
Quantifying Information Leakage
in Process Calculi∗

Michele Boreale
Dipartimento di Sistemi e Informatica

Università di Firenze

Abstract

Building on simple information-theoretic concepts, we study two quan-
titative models of information leakage in the pi-calculus.The first model
presupposes an attacker with an essentially unlimited computational power.
The resulting notion ofabsolute leakage, measured in bits, is in agreement
with secrecy as defined by Abadi and Gordon: a process has an absolute
leakage of zero precisely when it satisfies secrecy. The second model as-
sumes a restricted observation scenario, inspired by the testing equivalence
framework, where the attacker can only conduct repeated success-or-failure
experiments on processes. Moreover, each experiment has a cost in terms
of communication effort. The resulting notion of leakagerate, measured in
bits per action, is in agreement with the first model: the maximum amount of
information that can be extracted by repeated experiments coincides with the
absolute leakageA of the process. Moreover, the overall extraction cost is at
leastA/R, whereR is the rate of the process. The compositionality properties
of the two models are also investigated.

Keywords: process calculi, secrecy, information leakage, information the-
ory.

1 Introduction

In the field of language-based security, properties like non-interference [17] have
traditionally been studied in a functional, all-or-nothing formulation. Only in re-
cent years have models been proposed that enable forms of quantitative reasoning
on such properties. Our interest here is in measuring leakage of sensitive informa-
tion due to program execution. For a sequential program, it is natural to quantify
this leakage by measuring the flow of information between secret ("high") and
public ("low") variables induced by the computed function.An elegant theory of
quantitative non-interference in this vein has been proposed by Clark et al. [10, 12].
A comparison with this and other proposals in the literatureis deferred to the con-
cluding section.

∗Extended and revised version of [4]. Author’s address: Dipartimento di Sistemi e Informatica,
Viale Morgagni 65, I–50134 Firenze, Italy. Email: boreale@dsi.unifi.it.

1

In this paper, we study quantitative models of information leakage in concur-
rent programs, that is processes described in a process calculus. Processes come
with no natural notion of computed function. Indeed, given aprocess, one is typ-
ically interested in quantifying the leakage arising from its interaction with the
environment, hence in itsobservable behaviour. The difference in intent with re-
spect to sequential programs can be illustrated by the following analogy. A smart-
card implements a function that takes documents as input andreleases documents
signed with a secret key as output. However, typical attackstargeting the secret
key do not focus on the function itself, but rather on the behaviour of the card,
in terms e.g. of observable time variance of basic operations [20], or observable
power consumption [21].

The starting point of our study is the notion ofsecrecyas formalized by Abadi
and Gordon [1]. We will subsequently refer to this particular formulation asAG-
secrecy. This is a fairly general concept, although in [1] itwas defined in connec-
tion with the spi- and, limited to some introductory examples, the pi-calculus. In
this paper, we shall stick for simplicity to the pi-calculus. Informally, AG-secrecy
holds of a processP whose code mentions a parameterx representing a piece of
sensitive information, if the observable behaviour ofP does not depend on the ac-
tual valuesx may take on. In other words, an attacker cannot infer anything aboutx
by interacting withP. The notion of "observable behaviour" is formalized in terms
of a suitable behavioural equivalence, such as may testing equivalence [14, 5].

Although elegant and intuitive,AG-secrecy is in practice too strict. The behav-
iour of virtually any useful program that protects a sensitive piece of information
depends nontrivially on this information. Nevertheless, many such programs are
considered secure, on the grounds that the amount of leaked information is,on av-
erage, negligible. The average is taken here over all possible values the sensitive
information may take on. Consider aPIN-checking processP(x) that receives a
code from a user and checks it against a 4-digits secretPIN x, in order to authorize,
or deny, a given operation. An attacker could easily submit aspecific code of its
choice toP(x), say 4811, receive a deny and hence acquire negative information
aboutx, i.e. "x is not 4811". However, assumingx has been chosen at random,
such a small leak of information should be of no concern. In another scenario, an
attacker could be allowed to query repeatedlyP(x), so that, given enough time,
he/she could determinex with certainty. In this case, one is interested in quanti-
fying the overall effort, in terms of interaction units (actions), necessary for the
attacker to do so. Or, in other words, one’s interest is in determining at which rate
P(x) leaks sensitive information.

In the present paper, we propose two quantitative models of leakage for
processes that address the issues outlined above. The first model is designed for
measuringabsoluteleakage ofP, while the second model is designed for measur-
ing the rate at which information is leaked byP. As explained below, the two
models correspond to different assumptions on the control an attacker can exercise
overP. The connections between these two models will also be clarified. We will
take anunconditional securityapproach. Roughly, a "small leak" implies absence

2

of attacks, while a "large leak" points to existence of attacks, without implying
that such attacks can be mounted in practice. A more precise account of our work
follows.

After quickly reviewing a few notions from Information Theory that will be
used in the paper (Section 2), we introduce our reference language, a pi-calculus
with data values (Section 3). In the first model (absolute leakage), we presuppose
an attacker with full control over the process. Implicitly,we assume the attacker:
(a) knows the process codeP(x), and (b), can, at no cost, produce as many copies as
desired of the instance ofPunder consideration and run them. The role of these two
strong assumptions is twofold: on the one hand, they set up a worst-case scenario,
providing security guarantees independent from the computational power of actual
attackers; on the other hand, they help to simplify the treatment of nondeterminism
in processes. In particular, a consequence of assumption (b) is that all possible
ways in whichP’s nondeterminism can be resolved should be experienced by the
attacker. Idealizing this, one can say that the attacker cantell the equivalence
class (of behaviours) the observed instance ofP belongs to. A third assumption,
commonly found when reasoning about protection of confidential data, is that: (c)
the probability distribution of the datax is known to the attacker.

We are interested in the average amount of information aboutx that is leaked
to the attacker byP under these assumptions. The average is taken over all valuesx
may take on. In the language of unconditional security, thisscenario can be formal-
ized as follows. A piece of sensitive information is modeledas a random variable,
sayX. The a prioriuncertaintyof an adversary aboutX is measured by the Shannon
entropy H(X), expressed in bits [13]. For full generality, it is assumed that some
"side-information"Y, possibly related toX, is publicly available: the conditional
entropyH(X

∣

∣Y) measures the uncertainty aboutX given thatY is known. To illus-
trate these notions in a concrete case, consider thePIN-checking example. There,X
represents a randomly chosen 4-digits secret code, henceH(X)= log(104)≈ 13.29
bits.Y might represent whetherX = 4811 or not, a piece of information the attacker
might easily learn. Note that observing the event(X = 4811) reduces the uncer-
tainty aboutX to 0, while observing(X 6= 4811) rules out one possibility reducing
the uncertainty to log(104−1): on the average, observingY reduces the uncertainty
of the attacker toH(X

∣

∣ Y) = 0·Pr(X = 4811)+ log(104−1) · (1− 1
104) ≈ 13.13.

Any processP(x,y) and any two r.v.’sX andY induce a new a random vari-
able Z = P(X,Y): following the discussion above, it is reasonable to stipulate
that Z takes as values "observable behaviours", that is, equivalence classes of a
fixed behavioral equivalence (Section 4). Now, the conditional entropyH(X

∣

∣Y,Z)
quantifies the uncertainty onX left after observing bothY andZ. Hence the dif-
ferenceI = H(X

∣

∣ Y)−H(X
∣

∣ Y,Z) is the amount of uncertainty aboutX removed
by observingZ = P(X,Y), that we take as the absolute leakage ofP relative to
X,Y (Section 5). We prove that this notion is in full agreement with the functional
notion of AG-secrecy. In the special case when there is no side-information, this
means thatP(x) respectsAG-secrecy if and only ifP(X) has an absolute leakage of
0 for every random variableX. We also offer two alternative characterizations of

3

zero-leakage, hopefully more amenable to automatic checking.
Next, we discuss the significance of absolute leakage in relation to certain se-

curity measures well-known from the literature (Section 6). Specifically, we show
how to relate absolute leakage to the attacker’serror probability of guessing the
secretX givenZ, and to theguessworkof X givenZ, which measures the average
number of attempts before correctly guessingX, in a scenario similar to that of
dictionary attacks against password systems.

The second model we consider (rate of leakage, Section 7), refines the previous
scenario by introducing a notion ofcost. Adapting the testing equivalence frame-
work from [14], we stipulate that an attacker can only conduct uponP repeated
testsT1, T2,... each yielding a binary answer, success or failure. The attacker has
full control – in the sense of the first model – over the compound systemsP||Ti,
but not overP itself. The security measure we are interested in is the overall num-
ber of synchronizations withP necessary for the adversary to extract one bit of
information aboutX. Hence we define therate at whichP leaks information in
terms of the maximal number of bits of information per visible action conveyed
by an experimentsP||Ti. We then give evidence that this is indeed a reasonable
notion. First, we establish a relationship with the first model, showing that the ab-
solute leakageA coincides with the maximum amount of information aboutX that
can be extracted by repeated experiments onP, and that this costs the adversary
at leastA/R, whereR is the rate ofP. Second, in the vein of testing equivalence,
we give an experiment-independent characterization of rate that only depends on
the visible traces of the observed process. Extending the discussion of the absolute
leakage model, we also clarify the relation of rate of leakage to the attacker’s error
probability and guesswork after an effort ofN synchronizations.

The search for principles of compositional reasoning is a major motivation for
studying information leakage in a process calculus setting. In both models, we
show that the leakage (rate) attributable to a global systemcannot exceed the sum
of those imputable to individual sub-systems (with the exception of the parallel
composition operator, in the case of rate of leakage). We prove that under suitable
conditions iteration does preserve rate, in the sense that the rate of∗P equals that
of P, which is expected from a sensible notion of rate.

We will illustrate the application of the proposed models toa non-trivial ex-
ample, a message-routing system inspired by anonymity protocols in the style of
Crowds [28] (Section 8).

Some discussion on the limitations of the present approach,remarks on further
research and a discussion on related works conclude the paper (Section 9). A table
summarizing the main notations used throughout the paper and a few technical
definitions and proofs are reported in separate appendices (Appendices A, B, C).

4

2 Preliminary notions

We briefly recall a few concepts from probability and elementary Information The-
ory; see e.g. [13, 33] for full definitions and underlying motivations. Recall that a
random variable (r.v.) is a functionX : Ω →U whereΩ is a probability space,U
(called thestate space) is the carrier of aσ-algebraF and for each elementF ∈ F ,
X−1(F) is an event ofΩ (otherwise said,X is measurable). In this paper, we shall
confine ourselves todiscreterandom variables, that is, random variable in whichU
is an at most countable set andF is the power-setσ-algebra overU : this amounts
to requiring that for eachu∈U , X−1(u) is an event ofΩ. We letX,Y, ... range over
discrete random variables. We say that a r.v.X is of type U, and writeX : U , if
U is the state space ofX (i.e. X(Ω) ⊆U); we call elements ofU outcomesof X.
Unless otherwise stated, we shall assume theU is finite. We define|X| as the num-

ber of possible outcomes ofX, that is|X|
def
= |{u ∈U |Pr(X = u) > 0}|. We shall

make use of the concepts of independent and uniformly distributed (u.d.) random
variable, defined as usual. As a function, every random variable induces a partition
into events of its domainΩ, which is{X−1(u) |u∈X(Ω)}: we say that two random
variablesX andY areequivalentif they induce onΩ the same partition (this does
not imply thatX andY coincide). A vector of random variables̃X = (X1, ...,Xn),
where theXi : Ui for 1≤ i ≤ n are r.v.’s defined on the same probability spaceΩ, is
just a r.v. of typeU1×·· ·×Un.

Let X : U andY : V be r.v. Theentropyof X and theconditional entropy of X
given Yare defined respectively as:

H(X)
def
= −∑u∈U Pr(X = u) · log(Pr(X = u))

H(X
∣

∣ Y)
def
= ∑v∈V H(X

∣

∣ Y = v) ·Pr(Y = v)

where all logarithms are taken to the base of 2, by convention0· log0= 0 and for
any eventeof Ω, H(X

∣

∣ e) is the conditional entropy ofX givene, defined as

H(X
∣

∣ e)
def
= − ∑

u∈U
Pr(X = u

∣

∣ e) · log(Pr(X = u
∣

∣ e)) .

Example 2.1. Let X represent the random choice of aPIN-code between 1 andN.
Our a priori uncertainty aboutX is measured by its entropy

H(X) = −
N

∑
i=1

1
N

log(
1
N

) = logN .

Assume that, although ignoring the value ofX, we get to know its parity, odd or
even. LetY be the r.v. that yields 1 ifX is odd, 0 otherwise. Then, assumingN is
even, our uncertainty aboutX after observingY = 0 is measured by

H(X
∣

∣ Y = 0) = −∑i∈1..N Pr(X = i
∣

∣ Y = 0) log
(

Pr(X = i|Y = 0)
)

= −∑i∈1..N, i odd
1

N/2 log(1
N/2) = log(N

2) = logN−1

5

that is, observingY = 0 reduces our uncertainty by 1 bit. Similarly,H(X
∣

∣ Y =
1) = logN−1. Hence, the average uncertainty after observingY is

H(X
∣

∣ Y) =
1
2

H(X
∣

∣ Y = 0)+
1
2

H(X
∣

∣ Y = 1) = logN−1.

Note that two equivalent random variables exhibit the same entropy and condi-
tional entropies. For a vector(X1, ...,Xn) of random variables, we shall abbreviate
H

(

(X1, ...,Xn)
)

asH(X1, ...,Xn). The following fundamental (in)equalities hold:

0≤ H(X)≤ log|X| (1)

H(X,Y) = H(X|Y)+H(Y) (chain rule) (2)

H(X1, ...,Xn) ≤ H(X1)+ · · ·+H(Xn) (3)

where: in (1), equality on the left holds iffX is a constant, and equality on the right
holds iff X is u.d. on{u∈U |Pr(X = u) > 0}; in (3), equality holds iff theXi ’s are
pairwise independent. Note that by (2) and (3),H(X|Y) = H(X) iff X andY are
independent. IfY = F(X) for some functionF thenH(Y|X) = 0. Information on
X conveyed by Y(aka,mutual information between X and Y) is

I(X;Y)
def
= H(X)−H(X

∣

∣ Y) .

By the chain rule,I(X;Y) = I(Y;X), and I(X;Y) = 0 iff X andY are indepen-
dent. Mutual information can be generalized by conditioning on another r.v.Z:

I(X;Y
∣

∣ Z)
def
= H(X

∣

∣ Z)−H(X
∣

∣ Z,Y). Conditioning onZ may in general either
increase or decrease mutual information betweenX andY. Note that entropy of a
r.v. only depends on the underlying probability distribution; thus any probability
vectorp̃= (p1, ..., pn) (pi ≥ 0,∑i pi = 1) determines a single entropy value denoted
H(p̃). We shall often abbreviate the binary entropyH(p,1− p) asB(p).

