon’s entropy may be (and in factéé¢nped to other,
more direct metrics of guessing difficulty. This reason lieshe nice additivity
properties of entropy, as expressed by the chain rule. $nrésipect, an instance
of the chain rule calledrouping lawis illuminating. The grouping law states that
given any partitiorlJq, ...,U, of the state-space of X, the uncertainty oX can
be decomposed into the uncertainty as to what block of thigiparX belongs to,
plus the uncertainty on which element of that blocks. Formally, once we define
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the r.v.Y =i iff X € U;, we have that
H(X):H(Y)+H(X|Y). 9)

In our model, laws of this kind make it possible to establstmfs of compositional
reasoning, as discussed in the preceding section. As d ditample of application

of (9) to our model, consider the following. It is easy to shitwat (for any instanti-
ation ofx) P(x) can be re-written module: into a head-normal forny ! ; @R (x),
with the property that they’s form a partition of truth (that isp A ¢; = falsefor

i # j, andV[L, @< true; see e.g. [6]). Assume that the partition over the data
determined by the function — [P(u)]- is finer than the partition determined by
the @’s (that is, for eachP(u)]- there is ap; s.t. Vv, P(v) < P(u) implies @(v)).
Define the r.v.Y asY =i iff @¢(X) = true. This way, each outcomieof Y deter-
mines a set of possible equivalence clagg¢s)|-. Then, by (9), we get (we let

pi =Pr(Y =1))
H(P(X)) =H(Y)+H(P(X)|Y) = H(f))+_ipiH(P.(X Y =i))

by which the problem of computing the entropyRyiX) is reduced to the problem
of computing the probabilitieg;'s (which are easy to estimate accurately) and the
conditional entropy of the subterni®(X | Y =i). It is worth to stress that simi-
lar additivity properties are not found in connection toesflreasonable security
measures, such as those considered below (see [27] fornussiian).

In what follows, for notational simplicity, we shall consida single r.v. X,
rather than a vector, and assume that no side-informatisravailable.

6.1 Error probability

Generally speaking, given a rX. with outcomes ilJ and an r.vZ with outcomes
in V, one can define the error probability of inferridgfrom Z under an optimal
"guessing function'y, thus

def .
exz = Inf  Pro(2) #X).

It can be shown that the above inf is in fact a minimum, atinwdeng fulfills
theMaximum a Posteriori Probability (MARule. This rule dictates that, for each
possible outcome of Z, u = g(v) should maximize RX = u \ Z =v). Fano’s
inequality [13] sets a lower bound ogy 7 in terms of the uncertainty oK after
observingZ, that isH (X | Z):

H(X|Z)-1

log |X| 10

Exz >

3To see that this equation is a consequence of the chain atketmat, by the chain rule, for any
XandY, H(X) =H(Y)+H(X]Y)—H(Y|X). If Y is a function ofX, like in the case considered here,
H(Y|X) = 0.
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As expected, the higher the uncertainty, the higher ther garobability. It is
then immediate to convert upper bounds on absolute leakagdawer bounds
on the attacker’s error probability of guessiMgafter observingZ. LetZ = P(X).
By definition of leakage as mutual information betwe¢randZ, we have that
H(X | Z) = H(X) — A(P; X) = H(X) —H(Z). This expression can be plugged
into formula (10), which can then be used to lower-boegd in terms of absolute
leakage.

For instance, in the case of the modular exponentiationrighgo with an ex-
ponent ofk = 4 bits chosen at random (Example 5.5), which exhibits anlateso
leakage of 23 bits, one getsx 7 > (4—2.03—1)/2 ~ 0.485.

It is worth to notice that inequalities are also known thaedight upper bounds
on error probability as a function of the conditional enyrggee e.g. [9] for a
survey and recent results on upper bounds).

6.2 Guesswork

Consider now a slightly different situation. The attackemgiven an oracle that
answers (multiple) queries of the forX '= u?". In the absence of any extra infor-
mation onX, the most effective strategy for the attacker is to submih&oracle
guesses foK, from the most likely down to the least likely, stopping ass@s
a "yes" answer is received (this is what is calledietionary attackin password
security). Letp™= pa,..., pn be the distribution ofX, with the probabilitiesp;’s
ordered from the greatest to the smallest. The average nuohlggieries before
correctly guessing, theguessworlof X, is defined by

n
G(x) = > ip
i=
and can be taken as a security measure relati¥e WhenX is u.d., there is a clear
relationship between Shannon and guesswork, give®y) = = = &2)”
More generally, Massey [25] has proven thaiXihas at least 2 bits of entropy:
2HX) 1

G(X) > ——

(11)
Consider now equipping the adversary of our model with tlaelerdescribed

above. Assume in full generality that= F (X) for some functiorf (in our model,

F :u— [P(u)]=). The attacker can take advantage of both the oraclZanather

than querying the oracle blindly, he/she can restrict bisgearch to those values of

X that are consistent with the observed valuZ off Z = v, only thoseu € F~1(v)

are worth to be submitted to the oracle. Measuring the ggairthis system calls

then for a conditional definition of guesswofk(X | Z). The guesswork oX given

Z =v, written G(X \ V), is just the guesswork of the conditional distribution (gsi

a concise notationdyz (U | V), ..., Pxjz (Um | V), while the guesswork ok givenZ
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can be defined as the average

G(X |2) ="y G(X | V)pz(v)

which we can take as a security measure. We can express abowed on this
quantity in terms of the absolute leakagézZ) = 4(P; X), as follows:

G(X[Z) = 3vG(XV)pz(v)

> Yupz(V)(21M +1)/e by (12)
= (143,210 pz(v))/e
> (14 22HXWPzV) /e by Jensen’s inequality [13]

(
= (14+2HX12))/e
(14 2H0-H @) /e,

(when applying Jensen’s inequality above we have expldhiecconvexity of the
function Z). The above inequality can be used to convert upper boundbsmiute
leakage into lower bounds on conditional guesswork. Fdaim®, in the case of
the modular exponentiation algorithm with an expon¥nof k = 4 bits chosen

at random (Example 5.5), which exhibits an absolute lealddg203, one gets
G(X \ Z)> &23“ ~ 1.81. This value should be compared with the value of a
priori guesswork foiX, G(X) = 8.5.

7 Rate of leakage

In the scenario considered in the previous section, thekatas granted unre-
stricted interaction capability to the observed prod@s$hePIN-checking exam-
ple suggests a refinement of this situation, that we studgiisngection. We will
assume the attacker can only conduct upesapeated experiments, each yielding a
binary* answer, say success or failure. We are interested in the erunflcommu-
nications with the observed process thatmeeessaryor the adversary to extract
one bit of information abouX in this way. In other words, we are interested in the
maximal number of bits per visible action conveyedbytherate at whichP leaks
information.

In the rest of the section, we fix to be trace equivalencéakamay testing
equivalence [14, 5]), whose definition we recall below f@ thader’'s convenience.

