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Abstract—Today’s cyber-physical systems (CPS) increasingly
operate in social spaces. Examples include transportation systems,
disaster response systems, and the smart grid, where humans
are the drivers, survivors, or users. Much information about the
evolving system can be collected from humans in the loop; a
practice that is often called crowd-sensing. Crowd-sensing has
not traditionally been considered a CPS topic, largely due to the
difficulty in rigorously assessing its reliability. This paper aims to
change that status quo by developing a mathematical approach
for quantitatively assessing the probability of correctness of
collected observations (about an evolving physical system), when
the observations are reported by sources whose reliability is
unknown. The paper extends prior literature on state estimation
from noisy inputs, that often assumed unreliable sources that fall
into one or a small number of categories, each with the same
(possibly unknown) background noise distribution. In contrast,
in the case of crowd-sensing, not only do we assume that
the error distribution is unknown but also that each (human)
sensor has its own possibly different error distribution. Given
the above assumptions, we rigorously estimate data reliability in
crowd-sensing systems, hence enabling their exploitation as state
estimators in CPS feedback loops. We first consider applications
where state is described by a number of binary variables,
then extend the approach trivially to multivalued variables. The
approach also extends prior work that addressed the problem
in the special case of systems whose state does not change over
time. Evaluation results, using both simulation and a real-life
case-study, demonstrate the accuracy of the approach.

I. INTRODUCTION

Modern CPS applications increasingly operate in social

spaces, where humans play an important part in the overall

system. Hence, future applications should increasingly be

engineered with an understanding of the humans in the loop.

In this paper, we focus on the role of humans as sensors in

CPS systems; a practice that is commonly known as crowd-
sensing. Humans act as sensors when they contribute data

(either direcltly or via sensors they own) that a CPS application

can use. For example, drivers may contribute data on the

state of traffic congestion at various locales, and survivors

may contribute data on damage in the aftermath of a natural

disaster. A challenge in this context is that data sources may

be unreliable. In fact, the reliability of individual observers in

crowd-sensing applications is generally not known.

A common thread in CPS research focuses on reliability of

cyber-physical systems. Most research focused on two aspects

of CPS reliability; namely, correctness of temporal behavior

and correctness of software function. In order for crowd-

sensing to become a viable component in CPS feedback loops,

one needs to understand correctness of collected observations
as well. We call this latter challenge the data reliability

challenge, to complement the challenges of timing reliability

and software reliability mentioned above.

Consider a CPS application that uses crowd-sensing to

collect data about a physical environment. The data reliability

challenge refers to designing a state estimator that takes raw

unreliable crowd-sensing data as input and outputs reliable

estimates of the underlying physical state of the environment,

as well as appropriate error bounds. Building optimal state

estimators from noisy inputs is an old topic in estimation

theory and embedded systems. Much like our work, past

research often assumed that sources are unreliable and the

noise model is not known. However, in the case of physical

sensors, prior research usually assumed that errors of different

sensors are drawn from the same distribution (or from a small

set of different distributions). In contrast, we assume that

each source is unique. Hence, each source has its own error

distribution. None of these distributions is known.

In this paper, we also assume that the state of the observed

environment changes over time. Hence, when conflicting ob-

servations arrive, it is not clear whether one is wrong, or

whether the ground truth changed between observations. Had

the reliability of different observation sources been known, it

would have been easy to statistically fuse them, but since error

distributions are both unknown and unique to each source,

reconciling conflicts is a bigger problem. This paper is the

first to offer a rigorous estimation-theoretic approach for state

estimation in crowd-sensing applications, where (i) observers

have unknown reliability (ii) the error distribution is unique

to each observer, and (iii) the observed physical events have

time-varying state. It extends prior work by the authors, that

solved the problem in the restricted special case when physical

state is immutable [35], [31], [32]. Note that, this restriction

is not suited for most cyber-physical systems.