3 A process calculus

3.1 Syntax

We assume a countable set ofvariablesV = {x,y, ...}, a family of non-empty, finite
value-setsU = {U,V, ...}, and a countable set ofnamesN = {a,b, ...}, partitioned
into a family ofsortsS ,S ′, We letu,v be generic elements of a finite value-set.
We assume a fixed function that maps each variablex to someT ∈ U∪{S ,S ′, ...},
written x : T, and say thatx hastype T; we assume the inverse image of eachT is
infinite. These notations are extended to tuples as expected, e.g. forx̃ = (x1, ...,xn)
andT̃ = (T1, ...,Tn), x̃ : T̃ meansx1 : T1, ...,xn : Tn. By slight abuse of notation, we
sometimes denote bỹT the cartesian productT1×·· ·×Tn.

An evaluationσ is a partial map fromV to
S

U∈UU ∪N that respects typing,
that is, for eachx∈ dom(σ), x : T impliesσ(x) ∈ T. We denote by[d̃/x̃] the eval-
uation mapping ˜x to d̃ component-wise. Bytσ, wheret is a term over an arbitrary

6

signature with free variables fv(t) ⊆ V , we denote the result of replacing each free
variablex∈ dom(σ)∩ fv(t) with σ(x).

We assume a language of logicalformulaeφ,ψ, We leave the language
unspecified, but assume it includes a first order calculus with variablesV , that
function symbols include all values inU and names as constants, and that the set
of predicates includes equality[x = y]. For φ and σ s.t. dom(σ) ⊇ fv(φ), we
write σ |= φ if φσ is valid (i.e. a tautology). Ifσ |= φ for all evaluationsσ s.t.
dom(σ) ⊇ fv(φ), then we write|= φ. As usual,φ ⇒ ψ means|= φ → ψ. We will
often writeφ(x̃) to indicate that the free variables ofφ are included in ˜x, and, in that
case, abbreviateφ[ũ/x̃] asφ(ũ).

The process language is a standard pi-calculus with variables and data values.
We assume a countable set ofidentifiers A,B, ... and usee,e′... to range over an
unspecified set ofexpressions, that can be formed starting from variables, values
and names. The syntax of processesP,Q, ... is given by the constructors ofinaction,
silent prefix, input prefix, output prefix, boolean guard, nondeterministic choice,
restriction, parallel compositionandprocess identifier, according to the grammar
below.

m ::= x
∣

∣ a

P,Q ::= 0
∣

∣ τ.P
∣

∣ m(x̃).P
∣

∣ mẽ.P
∣

∣ φP
∣

∣ P+P
∣

∣ (νb)P
∣

∣ P|P
∣

∣ A(ẽ) .

Each identifierA has an associated defining equation of the formA(x̃)
def
= P. Input

prefixm(x̃). and restriction(νb) are binders for ˜x andb, respectively, thus, notions
of free variables (fv) and free names (fn) arise as expected.We identify processes
up to alpha-equivalence. We assume a few constraints on the syntax above: ˜x is a

tuple of distinct elements in input prefix and inA(x̃)
def
= P, and in the latter fv(P) ⊆

x̃; φ is quantifier-free. We assume a fixed sorting systemà la Milner. In particular,
each sortS has an associatedsort object ob(S) = (T1, ...,Tk) (k≥ 0). Here, eachTi

is either a sortS or a value-setU from the universeU. Informally, a process obeys
this sorting system if in every input and output prefix, a name/variablem of sort
S carries a tuple of objects of the sort specified byob(S); we omit the details that
are standard. We letP o the set of processes (possibly containing free variables)
obeying these conditions andP c its subset ofclosedprocesses. Notationally, we
shall often omit trailing0’s, writing e.g.a.b. instead ofa.b.0, we shall write∑n

i=1 Pi

for nondeterministic choiceP1 + · · ·+Pn, and let replication !P denote the process

defined by the equation: !P
def
= P|!P.

3.2 Semantics

We assume overP c the standardearlyoperational semantics of pi-calculus. Transi-
tions are the formP

µ
−→ P′, whereµ is one ofτ (invisible action),ad̃ (input action)

or (νc̃)ad̃ with c̃ ⊆ d̃ \ {a} (output action) andd ::= a | u (name or value). We
let d̃ range over tuples of elements of names and/or values, letn(µ) denote the
set of names occurring inµ and define the set of bound names ofµ as: bn(µ) = c̃

7

if µ = (νc̃)ad̃ and bn(µ) = /0 otherwise. An evaluation function↓ is presupposed
that maps closed expressions and formulae to values/names and to{true, f alse},
respectively, with the proviso that each name is mapped to itself (a ↓ a). This is
extended to tuples of expressions componentwise.

The operational semantics ofP c is given by the rules reported in Table 1. Sym-
metric versions of rules (SUM1), (PAR1) and (COM1) are not shown for brevity.

(INP) a : S d̃ : ob(S)

a(x̃).P
ad̃
−−→ P[d̃/x̃]

(OUT) ẽ↓ d̃

aẽ.P
ad̃

−−→ P
(TAU) −

τ.P τ
−→ P

(SUM1) P
µ

−→ P′

P+Q
µ
−→ P′

(PAR1) P
µ
−→ P′ bn(µ)∩ fn(Q) = /0

P|Q
µ
−→ P′|Q

(COM1) P
(νc̃)ad̃
−−−−→ P′ c̃∩ fn(Q) = /0 Q

ad̃
−−→ Q′

P|Q
τ
−→ (νc̃)(P′|Q′)

(OPEN) P
(νc̃)ad̃

−−−−→ P′ a 6= b b∈ d̃

(νb)P
(νc̃,b)ad̃
−−−−−→ P′

(RES)
P

µ
−→ P′ b /∈ n(µ)

(νb)P
µ
−→ (νb)P′

(PHI) φ ↓ true P
µ

−→ P′

φP
µ
−→ P′

(IDE) A(x̃)
def
= P x̃ : T̃ d̃ : T̃ P[d̃/x̃]

µ
−→ P′

A(d̃)
µ
−→ P′

Table 1: Operational semantics ofP c.

A few standard notations will be made use of. In particular, for eachvisible
(different fromτ) actionα, P

α
=⇒ P′ meansP(

τ
−→)∗

α
−→ (

τ
−→)∗P′. This notation is

extended to any sequence of visible actionss= α1 · · ·αn (i.e. atrace), P
s

=⇒ P′, as
expected. Finally,P

s
=⇒ means that there isP′ s.t. P

s
=⇒ P′.

In the rest of the paper, we let≍ be a fixed equivalence relation overP c and
denote by[Q]≍ the≍-equivalence class of processQ. For the moment, we leave
≍ unspecified, but assume it is included intrace equivalence[5], it includesstrong
bisimulation[29], it preserves all operators of the calculus, except possibly input
prefix, and it satisfies the monoid laws for+ and | with 0 as unit. We will have
more to say on the role played by specific behavioural equivalences later on (see
Section 5.2).

Another concept we shall rely upon is that ofmost general boolean, borrowed
from [19, 6], that is, the most general condition under whichtwo given open
processes are equivalent.

Definition 3.1 (mgb). Let P(x̃) and Q(ỹ) be two open processes, withx̃ : Ũ and
ỹ : Ṽ . We denote bymgb(P(x̃), Q(ỹ)) a chosen formulaφ(x̃, ỹ) s.t. for eachũ∈ Ũ
andṽ∈ Ṽ : P(ũ) ≍ Q(ṽ) if and only ifφ(ũ, ṽ) is true.

8

It is worthwhile to notice that, under certain assumptions,mgb’s for a pair of
open pi-processes can be automatically computed relying onasymbolicoperational
semantics [19, 6]. Let us recall that a symbolic transition also carries a logical for-

mula: P
µ,φ

−−→ P′. Informally, φ represents the exact condition on the free variables
of P under which the given transition is enabled. For example, one has

([x = y]zv.P) |y(w).Q
τ, [x=y]∧[y=z]
−−−−−−−−→ P|Q[v/w] .

In [19], an algorithm is described to compute mgb’s for a pairof processes both
havingfinite symbolic transition systems, in the case of strong bisimilarity.

4 Processes as random variables

This section is devoted to presenting a technical device that allows us to transform
(open) processes into random variables. Let us define anopen processas a pair
(P, x̃), written P(x̃), such that ˜x is a tuple of distinct variables of some typeŨ ⊆ U

andP ∈ P o is such that fv(P) ⊆ x̃. When no confusion about ˜x arises, we shall
abbreviateP[ũ/x̃] asP(ũ) and(P[ỹ/x̃])(ỹ) asP(ỹ) (ỹ a tuple of distinct variables.)

Definition 4.1 (open processes as random variables). Let P(x̃) be an open process
andX̃ be a vector of random variables, withx̃ : Ũ andX̃ : Ũ, for one and the same
Ũ. Let F : Ũ −→ P c/ ≍ be the functionũ 7→ [P(ũ)]≍. We denote by P(X̃) the
random variable F(X̃).

In essence, the above definition tells us how to "plug" a random variableX
into an open processP(x) thus obtaining a new random variableP(X). Note that
this definition does not involve anything like textual replacement ofx by X in-
sideP(x). What we do is simply taking the functionF : U → P c/ ≍, defined as
F(u) = [P(u)]≍ for eachu, and composing it with the random variableX seen as a
function. Doing so, we obtain a new random variableF ◦X, writtenP(X), that has
P c/ ≍ as a state space – that is, the outcomes ofP(X) are≍-equivalence classes.
The semantical aspects of the definition are subsumed by≍. The definition itself
is parametric1 with the actual choice of≍: different choices for≍ may correspond
to different assumptions on the observational power of the attacker. We shall elab-
orate on this point in subsection 5.2.

The next example is very simple and only serves to convey someintuition about
the above definition.

Example 4.1(PIN-checking). A PIN-checking process can be defined as follows.
Here,x,z : 1..k for some integerk andx represents the secret code. The situation is
modeled where an observer can freely interact with the checking process.

Check(x)
def
= a(z).([z= x]ok.Check(x) + [z 6= x]no.Check(x)) . (4)

1Strictly speaking, we should make the dependency ofP(X̃) from ≍ explicit by writing e.g.
P≍(X̃), but we shall omit to do so unless strictly necessary.

9

In this case, the range of the functionF : u 7→ [Check(u)]≍ mentioned in Definition
4.1 hask distinct elements, asu 6= u′ impliesCheck(u) 6≍Check(u′): for instance,
Check(u) has the traceau·ok, whichCheck(u′) has not. As a consequence, for a r.v.
X : 1..k, the distribution ofP(X) mirrors exactly that ofX. E.g., if X is uniformly
distributed on 1..k, thenZ = P(X) is u.d. over{[Check(1)]≍, ..., [Check(k)]≍}, i.e.
the probability of each outcome ofZ is 1/k.

In the sequel, the following two facts will turn out to be useful. First, from
Definition 4.1, it is immediate to see that the distribution of P(X̃) is given by the
following, for eacho = [Q]≍:

Pr
(

P(X̃) = o
)

= ∑
ũ: P(ũ)≍Q

Pr
(

X̃ = ũ
)

(5)

Second, note that, ifP(ũ) ≍ Q(ũ) for each ˜u, then, for anyX̃, P(X̃) andQ(X̃) are
the same random variable.

5 Absolute leakage

Throughout the section and unless otherwise stated, we letP(x̃, ỹ) be an arbitrary
open process, with ˜x : Ũ andỹ : Ṽ, while X̃ : Ũ andỸ : Ṽ are two vectors of random
variables, andZ = P(X̃,Ỹ).

5.1 Definitions and basic properties

Definition 5.1 (absolute leakage). Let P(x̃, ỹ) be an open process,̃X andỸ be r.v.
and let Z= P(X̃,Ỹ). The (absolute)information leakage from̃X to P given Ỹ is
defined as:

A(P; X̃
∣

∣ Ỹ)
def
= I(X̃;Z

∣

∣ Ỹ) = H(X̃|Ỹ)−H(X̃
∣

∣ Ỹ,Z) .

WhenỸ is empty, we simply write absolute leakage asA(P; X̃). A first useful
fact on the definition above is that leakage is nothing but theuncertainty about
P(X̃,Ỹ) after observing̃Y.

Lemma 5.1. Let P(x̃, ỹ) be an open process,̃X andỸ be r.v. and let Z= P(X̃,Ỹ).
ThenA(P; X̃

∣

∣ Ỹ) = H(Z
∣

∣ Ỹ). In particular, if ỹ is empty,A(P; X̃) = H(Z).

PROOF: This is a simple application of the chain rule (2). By symmetry of mutual
informationI , we haveA(P; X̃

∣

∣ Ỹ) = I(X̃; Z
∣

∣ Ỹ) = H(Z
∣

∣ Ỹ)−H(Z
∣

∣ X̃,Ỹ). But
Z = P(X̃,Ỹ) is a function ofX̃ andỸ, henceH(Z

∣

∣ X̃,Ỹ) = 0. �

Example 5.1(PIN-checking). The processCheck(x) defined in (4) leaksall infor-
mation aboutx. For example, ifX is u.d on 1..k thenZ = P(X) is u.d. over a set of
k outcomes. Hence, using Lemma 5.1,A(Check;X) = H(Z) = logk = H(X).

10

Suppose now the adversary cannot interact freely withCheck, rather he can
observe the outcome of a user’s interacting once withCheck. The adversary knows
the codey tried by the user. We represent the user simply asay, hence the new
system is

OneTry(x,y)
def
= (νa)(Check(x)|ay) . (6)

Clearly, for any r.v.X,Y : 1..k, the random variableZ = OneTry(X,Y) has only two
possible outcomes, that is[τ.ok]≍ and[τ.no]≍. These outcomes have probabilities
Pr(X = Y) and Pr(X 6= Y), respectively. In the case whereX andY are uniformly
distributed and independent, these probabilities are 1/k and 1−1/k, respectively.
We are interested inA(OneTry; X

∣

∣ Y). Easy calculations show thatZ andY are
independent: indeed, foro = [τ.ok]≍ and anyi ∈ 1..k, Pr(Z = o

∣

∣ Y = i) = Pr(X =

i) = 1
k , while Pr(Z = o) = Pr(X = Y) = 1

k , and similarly foro = [τ.no]≍, that is
Pr(Z = o

∣

∣ Y = i) = Pr(Z = o). For the sake of concreteness, let us assumek = 10.
Using Lemma 5.1 we can compute absolute leakage as

A(OneTry;X
∣

∣ Y) = H(Z
∣

∣ Y) = H(Z) = B(
1
10

) ≈ 0.469.

In this case, knowledge ofY brings no advantage to the adversary.