Definition 7.1 (trace equivalence)P ~ Q iff for each trace s, P= iff Q =

For the sake of presentation, we shall only consider presestiere channels
transport tuples of values, i.e. we ban name-passing irefteof the section. The

“We expect no significant change in the theori-dry answers, wittk > 2 fixed, were instead
considered.
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extension to the name-passing case is dealt with in AppdhdiBor simplicity, we
shall also assume that no side-information is availablaédcattacker, i.e. thatis
empty. Hence, throughout the section and unless othentagedsP(X), wherex

U, denotes an arbitrary open pi-proceésan arbitrary vector of random variables
of typeU andZ the r.v.P(X). Recall thata(P; X) = H(Z).

7.1 Definitions and basic properties

Consistently with the testing equivalence framework [14 v view an experi-
ment as aest process Tthat, when run in parallel with, may succeed or not.
Input on a distinct name, carrying no objects, is used to sigralccesgo the
adversary. It is convenient here to adjust the notion ot-flescess) composition
(Ih so as to ensure that, in case of success, exactly one saotessis reported to
the adversary.

Definition 7.2 (test processes and compositiod) test T is a closed process
formed without using process identifiers and possibly usimigstinct success ac-
tion w. For each test T and closed process Q, define

def ~ /

QIIT = (ve, o) (QIT[W/w]|o.c0)

where€ =n(Q,T) \ {w} andw' ¢ fn(Q, w).

Note that, for eacl and closed), it must be eitheQ||T ~ 0 — meaning that
T fails onQ - or Q||T ~ .0 — meaning thal succeeds oQ. Hence, eack(X) ,
T andX determine a binary random variable

(PIT)(X)

also writtenP(X)||T, with possible outcome§ def [0]~ and s &' [w.0]~, to be

interpreted as failure and success. InformatiorXaronveyed byP(X)||T is given
by

L(X; POOIT) = H(P(X)IIT) —H (P(X)|T [ X) = H (P(X)|T)
and is, of course, at most one bit. The notion of rate we aer aftould involve
a ratio between this quantity of information and tiestof performing the tesT.
The following example provides some indications as to whsitiould be intended

by cost, and shows the role played by non-determinism iraetitrg information
out of P.

Example 7.1. Consider agaitChecKX), where this timeX is u.d. over 1k, for
some fixed even integdr> 2. A testT that extracts one bit out @heckX) is

Lo K2
= uz ad.ok .
=]
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An attacker can only observe the outcome of the interactetwéenCheckandT,
i.e. an outcome of the rAChecKX)||T. If action w is observed, then it must be
X < k/2; if action w is not observed, then it must bé> k/2. The information
provided byT is | (X; P(X)||T) =H(P(X)||T) = Q%(%) =1.

The above example suggests that the test’s traces that athtolsuccess, that
is traces ending with e, should be counted as the different "trials" attempted by
the attacker. The success or failure of each trial givesttiaeker some amount of
information. The cost of each trial can be assumed to be ptiopal to its length
as a trace. These considerations motivate the followingitiefi.

Definition 7.3 (cost of T). Let T be a test. We say that a nonempty trace of visible
actions s= 0y --- 0 (0 % w) may leadT to successf T =2 . Denote byls the
length of a trace s. Theostof T is

def
T| = ; S|
s: smay leadT to success

According to the definition above, all traces that hawehanceof leadingT
to success, whef is run withsome B must be counted — only "dummy" traces,
never leading taw, are discarded. Consider e §.= a.b.w + c.d + ew: we have
|T| =3, as the dummy trace- d is discarded, while anda.b are counted. When
composingl with P(x) = [x = 0]a.b, ecannot be used to le&| T to success, while
a- b leads to success only in case- 0. In other words, while excluding dummy
traces, our definition of cost does include traces corradipgrto failed attempts,
as they give some information to the attacker. We arrive nothe definition of
leakage rate.

Definition 7.4 (rate of leakage) Let~P(>~<) be an open process arfi be a tuple of
r.v. Theleakage rate oP relative toX is
-\ def H(P(X)|IT)

R (P; X) = sup

(12)
ms0 [T

Our first result is a test-independent characterizatioatef in accordance with
the may-testing approach, this characterization is obthin terms of observations
of individual traces of processes. The practical signifteaaf this result is that,
when computing rate d?, we are relieved from checking againstevery T, and
just have to look aP’s traces (which are finitely many, P is finite). In what
follows, given a trace of visible actiorss we consider the r.vP(X) =, with
possible outcometue or false As an example, iP(x) = a.[x = 0]a.0 and X
is u.d. on{0,1}, then P{P(X) == = true) = Pr(X = 0) = 1. We shall make
extensive use of the fact that bdthnd || distribute over nondeterministic choice,
that is, for any close®, R; andR, we have

Ql(Ri+Rz) ~ (QR1) + (Q[Rz)

and similarly for||. This property does not hold, in general, for behaviouraiieq
alences different from: (e.g., it does not hold for bisimulation).
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Proposition 7.1. Let P(X) be an open process antibe a tuple of r.v. It holds that

R(P; %) = sup ") PR =),

(13)
|s|>0 |S|

PROOF For any traces, let $ be a test of costs| such that for each closeq,
Q|§== iff Q= (see Appendix B, whers i5 defined in the case of the pi-
calculus). HenceR(X) = is equivalent tdP(X)||$ as a r.v. This fact implies that
therHs of (13) is not greater than theds. For the opposite inequality, fix anly
with |[T| > 0 and letS be the set of traces that may le@ido success. For arngy
denote bys the complementary trace obtained by inverting input angutuge.g.,

if s=ad-bd thens=ad-bd'). By simple~-preserving transformations (see also
Appendix B), we can show that, for any clos@d

QIT~Q| ngz S;(QH%)-

HenceP(X)||T is equivalent toy¢.s(P(X)|[S) as a r.v. Using this fact and the
inequality of Proposition 5.1 witl[-] = Y ss([-]), we have that

H(PXIIT) _ H(3ssPR)IS) _ 3sesH(PX)IIS)

IT] IT| - IT]

In the last term, we can replade(X)|[s by P(X) =, henceH(P(X)||S) by

H(P(X) ==). Moreover, by definition of cost, we can replddd by Y s|s| =
Y ses/S|. The thesis then follows by the inequality below (which tsoldr generic
Mi >0,N; >0, fori=1,...,k):

Np+---+N N
Mt ax —. (14)

d

Example 7.2. Consider the proce$3heckOncex) def a(2).([z=X|ok+ [z # Xno),
wherex, z: 1..10, andX u.d. on the same interval. It is immediate to check that the
ratio in (13) is maximized by any af= ad- ok or s= ad-no, for d € 1..10. This
yields R (CheckOnceX) = B(5)/2 ~ 0.234.

Remark 7.1. The proposition above allows one, at least in principle,dmpute
the rate of any process having a finite symbolic transitictesy. This can be seen
as follows.

Let P(X) be one such process. Relying Bis symbolic transition system, it
is possible to compute, for any given tragea logical formulags(X) expressing
the exact condition or (nder whichP(X) can performs (we will not discuss the
details here — see [19, 6]).