One way to accommodate state changes is to cut time into

small observation windows and consider only one observa-

tion window at a time, during which state can be assumed

constant. One can then apply the former static approach [35]

independently within each window. Unfortunately, this reduces

the number of observations that can be considered within a

given window, making it harder to assess their veracity. A

2014 IEEE Real-Time Systems Symposium

1052-8725/14 $31.00 © 2014 IEEE

DOI 10.1109/RTSS.2014.19

74



much better approach is to take into account the model of

state evolution from one window to the next and reduce trust

in observations that are less consistent with that model. Unlike

traditional estimation problems, where a model of observation

noise is also available, in crowd-sensing, observations can

come from different sources whose reliability (i.e., noise

model) is not known. Hence, it is hard to tell genuine state

changes from incorrect reports. Our contribution lies in taking

a model of state evolution into account such that a maximum

likelihood estimate can be arrived at, that jointly estimates

the reliability of individual observations and the reliability

of individual sources, taking only a dynamic model of the

underlying observed system as input.

We analytically derive an error bound for the above estima-

tor, by computing the Cramer-Rao lower bound [5] that bounds

estimator variance and hence derive confidence intervals. We

then evaluate our algorithm through simulations and a real-

world crowd-sensing application in which sources report the

availability of street parking spots on a university campus.

We show that our algorithm outperforms prior state-of-the-art

solutions in both event state estimation accuracy and source

reliability estimation accuracy.

The rest of the paper is organized as follows. Section II

reviews the related work. Our problem is formulated in

Section III. Section IV describes how a dynamic system

model is converted to an input for our maximum likelihood

estimator. We describe our algorithm in Section V and its

analysis in Section VI. We extend our algorithm to the general

multivalued case in Section VII. Our solution is evaluated in

Section VIII. Finally, we discuss and conclude the paper in

Section IX and Section X respectively.

II. RELATED WORK

Reliability is a critical requirement for cyber-physical sys-

tems [16]. Much prior research focused on temporal and func-

tional reliability of CPS applications. For example, Eidson et

al. [7] presented a programming model called PTIDES for the

reliable timing control of the cyber-physical systems. Clarke

et al. [4] applied formal analysis technique on autonomous

transportation control for cars, trains, and aircraft. Faza et

al. [9] suggested the use of software fault injection combined

with physical failures in identifying integrated cyber-physical

failure scenarios for the smart grid. Sha et al. [25] developed

a hybrid approach that combines fault-tolerant architectures

with formal verification to support the design of safe and

robust cyber-physical systems. Different from prior efforts,

this paper addresses the data reliability challenge that arises

in cyber-physical systems operating in social spaces, where

significant amounts of data are collected from the “crowd”.

In this scenario, the “crowd” functions as a noisy sensor of

large amounts of physical states. A state estimator is needed

to optimally recover reliable data and accurately estimate error

bounds.

The work is motivated by human-in-the-loop cyber-physical

systems; a challenging and promising class of CPS [23].

Many examples of such systems appear in recent literature,

where humans plays important roles in feedback loops, such

as operator, load, disturbance, or controlled plant. For example,

Lu et al. developed a smart thermostat system to monitor

the occupancy and sleep pattern of the residents and turned

off the HVAC when not needed [17]. Huang et al. designed

a mathematical model to determine the insulin injection by

closely monitoring glucose level when it reaches a threshold,

a key challenge to design an artificial pancreas [11]. Our

work is complementary to the efforts mentioned above in

that we investigate the role of humans as sensors. Hence,

we are interested in addressing the reliability challenge that

ensues when data is obtained from unvetted sources, where

the reliability of data sources is unknown and the states of

observed variables may evolve over time.