Example 5.2(a mobile object). Consider an object that can freely move within a
grid of coordinatesk× k, starting from a secret location at coordinate(x1,x2) (x1

row, x2 column). For some reason, only thedirections (w,e,n,s) of the object’s
moves are observable. Consideringx1,x2 : 1, ...,k, we have (please note that "+"
denotes nondeterministic choice below):

Mobile(x1,x2)
def
= [x1 > 1]w.Mobile(x1−1,x2) + [x1 < k]e.Mobile(x1 +1,x2)
+ [x2 < k]n.Mobile(x1,x2 +1) + [x2 > 1]s.Mobile(x1,x2−1) .

(7)
The "game" here is the adversary’s guessing the secret location by only ob-
serving the sequence of movement directions. Note that(u1,u2) 6= (u′1,u

′
2) im-

plies Mobile(u1,u2) 6≍ Mobile(u′1,u
′
2). Hence, for any two random variables

X1,X2 : 1..k, Z = Mobile(X1,X2) is a random variable whose distribution mir-
rors that of (X1,X2). Hence in this case there is a total leakage of informa-
tion. E.g., if X1 and X2 are uniformly distributed and independent, then, by
(3), A(Mobile; X1,X2) = H(Z) = H(X,Y) = 2 · logk. Suppose a "confounder"

processC
def
= w.C + e.C is inserted into the system, that is, consider the system

Mobile|C (note that no synchronization can take place betweenMobile andC,
their actions are merely interleaved). The presence of confounder makes two ob-
jects lying in the same row indistinguishable:Mobile(u,v)|C ≍Mobile(u′,v′)|C iff
u = u′. As a consequence, the information conveyed by the new system is halved:
A(Mobile|C ; X1,X2) = logk.

The next result asserts that absolute leakage is compositional, in the following
sense: the amount of information leaked by a global system cannot exceed the
overall information leaked by individual sub-systems observed in isolation. There

11

is a technical condition on the the side information, asỸ must be decomposable
into independent pieces, each of which is related only to a single sub-system (at the
moment, we do not know whether this condition can be relaxed). The proof of the
result is a consequence of inequality (3) and of (an instanceof) the so called "data
processing" inequality [13]. The latter implies that for any r.v. W and functionF
of appropriate domain,H(F(W)) ≤ H(W).

Fix a sequence of distinct process variables (placeholdersfor processes)
X1,X2, Recall that a(n-holes) contextis a process term containing at least
one occurrence of process variableXi , for each 1≤ i ≤ n (the Xi represents the
"holes"). We writeC[·, ..., ·] for a generic context andC[P1, ...,Pn] for the process
obtained by replacingX1,X2, ... with P1,P2, We say thatC[·, ..., ·] preserves≍
if wheneverPi ≍ P′

i for 1≤ i ≤ n thenC[P1, ...,Pn] ≍C[P′
1, ...,P

′
n].

Proposition 5.1 (compositionality). Let C[·, ..., ·] be a n-holes context that pre-
serves≍, and let Qi(x̃, ỹi) be open processes,1 ≤ i ≤ n, whereỹ = (ỹ1, ..., ỹn).
Let P(x̃, ỹ) = C[Q1(x̃, ỹ1), ...,Qn(x̃, ỹn)]. LetỸ = (Ỹ1, ...,Ỹn), with theỸi ’s pairwise
independent. Let L= A(P; X̃

∣

∣ Ỹ) and Li = A(Qi ; X̃
∣

∣ Ỹi) for 1≤ i ≤ n. Then

L ≤
n

∑
i=1

Li . (8)

PROOF: LetG : (P c/ ≍)n → P c/≍ be the function defined by([P1]≍, ..., [Pn]≍) 7→
[

C[P1, ...,Pn]
]

≍
(note that this is well-defined sinceC[·] is ≍-preserving). For

1≤ i ≤ n, let Zi = Qi(X̃,Ỹi). ThenP(X̃,Ỹ) = G(Z1, ...,Zn). ThereforeA(P; X̃
∣

∣ Ỹ)
can be written asH

(

G(Z1, ...,Zn),Ỹ
)

−H(Ỹ). By the data-processing inequal-
ity and independence of thẽYi , the last term is≤ H(Z1, ...,Zn,Ỹ1, ...,Ỹn) −

∑i=1,...,n H(Ỹi). By inequality (3), the last term is in turn≤ ∑i=1,...,n H(Zi,Ỹi)−
H(Ỹi) = ∑i=1,...,n H(Zi

∣

∣ Ỹi) = ∑i=1,...,n A(Qi; X̃
∣

∣ Ỹi). �

In the case of parallel composition, the inequality (8) specializes to
A(P|Q; X̃

∣

∣ Ỹ) ≤ A(P; X̃
∣

∣ Ỹ1) + A(Q; X̃
∣

∣ Ỹ2). Moreover, (8) implies that
leakage is never increased by unary operators preserving≍. In the case of replica-
tion ! this leads to the somewhat unexpected conclusion, which holds provided≍
is preserved by !

A(!P; X̃
∣

∣ Ỹ) ≤ A(P; X̃
∣

∣ Ỹ) .

The intuition underlying the above inequality can be explained under the assump-
tions informally discussed the Introduction: once the attacker is givenP, he/she
can produce as many copies ofP as desired and possibly run them in parallel, thus
simulating !P if necessary, while the converse is not in general possible (i.e., given
!P it is not possible in general to simulateP; see also Example 5.3 below). In gen-
eral, instances of inequality (8) may hold strict or not, as shown by the following
example.

Example 5.3. ConsiderP(x) = ([x = 0]a)|a, wherex : {0,1}, andX is u.d. on the
same set. Then 1= A(P;X) > A(!P;X) = 0. The reason for the last equality is

12

that forv∈ {0,1}, !P(v) ≍!a, that is, the behaviour of !P(x) does not depend onx,
soH(P(X)) = 0.

On the other hand, considerP1(x) = [x = 2]a + [x = 4]a and P2(x) = [x =
1]b + [x = 2]b, where this timex : 1..4, andX is u.d. on the same set. Then
A(P1|P2 ; X) = A(P1 ; X)+ A(P2 ; X) = B(1

2)+ B(1
2) = 2.

Our next task is to investigate the situation of zero leakage. We start from
Abadi and Gordon’ definition of Secrecy [1]. According to this definition, a process
P(x̃) keeps ˜x secret if the observable behaviour ofP(x̃) does not depend on the
actual values ˜x may take on. Partly motivated by the non-interference scenario
[17, 16, 34], where variables are classified into "low" and "high", we find it natural
to generalize the definition of [1] to the case where the behaviour of P may also
depend on further parameters ˜y known to the adversary.

Definition 5.2 (generalized secrecy). We say that P(x̃, ỹ) keeps ˜x secret given ˜y if,
for eachṽ∈ Ṽ , and for each̃u∈ Ũ andũ′ ∈ Ũ, it holds that P(ũ, ṽ) ≍ P(ũ′, ṽ).

The main result of the section states agreement of diverse notions of secrecy:
functional (definition above), quantitative (zero leakage) and logical (independence
of mgb’s from x̃). The last definition appears to be more amenable to automatic
checking, because, as mentioned, a mgb can be effectively computed in many
cases. We also offer an "optimized" version of the quantitative notion, by which it
is sufficient to check zero-leakage relatively to uniformlydistributed and indepen-
dentX̃ andỸ.

Theorem 5.1(secrecy). Let P(x̃, ỹ) be an open process. The following assertions
are equivalent:

1. P(x̃, ỹ) keepsx̃ secret giveñy.

2. For some X̃∗ : Ũ and Ỹ∗ : Ṽ uniformly distributed and independent
A(P; X̃∗

∣

∣ Ỹ∗) = 0.

3. maxX̃:Ũ ,Ỹ:Ṽ A(P; X̃
∣

∣ Ỹ) = 0.

4. φ ⇔∃x̃x̃′.φ, whereφ = mgb
(

P(x̃, ỹ), P(x̃′, ỹ′)
)

, for x̃′ andỹ′ tuples of distinct
variables disjoint fromx̃ andỹ, but of the same type.

PROOF: We show that (4)⇒ (3) ⇒ (2) ⇒ (1) ⇒ (4). In what follows, for ease
of notation, we will denote by ˜u, ũ′, ... generic outcomes of̃X, by ṽ, ṽ′, ... generic
outcomes ofỸ and byw,w′, ... generic outcomes ofZ = P(X̃,Ỹ). Moreover we
shall use such shorthands asp(ũ) for Pr(X̃ = ũ), p(w

∣

∣ ũ) for Pr(Z = w
∣

∣ X̃ = ũ),
and so on.

• (4) ⇒ (3). By contradiction, assume for somẽX and Ỹ it holds
A(P; X̃

∣

∣ Ỹ) = H(Z
∣

∣ Ỹ) > 0. By definition ofH(Z
∣

∣ Ỹ), this implies that
there is some ˜v such thatH(Z

∣

∣ Ỹ = ṽ) > 0. The latter, by definition of

13

conditional entropy, implies that there are at leasttwo distinctoutcomes of
Z corresponding to ˜v, sayw1 = [P(ũ1, ṽ)]≍ andw2 = [P(ũ2, ṽ)]≍ (and it also
implies that 1> p(wi

∣

∣ ṽ) > 0, for i = 1,2). That is,P(ũ1, ṽ) 6≍P(ũ2, ṽ). Now,
consider the substitutionσ = [ũ1/x̃, ũ2/x̃′, ṽ/ỹ, ṽ/ỹ′]. By definition of the mgb
φ, we have thatσ |= ∃x̃x̃′.φ (that is,φσ is a tautology), whileσ 6|= φ: this
contradictsφ ⇔∃x̃x̃′.φ.

• (3) ⇒ (2). Obvious.

• (2) ⇒ (1). By contradiction, assumeP(x̃, ỹ) does not keep ˜x secret given ˜y.
In other words, assume there are ˜v and distinct ˜u1, ũ2 such thatP(ũ1, ṽ) 6≍
P(ũ2, ṽ). Let wi = [P(ũi , ṽ)]≍, for i = 1,2. By independence and uniform
distribution ofX̃∗ andỸ∗, we have that, for bothi = 1,2:

p(wi

∣

∣ ṽ) = ∑̃
u:Ũ

p(wi

∣

∣ ũ, ṽ) · p(ũ) ≥ p(wi

∣

∣ ũi , ṽ) · p(ũi) = p(ũi) > 0

(in the rightmost equality above we have used the fact thatp(wi

∣

∣ ũi , ṽ) =
1). This inequality also implies thatp(wi

∣

∣ ṽ) < 1, for i = 1,2. Thus we
have shown that 0< p(wi

∣

∣ ṽ) < 1, for i = 1,2. By definition of conditional
entropy, this implies thatH(Z

∣

∣ Ỹ = ṽ) > 0, henceH(Z
∣

∣ Ỹ) > 0, asp(ṽ) > 0.
This fact contradicts the assumption thatA(P; X̃

∣

∣ Ỹ) = 0.

• (1) ⇒ (4). By contradiction, assume (4) does not hold. Hence it must be
∃x̃x̃′.φ 6⇒ φ, as the opposite logical implication always holds. This means
that there is a substitutionσ with dom(σ)⊇ fv(φ) s.t. σ |= ∃x̃x̃′.φ andσ 6|= φ.
Let ũ = σ(x̃) and ũ′ = σ(x̃′), and ṽ = σ(ỹ). Then, by definition of mgb,
P(ũ, ṽ) 6≍ P(ũ′, ṽ), which contradicts the assumption.

�

Example 5.4. Consider the following process, wherex,y : 1..4.

Q(x,y)
def
= (νc)

(

c| [y = 1]c.a
)

+ [x = 2]τ.a.

It is immediate to see thatQ does not keepx secret, giveny. E.g., if the adversary
gets to know thaty 6= 1 and observes the behaviour[τ.a]≍ then he/she can infer that
x = 2. In fact, the mgb given by the theorem above is in this case

φ =
(

[y = 1]∨ [x = 2]
)

↔
(

[y′ = 1]∨ [x′ = 2]
)

and clearly,φ 6⇔ ∃xx′.φ. As an example, forX,Y independent and u.d on 1..4, the
leakage fromX to Q givenY can be computed as follows. LetZ = P(X,Y).

• If Y = 1 thenZ does not depend onX, as for alli and j: Q(i,1) ≍ Q(j,1) ≍
τ.a. HenceH(Z

∣

∣ Y = 1) = 0;

14

• If Y = i 6= 1 then ifX = 2 (which happens with probability14) thenZ = [τ.a]≍,
otherwiseZ = [0]≍. HenceH(Z

∣

∣ Y = i) = B(1
4), for i 6= 1.

As a consequence

H(Z
∣

∣ Y) =
4

∑
i=1

H(Z
∣

∣ Y = i) ·Pr(Y = i) = B(
1
4
) ·

3
4
≈ 0.608.

The processQ′(x,y) = Q(x,y)+ [y 6= 1]τ.a keepsx secret giveny.

The next example shows a simple form of timing-dependent leakage.

Example 5.5 (modular exponentiation). The modular exponentiation algorithm,
used in implementations of public-key cryptographic schemes for computing pow-
ersax modn, can be described as follows. Let ˜x = (xk−1, ...,x0) be the binary rep-
resentation of a (secret)k-bit exponentx andA an integer variable initially storing
1. The final value ofA is that returned by the algorithm:

E(x̃)
def
= for i = k−1 downto 0 do {A=A2 mod n; if xi=1 then A=a*A mod n} .

We consider two different abstract versions ofE, where just the elapse of time can
be observed. The basic operations ofE are squaringA=A2 mod n and multiplica-
tion A=a*A mod n. Assume that an attacker can observe the duration of individual
executions of such operations (admittedly, a strong assumption). Assume further
that there is a discrete range of durations, hence it is possible to represent each du-
ration as a distinct visible action. In the first abstract version ofE, we suppose that
the time taken by each operation is a constantt (below,for is just used as syntactic
sugar):

E1(x̃)
def
= for i = k−1 downto 0 do (t.[xi = 1]t) .

In the second version, each squaring operation takest1, and each multiplicationt2:

E2(x̃)
def
= for i = k−1 downto 0 do (t1.[xi = 1]t2) .

It is easy to see thatE1(ũ) ≍ E1(ṽ) if and only if ũ and ṽ have the same number
of 1 digits (the same Hamming weight), which makes entropy easy to determine
analytically if X̃ is u.d2. E.g. assumingk = 4, we getH(E1(X̃)) ≈ 2.03. Not
surprisingly,E2 leaks all information about̃X, as at2 action at iteration numberi is
observed if and only ifXi = 1: henceH(E2(X̃)) = H(X̃). Under the assumptions
above (k = 4, X̃ u.d), this value is 4.

2More precisely,E1(X̃) hask+1 possible outcomes; the outcome corresponding to an exponent

X with i "1" digits has probabilitypi =
(k

i)
2k , for i ∈ 0..k.