By considering all possible traces in this way, one gets &efsgt of formulae
{@(X),...,o(X)}. The reason why this set is finite is that amycan be written as
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a disjunctive normal form using as atoms the formulae ajppgan the symbolic
transition system oP(X), which is finite.

For each =1,....k, lets be the shortest trace associated wgthand assume
empty traces and tautologies are discarded away. Notedhatth traces, the
probability thatP(X) == holds true is simply F(rn( X) =true). Thus, R (P; X)

is the greatest among the rangéW . ‘SK‘X . By statistical methods it is

feasible to estimate the probabilities(@(X) = true), even when it is difficult to
obtain explicit expressions for them (e.g., by estimatimgftaction oftrue values
obtained when repeatedly evaluatip) for values ofXdrawn according tX).

The next result explains the relationship between the natioate and absolute
leakage. In particular, (a) establishes tHas the maximal amount of information
that can be extracted bgpeatedbinary tests; and (b) provides a lower bound on
the cost necessary to extract this information, in termg efthus providing a justi-
fication for the name "rate". Given a finite sequence of tstsT(W 7@ . T,
we write [T| for its cost|T®| 4 ... + [T, andP(X)||T for the sequence of r.v.

P)IT®, ... PX)[IT™

Proposition 7.2. Let P(X) be an open process aiibe a tuple of r.v. It holds that
(a) AP;X) = max 1(X;PX)|T)
(b) foreachT, I(X;P(X)|T) < [T|-R(P;X).

PROOF.

(a) Let T =70 ),.,T™W be a generic sequence of tests, and let
PX)|IT = PX)||TD,..,P(X)||T™ be the corresponding sequence of

rv. Let Z = P()~() ‘hence 4(P;X) = H(Z). By symmetry of I:
| (X;P(X)||T) = H(P(X)||T) < H(Z), where the last inequality stems
from the data-processing inequality applied to the fumct®: [Q]- —
(QITW),.... [QIT™]).
We show that the max can be attained for a suitable choice dBy def-
inition of ~, an outcomdQ].- of Z can be identified with the set of traces
L={s|Q :s>}, that is, theanguagegenerated by). For any two distinct
outcomes o¥, sayL andL’, choose atracee (L\L')U(L'\L), and letD be
the set of all such traces. Clearly, for any two outcomes, sfayL andLl’, it
holds that. =L’ if and only if DL =DNL'. In other wordZ andZND are
equivalent as r.v. We will define a sequence of téssst. P(X)||T is equiva-
lent toZN D, which will prove the thesis, ag(P(X)||T) =H(Z) = A(P;X).

Let us arbitrarily order the elements Dfas: s, ...,,. A vector in{0,1}"
can be identified with a subset bfin the obvious way. For each € D,

consider the test ) 24 s.t. for anyQ, Q||§ =2 iff Q ==. By identify-
ing 0 with F = [0]- and 1 withS= [w.0], we see that the rvP(X)||T =

24



P(X)[81,...,P(X)||% yields outcomes i§0,1}" , i.e. on subsets dd. More-
over, by definition ofP(X)||T, the eventP(X)||T =L) is the same as the
event(ZND =L). In other wordsP(X)||T andZND are equivalent as r.v.

(b) Fix anyT, and assume without loss of generality tHEt)| > O for eachi.
Then we have:

[(XPX)IT) = HPX)IT)
< L HPX)TO) (by (3))
~ n J (i)
[T ZHERIT)
< [T]-maX—g,.n H(Pﬁw (by (14))
< [T R(P;X)

O

Note that the cost of extractingll available information,4(P; X) = H(Z2),
cannot be less thagHWgL), for Z = P(X). It is important to remark that two

processes with equal absolute leakage may well exhibierdifit rates. Here is
a small example to illustrate this point.

Example 7.3. Let P(x) andQ(x), wherex : 0..3, be defined as follows:

x=0](a+b) + [x
[x=0] + [x

(b+c) + |
1]b + [

2/(c+d) + [x=3|(d+a)
2]c + [x=3d.

X
X

AssumeX is u.d. over 03. Both P(X) and Q(X) are u.d. on a domain of
four elements: the four distinct equivalence clasg$)]-, resp. [Q(i)]=, for
i € 0..3. Hence their absolute leakageHgP(X)) = H(Q(X)) = H(X) = 2 hits.
On the other hand, each nonempty tracePodccurs with probability 12 (i.e.,
Pr(P(X) =) = 1/2 for s {a,b,c,d}), while each nonempty trace €f occurs
with probability 1/4 (i.e., P{Q(X) :S>) =1/4forse{ab,c,d}). Thus, by Propo-
sition 7.1, R (P;X) = B(3) = 1 andR (Q; X) = B(3) ~ 0.811. Proposition 7.2(b)
then implies that gaining all information aboXtcosts an attacker at Iea%t: 2
synchronizations in the case Bf and at Ieasfﬁ} = 3 synchronizations in the
case ofQ. Indeed, the sequence of teats, b.w is sufficient in the case d? for

determiningX. The sequence of tesisw, b.w, T.w is sufficient in the case @.

7.2 Compositionality

The results below are about composing rates of processes firfhproposition
gives upper bounds for the rate of a global system in termbkeofrtdividual sub-
systems. These inequalities can be used for compositieaabning on rates, al-
though the bounds they provide are sometimes rather lospecially in the case

of restriction (vc). The proof of the proposition is based on simple use of the
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data-processing inequality plus inequality (14). The sghent Theorem 7.1 es-
tablishes that, under certain conditions, iteratiopreserves rate, thus providing
another justification for the definition of rate. We regaris ths the main result of
the section.

Proposition 7.3. Let P(X) and Q()”() be open processes aMdbe a vector of random
variables of the same type &s Leté&(X) be a tuple of expressions and {ebe the

tuple of values that maximiz&s(&X) = V). Let@X) be a logical formula. Then
the following inequalities hold:

(i)  R@2.P;X) < maxg R(PYZ;X)
(i)  R(@&EP;X) < max{H(&X)=1), R(P;X)}
(iii) R(PP;X) < H(@X))+ R (P;X)
(iv) R((vaP;X) < R(P;X) 3
v) RP+QX) < R(P;X)+R(QX).

PROOF. We only cover in detail the case (ii), as the other casesautne appli-
cations of the data processing inequality and/or of inetiegl(1-3).

We rely on the trace-based characterizatiorRgbrovided by Proposition 7.1.
Let s be a generic nonempty trace apgl= Pr((@&.P)(X) = ). Will show that
B(ps)/|s| < max{H([&X)=1])), R (P;X)}. This is obvious ifis not of the form
aw- s, as in this cas@s = 0 = B(ps). Thus, assume=aw- s, for somew’ands'.
First, note that, by symmetry of the binary entropy funct®fp) around the point
p=1/2 (see Figure 1), the valuetfiat maximizes the probability E§(>~() =V)
is also the value that maximizes the entrapg&(X) = V). Second, note that the
rv. (a8.P)(X) = is the same a(X) = W) A P(X) ==. From these two facts,
applying the data processing inequality and (3), we have:

B(ps) = H((@&P)(X) =)

If § =& thenH (P(X) = ) = 0 (asP(X) == holds with probability 1), and the

thesis follows. Assumé # €. Dividing by |s| = 1+ |S| the inequality obtained
above and then applying inequality (14), we have

O N
202 HUBR) =0) KPR ) vyt ).