15

5.2 Behavioural equivalences and attacker’s observational power

To a large extent, our results on absolute leakage do not depend on the choice of the
behavioural equivalence≍ – contrary to the case of rate of leakage, which we study
in Section 7, where we will have to commit to trace equivalence. Even the numeric
values in the examples we have considered so far do not dependon the choice of
≍, as trace equivalence and strong bisimilarity, the two extremes in between which
≍ is supposed to lie, coincide in those cases.

In general, however, choosing a specific equivalence amounts to assigning a
specific observational power to the attacker: the finer (morediscriminating) the
equivalence, the stronger the observational power of the attacker, that is, his/her
ability to tell apart different behaviours induced by different outcomes ofX. This
is the content of the next proposition. In what follows, for notational simplicity, we
consider individual r.v.’sX andY rather than vectors of them. We shall indicate by
A≍i the leakage function computed when≍ is set to the equivalence≍i. Similarly,
we indicate byP≍i(X;Y) the r.v. induced byP, X andY when setting≍ to≍i .

Proposition 5.2. Let ≍1 and ≍2 be two behavioural equivalences over closed
processes and suppose≍1⊆≍2. Let P(x,y) be an open process and X,Y be r.v.
ThenA≍1(P; X

∣

∣ Y) ≥ A≍2(P; X
∣

∣ Y).

Proof. Let U be the set of outcomes ofX. For generic total functionsf and g
defined overU , let us write

f ≤ g iff for eachu andv, g(u) = g(v) implies f (u) = f (v).

Equivalently, f ≤ g iff for each u ∈ U there is a setV ⊆ U s.t. f−1(u) =
∪v∈V g−1(v). Note that if f ≤ g theng(u) determinesf (u): indeed, f maps any
element ofg−1(g(u)) to one and the samef (u). Now, for any two random vari-
ablesR1 andR2, we have the following equality, which is a consequence of the
chain rule

H(R1) = H(R2)+H(R1
∣

∣ R2)−H(R2
∣

∣ R1) .

Applying the above equality toR1 = g(X) andR2 = f (X), we get thatH(g(X)) =
H(f (X)) + H(g(X)

∣

∣ f (X)), asH(f (X)
∣

∣ g(X)) = 0: indeed, the value ofg(X)
determines that off (X). Hence, we have obtained that

f ≤ g implies H(g(X)) ≥ H(f (X)) .

Now, fix any outcomev of Y and consider the functionsg : u 7→ [P(u,v)]≍1

and f : u 7→ [P(u,v)]≍2. Clearly f ≤ g. Applying the inequality above, we
get H(P≍1(X,v)) ≥ H(P≍2(X,v)). But H(P≍i(X,v)) = H(P≍i(X,Y)

∣

∣ Y = v), for
i = 1,2, so we have actually shown that

H(P≍1(X,Y)
∣

∣ Y = v) ≥ H(P≍2(X,Y)
∣

∣ Y = v) .

Averaging on allv’s, we getH(P≍1(X,Y)
∣

∣ Y) ≥ H(P≍2(X,Y)
∣

∣ Y), that is, by
Lemma 5.1,A≍1(P; X

∣

∣ Y) ≥ A≍2(P; X
∣

∣ Y).

16

We give below a simple example involving strong bisimulation ∼ and trace
equivalence≃.

Example 5.6. Recall that≃ takes into account only sequences of (weak) traces:
indeed,P ≃ Q holds true if and only if for each traces, P

s
=⇒ iff Q

s
=⇒. On

the other hand, strong bisimilarity∼ takes into account the branching structure
arising from nondeterminism, and is more discriminating than trace equivalence.
Specifically,∼ is defined as the largest equivalence relation over closed processes
such that wheneverP∼ Q andP

µ
−→ P′ then there is a transitionQ

µ
−→ Q′ such that

P′ ∼ Q′. (Another difference between these two semantics is that trace equivalence
is τ-abstracting while strong bisimilarity is not, but this fact is not going to play a
role in the example below). Consider now

P(x)
def
= a.b + [x = 0]a

wherex : 0..1. TakeX u.d. on 0..1. Let us set≍ to testing equivalence≃. What is
A(P; X)? Clearly,P(0)≃ P(1)≃ a.b, thus the functioni 7→ [P(i)]≃, for i = 0,1, is
a constant andA(P; X) = H

(

P(X)
)

= 0. Let us now set≍ to ∼. It is immediate

to check thatP(0) 6∼ P(1): indeed,P(0)
a

−→ 0, a move thatP(1) cannot simulate.
As a consequence, in this caseP(X) takes two distinct values,[P(0)]∼ and[P(1)]∼,
each with probability1

2. Hence,A(P; X) = H
(

P(X)
)

= 1.

6 Absolute leakage in relation to other security measures

The use of entropy as a measure of uncertainty in Cryptography dates back to
Shannon [30]. The relationship of Shannon entropy to "guessing difficulty" is also
somehow folklore: the higher the entropy, the more difficultfor an attacker to
correctly guess, say, a secret key (see [3]). Although thecoincidenceof entropy
and guessing difficulty has been questioned (see e.g. [27]),there is no doubt that
these two notions are intimately connected, as witnessed bycertain results in In-
formation Theory. Below, we review these results and use them to relate absolute
leakage to certain security measures that account for either the error probability or
the guessing effort of an attacker that tries to infer sensitive information fromP.

Before examining those results closely, though, it is important to stress one
general reason why Shannon’s entropy may be (and in fact is) preferred to other,
more direct metrics of guessing difficulty. This reason liesin the nice additivity
properties of entropy, as expressed by the chain rule. In this respect, an instance
of the chain rule calledgrouping lawis illuminating. The grouping law states that
given any partitionU1, ...,Un of the state-spaceU of X, the uncertainty onX can
be decomposed into the uncertainty as to what block of the partition X belongs to,
plus the uncertainty on which element of that blockX is. Formally, once we define

17

the r.v.Y = i iff X ∈Ui, we have that3

H(X) = H(Y)+H(X
∣

∣ Y) . (9)

In our model, laws of this kind make it possible to establish forms of compositional
reasoning, as discussed in the preceding section. As a direct example of application
of (9) to our model, consider the following. It is easy to showthat (for any instanti-
ation ofx) P(x) can be re-written modulo≍ into a head-normal form∑n

i=1 φiPi(x),
with the property that theφi ’s form a partition of truth (that is,φi ∧φ j ⇒ f alsefor
i 6= j, and

Wn
i=1 φ ⇔ true; see e.g. [6]). Assume that the partition over the data

determined by the functionu 7→ [P(u)]≍ is finer than the partition determined by
the φi ’s (that is, for each[P(u)]≍ there is aφ j s.t. ∀v, P(v) ≍ P(u) implies φ(v)).
Define the r.v.Y asY = i iff φi(X) = true. This way, each outcomei of Y deter-
mines a set of possible equivalence classes[P(u)]≍. Then, by (9), we get (we let
pi = Pr(Y = i))

H
(

P(X̃)
)

= H(Y)+H
(

P(X)
∣

∣ Y
)

= H(p̃)+
n

∑
i=1

piH
(

Pi(X
∣

∣ Y = i)
)

by which the problem of computing the entropy ofP(X) is reduced to the problem
of computing the probabilitiespi ’s (which are easy to estimate accurately) and the
conditional entropy of the subtermsPi(X

∣

∣ Y = i). It is worth to stress that simi-
lar additivity properties are not found in connection to other, reasonable security
measures, such as those considered below (see [27] for a discussion).

In what follows, for notational simplicity, we shall consider a single r.v.X,
rather than a vector, and assume that no side-informationY is available.

6.1 Error probability

Generally speaking, given a r.v.X with outcomes inU and an r.v.Z with outcomes
in V, one can define the error probability of inferringX from Z under an optimal
"guessing function"g, thus

εX,Z
def
= inf

g:V→U
Pr(g(Z) 6= X) .

It can be shown that the above inf is in fact a minimum, attained wheng fulfills
theMaximum a Posteriori Probability (MAP)rule. This rule dictates that, for each
possible outcomev of Z, u = g(v) should maximize Pr(X = u

∣

∣ Z = v). Fano’s
inequality [13] sets a lower bound onεX,Z in terms of the uncertainty onX after
observingZ, that isH(X

∣

∣ Z):

εX,Z ≥
H(X

∣

∣ Z)−1

log|X|
. (10)

3To see that this equation is a consequence of the chain rule, note that, by the chain rule, for any
X andY, H(X) = H(Y)+H(X|Y)−H(Y|X). If Y is a function ofX, like in the case considered here,
H(Y|X) = 0.

18

As expected, the higher the uncertainty, the higher the error probability. It is
then immediate to convert upper bounds on absolute leakage into lower bounds
on the attacker’s error probability of guessingX after observingZ. Let Z = P(X).
By definition of leakage as mutual information betweenX and Z, we have that
H(X

∣

∣ Z) = H(X)−A(P; X) = H(X)−H(Z). This expression can be plugged
into formula (10), which can then be used to lower-boundεX,Z in terms of absolute
leakage.

For instance, in the case of the modular exponentiation algorithm with an ex-
ponent ofk = 4 bits chosen at random (Example 5.5), which exhibits an absolute
leakage of 2.03 bits, one getsεX,Z ≥ (4−2.03−1)/2≈ 0.485.

It is worth to notice that inequalities are also known that give tight upper bounds
on error probability as a function of the conditional entropy (see e.g. [9] for a
survey and recent results on upper bounds).

6.2 Guesswork

Consider now a slightly different situation. The attacker is given an oracle that
answers (multiple) queries of the form "X = u?". In the absence of any extra infor-
mation onX, the most effective strategy for the attacker is to submit tothe oracle
guesses forX, from the most likely down to the least likely, stopping as soon as
a "yes" answer is received (this is what is called adictionary attackin password
security). Let ˜p = p1, ..., pn be the distribution ofX, with the probabilitiespi ’s
ordered from the greatest to the smallest. The average number of queries before
correctly guessingX, theguessworkof X, is defined by

G(X)
def
=

n

∑
i=1

ipi

and can be taken as a security measure relative toX. WhenX is u.d., there is a clear
relationship between Shannon and guesswork, given byG(X) = n+1

2 = 2H(X)+1
2 .

More generally, Massey [25] has proven that, ifX has at least 2 bits of entropy:

G(X) ≥
2H(X) +1

e
. (11)

Consider now equipping the adversary of our model with the oracle described
above. Assume in full generality thatZ = F(X) for some functionF (in our model,
F : u 7→ [P(u)]≍). The attacker can take advantage of both the oracle andZ: rather
than querying the oracle blindly, he/she can restrict his/her search to those values of
X that are consistent with the observed value ofZ. If Z = v, only thoseu∈ F−1(v)
are worth to be submitted to the oracle. Measuring the security of this system calls
then for a conditional definition of guesswork,G(X

∣

∣ Z). The guesswork ofX given
Z = v, writtenG(X

∣

∣ v), is just the guesswork of the conditional distribution (using
a concise notation)pX|Z(u1

∣

∣ v), ..., pX|Z(um
∣

∣ v), while the guesswork ofX givenZ

19

can be defined as the average

G(X
∣

∣ Z)
def
= ∑

v
G(X

∣

∣ v)pZ(v)

which we can take as a security measure. We can express a lowerbound on this
quantity in terms of the absolute leakageH(Z) = A(P; X), as follows:

G(X
∣

∣ Z) = ∑vG(X|v)pZ(v)

≥ ∑v pZ(v)(2H(X|v) +1)/e by (11)

= (1+ ∑v2H(X|v) pZ(v))/e

≥ (1+2∑v H(X|v)pZ(v))/e by Jensen’s inequality [13]

= (1+2H(X|Z))/e

= (1+2H(X)−H(Z))/e.

(when applying Jensen’s inequality above we have exploitedthe convexity of the
function 2x). The above inequality can be used to convert upper bounds onabsolute
leakage into lower bounds on conditional guesswork. For instance, in the case of
the modular exponentiation algorithm with an exponentX of k = 4 bits chosen
at random (Example 5.5), which exhibits an absolute leakageof 2.03, one gets
G(X

∣

∣ Z) ≥ 24−2.03+1
e ≈ 1.81. This value should be compared with the value of a

priori guesswork forX, G(X) = 8.5.

7 Rate of leakage

In the scenario considered in the previous section, the attacker is granted unre-
stricted interaction capability to the observed processP. ThePIN-checking exam-
ple suggests a refinement of this situation, that we study in this section. We will
assume the attacker can only conduct uponP repeated experiments, each yielding a
binary4 answer, say success or failure. We are interested in the number of commu-
nications with the observed process that arenecessaryfor the adversary to extract
one bit of information about̃X in this way. In other words, we are interested in the
maximal number of bits per visible action conveyed byP: therateat whichP leaks
information.

In the rest of the section, we fix≍ to be trace equivalence(akamay testing
equivalence [14, 5]), whose definition we recall below for the reader’s convenience.

Definition 7.1 (trace equivalence). P≃ Q iff for each trace s, P
s

=⇒ iff Q
s

=⇒.

For the sake of presentation, we shall only consider processes where channels
transport tuples of values, i.e. we ban name-passing in the rest of the section. The

4We expect no significant change in the theory ifk-ary answers, withk > 2 fixed, were instead
considered.

20

extension to the name-passing case is dealt with in AppendixB. For simplicity, we
shall also assume that no side-information is available to the attacker, i.e. that ˜y is
empty. Hence, throughout the section and unless otherwise stated,P(x̃), where ˜x :
Ũ , denotes an arbitrary open pi-process,X̃ an arbitrary vector of random variables
of typeŨ andZ the r.v.P(X̃). Recall thatA(P; X̃) = H(Z).

7.1 Definitions and basic properties

Consistently with the testing equivalence framework [14, 5], we view an experi-
ment as atest process Tthat, when run in parallel withP, may succeed or not.
Input on a distinct nameω, carrying no objects, is used to signalsuccessto the
adversary. It is convenient here to adjust the notion of (test-process) composition
(‖) so as to ensure that, in case of success, exactly one successaction is reported to
the adversary.

Definition 7.2 (test processes and composition). A test T is a closed process
formed without using process identifiers and possibly usinga distinct success ac-
tion ω. For each test T and closed process Q, define

Q‖T
def
= (νc̃,ω′)(Q|T[ω′

/ω]|ω′.ω)

wherec̃ = fn(Q,T)\{ω} andω′ /∈ fn(Q,ω).

Note that, for eachT and closedQ, it must be eitherQ‖T ≃ 0 – meaning that
T fails onQ – or Q‖T ≃ ω.0 – meaning thatT succeeds onQ. Hence, eachP(x̃) ,
T andX̃ determine a binary random variable

(P‖T)(X̃)

also writtenP(X̃)‖T, with possible outcomesF def
= [0]≃ and S def

= [ω.0]≃, to be
interpreted as failure and success. Information onX̃ conveyed byP(X̃)||T is given
by

I
(

X̃ ; P(X̃)‖T
)

= H
(

P(X̃)‖T
)

−H
(

P(X̃)‖T
∣

∣ X̃
)

= H
(

P(X̃)‖T
)

and is, of course, at most one bit. The notion of rate we are after should involve
a ratio between this quantity of information and thecostof performing the testT.
The following example provides some indications as to what it should be intended
by cost, and shows the role played by non-determinism in extracting information
out ofP.