) < ® (P;X) by definition of rate.

A notable omission from the previous proposition is the azggarallel com-
positionP|Q. Interaction betweeR andQ may give rise to short traces conveying
much information orX. Indeed, synchronization may turn visible action$atnd
Q into invisible T's. This might leadP|Q to exhibit a higher rate than the sum of
P's andQ's alone, as illustrated below.
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Figure 1: Binary entropy functio®(p) in [0, 1]

Example 7.4. ConsiderP(x) = c.[x = 0]a, Q(x) =T with x: 0..1. TakeX u.d. on
0..1. Clearly,P(X) has arate of3(3)/2 = 3, while the rate of)(X) is 0, asQ does
not actually depend or When composing, however, we get B|Q a rate of 1:
indeed, there is an interaction othat makes traca available if and only ifx = O.
Hence P((P|Q)(X) ==) = 3, which implies the rate is 1.

In order to define iteration on processes, we have to first @efgguen-

tial composition. Output on a distinct nanseop not carrying objects, is used

to signal termination of a thread. We define sequential caitipa asP;Q def

(v stop)(P[stoB/stod | stod.Q) (with stog fresh). This means that the first thread
of P that terminates will trigger execution . This is slightly different from
sequential composition in the usual sense, that would redarmination of all
threads before activatinQ. However, the two notions are equivalent in the con-
text we are going to consider (see definition of determinetegss below). For any

closed procesB, let iteration« P be the process recursively defined*l:Fg/d:‘Ef P;xP.
We show that, under a suitable condition, described belogvrate of«P is the
same a$’s. The condition requires essentially that terminatioraaingle thread
in a process is equivalent to termination of the whole precdts role is that of
forbidding "hidden" interactions between threads belogdo different iterations
of P in xP. We discuss its necessity below (Remark 7.2).

Definition 7.5 (determinate processed)et Q be a closed process. We say that a

trace s isterminating forQ if Q sg:@p . We say that Q isleterminatef for every
terminating trace s, whenever €= Q then Q ~ stop. Finally, an open process
P(X) is determinate if§ ;.j P(0) is determinate.

We need another technical condition: let us say (as stableif whenever
Q== Q' (e = empty trace) the ~ Q.

Theorem 7.1(iteration rate) Suppose thz}t X) is determinate, and that for each
d, P(0) is stable. ThemR (xP; X) = R (P; X).
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PROOF We show that for each nonempty there exists a nonempty s.t.
H(xP(X) =>)/|s < H(P(X) =.)/|<|, that proves, by Proposition 7.1, that
R (xP; X) < R(P; X). The proof of the opposite inequality is easier and omit-
ted.

We proceed by induction oa Supposds| > 0 and letT denote the set of

terminating traces B L Y geg P(0). There are two cases fer

(1) Notrace inT is a prefix ofs. In this case, it is easy to see that by~definition
of determinate process, for eagh«P({i) = iff P(li) ==, henceP(X) =
is equivalent toxP(X) ==, and we can také =s.

(2) There iss; € T that is a prefix ofs, says=s; - s for somes,. We can
assume that; is not empty (otherwises~ stop and the thesis would follow
trivially.) Note that, for eactu,”"whenever«P(Q) =L, P then necessarily
P’ ~ «P({i) (a consequence of determinacy and stabiliti?@f)). Using this

fact, one can prove that for eaah ~
«P(0) = ifand only if P(t) =% and x P(0) == .

In other words, the r.iP(X) = is the same agP(X) = A *P(X) ==).
By virtue of the data-processing inequality and by (3), wiaiob

H(+P(X) =) <H(PX) =) + H(xP(X) = ).

Now, if s is empty, that is = s;, the second term of the summation above
is 0, hence dividing bys| we haveH (xP(X) ==)/|s| < H(P(X) ==)/|s,
and the thesis follows. Assume now tlsais not empty. Dividing the above
inequality again bys| = |s1| + |sz| and using (14), we get

H(+P(X)=>)
Is|

(P& L) H(+PX) ) 1

< H
< max{ ——gr—, Bl

If the max is the first of the two terms, we set= s, and stop; otherwise, we
invoke induction hypothesis os.

d

Example 7.5. It is easy to check th&@heckOnceStdp) def a(z).([z= x|ok.Stop+
[z# xjno.stop) is determinateX: 1..10). SinceChecKd) ~ «CheckOnceStdd),
for every d, by Theorem 7.1 and Example 7.2 we have& (Check X) =
R (CheckOnceStopX) = B(4;) /2~ 0.234.

Remark 7.2 (on the necessity of the determinacy conditiofr) the absence of
determinacy, neither (& (P; X) < R (+P; X) nor (b) R (+P; X) < R (P; X) hold
in general. As a counter-example to inequality (a), condrig) = [x = Ola.Stop+
[x = 1]a.a.stopwith x: {0, 1}, which is not determinate. Fot u.d. on{0,1}, the
ratio B(ps)/|s| is maximized by the trace= a- a, for which ps = 1/2 (it occurs
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iff X = 0), hence® (P; X) = 252 = 1/2 (note that the trace = a yields no
information onx, as it can be performed regardless of the valug.oDn the other
hand, all traces ofP are of the forma---a and occur with probability 1: that is
ps = 1 for any traces of that form, andps = O for traces of a different form. Hence
H(ps) = O for all's, and® (P; X) = 0.

As a counter-example to inequality (b), consi@&ix) = [x = OJa.b+Stopa+
[x=1]a, with x: {0,1}, which, again, is not determinate. Fém.d. on{0,1}, the
ratio B(ps)/|s| is maximized by the trace= a- b, for which ps = 1/2 (it occurs
iff X = 0), hence® (P'; X) = 28/2 — 1/2. On the other handi has a shorter

traces = b, which arises from mteractlon betwearnin P’ and [x = QJa.b in «P’

(recall that«P’ def P’; «P") and occurs with probability /2 (i.e. iff X = 0). Hence

R(xP'; X) = 1.

7.3 Rate of leakage and other security measures

It is easy to relate rate of leakage to error probability andsgwork, along the
lines of Section 6. We show the details of the error probgbilase, and just state
the result for the case of guesswork, as the details can lig &lesd in by the
reader.

We consider the attacker's error probability of guessihafter an effort of
N > 0 synchronizations witl?. AssumingX has outcomes i), this probability
can be defined as

e pn & inf Pr(g(P(X)||T) #X)

whereg ranges over all functions of typlS,F}* — U. That is,g takes a sequence

of test outcomes — success or failure — and yields a guessdaatue ofX.
Like in the case of absolute leakage, we rely on Fano’s Inggud0). For
arbitrary but fixedg andT s.t. ]T\ <N, from (10) we get that:

HX | PX)|IT) =1 H(X) —1(X; P(X)||T) —
log|X] - log|X]

Pr(g(PO)IT) # X) 2 ex pp 1 =

But, by Proposition 7.2(b),(X ; P(X)||T) < N®(P; X), hence we get

H(X)-NR(P;X)—1
log|X| '

Pr(g(P(X)|IT) #X) >

SinceT andg are arbitrary, we get
H(X)—NZR(P;X)—-1
log X

EXPN =
In complete analogy we can define guessworkXafter N synchronizations
with P ast,N(X) mfm<N G(X \ P(X)||T) and prove the following lower bound:

2HO)-NR(PX) 4 9
o .

Gpn(X) >
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Figure 2: A ring-shaped network witd = 4 nodes.

8 An extended example

We analyze absolute leakage and rate of leakage of a noal-sBystem inspired by
— but much simpler than — anonymity protocols in the style @v@is [28]. A typ-
ical goal of these protocols is allowing a group of users thexnge messages over
a public network, while hiding the identities of the sendeirsndividual messages
from an external (passive) eavesdropper. An essentiabdignt to achieve this
goal is a routing policy of messages that aims at confountfingeavesdropper as
to who is sending to whom at any given moment. Here we considersuch pol-
icy for a simple ring-shaped network and quantify the averafprmation leaked
to the eavesdropper about the sender, the receiver and #sageein a run of the
protocol. The average is taken with respect to the randoricelad the sender, of
the receiver and of the message. In the three subsectioms, lve¢ give a descrip-
tion of the system and then discuss its absolute leakageatmdfrleakage. In that
discussion, for the sake of readability we have preferredadwell on technical
details, which can be found in Appendix C.

8.1 Description of the system

A set of N > 2 nodesAy,...,Ay are connected througN public, unidirectional
channels so as to form a ring-shaped network. This is shoWigimre 2 forN = 4.
The purpose of a run of the protocol is to let a sender ragigansmit a one-bit
messagen € {0, 1} to a receiver nodé,. The pieces of information represented
by r, mands should be concealed. Sinég andA, may possibly be not directly
connected, the messagemay have to be routed through intermediate nodes. The
protocol consists oN stages. To confound the eavesdropper, at each stagey
nodeA; sends a message to the next node in the g, (all indices here are
intended modN). More precisely, the node that currently holds the "geatimes-
sagem — initially As — sendam, while any other node sends an arbitrarily chosen
bit m'. EachA; must receive a message froly_, before proceeding to the next
stage. Note that aftgir —s) modN stages, message has actually reached the
receiverA;: the remaining stages are executed for the sole purposalioighihe
relation betwees andr.
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We make a few assumptions to make our analysis feasible. ¥Wezaneakage
due to asingle nodeof the network, sayA; with j € 1..N. In other words, we
consider a situation where a local attacker eavesdrops argk siodeA;. The
attacker can observe incoming and outgoing messages, bobtceamper with
them. He can, however, force the re-execution of the wha®pol with the same
parameters (e.g., by fooling participants into believingttsome messages sent to
Aj have been lost). We furthermore assume that the segretands, as well as
any routing information needed by them, have somehow begnluited securely
to the participants prior to the protocol’'s execution — tisatve do not model the
secure distribution of the secret parameters.

The behaviour of thg!" node of the network from the point of view of the
attacker is modeled by the proceAs defined below. Theres,r,i are variables
of type 1.N andm is a variable of type 01. We use input actionsg andin;
(resp. output actionsufy and out;) to denote the reception (resp. sending) of
bits 0 and 1 from the nod&;_; (resp. to the nodd,;). We make use of the
following notational shorthand. it @ then P el se Q" stands forgP + —@Q;
moreover, In,.Q", wherex is a variable of type 0..1, stands fior= 0]ing.Q[0/x] +
[x = 1]in1.Q[L/x]; similarly for out,.Q. We denote by patls, j,r) the predicate that
is true if and only if nodgq is in the path fronstor (e.g., patli3,4,1) holds true for
a configuration oN = 4 nodes; note that we set pédhj, s) to true only if j = ).
Finally, we consider the predicate holdsj,r,i) which tells if nodej will hold the
genuine message at the beginningi®fstage, counting stages from 0 kb— 1;
formally

holdgs, j,r,i) iff path(s,j,r) andi=j—smodN.

E.g. hold$3,4,1,1) holds true in the configuration with 4 nodes.
Bj(s,r,m,i) representsA;’s behaviour from the" stage onward, counting
stages from O througN — 1.

Aj(s,r,m) def Bj(s,r,m,0)

Bi(sr,mi) %' (i<N)(it holdgs,j,ri) then Oty
el se oufp -+ oufy
|if holdgs, j—1,r,i) then inm.Bj(s,r,mi+1)
el se ing.Bj(s,r,mi-+1)+iny.Bj(sr,mi+1)).
The two threads that compoBg correspond to the following behaviour:

e at each stage); must send a bit to its successor in the ringAjfcurrently
holds the genuine message then it is thism that will be sent (this is the
firstt hen branch), otherwise 0 or 1 will be nondeterministically atrosind
sent (this is the firstl se branch);

e at each stage); must receive a bit from its predecessor in the ringiif,
currently holds the genuine messagghen it is thismthat will be received
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(this is the seconthen branch), otherwise otherwise 0 or 1 will be nonde-
terministically chosen and received (this is the seadrgk branch).

To exemplify the functioning of the node, let us instantidie above specification
of Bj to the cases = 1, j = 3 andr = 4, for the 4-nodes network in Figure 8.1. We
get the following relations which explain the behaviour lné¢ system (recall that
~ denotes strong bisimilarity):

B3(1,4,m0) ~ oufp+oufy | ing.B3(1,4,m1)+in;.B3(1,4,m,1)
Bs(1,4,m1) ~ OUlp+0UL | inmBa(1,4,m,2) (15)
Bg(l, 4 m, 2) ~ outy | ino.B3(l, 4 m, 3) + inl.Bg(l, 4. m, 3)
B3(1,4,m3) ~ oufp+ouf; | ing+ing.

Note that this is a description &&;’s behaviour from the point of view of the
attacker. This description says little about the "phySigalplementation of the
node. Indeed, routing information would normally be foundniessage headers
and not "hardwired" into the processes (see also RemarkeBovh

In the analysis below, we assume the receiveéhe sendes and the message
mare chosen according to three independent random varigldResndM, respec-
tively, with S and R uniformly distributed. We leh = H(M) (this is 1 bit if M
is chosen at random). We want to analyze absolute leakageatmaf leakage
relative to the random variable

ZEA(SRM).

8.2 Absolute leakage

We first assume the attacker already knows a piece of infawmat telling him
whetherj is in the path fronS5to R (Y = true) or not { = false. We discuss the
two cases separately.

In the caser = false at each stage bo#l se branches are taken, as neither
of the two instances of holdg ever evaluates to true. As easily seen, the resulting
behaviour oB;, hence ofA;, does not depend d§ Ror M. Therefore, in this case
the absolute leakage due Ag is O, that is, the attacker does not learn anything,
apart from the very fact thgtis not in the path:

H(Z|Y = falsg =0.