Example 7.1. Consider againCheck(X), where this timeX is u.d. over 1..k, for
some fixed even integerk≥ 2. A testT that extracts one bit out ofCheck(X) is

T
def
=

k/2

∑
d=1

ad.ok.ω .

21

An attacker can only observe the outcome of the interaction betweenCheckandT,
i.e. an outcome of the r.v.Check(X)‖T . If action ω is observed, then it must be
X ≤ k/2; if action ω is not observed, then it must beX > k/2. The information
provided byT is I(X ; P(X)||T) = H(P(X)||T) = B(1

2) = 1.

The above example suggests that the test’s traces that may lead to success, that
is traces ending with aω, should be counted as the different "trials" attempted by
the attacker. The success or failure of each trial gives the attacker some amount of
information. The cost of each trial can be assumed to be proportional to its length
as a trace. These considerations motivate the following definition.

Definition 7.3 (cost ofT). Let T be a test. We say that a nonempty trace of visible
actions s= α1 · · ·αn (αi 6= ω) may leadT to successif T

s·ω
=⇒ . Denote by|s| the

length of a trace s. Thecostof T is

|T|
def
= ∑

s: smay leadT to success

|s| .

According to the definition above, all traces that have achanceof leadingT
to success, whenT is run withsome P, must be counted – only "dummy" traces,
never leading toω, are discarded. Consider e.g.T = a.b.ω + c.d + e.ω: we have
|T| = 3, as the dummy tracec·d is discarded, whilee anda.b are counted. When
composingT with P(x) = [x= 0]a.b, ecannot be used to leadP‖T to success, while
a ·b leads to success only in casex = 0. In other words, while excluding dummy
traces, our definition of cost does include traces corresponding to failed attempts,
as they give some information to the attacker. We arrive now at the definition of
leakage rate.

Definition 7.4 (rate of leakage). Let P(x̃) be an open process and̃X be a tuple of
r.v. Theleakage rate ofP relative toX̃ is

R (P; X̃)
def
= sup

|T|>0

H
(

P(X̃)‖T
)

|T|
. (12)

Our first result is a test-independent characterization of rate. In accordance with
the may-testing approach, this characterization is obtained in terms of observations
of individual traces of processes. The practical significance of this result is that,
when computing rate ofP, we are relieved from checkingP againstevery T, and
just have to look atP’s traces (which are finitely many, ifP is finite). In what
follows, given a trace of visible actionss, we consider the r.v.P(X̃)

s
=⇒, with

possible outcomestrue or f alse. As an example, ifP(x) = a.[x = 0]a.0 and X
is u.d. on{0,1}, then Pr

(

P(X)
aa

=⇒ = true
)

= Pr(X = 0) = 1
2. We shall make

extensive use of the fact that both| and‖ distribute over nondeterministic choice,
that is, for any closedQ, R1 andR2 we have

Q|(R1+R2) ≃ (Q|R1) + (Q|R2)

and similarly for‖. This property does not hold, in general, for behavioural equiv-
alences different from≃ (e.g., it does not hold for bisimulation).

22

Proposition 7.1. Let P(x̃) be an open process and̃X be a tuple of r.v. It holds that

R (P; X̃) = sup
|s|>0

H
(

P(X̃)
s

=⇒
)

|s|
. (13)

PROOF: For any traces, let ŝ be a test of cost|s| such that for each closedQ,
Q‖ŝ

ω
=⇒ iff Q

s
=⇒ (see Appendix B, where ˆs is defined in the case of the pi-

calculus). Hence,P(X̃)
s

=⇒ is equivalent toP(X̃)‖ŝ as a r.v. This fact implies that
the RHS of (13) is not greater than theLHS. For the opposite inequality, fix anyT
with |T| > 0 and letS be the set of traces that may leadT to success. For anys,
denote bys the complementary trace obtained by inverting input and output (e.g.,
if s= ad·bd′ thens= ad·bd′). By simple≃-preserving transformations (see also
Appendix B), we can show that, for any closedQ:

Q‖T ≃ Q‖∑
s∈S

ŝ≃ ∑
s∈S

(Q‖ŝ) .

HenceP(X̃)‖T is equivalent to∑s∈S(P(X̃)‖ŝ) as a r.v. Using this fact and the
inequality of Proposition 5.1 withC[·] = ∑s∈S([·]), we have that

H
(

P(X̃)||T
)

|T|
=

H
(

∑s∈SP(X̃)‖ŝ
)

|T|
≤

∑s∈SH(P(X̃)‖ŝ)
|T|

.

In the last term, we can replaceP(X̃)‖ŝ by P(X̃)
s

=⇒, henceH(P(X̃)‖ŝ) by

H(P(X̃)
s

=⇒). Moreover, by definition of cost, we can replace|T| by ∑s∈S|s| =
∑s∈S|s|. The thesis then follows by the inequality below (which holds for generic
Mi > 0, Ni ≥ 0, for i = 1, ...,k):

N1 + · · ·+Nk

M1 + · · ·+Mk
≤ max

i=1,...,k

Ni

Mi
. (14)

�

Example 7.2. Consider the processCheckOnce(x)
def
= a(z).([z= x]ok+[z 6= x]no),

wherex,z : 1..10, andX u.d. on the same interval. It is immediate to check that the
ratio in (13) is maximized by any ofs= ad ·ok or s= ad ·no, for d ∈ 1..10. This
yieldsR (CheckOnce; X) = B(1

10)/2≈ 0.234.

Remark 7.1. The proposition above allows one, at least in principle, to compute
the rate of any process having a finite symbolic transition system. This can be seen
as follows.

Let P(x̃) be one such process. Relying onP’s symbolic transition system, it
is possible to compute, for any given traces, a logical formulaφs(x̃) expressing
the exact condition on ˜x under whichP(x̃) can performs (we will not discuss the
details here – see [19, 6]).

By considering all possible traces in this way, one gets a finite set of formulae
{φ1(x̃), ...,φk(x̃)}. The reason why this set is finite is that anyφs can be written as

23

a disjunctive normal form using as atoms the formulae appearing in the symbolic
transition system ofP(x̃), which is finite.

For eachi = 1, ...,k, let si be the shortest trace associated withφi , and assume
empty traces and tautologies are discarded away. Note that for each tracesi , the
probability thatP(X̃)

si=⇒ holds true is simply Pr(φi(X̃) = true). Thus,R (P; X̃)

is the greatest among the ratiosH(φ1(X̃))
|s1|

,...,H(φk(X̃))
|sk|

. By statistical methods it is

feasible to estimate the probabilities Pr(φi(X̃) = true), even when it is difficult to
obtain explicit expressions for them (e.g., by estimating the fraction oftrue values
obtained when repeatedly evaluatingφ(x̃) for values of ˜x drawn according tõX).

The next result explains the relationship between the notion of rate and absolute
leakage. In particular, (a) establishes thatA is the maximal amount of information
that can be extracted byrepeatedbinary tests; and (b) provides a lower bound on
the cost necessary to extract this information, in terms ofR – thus providing a justi-
fication for the name "rate". Given a finite sequence of testsT̃ = T(1),T(2), ...,T(n),
we write |T̃| for its cost|T(1)|+ · · ·+ |T(n)|, andP(X̃)‖T̃ for the sequence of r.v.
P(X̃)‖T(1), ...,P(X̃)‖T(n).

Proposition 7.2. Let P(x̃) be an open process and̃X be a tuple of r.v. It holds that

(a) A(P; X̃) = maxT̃ I(X̃ ; P(X̃)‖T̃)

(b) for eachT̃ , I(X̃ ; P(X̃)‖T̃) ≤ |T̃| ·R (P; X̃) .

PROOF:

(a) Let T̃ = T(1), ...,T(n) be a generic sequence of tests, and let
P(X̃)||T̃ = P(X̃)||T(1), ...,P(X̃)||T(n) be the corresponding sequence of
r.v. Let Z = P(X̃), hence A(P; X̃) = H(Z). By symmetry of I :
I
(

X̃;P(X̃)||T̃
)

= H
(

P(X̃)||T̃
)

≤ H(Z), where the last inequality stems
from the data-processing inequality applied to the function G : [Q]≍ 7→
([Q||T(1)]≍, ..., [Q||T(n)]≍).

We show that the max can be attained for a suitable choice ofT̃. By def-
inition of ≃, an outcome[Q]≍ of Z can be identified with the set of traces
L = {s|Q

s
=⇒}, that is, thelanguagegenerated byQ. For any two distinct

outcomes ofZ, sayL andL′, choose a traces∈ (L\L′)∪(L′ \L), and letD be
the set of all such traces. Clearly, for any two outcomes ofZ, sayL andL′, it
holds thatL = L′ if and only if D∩L = D∩L′. In other wordsZ andZ∩D are
equivalent as r.v. We will define a sequence of testsT̃ s.t. P(X̃)||T̃ is equiva-
lent toZ∩D, which will prove the thesis, asH(P(X̃)||T̃) = H(Z) = A(P; X̃).

Let us arbitrarily order the elements ofD as: s1, ...,sn. A vector in{0,1}n

can be identified with a subset ofD in the obvious way. For eachsi ∈ D,

consider the testT(i) def
= ŝi s.t. for anyQ, Q‖ŝi

ω
=⇒ iff Q

si=⇒. By identify-
ing 0 with F = [0]≍ and 1 withS= [ω.0]≍, we see that the r.v.P(X̃)||T̃ =

24

P(X̃)||ŝ1, ...,P(X̃)||ŝn yields outcomes in{0,1}n , i.e. on subsets ofD. More-
over, by definition ofP(X̃)||T̃, the event(P(X̃)||T̃ = L) is the same as the
event(Z∩D = L). In other words,P(X̃)||T̃ andZ∩D are equivalent as r.v.

(b) Fix anyT̃, and assume without loss of generality that|T(i)| > 0 for eachi.
Then we have:

I(X̃;P(X̃)||T̃) = H(P(X̃)||T̃)

≤ ∑n
i=1H(P(X̃)||T(i)) (by (3))

= |T̃| · ∑n
i=1 H(P(X̃)||T(i))

|T̃|

≤ |T̃| ·maxi=1,...,n
H
(

P(X̃)||T(i)
)

|T(i)|
(by (14))

≤ |T̃| ·R (P; X̃) .

�

Note that the cost of extractingall available information,A(P; X̃) = H(Z),
cannot be less thanH(Z)

R (P;X̃)
, for Z = P(X̃). It is important to remark that two

processes with equal absolute leakage may well exhibit different rates. Here is
a small example to illustrate this point.

Example 7.3. Let P(x) andQ(x), wherex : 0..3, be defined as follows:

P(x) = [x = 0](a+b) + [x = 1](b+c) + [x = 2](c+d) + [x = 3](d+a)
Q(x) = [x = 0]a + [x = 1]b + [x = 2]c + [x = 3]d .

AssumeX is u.d. over 0..3. Both P(X) and Q(X) are u.d. on a domain of
four elements: the four distinct equivalence classes[P(i)]≍, resp. [Q(i)]≍, for
i ∈ 0..3. Hence their absolute leakage isH(P(X)) = H(Q(X)) = H(X) = 2 bits.
On the other hand, each nonempty trace ofP occurs with probability 1/2 (i.e.,
Pr(P(X)

s
=⇒) = 1/2 for s∈ {a,b,c,d}), while each nonempty trace ofQ occurs

with probability 1/4 (i.e., Pr(Q(X)
s

=⇒)= 1/4 for s∈{a,b,c,d}). Thus, by Propo-
sition 7.1,R (P;X) = B(1

2) = 1 andR (Q;X) = B(1
4) ≈ 0.811. Proposition 7.2(b)

then implies that gaining all information aboutX costs an attacker at least2
1 = 2

synchronizations in the case ofP, and at least⌈ 2
0.811⌉ = 3 synchronizations in the

case ofQ. Indeed, the sequence of testsa.ω, b.ω is sufficient in the case ofP for
determiningX. The sequence of testsa.ω, b.ω, c.ω is sufficient in the case ofQ.

7.2 Compositionality

The results below are about composing rates of processes. The first proposition
gives upper bounds for the rate of a global system in terms of the individual sub-
systems. These inequalities can be used for compositional reasoning on rates, al-
though the bounds they provide are sometimes rather loose, especially in the case
of restriction (νc). The proof of the proposition is based on simple use of the

25

data-processing inequality plus inequality (14). The subsequent Theorem 7.1 es-
tablishes that, under certain conditions, iteration∗ preserves rate, thus providing
another justification for the definition of rate. We regard this as the main result of
the section.

Proposition 7.3. Let P(x̃) and Q(x̃) be open processes andX̃ be a vector of random
variables of the same type asx̃. Letẽ(x̃) be a tuple of expressions and letṽ be the
tuple of values that maximizesPr(ẽ(X̃) = ṽ). Let φ(x̃) be a logical formula. Then
the following inequalities hold:

(i) R (a(z̃).P; X̃) ≤ maxũ R (P[ũ/z̃]; X̃)
(ii) R (aẽ.P; X̃) ≤ max{H([ẽ(X̃) = ṽ]), R (P; X̃)}
(iii) R (φP; X̃) ≤ H(φ(X̃))+ R (P; X̃)
(iv) R ((νa)P; X̃) ≤ R (P; X̃)
(v) R (P+Q; X̃) ≤ R (P; X̃)+ R (Q; X̃) .

PROOF: We only cover in detail the case (ii), as the other cases are routine appli-
cations of the data processing inequality and/or of inequalities (1–3).

We rely on the trace-based characterization ofR provided by Proposition 7.1.
Let s be a generic nonempty trace andps = Pr

(

(aẽ.P)(X̃)
s

=⇒
)

. Will show that
B(ps)/|s| ≤max{H([ẽ(X̃) = ṽ])), R (P; X̃)}. This is obvious ifs is not of the form
aw̃·s′, as in this caseps = 0 = B(ps). Thus, assumes= aw̃·s′, for somew̃ ands′.
First, note that, by symmetry of the binary entropy functionB(p) around the point
p = 1/2 (see Figure 1), the value ˜v that maximizes the probability Pr(ẽ(X̃) = ṽ)
is also the value that maximizes the entropyB(ẽ(X̃) = ṽ). Second, note that the

r.v. (aẽ.P)(X̃)
s

=⇒ is the same as(ẽ(X̃) = w̃) ∧ P(X̃)
s′

=⇒. From these two facts,
applying the data processing inequality and (3), we have:

B(ps) = H
(

(aẽ.P)(X̃)
s

=⇒
)

≤ H
(

ẽ(X̃) = w̃, P(X̃)
s′

=⇒
)

≤ H
(

[ẽ(X̃) = ṽ]
)

+H
(

P(X̃)
s′

=⇒
)

.