In the second case, the attacker, by obserfipgcan tell at which stagethe
genuine messag®m is sent to the successor. Intuitively, in all (re-)execusiamf
the protocol there is a unique stage at which it is always finedsameoutput
(outy), rather than one of two possibletfp + out;); see e.g. the equations (15)
above, where the stage in question is 2. This way, the attacker can tell the
distance betwee8and j, hence the identity of the send8rsincej is known. As
a consequence, he can also tell the valumolvhich is directly observed at stage
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i. He cannot tell the identity of the receiver, though. Theref in this case the
absolute leakage due &9 is

H(Z|Y =true) =H(S) +H (M) =logN +h.

Now, j is found in the path from the sender to the receiver approbdiyan
half of the cases, that is the probability tat trueis about% (for large values of
N; the exact value is given in the appendix). Heht®') ~ 1. The overall leakage
can hence be computed as

A(Aj;SRM) H(2)
H(Z,Y)
H(Y)+H(Z]|Y)
1+ 3H(Z|Y =true) = 1+ Z(logN+h).

&

where in the second equality we have used the factHtiZ) = H(Z,Y), that is, if
observingZ, observing als¢ does not provide additional information. The above
formula can be interpreted as follows: when the number okaasllargeA; leaks

on the average approximately half of the message contenhahaf the bits of
the sender’s identity, plus one bit saying whetAgis in the path from the sender
to the receiver. Intuitively, this is the case because ifdfahe cases, i.e. whep

is not in the sender-receiver path, the attacker cannotrsghiag aboutM, Sand

R — apart from the very fact thatis not in the path — while in the other half of the
cases, wheij is in the path, the attacker can tell precis8lgndM.

8.3 Rate of leakage

For any trace, let p; be P(A;(SR,M) :t>). The rate we have to estimate is the
supremum of
B(p)
It
taken over all nonempty traceés For reasons explained in the appendix, with-

out loss of generality we can confine ourselves to examiniages where output
actions are fired eagerly, that is traces of the form

with 0 <k <N-—1andm,m € 0..1. Let us now estimate the probabilify.

In the first place, it holds that, > % as shown below. Now, the binary entropy
function B(p) attains its maximum in the poii = 1/2 (see Figure 1); hence, in
order to maximizeB(p)/|t|, while keeping|t| fixed, it is convenient to chooge
that minimizesp, i.e. makesy; as close as possible g)

As explained below, this is achievedtifs chosen such that, for all4 i <Kk,

m # m. By inspection of the code d4;, such a trace can be performed if and
only if the following predicate depending &) R andM is true (here and in the
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following we abbreviate hold§, j,R,i) as holdsi)):

k
cond(S,R,M) = (=holdg0) VM =) A /\ =holds(i).
i=1

This means: if the node holds the genuine message at staperOthe output
My observed at stage 0 must be the genuine message; moreoweneadf thek
subsequent stages may the node hold the genuine messaugepatpit at stagie
m;, can be different from the input at the preceding stageif and only if the node
does not hold the message at stag€hus, p; is the probability of condR, S M)
to hold true. Note that considering a trace with= m; for somei > 1 would lead
to replacing some-tholdg(i)" conjuncts in the above condition with the weaker
"=holdgi) VM = m", which would make for a higher probability.

By simple logical manipulation, the condition cq(8 R,M) is seen to be
equivalent to the following:

k
(holds(0) AM =myp) Vv /\ —holdg(i) (16)
i=0
Itis easy to evaluate separately the probability of the tisjudcts in the condition.
Indeed, hold&)) is equivalent td5= j (the sender must coincide with the node for
the node to hold the message at stage 0). For simplicitymas(M = my) = %
(this does not really affect the result of the analysis). Byependence &andM

we have 1

Pr(holdg0) AM = mg) = N
The second disjunct in (16) has the following probabilitye(itomputation is de-
tailed in the appendix):

k
. k+1 Kk
Pr(i/:\o_\hOIdiU) — 1— T(l— ﬂ) .
Since the two disjuncts in (16) do not intersect (as h@pand—holdg0) cannot
be true at the same time), we can sum up their probabilitidganh
1 k+1 k

As k goes from 0 tdN — 1, p; decreases from 4 5 to its minimal valuej. This

shows thatp, > % The ratio% as a function ok is plotted in Figure 3 in the
case ofN = 100 nodes. As seen, the maximum is obtainedkfer O, yielding a
rate of 1

R(A} s SRM) = B(50).
(we have used the fact th&(1— p) = B(p)). Hence the traces that maximize the
ratio aret = outy, with mp € 0..1. Each of these two traces conveys very little

17)
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Figure 3: Plot ofB(p)/|t| as a function ok (N = 100).

information to the attacker, just telling him thatifitS = j then M= my. As an
example, in the case ™ = 100 nodesB(p;) ~ 0.045 bits. Ask increases, the
conveyed informatiorB(p;) grows, but much slower than the length of the trace
|t|, so that the ratio goes down.

Remark 8.1. In a more realistic scenario, the routing information wolddfound
in message headers rather than being hardwired in the nSdese routing infor-
mation cannot be sent in the clear, some encryption meahawisuld be also
called for. Conceivably, the resulting system would be meeeure than the
one discussed above. In particular, the attacker would ecalile to tell the
stage at which the genuine message is sent (provided rapeldmncryption were
adopted); hence also the identity of the sender and of theageswould be fully
protected. We cannot directly deal with cryptography anstdbe such a system
in the present framework.

9 Conclusion and related work

We have presented two quantitative models of informatiakdge for processes.
Relationships existing among these two models and a furaitimotion of secrecy
have been studied. The compositionality properties of tbdefs have also been
investigated.

The idealized, "all powerful" adversary encompassed bynoomiels may turn
out to be too strong for many practical purposes. There ishmuark to be done
in order to go from the present theoretical treatment to aenpoactical one. In
particular, the ability to show an absence of leakage atahguage level does not
imply that there will be no leakage at the implementatiorelealthough it helps
to constrain the types of attacks that can be used effegtivglforcing an attacker
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to require some additional knowledge relating to, e.g.jrtgn In a probabilistic
setting where each process induces a probability disioibutver the set of traces,
it may be sensible to stipulate that low-probability traeee more difficult, or
costly, to detect for the adversary than high-probabiligcés. This is impossible
to describe in the present model, basically because, n@ntaitv improbable a
specific trace is, the attacker can detect that trace withi affiort. In the future, we
plan to examine enhancements of the model involving prdistibiand possibly
cryptographic features.