If s′ = ε thenH
(

P(X̃)
s′

=⇒
)

= 0 (asP(X̃)
ε

=⇒ holds with probability 1), and the
thesis follows. Assumes′ 6= ε. Dividing by |s| = 1+ |s′| the inequality obtained
above and then applying inequality (14), we have

B(ps)

|s|
≤

H([ẽ(X̃) = ṽ])+H(P(X̃)
s′

=⇒)

1+ |s′|
≤ max

{

H([ẽ(X̃) = ṽ]),
H(P(X̃)

s′
=⇒)

|s′|

}

but H(P(X̃)
s′

=⇒)
|s′| ≤ R (P; X̃) by definition of rate.

�

A notable omission from the previous proposition is the caseof parallel com-
positionP|Q. Interaction betweenP andQ may give rise to short traces conveying
much information onX. Indeed, synchronization may turn visible actions ofP and
Q into invisible τ’s. This might leadP|Q to exhibit a higher rate than the sum of
P’s andQ’s alone, as illustrated below.

26

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

p

Figure 1: Binary entropy functionB(p) in [0,1]

Example 7.4. ConsiderP(x) = c.[x = 0]a, Q(x) = c with x : 0..1. TakeX u.d. on
0..1. Clearly,P(X) has a rate ofB(1

2)/2= 1
2, while the rate ofQ(X) is 0, asQ does

not actually depend onx. When composing, however, we get forP|Q a rate of 1:
indeed, there is an interaction onc that makes tracea available if and only ifx= 0.
Hence Pr((P|Q)(X)

a
=⇒) = 1

2, which implies the rate is 1.

In order to define iteration on processes, we have to first define sequen-
tial composition. Output on a distinct namestop, not carrying objects, is used

to signal termination of a thread. We define sequential composition asP;Q
def
=

(ν stop′)(P[stop′/stop] |stop′.Q) (with stop′ fresh). This means that the first thread
of P that terminates will trigger execution ofQ. This is slightly different from
sequential composition in the usual sense, that would require termination of all
threads before activatingQ. However, the two notions are equivalent in the con-
text we are going to consider (see definition of determinate process below). For any

closed processP, let iteration∗P be the process recursively defined by∗P
def
= P;∗P.

We show that, under a suitable condition, described below, the rate of∗P is the
same asP’s. The condition requires essentially that termination ofa single thread
in a process is equivalent to termination of the whole process. Its role is that of
forbidding "hidden" interactions between threads belonging to different iterations
of P in ∗P. We discuss its necessity below (Remark 7.2).

Definition 7.5 (determinate processes). Let Q be a closed process. We say that a

trace s isterminating forQ if Q
s·stop
=⇒ . We say that Q isdeterminateif for every

terminating trace s, whenever Q
s

=⇒ Q′ then Q′ ≃ stop. Finally, an open process
P(x̃) is determinate if∑ũ∈Ũ P(ũ) is determinate.

We need another technical condition: let us say thatQ is stable if whenever
Q

ε
=⇒ Q′ (ε = empty trace) thenQ′ ≃ Q.

Theorem 7.1(iteration rate). Suppose that P(x̃) is determinate, and that for each
ũ, P(ũ) is stable. ThenR (∗P; X̃) = R (P; X̃).

27

PROOF: We show that for each nonemptys there exists a nonemptys′ s.t.

H(∗P(X̃)
s

=⇒)/|s| ≤ H(P(X̃)
s′

=⇒)/|s′|, that proves, by Proposition 7.1, that
R (∗P; X̃) ≤ R (P; X̃). The proof of the opposite inequality is easier and omit-
ted.

We proceed by induction ons. Suppose|s| > 0 and letT denote the set of

terminating traces ofS
def
= ∑ũ∈Ũ P(ũ). There are two cases fors.

(1) No trace inT is a prefix ofs. In this case, it is easy to see that by definition
of determinate process, for each ˜u, ∗P(ũ)

s
=⇒ iff P(ũ)

s
=⇒, henceP(X̃)

s
=⇒

is equivalent to∗P(X̃)
s

=⇒, and we can takes′ = s.

(2) There iss1 ∈ T that is a prefix ofs, says = s1 · s2 for somes2. We can
assume thats1 is not empty (otherwise,S≃ stop, and the thesis would follow
trivially.) Note that, for each ˜u, whenever∗P(ũ)

s1=⇒ P′ then necessarily
P′ ≃ ∗P(ũ) (a consequence of determinacy and stability ofP(ũ)). Using this
fact, one can prove that for each ˜u,

∗P(ũ)
s

=⇒ if and only if P(ũ)
s1=⇒ and ∗ P(ũ)

s2=⇒ .

In other words, the r.v.∗P(X̃)
s

=⇒ is the same as(P(X̃)
s1=⇒ ∧ ∗P(X̃)

s2=⇒).
By virtue of the data-processing inequality and by (3), we obtain

H
(

∗ P(X̃)
s

=⇒
)

≤ H
(

P(X̃)
s1=⇒

)

+ H
(

∗ P(X̃)
s2=⇒

)

.

Now, if s2 is empty, that iss= s1, the second term of the summation above
is 0, hence dividing by|s| we haveH(∗P(X̃)

s
=⇒)/|s| ≤ H(P(X̃)

s
=⇒)/|s|,

and the thesis follows. Assume now thats2 is not empty. Dividing the above
inequality again by|s| = |s1|+ |s2| and using (14), we get

H
(

∗P(X̃)
s

=⇒
)

|s| ≤ max
{ H

(

P(X̃)
s1=⇒

)

|s1|
,

H
(

∗P(X̃)
s2=⇒

)

|s2|

}

.

If the max is the first of the two terms, we sets′ = s1 and stop; otherwise, we
invoke induction hypothesis ons2.

�

Example 7.5. It is easy to check thatCheckOnceStop(x)
def
= a(z).([z= x]ok.stop+

[z 6= x]no.stop) is determinate (x : 1..10). SinceCheck(d) ≃ ∗CheckOnceStop(d),
for every d, by Theorem 7.1 and Example 7.2 we have:R (Check; X) =
R (CheckOnceStop; X) = B(1

10)/2≈ 0.234.

Remark 7.2 (on the necessity of the determinacy condition). In the absence of
determinacy, neither (a)R (P; X̃) ≤ R (∗P; X̃) nor (b)R (∗P; X̃) ≤ R (P; X̃) hold
in general. As a counter-example to inequality (a), consider P(x) = [x= 0]a.stop+
[x = 1]a.a.stopwith x : {0,1}, which is not determinate. ForX u.d. on{0,1}, the
ratio B(ps)/|s| is maximized by the traces= a ·a, for which ps = 1/2 (it occurs

28

iff X = 0), henceR (P; X̃) = B(1/2)
2 = 1/2 (note that the traces = a yields no

information onx, as it can be performed regardless of the value ofx). On the other
hand, all traces of∗P are of the forma· · ·a and occur with probability 1: that is
ps = 1 for any tracesof that form, andps = 0 for traces of a different form. Hence
H(ps) = 0 for all s, andR (P; X̃) = 0.

As a counter-example to inequality (b), considerP′(x) = [x = 0]a.b+stop.a+
[x = 1]a, with x : {0,1}, which, again, is not determinate. ForX u.d. on{0,1}, the
ratio B(ps)/|s| is maximized by the traces= a ·b, for which ps = 1/2 (it occurs
iff X = 0), henceR (P′ ; X̃) = B(1/2)

2 = 1/2. On the other hand,∗P′ has a shorter
traces = b, which arises from interaction betweena in P′ and [x = 0]a.b in ∗P′

(recall that∗P′ def
= P′;∗P′) and occurs with probability 1/2 (i.e. iff X = 0). Hence

R (∗P′ ; X̃) = 1.

7.3 Rate of leakage and other security measures

It is easy to relate rate of leakage to error probability and guesswork, along the
lines of Section 6. We show the details of the error probability case, and just state
the result for the case of guesswork, as the details can be easily filled in by the
reader.

We consider the attacker’s error probability of guessingX after an effort of
N ≥ 0 synchronizations withP. AssumingX has outcomes inU , this probability
can be defined as

εX,P,N
def
= inf

g,T̃ :|T̃|≤N
Pr

(

g(P(X)||T̃) 6= X
)

whereg ranges over all functions of type{S,F}∗ →U . That is,g takes a sequence
of test outcomes – success or failure – and yields a guess for the value ofX.

Like in the case of absolute leakage, we rely on Fano’s Inequality (10). For
arbitrary but fixedg andT̃ s.t. |T̃| ≤ N, from (10) we get that:

Pr
(

g(P(X)||T̃) 6= X
)

≥ εX,P(X)||T̃ ≥
H(X

∣

∣ P(X)||T̃)−1

log|X|
=

H(X)− I(X ; P(X)||T̃)−1
log|X|

.

But, by Proposition 7.2(b),I(X ; P̃(X)||T̃) ≤ NR (P;X), hence we get

Pr
(

g(P(X)||T̃) 6= X
)

≥
H(X)−NR (P;X)−1

log|X|
.

SinceT̃ andg are arbitrary, we get

εX,P,N ≥
H(X)−NR (P;X)−1

log|X|
.

In complete analogy, we can define guesswork forX afterN synchronizations

with P asGP,N(X)
def
= inf |T̃|≤N G(X

∣

∣ P(X)||T̃) and prove the following lower bound:

GP,N(X) ≥
2H(X)−NR (P;X) +1

e
.

29

A1 A2

A3A4

Figure 2: A ring-shaped network withN = 4 nodes.

8 An extended example

We analyze absolute leakage and rate of leakage of a non-trivial system inspired by
– but much simpler than – anonymity protocols in the style of Crowds [28]. A typ-
ical goal of these protocols is allowing a group of users to exchange messages over
a public network, while hiding the identities of the sendersof individual messages
from an external (passive) eavesdropper. An essential ingredient to achieve this
goal is a routing policy of messages that aims at confoundingthe eavesdropper as
to who is sending to whom at any given moment. Here we considerone such pol-
icy for a simple ring-shaped network and quantify the average information leaked
to the eavesdropper about the sender, the receiver and the message in a run of the
protocol. The average is taken with respect to the random choice of the sender, of
the receiver and of the message. In the three subsections below, we give a descrip-
tion of the system and then discuss its absolute leakage and rate of leakage. In that
discussion, for the sake of readability we have preferred not to dwell on technical
details, which can be found in Appendix C.

8.1 Description of the system

A set of N ≥ 2 nodesA1, ...,AN are connected throughN public, unidirectional
channels so as to form a ring-shaped network. This is shown inFigure 2 forN = 4.
The purpose of a run of the protocol is to let a sender nodeAs transmit a one-bit
messagem∈ {0,1} to a receiver nodeAr . The pieces of information represented
by r, m ands should be concealed. SinceAs andAr may possibly be not directly
connected, the messagem may have to be routed through intermediate nodes. The
protocol consists ofN stages. To confound the eavesdropper, at each stage,every
nodeA j sends a message to the next node in the ring,A j+1 (all indices here are
intended modN). More precisely, the node that currently holds the "genuine" mes-
sagem – initially As – sendsm, while any other node sends an arbitrarily chosen
bit m′. EachA j must receive a message fromA j−1 before proceeding to the next
stage. Note that after(r − s) modN stages, messagem has actually reached the
receiverAr : the remaining stages are executed for the sole purpose of hiding the
relation betweensandr.

30

We make a few assumptions to make our analysis feasible. We analyze leakage
due to asingle nodeof the network, sayA j with j ∈ 1..N. In other words, we
consider a situation where a local attacker eavesdrops on a single nodeA j . The
attacker can observe incoming and outgoing messages, but cannot tamper with
them. He can, however, force the re-execution of the whole protocol with the same
parameters (e.g., by fooling participants into believing that some messages sent to
A j have been lost). We furthermore assume that the secretsr, m ands, as well as
any routing information needed by them, have somehow been distributed securely
to the participants prior to the protocol’s execution – thatis, we do not model the
secure distribution of the secret parameters.

The behaviour of thejth node of the network from the point of view of the
attacker is modeled by the processA j defined below. There,s, r, i are variables
of type 1..N andm is a variable of type 0..1. We use input actionsin0 and in1

(resp. output actionsout0 and out1) to denote the reception (resp. sending) of
bits 0 and 1 from the nodeA j−1 (resp. to the nodeA j+1). We make use of the
following notational shorthand. "if φ then P else Q" stands forφP + ¬φQ;
moreover, "inx.Q", wherex is a variable of type 0..1, stands for[x = 0]in0.Q[0/x]+
[x = 1]in1.Q[1/x]; similarly for outx.Q. We denote by path(s, j, r) the predicate that
is true if and only if nodej is in the path froms to r (e.g., path(3,4,1) holds true for
a configuration ofN = 4 nodes; note that we set path(s, j,s) to true only if j = s).
Finally, we consider the predicate holds(s, j, r, i) which tells if nodej will hold the
genuine message at the beginning ofith stage, counting stages from 0 toN− 1;
formally

holds(s, j, r, i) iff path(s, j, r) andi = j −s modN .

E.g. holds(3,4,1,1) holds true in the configuration with 4 nodes.
B j(s, r,m, i) representsA j ’s behaviour from theith stage onward, counting

stages from 0 throughN−1.

A j(s, r,m)
def
= B j(s, r,m,0)

B j(s, r,m, i)
def
= (i < N)

(

if holds(s, j, r, i) then outm

else out0 +out1

| if holds(s, j −1, r, i) then inm.B j(s, r,m, i +1)

else in0.B j(s, r,m, i +1)+ in1.B j(s, r,m, i +1)
)

.

The two threads that composeB j correspond to the following behaviour:

• at each stage,A j must send a bit to its successor in the ring: ifA j currently
holds the genuine messagem, then it is thism that will be sent (this is the
first then branch), otherwise 0 or 1 will be nondeterministically chosen and
sent (this is the firstelse branch);

• at each stage,A j must receive a bit from its predecessor in the ring: ifA j−1

currently holds the genuine messagem, then it is thism that will be received

31

(this is the secondthen branch), otherwise otherwise 0 or 1 will be nonde-
terministically chosen and received (this is the secondelse branch).

To exemplify the functioning of the node, let us instantiatethe above specification
of B j to the cases= 1, j = 3 andr = 4, for the 4-nodes network in Figure 8.1. We
get the following relations which explain the behaviour of the system (recall that
∼ denotes strong bisimilarity):

B3(1,4,m,0) ∼ out0 +out1 | in0.B3(1,4,m,1)+ in1.B3(1,4,m,1)
B3(1,4,m,1) ∼ out0 +out1 | inm.B3(1,4,m,2)
B3(1,4,m,2) ∼ outm | in0.B3(1,4,m,3)+ in1.B3(1,4,m,3)
B3(1,4,m,3) ∼ out0 +out1 | in0 + in1 .