Use of conditional mutual information as a measure of leakagcomputing
systems can be traced back to Millen [26] and to Gray [18]. him ¢ontext of
sequential, imperative programs, the significance of tréasare with respect to
different metrics of security has been further clarified bgrk, Hunt and Malacaria
in [10, 12, 11]. In particular, our Theorem 5.1, stating e@glénce of zero leakage
and secrecy, is clearly related to Millen’s result [26] thatl conditional mutual
information is equivalent to non-interference in the caeamputing automata.
In a language-based setting, essentially the same resuliden proved by Clark
et al. (Proposition 4.2 of [10]). Malacaria’s recent workthe security of looping
constructs [24] extends [10] by introducing a notion of fateloops in imperative
programs. We also mention Volpano and Smith’s [34], wherneamtffied theory of
non-interference for imperative programs is developeduiting a notion of rate
of leakage, albeit not based on Information Theory. Di Bietral. [15] propose
a notion of indistinguishability for probabilistic conaint programs and study its
relationship with certain security measures, such as tbeage number of runs
necessary for an attacker to tell two systems apart.

It is worth to notice that the above mentioned works presapperminating
computations that produce a set of "results" with a profgitaiistribution. As such
they are not appropriate to a process algebraic setting,endre just cares about
the interactive behaviours of systems (and computationsbh®aon-terminating).

Mutual information is also at the heart of the notiorcbinnel capacitywhich
is defined as the maximum mutual information between thecgoaind the output
of a (noisy) channel. Indeed, it is perfectly sensible taw@computing system
(program or process) as a channel, where the source is egpedsby the sensi-
tive information one wishes to conceal and the output is exwet "observable"
is appropriate for the system under consideration (stateblas or behaviours).
This analogy is pursued in recent works on anonymity prdtobyg Chatzikoko-
lakis, Palamidessi and collaborators [8, 7]. As expectdrhsac result in this set-
ting is that perfect anonymity corresponds to zero capadibere is, however, an
important difference between their anonymity-based aggirand those based on
secrecy/non-interference (including ours). In essemgeptotocol models of [8, 7]
rely onnoiseto conceal sensitive information in the system, e.g. sénakrntity:
the noisier the channel, the lesser the capacity, the motgeses deemed the sys-
tem. Noise generation is modeled by resorting to probaibilihoice. On the other
hand, languages considered in secrecy/non-interfereangeivorks do not neces-
sarily feature probabilistic operators (ours does nottheeido the languages of
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e.g. [10, 24]). Indeed, in these languages, it is intendatdgiogrammers conceal
a sensitive piece of informatiad essentially viadistortion In coding theory, dis-
tortion is the loss of information that occurs when a soxtds coded unfaithfully,
i.e. using a number of bits smaller than required. In our rhoflabsolute leakage,
X is "coded up" and made available to the attacker as th& evP(X) and proper
distortion happens il (Z) < H(X). For uniformly distributedX, distortion is re-
alized if the functionu — [P(u)]~ is non-injective, with the ideal case being that
this function is a constant. It would be interesting to camebihe two approaches
(noise-based and distortion-based) into a single framlewor

In the realm of process algebras, a paper by Lowe [23] hasduted a notion
of quantitative non-interference for timesp, defined as the number of different
observable "low" behaviours that a "high" user can induceherprocess. This de-
finition is shown to be in agreement with a functional notidteck of information
flow due to Focardi and Gorrieri [16], which can be regardea picess-algebraic
version of functional non-interference (a probabilistitemsion of this equivalence
is in Aldini et al.'s [2]). This result is somehow related tatthold’s [35], where
various notions of lack of information flow for nondeternsitic systems, like non-
deducibility and forward correctability, are assessedhenbiasis of information-
theoretic arguments. In [23], a notion of rate is also intiw&t that corresponds to
the ratio of leaked information/elapsed time. Lowe’s mddelot easily compara-
ble to ours, due to the different goals and settings (secarscyrocess-algebraic
non-interference, untimed vs. timed). For example, asthibyeLowe, a notion of
rate directly based on elapsed time is to some extent ufesztisy: a process that
leaks one Gigabyte during the first second of its executiehtben remains silent
forever has a leakage rate of 0, and as such should be deerseduas. A similar
drawback, in a sequential/imperative setting, arisesénntientioned [24], where
the leakage rate of a looping construct is obtained as tieahabsolute leakage
and number of iterations of the loop.

Finally, it is worth to mention some recent work in Infornmati Security that
addresses the issue of side-channels attacks againsb@myphic hardware from
an information-theoretic perspective very similar in &pio that presented here:
see e.g. [22, 31, 32]. As an example, the analysis of the rao@xbonentiation
algorithm found in [22] bears some similarities to our abs®leakage model (Ex-
ample 5.5). We leave for future work the task of establiskarmgecise connection
between our models and these approaches.
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A Summary of notation

Information Theory

Pr(A)
X

H (X)
1(X;Y)

p
B(p)

probability PfA|B)
random variable X
(X |

entropy H
mutual information I
probability distribution H(p
binary entropy function

Process Theory

a,b
u,v

@
P

S

X

=0 R

channel names X,y
values o
formula oo
process P(X)
trace P=
behavioural equivalence [P]-
trace equivalence ~
context C[P]
test IT|

Information Leakage in Processes

LGP
X X X
ﬂm:

n
> Xt

8=}
o

open process as random variable
test on process as random variable
process trace as random variable
absolute leakage frond to P givenVY
leakage rate oP relative toX
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conditional probability

vector of random variables
conditional entropy
conditional mutual information
entropy of distribution

variables

substitution

satisfaction

open process

process performs trace
behavioural equivalence class
strong bisimilarity

process replaces hole

cost of test



B Definition of leakage rate for name-passing processes

We give a definition of rate in the pi-calculus and then shoat thenjoys a trace-
based characterization analogous to that provided by Bitopo 7.1 in the case
without name-passing. Reformulating and extending thieofabe results of Sec-
tion 7 to the pi-calculus is then a matter of routine, and fstke the interested
reader. Note that the definition of rate seen in Section 7e$ dot apply "as is" to
the pi-calculus, as each input preéigx).P with x : S gives rise to infinitely many
traces, corresponding to the infinitely many instantistion the input parameter
X with names in the sors. However, once a test and a proces® have been
fixed, the "relevant" traces @f are only those that have a chance of giving rise to a
synchronization withP. In particular, the set of possible instantiationsxafan be
restricted to a (super)set of the free nameB,&gayN. This is the intuition behind
the notion ofN-trace given below.

For ease of presentation, in our treatment below we stick mooaadic pi-
calculus, that is, we consider only processes with actiefix@s carrying one ob-
ject, that take the forna(x).P or aeP. We shall abbreviat¢vb)abP asa(b).P
whena # b. For the sake of symmetry, we shall also admit input prefiXebe
form a(b).P, where the formal parameter is a natmes for somes.

In what follows, we lets,s' range over traces of the form --- g, with n >0
andy; :=ad | a(b) | ad | a(b) | wandd ::=alv. These traces are taken up
to alpha-equivalence, on@b) anda(b) are considered as binders for naime
Moreover, it is assumed that actions in traces respect tem giorting system. The
set of names occurring free in input subject positios will be denoted by ififs).

Finally, we writeA 22 A if A 22, A" andb ¢ fn(A): thusA == is well-defined
for any tracesin the syntax described above.