(15)

Note that this is a description ofA j ’s behaviour from the point of view of the
attacker. This description says little about the "physical" implementation of the
node. Indeed, routing information would normally be found in message headers
and not "hardwired" into the processes (see also Remark 8.1 below).

In the analysis below, we assume the receiverr, the senders and the message
mare chosen according to three independent random variablesS, RandM, respec-
tively, with S andR uniformly distributed. We leth = H(M) (this is 1 bit if M
is chosen at random). We want to analyze absolute leakage andrate of leakage
relative to the random variable

Z
def
= A j(S,R,M) .

8.2 Absolute leakage

We first assume the attacker already knows a piece of information Y telling him
whether j is in the path fromS to R (Y = true) or not (Y = f alse). We discuss the
two cases separately.

In the caseY = f alse, at each stage bothelse branches are taken, as neither
of the two instances of holds(·) ever evaluates to true. As easily seen, the resulting
behaviour ofB j , hence ofA j , does not depend onS, Ror M. Therefore, in this case
the absolute leakage due toA j is 0, that is, the attacker does not learn anything,
apart from the very fact thatj is not in the path:

H(Z
∣

∣ Y = f alse) = 0.

In the second case, the attacker, by observingA j , can tell at which stagei the
genuine messagem is sent to the successor. Intuitively, in all (re-)executions of
the protocol there is a unique stage at which it is always firedthe sameoutput
(outm), rather than one of two possible (out0 + out1); see e.g. the equations (15)
above, where the stage in question isi = 2. This way, the attacker can tell the
distance betweenSand j, hence the identity of the senderS, since j is known. As
a consequence, he can also tell the value ofm, which is directly observed at stage

32

i. He cannot tell the identity of the receiver, though. Therefore, in this case the
absolute leakage due toA j is

H(Z
∣

∣ Y = true) = H(S)+H(M) = logN+h.

Now, j is found in the path from the sender to the receiver approximately in
half of the cases, that is the probability thatY = true is about12 (for large values of
N; the exact value is given in the appendix). HenceH(Y)≈ 1. The overall leakage
can hence be computed as

A(A j ;S,R,M) = H(Z)
= H(Z,Y)
= H(Y)+H(Z

∣

∣ Y)

≈ 1+ 1
2H(Z

∣

∣ Y = true) = 1+ 1
2(logN+h) .

where in the second equality we have used the fact thatH(Z) = H(Z,Y), that is, if
observingZ, observing alsoY does not provide additional information. The above
formula can be interpreted as follows: when the number of nodes is large,A j leaks
on the average approximately half of the message content andhalf of the bits of
the sender’s identity, plus one bit saying whetherA j is in the path from the sender
to the receiver. Intuitively, this is the case because in half of the cases, i.e. whenj
is not in the sender-receiver path, the attacker cannot say anything aboutM, Sand
R – apart from the very fact thatj is not in the path – while in the other half of the
cases, whenj is in the path, the attacker can tell preciselySandM.

8.3 Rate of leakage

For any tracet, let pt be Pr(A j(S,R,M)
t

=⇒). The rate we have to estimate is the
supremum of

B(pt)

|t|

taken over all nonempty tracest. For reasons explained in the appendix, with-
out loss of generality we can confine ourselves to examining traces where output
actions are fired eagerly, that is traces of the form

t = outm0 · inm′
1
·outm1 · · · inm′

k
·outmk

with 0≤ k≤ N−1 andmi,m′
i ∈ 0..1. Let us now estimate the probabilitypt .

In the first place, it holds thatpt ≥
1
2, as shown below. Now, the binary entropy

function B(p) attains its maximum in the pointp = 1/2 (see Figure 1); hence, in
order to maximizeB(p)/|t|, while keeping|t| fixed, it is convenient to chooset
that minimizespt , i.e. makespt as close as possible to12.

As explained below, this is achieved ift is chosen such that, for all 1≤ i ≤ k,
m′

i 6= mi. By inspection of the code ofA j , such a trace can be performed if and
only if the following predicate depending onS, R andM is true (here and in the

33

following we abbreviate holds(S, j,R, i) as holds(i)):

condt(S,R,M) = (¬holds(0)∨M = m0) ∧
k̂

i=1

¬holds(i) .

This means: if the node holds the genuine message at stage 0, then the output
m0 observed at stage 0 must be the genuine message; moreover, atnone of thek
subsequent stages may the node hold the genuine message, as the output at stagei,
mi, can be different from the input at the preceding stage,m′

i , if and only if the node
does not hold the message at stagei. Thus,pt is the probability of condt(R,S,M)
to hold true. Note that considering a trace withm′

i = mi for somei ≥ 1 would lead
to replacing some "¬holds(i)" conjuncts in the above condition with the weaker
"¬holds(i)∨M = mi", which would make for a higher probability.

By simple logical manipulation, the condition condt(S,R,M) is seen to be
equivalent to the following:

(holds(0)∧M = m0) ∨
k̂

i=0

¬holds(i) (16)

It is easy to evaluate separately the probability of the two disjuncts in the condition.
Indeed, holds(0) is equivalent toS= j (the sender must coincide with the node for
the node to hold the message at stage 0). For simplicity, assume Pr(M = m0) = 1

2
(this does not really affect the result of the analysis). By independence ofSandM
we have

Pr(holds(0)∧M = m0) =
1

2N
.

The second disjunct in (16) has the following probability (the computation is de-
tailed in the appendix):

Pr(
k̂

i=0

¬holds(i)) = 1−
k+1

N
(1−

k
2N

) .

Since the two disjuncts in (16) do not intersect (as holds(0) and¬holds(0) cannot
be true at the same time), we can sum up their probabilities and get

pt =
1

2N
+1−

k+1
N

(1−
k

2N
) .

As k goes from 0 toN−1, pt decreases from 1− 1
2N to its minimal value1

2. This

shows thatpt ≥
1
2. The ratio B(pt)

|t| as a function ofk is plotted in Figure 3 in the
case ofN = 100 nodes. As seen, the maximum is obtained fork = 0, yielding a
rate of

R (A j ; S,R,M) = B(
1

2N
) . (17)

(we have used the fact thatB(1− p) = B(p)). Hence the traces that maximize the
ratio aret = outm0 with m0 ∈ 0..1. Each of these two traces conveys very little

34

0.01

0.02

0.03

0.04

0 20 40 60 80

k

Figure 3: Plot ofB(pt)/|t| as a function ofk (N = 100).

information to the attacker, just telling him that itif S = j then M= m0. As an
example, in the case ofN = 100 nodes,B(pt) ≈ 0.045 bits. Ask increases, the
conveyed informationB(pt) grows, but much slower than the length of the trace
|t|, so that the ratio goes down.

Remark 8.1. In a more realistic scenario, the routing information wouldbe found
in message headers rather than being hardwired in the nodes.Since routing infor-
mation cannot be sent in the clear, some encryption mechanism would be also
called for. Conceivably, the resulting system would be moresecure than the
one discussed above. In particular, the attacker would not be able to tell the
stage at which the genuine message is sent (provided randomized encryption were
adopted); hence also the identity of the sender and of the message would be fully
protected. We cannot directly deal with cryptography and describe such a system
in the present framework.

9 Conclusion and related work

We have presented two quantitative models of information leakage for processes.
Relationships existing among these two models and a functional notion of secrecy
have been studied. The compositionality properties of the models have also been
investigated.

The idealized, "all powerful" adversary encompassed by ourmodels may turn
out to be too strong for many practical purposes. There is much work to be done
in order to go from the present theoretical treatment to a more practical one. In
particular, the ability to show an absence of leakage at the language level does not
imply that there will be no leakage at the implementation level, although it helps
to constrain the types of attacks that can be used effectively, by forcing an attacker

35

to require some additional knowledge relating to, e.g., timing. In a probabilistic
setting where each process induces a probability distribution over the set of traces,
it may be sensible to stipulate that low-probability tracesare more difficult, or
costly, to detect for the adversary than high-probability traces. This is impossible
to describe in the present model, basically because, no matter how improbable a
specific trace is, the attacker can detect that trace with a null effort. In the future, we
plan to examine enhancements of the model involving probabilistic and possibly
cryptographic features.

Use of conditional mutual information as a measure of leakage in computing
systems can be traced back to Millen [26] and to Gray [18]. In the context of
sequential, imperative programs, the significance of this measure with respect to
different metrics of security has been further clarified by Clark, Hunt and Malacaria
in [10, 12, 11]. In particular, our Theorem 5.1, stating equivalence of zero leakage
and secrecy, is clearly related to Millen’s result [26] thatnull conditional mutual
information is equivalent to non-interference in the case of computing automata.
In a language-based setting, essentially the same result has been proved by Clark
et al. (Proposition 4.2 of [10]). Malacaria’s recent work onthe security of looping
constructs [24] extends [10] by introducing a notion of ratefor loops in imperative
programs. We also mention Volpano and Smith’s [34], where a quantified theory of
non-interference for imperative programs is developed, including a notion of rate
of leakage, albeit not based on Information Theory. Di Pierro et al. [15] propose
a notion of indistinguishability for probabilistic constraint programs and study its
relationship with certain security measures, such as the average number of runs
necessary for an attacker to tell two systems apart.

It is worth to notice that the above mentioned works presuppose terminating
computations that produce a set of "results" with a probability distribution. As such
they are not appropriate to a process algebraic setting, where one just cares about
the interactive behaviours of systems (and computations may be non-terminating).

Mutual information is also at the heart of the notion ofchannel capacity, which
is defined as the maximum mutual information between the source and the output
of a (noisy) channel. Indeed, it is perfectly sensible to view a computing system
(program or process) as a channel, where the source is represented by the sensi-
tive information one wishes to conceal and the output is whatever "observable"
is appropriate for the system under consideration (state variables or behaviours).
This analogy is pursued in recent works on anonymity protocols by Chatzikoko-
lakis, Palamidessi and collaborators [8, 7]. As expected, abasic result in this set-
ting is that perfect anonymity corresponds to zero capacity. There is, however, an
important difference between their anonymity-based approach and those based on
secrecy/non-interference (including ours). In essence, the protocol models of [8, 7]
rely onnoiseto conceal sensitive information in the system, e.g. sender’s identity:
the noisier the channel, the lesser the capacity, the more secure is deemed the sys-
tem. Noise generation is modeled by resorting to probabilistic choice. On the other
hand, languages considered in secrecy/non-interference frameworks do not neces-
sarily feature probabilistic operators (ours does not, neither do the languages of

36

e.g. [10, 24]). Indeed, in these languages, it is intended that programmers conceal
a sensitive piece of informationX essentially viadistortion. In coding theory, dis-
tortion is the loss of information that occurs when a sourceX is coded unfaithfully,
i.e. using a number of bits smaller than required. In our model of absolute leakage,
X is "coded up" and made available to the attacker as the r.v.Z = P(X) and proper
distortion happens ifH(Z) < H(X). For uniformly distributedX, distortion is re-
alized if the functionu 7→ [P(u)]≍ is non-injective, with the ideal case being that
this function is a constant. It would be interesting to combine the two approaches
(noise-based and distortion-based) into a single framework.

In the realm of process algebras, a paper by Lowe [23] has introduced a notion
of quantitative non-interference for timedCSP, defined as the number of different
observable "low" behaviours that a "high" user can induce onthe process. This de-
finition is shown to be in agreement with a functional notion of lack of information
flow due to Focardi and Gorrieri [16], which can be regarded asa process-algebraic
version of functional non-interference (a probabilistic extension of this equivalence
is in Aldini et al.’s [2]). This result is somehow related to Wittbold’s [35], where
various notions of lack of information flow for nondeterministic systems, like non-
deducibility and forward correctability, are assessed on the basis of information-
theoretic arguments. In [23], a notion of rate is also introduced that corresponds to
the ratio of leaked information/elapsed time. Lowe’s modelis not easily compara-
ble to ours, due to the different goals and settings (secrecyvs. process-algebraic
non-interference, untimed vs. timed). For example, as noted by Lowe, a notion of
rate directly based on elapsed time is to some extent unsatisfactory: a process that
leaks one Gigabyte during the first second of its execution and then remains silent
forever has a leakage rate of 0, and as such should be deemed assecure. A similar
drawback, in a sequential/imperative setting, arises in the mentioned [24], where
the leakage rate of a looping construct is obtained as the ratio of absolute leakage
and number of iterations of the loop.

Finally, it is worth to mention some recent work in Information Security that
addresses the issue of side-channels attacks against cryptographic hardware from
an information-theoretic perspective very similar in spirit to that presented here:
see e.g. [22, 31, 32]. As an example, the analysis of the modular exponentiation
algorithm found in [22] bears some similarities to our absolute leakage model (Ex-
ample 5.5). We leave for future work the task of establishinga precise connection
between our models and these approaches.

Acknowledgements Comments provided by theICALP 2006 and I&C reviewers
have been very helpful to improve on the presentation of the work.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The Spi-calculus.
Information and Computation, 148(1): 1-70, 1999.

37

[2] A. Aldini, M. Bravetti, R. Gorrieri. A Process-algebraic Approach for the Analysis
of Probabilistic Non-interference.Journal of Computer Security12(2):191-245, IOS
Press, March 2004.

[3] Bach et al. What’s a key-guessing attack? What’s en-
tropy? In Cryptography Frequently Asked Questions, Section 4.9,
http://www.faqs.org/faqs/cryptography-faq/part04/.

[4] M. Boreale. Quantifying Information Leakage in ProcessCalculi. ICALP 2006,
LNCS 4052, Springer, 2006

[5] M. Boreale and R. De Nicola. Testing equivalence for mobile processes.Information
and Computation, 120(2): 279-303, 1995.

[6] M. Boreale and R. De Nicola. A symbolic semantics for the pi-calculus.Information
and Computation, 126(1): 34-52, 1996.

[7] C. Braun, K. Chatzikokolakis and C. Palamidessi. Compositional Methods for
Information-Hiding. InProceedings of FOSSACS ’08, LNCS 4962, Spriger, 2008.

[8] K. Chatzikokolakis, C. Palamidessi, P. Panangaden. Anonymity Protocols as Noisy
Channels.Proceedings of the 2nd Symposium on Trustworthy Global Computing
(TGC 06), Springer, LNCS, 2006. Full version inInformation and Computation, 206:
378-401, 2008.

[9] K. Chatzikokolakis, C. Palamidessi, P. Panangaden. Probability of Error in
Information-Hiding Protocols.Proc. of the 20th IEEE CSF, IEEE Computer Soci-
ety, 2007.

[10] D. Clark, S. Hunt and P. Malacaria. Quantitative Analysis of the Leakage of Confi-
dential Data.Electr. Notes Theor. Comput. Sci., 59(3), 2001.

[11] D. Clark, S. Hunt, P. Malacaria. Quantitative Information Flow, Relations and Poly-
morphic Types.J. Log. Comp.15(2): 181-199, 2005.

[12] D. Clark, S. Hunt, P. Malacaria. A static analysis for quantifying information flow in
a simple imperative language.Journal of Computer Security15(3): 321-371, 2007.

[13] T. M. Cover, J.A. Thomas.Elements of Information Theory. New York, Wiley, 1991.

[14] R. De Nicola and M.C.B. Hennessy. Testing equivalencesfor processes.Theoretical
Computer Science, 34:83–133, 1984.

[15] A. Di Pierro, C. Hankin, H. Wiklicky. Approximate Non-Interference.Computer Se-
curity Foundations Workshop, 2002. Full version inJournal of Computer Security
12(1): 37-82, 2004.

[16] R. Focardi and R. Gorrieri. A classification of securityproperties.Journal of Com-
puter Security, 3(1): 5-34, 1995).

[17] J.A. Goguen, J. Meseguer. Security Policies and Security Models.IEEE Symposium
on Security and Privacy, 1982.

[18] J.W. Gray, III. Towards a mathematical foundation for information flow security. In
Proc. of 1991 IEEE Symposium on Research in Computer Security and Privacy, 1991.

[19] M.C.B. Hennessy and H. Lin. Symbolic bisimulations.Theoretical Computer Sci-
ence, 138(2): 353-389, 1995.

38

[20] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems.CRYPTO 1996: 104-113, 1996.

[21] P. Kocher, J. Jaffe and B. Jun. Differential Power Analysis.CRYPTO 1999: 388-397,
1999.

[22] B. Köpf, D. A. Basin. An information-theoretic model for adaptive side-channel at-
tacks.ACM Conference on Computer and Communications Security2007: 286-296

[23] G. Lowe. Defining information flow quantity.Journal of Computer Security, 12(3-4):
619-653, 2004.

[24] P. Malacaria. Assessing security threats of looping constructs. InPOPL 2007.

[25] J. L. Massey. Guessing and entropy. InProc. IEEE International Symposium on In-
formation Theory., page 204, 1994.

[26] J. Millen. Covert channel capacity. InProc. of 1987 IEEE Symposium on Research in
Computer Security and Privacy, 1987.

[27] J.O. Pliam. On the Incomparability of Entropy and Marginal Guesswork in Brute-
Force Attacks. InProc. Progress in Cryptology - INDOCRYPT 2000, First Interna-
tional Conference in Cryptology in India, Calcutta, India,December 2000. LNCS
1977, Springer-Verlag.

[28] M. Reiter and A. Rubin. Crowds: Anonymity for Web Transactions.ACM Transac-
tions on Information and System Security1 (1), 1998.

[29] D. Sangiorgi and D. Walker.The pi-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

[30] C.E. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, 27:379-423, 623-656, 1948.

[31] F.-X. Standaert, E. Peeters, C. Archambeau, J.-J. Quisquater. Towards Security Lim-
its in Side-Channel Attacks.Proceedings of CHES 2006, Lecture Notes in Computer
Science, vol 4249, pp 30-45, Yokohama, Japan, October 2006,Springer-Verlag.

[32] F.-X. Standaert, T.G. Malkin, M. Yung. A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks.Cryptology ePrint Archive, Report 2006/139,
February 2008.

[33] F. Topsøe. Basic concepts, identities and inequalities – the Toolkit
of Information Theory. Entropy, 3:162–190, 2001. Also available at
http://www.math.ku.dk/~topsoe/toolkitfinal.pdf.

[34] D. Volpano and G. Smith. Verifying Secrets and RelativeSecrecy. InPOPL 2000,
268-276, 2000.

[35] J.T. Wittbold and D. Johnson. Information flow in nondeterministic systems. InProc.
of 1990 IEEE Symposium on Research in Computer Security and Privacy, 1990.

39

A Summary of notation

Information Theory

Pr(A) probability Pr(A
∣

∣ B) conditional probability
X random variable X̃ vector of random variables
H(X) entropy H(X

∣

∣ Y) conditional entropy
I(X;Y) mutual information I(X;Y

∣

∣ Z) conditional mutual information
p̃ probability distribution H(p̃) entropy of distribution
B(p) binary entropy function

Process Theory

a,b channel names x,y variables
u,v values σ substitution
φ formula σ |= φ satisfaction
P process P(x̃) open process
s trace P

s
=⇒ process performs trace

≍ behavioural equivalence [P]≍ behavioural equivalence class

≃ trace equivalence ∼ strong bisimilarity
C[·] context C[P] process replaces hole
T test |T| cost of test

Information Leakage in Processes

P(X̃) open process as random variable
P(X̃)||T test on process as random variable
P(X̃)

s
=⇒ process trace as random variable

A
(

P; X̃
∣

∣ Ỹ
)

absolute leakage from̃X to P givenỸ
R

(

P; X̃
)

leakage rate ofP relative toX̃

40

B Definition of leakage rate for name-passing processes

We give a definition of rate in the pi-calculus and then show that it enjoys a trace-
based characterization analogous to that provided by Proposition 7.1 in the case
without name-passing. Reformulating and extending the rest of the results of Sec-
tion 7 to the pi-calculus is then a matter of routine, and is left to the interested
reader. Note that the definition of rate seen in Section 7.4 does not apply "as is" to
the pi-calculus, as each input prefixa(x).P with x : S gives rise to infinitely many
traces, corresponding to the infinitely many instantiations of the input parameter
x with names in the sortS . However, once a testT and a processP have been
fixed, the "relevant" traces ofT are only those that have a chance of giving rise to a
synchronization withP. In particular, the set of possible instantiations ofx can be
restricted to a (super)set of the free names ofP, sayN. This is the intuition behind
the notion ofN-trace given below.

For ease of presentation, in our treatment below we stick to amonadic pi-
calculus, that is, we consider only processes with action prefixes carrying one ob-
ject, that take the forma(x).P or ae.P. We shall abbreviate(νb)ab.P asa(b).P
whena 6= b. For the sake of symmetry, we shall also admit input prefixes of the
form a(b).P, where the formal parameter is a nameb : S for someS .

In what follows, we lets,s′ range over traces of the formµ1 · · ·µn with n ≥ 0
andµi ::= ad

∣

∣ a(b)
∣

∣ ad
∣

∣ a(b)
∣

∣ ω andd ::= a|v. These traces are taken up
to alpha-equivalence, oncea(b) and a(b) are considered as binders for nameb.
Moreover, it is assumed that actions in traces respect the given sorting system. The
set of names occurring free in input subject position inswill be denoted by ifn(s).

Finally, we writeA
a(b)

−−−→ A′ if A
ab
−−→ A′ andb /∈ fn(A): thusA

s
=⇒ is well-defined

for any traces in the syntax described above.

Definition B.1 (N-traces). Let N be a finite set of names and A be a process or a
test. We say sis aN-trace of Aif A

s
=⇒ and ifn(s) ⊆ N. We say(N,s) may leadA

to successif s is nonempty,ω does not occur in s and s·ω is a N-trace of A.

In what follows,P(x̃) is an open process and̃X a r.v. A testT is a finite process
possibly using the distinct actionω. Clearly, a test has only a finite number of
N-traces.

Definition B.2 (Rate of leakage). For each test T and finite set of names N, the
N-costof T is

|T|N
def
= ∑

s:(N,s) may leadT to success

|s| .

Theleakage rate ofP relative toX̃ is

R (P; X̃)
def
= sup

N,T : fn(P)⊆N, |T|N>0

H
(

P(X̃)‖T
)

|T|N
.

41

To prove the analog of Proposition 7.1 we need some additional definitions
and terminology. Given a traces not containingω, the test ˆsN that checks for the
presence of aN-traces in a process with free names⊆ N is defined by induction
on sas follows:

• ε̂N = ω

• âd·s′N = ad.ŝ′N

• â(b) ·s′N = a(b).ŝ′N∪{b}

• âd·s′N = a(x).[x = d]ŝ′N

• â(b) ·s′N = a(b).[b /∈ N]ŝ′N∪{b}.

For instance, ifs = a(b) · c(d) · db and N = {a,c} then ŝN = a(b).c(d).[d /∈
{a,c,b}].d(y).[y = b]ω. For a traces, its complements is defined by inverting po-
larities of its actions (i.e. by turning inputs into outputs, and vice-versa, and leaving
the object part unchanged). E.g., forsas defined above we haves= a(b) ·c(d) ·db.
Clearlys= s.

The following lemma summarizes what we need to know about ˆsN. The proof
is routine and omitted.

Lemma B.1. Let N be a finite set of names.

a) Let Q be a closed process and s a trace withifn(s)∪ fn(Q) ⊆ N. Then s is a
N-trace of Q if and only if Q‖ŝN

ω
=⇒.

b) Let T be a test and let S be the set of traces s that s.t.(N,s) may lead T to
success. Then

T ≃ ∑
s∈S

ŝN + F

for some F that has no trace s s.t.(N,s) may lead F to success.

c) For each trace s, we have|ŝN|N = |s| = |s|.

Proposition B.1. It holds that

R (P; X̃) = sup
|s|>0

H
(

P(X̃)
s

=⇒
)

|s|
(18)

PROOF: By the previous lemma, part (a), for any traces, P(X̃)
s

=⇒ is equivalent
to P(X̃)‖ŝN, for someN ⊇ fn(P,s). By this fact and by the previous lemma part
(c) the RHS of (18) is not greater than theLHS. For the opposite inequality, fix
any finiteN with N ⊇ fn(P), fix any T with |T|N > 0 and letSbe the set tracess

42

s.t. (N,s) may leadT to success. By the previous lemma, part (b), and by simple
≃-preserving transformations, we can show that, for anyQ with fn(Q) ⊆ N:

Q‖T ≃ Q‖(∑
s∈S

ŝN + F) ≃ ∑
s∈S

(Q‖ŝN)

(note in particular thatQ‖F ≃ 0, as no(N,s) may leadF to success). Hence
TP,X̃ = P(X̃)‖T is equivalent to∑s∈S(P(X̃)‖ŝN) as a r.v. Using this fact and the
inequality provided by Proposition 5.1 withC[·] = ∑s∈S([·]) (or relying on the data
processing inequality), we have that

H(TP,X̃)/|T|N = H
(

∑
s∈S

P(X̃)‖ŝN
)

/|T|N ≤
(

∑
s∈S

H(P(X̃)‖ŝN)
)

/|T|N .

In the last term, we can replaceP(X̃)‖ŝN by P(X̃)
s

=⇒ (by the previous lemma,
part (a)), henceH(P(X̃)‖ŝN) by B(ps). Moreover, by the previous lemma, parts
(b) and (c), we can replace|T|N by ∑s∈S|s| = ∑s∈S|s|. The thesis then follows by
applying inequality (14). �

43

C Details of the example in Section 8

C.1 Analysis of absolute leakage

It is handier to first analyze a case where the attacker knows whether the nodej
is or is not in the path from the sender to the receiver. That is, we consider the
side-information given by the random variable

Y
def
= path(S, j,R)

and we want to first compute

A(A j ; S,R,M
∣

∣ Y) = H(Z
∣

∣ Y) .

The random variableD
def
= (j−S) modN measures the distance between the sender

Sand j. If j is in the path fromS to R (Y = true), then the behaviour ofA j is such
that at theDth stage of the protocol,A j can only fire a unique outputoutm with
m= M, while at any other stage it can nondeterministically choose to betweenout0
andout1 (intuitively, the attacker can tell these two situations apart by repeatedly
executingA j and recording at which stage it always observes the same output). In
other words,A j ’s behaviour in this case depends solely onD and onM, in the sense
that different values for the pair(D,M) correspond to different behaviours ofA j .
Noting thatD can take on the values 0,1, ...,N−1 with uniform probability, these
considerations yield

H(Z
∣

∣ Y = true) = H(D,M) = H(D)+H(M) = logN+h.

On the other hand, ifj is not in the path fromSto R (Y = f alse), thethen branches
are never taken and the behaviour ofA j is independent fromS,R andM. Hence

H(Z
∣

∣ Y = f alse) = 0.

Now, an easy counting argument shows that the probability ofY = true is ≈ 1
2,

more precisely Pr(Y = true) = 1
2(1+ 1

N), so that

H(Z
∣

∣ Y) = Pr(Y = true)H(Z
∣

∣ Y = true) =
1
2
(1+

1
N

)(logN+h) .

Finally, we can compute the absolute leakageH(Z) using first the chain rule to
derive the formula

H(Z) = H(Y)+H(Z
∣

∣ Y)−H(Y
∣

∣ Z)

and then noting thatH(Y
∣

∣ Z) = 0: indeed,Y is determined byZ, as j is in the
path fromS to R if and only if at some stage ofZ a unique output, rather than two
possible, can be observed. To sum up

A(A j ; S,R,M) = B
(1

2
(1+

1
N

)
)

+
1
2
(1+

1
N

)(logN+h) ≈ 1+
1
2
(logN+h) .

44

C.2 Analysis of rate of leakage

Let t be any trace with non-zero probability ofZ = A j(S,R,M), that is, assume

pt
def
= Pr(Z

t
=⇒) > 0.

Firing output actions eagerly maximizes entropy. The following considera-
tions can be justified by inspection ofA j ’s code. LetO be the number of output
actions int, then: (a)t must contain at leastO−1 input actions; (b) ift contains
more thanO input actions, then there is a shorter tracet ′ obtained by erasing some

input action such thatZ
t

=⇒ if and only if Z
t ′

=⇒; (c) if t contains eitherO or O−1
input andO output actions, there is a permutationt ′ of t where input and output

actions alternate with one another such thatZ
t

=⇒ if and only if Z
t ′

=⇒. Using
repeatedly (a,b,c) above, it follows that, when looking fora tracet maximizing the
ratio B(pt)/|t|, we can restrict ourselves to traces of one of two forms

(1) t = outm0 ·inm′
1
·outm1 · · · inm′

k
·outmk

(2) t = inm′
1
·outm1 · · · inm′

k
·outmk

with 0≤ k≤N−1 andmi,m′
i ∈ 0..1. The analysis of traces of the form (2) is similar

to the one for traces of the form (1), seen in Section 8. In particular, the maximum
ratio B(pt)/|t| can be computed similarly and is lower than that achievable using
traces of the form (1). The details are left to the interestedreader.

Evaluating the probability of
Vk

i=0¬holds(i). Using De Morgan’s law, the con-
dition

Vk
i=0¬holds(i) can be written as¬(

Wk
i=0 holds(i)). Since the holds(i)’s do

not intersect with each other (holds(i)∧holds(i′) is false fori 6= i′), the probability
of this event can be written as

1−
k

∑
i=0

Pr(holds(i)) .

A simple counting arguments shows that Pr(holds(i)) = 1
N (1− i

N) (indeed, the
value ofS is fixed and there areN− i possible values forR, out of N2 possible
values for the pair(S,R)). Using the formula for the sum of the integers from 1 to
k yields

k

∑
i=0

Pr(holds(i)) =
k+1

N
(1−

k
2N

)

hence the result.

45