Definition B.1 (N-traces) Let N be a finite set of names and A be a process or a
test. We say & aN-trace of Aif A== andifn(s) C N. We sayN,s) may leadA
to succes# s is nonemptyw does not occur in s and s is a N-trace of A.

In what follows,P(X) is an open process atdar.v. A testT is a finite process
possibly using the distinct actiowm. Clearly, a test has only a finite number of
N-traces.

Definition B.2 (Rate of leakage)For each test T and finite set of names N, the
N-costof T is
def
Tin & S .

s:(N,s) may leadT to success

Theleakage rate of relative toX is

5+ def
):

R wp  HPEIT)

N,T:f(P)CN,[Th>0 | TIN
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To prove the analog of Proposition 7.1 we need some additaefaitions
and terminology. Given a tracenot containingw, the testsy that checks for the
presence of &l-tracesin a process with free namé&sN is defined by induction
onsas follows:

° éN:(JO

° a/d-\S’N :ad.§’N

o a(b) sy = a(b).[b ¢ N]S\up)-

For instance, ifs = a(b) -t(d) - db and N = {a,c} then s\ = a(b).c(d).[d ¢
{a,c,b}].d(y).[y = bjw. For a traces, its complemensis defined by inverting po-
larities of its actions (i.e. by turning inputs into outpudsd vice-versa, and leaving
the object part unchanged). E.g., &as defined above we hase-a(b)-c(d)-db.
Clearlys=s.

The following lemma summarizes what we need to know aguilhe proof
is routine and omitted.

Lemma B.1. Let N be a finite set of names.

a) Let Q be a closed process and s a trace Witlis) Ufn(Q) C N. Then sis a
N-trace of Q if and only if Q&y ==

b) Let T be atest and let S be the set of traces s thatN.is) may lead T to

success. Then
T~ 255\1 +F
sc

for some F that has no trace s s(N,s) may lead F to success.
c) For each trace s, we hayéy|n = |5 = [3].
Proposition B.1. It holds that

& (P; %) = sup T ER =) —)

(18)
|s|>0 ’S’

PROOF. By the previous lemma, part (a), for any tragd®(X) = is equivalent
to P(X)||S\, for someN D fn(P,s). By this fact and by the previous lemma part
(c) the rRHS of (18) is not greater than theds. For the opposite inequality, fix

any finiteN with N D fn(P), fix any T with |T|y > 0 and letSbe the set traces
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s.t. (N,s) may leadT to success. By the previous lemma, part (b), and by simple
~-preserving transformations, we can show that, for@mwyith fn(Q) C N:

QT ~ QII(EfN +F)~ Z(Qnél\l)

(note in particular thaQ||F ~ 0, as no(N,s) may leadF to success). Hence
Tog = P(X)||T is equivalent toy¢.(P(X)[3v) as a r.v. Using this fact and the
inequality provided by Proposition 5.1 wi@l-] = S «s([:]) (or relying on the data

processing inequality), we have that

H(Tex)/ITIn=H ESP )ISn)/ITIN < (ZSH(P()Z)H%N))ATM-

se

In the last term, we can replag®X)|[sy by P(X) ==, (by the previous lemma,

part (a)), henced (P(X)||Sn) by B(ps). Moreover, by the previous lemma, parts
(b) and (c), we can replad@ n bY 3 scs|s| = J s
applying inequality (14). O
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C Details of the example in Section 8

C.1 Analysis of absolute leakage

It is handier to first analyze a case where the attacker knowether the nodg
is or is not in the path from the sender to the receiver. Thawéconsider the
side-information given by the random variable

Y ' path(s j,R)

and we want to first compute

AA;SRM|Y)=H(Z]Y).

The random variabl® d:ef(j —S) mod N measures the distance between the sender
Sandj. If jisin the path fronSto R (Y = true), then the behaviour d4; is such

that at theD'" stage of the protocold; can only fire a unique outpuduty, with

m= M, while at any other stage it can nondeterministically cledoetweemuiy
andout; (intuitively, the attacker can tell these two situationsudpy repeatedly
executingA; and recording at which stage it always observes the sametputp
other wordsA;’s behaviour in this case depends solelyand onM, in the sense
that different values for the pajiD,M) correspond to different behaviours Af.
Noting thatD can take on the valuesD...,N — 1 with uniform probability, these
considerations yield

H(Z|Y =true) =H(D,M) =H(D)+H(M) =logN+h.

On the other hand, if is notin the path fronSto R(Y = falsé, thet hen branches
are never taken and the behaviour®gfis independent fron§, RandM. Hence

H(Z|Y = falsg =0.
Now, an easy counting argument shows that the probability eftrue is ~ %
more precisely RY = true) = 3(1+ &), so that

H(Z|Y)=PrY =true)H(Z|Y =true) = %(1+%)(IogN+h).

Finally, we can compute the absolute leakatyZ) using first the chain rule to
derive the formula

H(Z)=H(Y)+H(Z|Y)-H(Y|2)

and then noting thatt (Y \ Z) = 0: indeed,Y is determined by, asj is in the
path fromSto Rif and only if at some stage &f a unique output, rather than two
possible, can be observed. To sum up

1 1 1

AT SRM) = B(5(1+ ) +§(1+%)(I09N+h) R 1+%('09N+h)-
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C.2 Analysis of rate of leakage

Lett be any trace with non-zero probability @f= A;(S R,M), that is, assume

n &Pz =) > 0.

Firing output actions eagerly maximizes entropy. The following considera-
tions can be justified by inspection 8f’s code. LetO be the number of output
actions int, then: (a)t must contain at leasd — 1 input actions; (b) it contains
more thanO input actions, then there is a shorter trélogbtained by erasing some

input action such that =L ifand only ifZ éx (c) if t contains eithe© orO—1
input andO output actions, there is a permutatirof t where input and output

actions alternate with one another such tBat= if and only if Z L Using
repeatedly (a,b,c) above, it follows that, when lookingddracet maximizing the
ratio B(p)/|t|, we can restrict ourselves to traces of one of two forms

2 t = iNgy - OUt, - - - INgy - OUt
L L m "~

with 0 <k<N-—1andm,n €0..1. The analysis of traces of the form (2) is similar
to the one for traces of the form (1), seen in Section 8. Inq@dadr, the maximum
ratio B(p)/|t| can be computed similarly and is lower than that achievabiegu
traces of the form (1). The details are left to the interestedler.

Evaluating the probability of /\ikzoﬁholds(i). Using De Morgan'’s law, the con-
dition A ,—holds(i) can be written as-(\/ ,holdg(i)). Since the hold§)’s do
not intersect with each other (holdsA holdg(i’) is false fori # i’), the probability
of this event can be written as

1- iPr(holds(i)).

A simple counting arguments shows tha{hildgi)) = %(1— ﬁ) (indeed, the
value ofSis fixed and there arbl — i possible values foR, out of N? possible
values for the paifS R)). Using the formula for the sum of the integers from 1 to
k yields

k
_;Pr(holds(i)) = %(1— %)

hence the result.
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