Our work is related to the system state estimation problem

with unreliable sensors in CPS. Sinopoli et al. designed a

discrete Kalman filter to estimate the system state when the

sensor reports were intermittent [26]. Ishwar et al. estimated

the states of the sink node with noisy sensor nodes in WSNs

[13]. Mathematical tools were proposed by Schenato et al. to

control and estimate the states of physical systems on top of

a lossy network [22]. Masazade et al. proposed a probabilistic

transmission scheme to near-optimally estimate the system

parameter in WSN with sensing noises [18]. However, the

sensor error is either assumed known [18], or generated from

a common distribution with known parameters [26], [13],

[22]. In contrast, in crowd-sensing applications, not only do

we assume that the error distribution is unknown but also

that each (human) sensor has its own possibly different error

distribution. Therefore, none of the prior work is applicable in

crowd-sensing.

The importance of crowd-sensing as a possible data input

in cyber-physical systems is attributed to the proliferation

of mobile sensors owned by individuals (e.g., smart phones)

and the pervasive Internet connectivity. Hence, humans can

be sensor carriers [15] (e.g., opportunistic sensing), sensor

operators [2], or sensor themselves [32]. Wang et al. proposed

data prioritizing schemes to maximize the data coverage in

an information space [38] and to maximize the collected data

diversity [36], [37] for crowd-sensing applications. An early

overview of crowd-sensing applications is described in [1].

Examples of early systems include CenWits [10], CarTel [12],

BikeNet [8], and CabSense [24].

Recently, the problem of fact-finding, which refers to ascer-

taining correctness of data from sources of unknown reliability,

has drawn significant attention. It has been studied extensively

in the data mining and machine learning communities. One

of the earliest efforts is Hubs and Authorities [14] that

presented a basic fact-finder where the belief in a claim

and the truthfulness of a source are jointly computed in

a simple iterative fashion. Later on, Yin et al. introduced

TruthFinder as an unsupervised fact-finder for trust analysis

on a providers-facts network [39]. Pasternack et al. extended

the fact-finder framework by incorporating prior knowledge

into the analysis and proposed several extended algorithms:

Average.Log, Investment, and Pooled Investment [21]. Su et

al. proposed supervised learning frameworks to improve the

quality of aggregated decision in sensing systems [27], [28],

[29]. Additional efforts were spent in order to enhance the
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Fig. 1. An example of CPS system with humans in the loop.

basic fact-finding framework by incorporating analysis on

properties or dependencies within claims or sources.

The above work is heuristic in nature; it does not offer

optimality properties and does not allow computation of error

bounds. The latter is an important requirement for a state esti-

mator in CPS applications. Towards an optimal solution, Wang

et al., proposed a Maximum Likelihood Estimation (MLE)

framework [35], [34] that offers a joint estimation on source

reliability and claim correctness based on a set of general

simplifying assumptions. In their following work, Wang et al.

further extended the framework to handle streaming data [30]

and source dependencies [32]. The approach was compared to

several of the aforementioned fact-finders and was shown to

outperform them in estimation accuracy, while also offering

error bounds. However, their work is unsuited for CPS, since

it did not consider the evolving event states which is common

in CPS applications.

The algorithms proposed in this paper extend the above

MLE based framework by being the first to study the state es-

timation problem (with unknown source reliability) in crowd-

sensing applications with time-varying system states. We fur-

ther derive a Cramer-Rao lower bound for the resulting novel

maximum likelihood estimator.

III. PROBLEM FORMULATION

Consider a CPS application that uses a crowd-sensing

subsystem to estimate the state of a physical environment that

changes dynamically over time. An example of such a system

is shown in Figure 1. It is desired to develop the appropriate

state estimator that converts raw noisy crowd-sensing data,

from sources of unknown reliability, into state estimates of

quantified reliability and error bounds.

We model the physical environment by a set of measured

variables, C, whose values constitute the system state we

want to estimate. We consider applications where the state

of interest varies over time (i.e., the values of these variables

change dynamically).

We focus, in this paper, on the harder case, where state

variables are binary. While it may appear to be restrictive, this

particular case is more computationally challenging because

state, in this case, does not have “inertia”. In continuous

systems, such inertia leads to a smooth state evolution that

can be leveraged to eliminate outliers, extrapolate trends, and

suppress noise. A binary variable, in contrast, can change

between the two extremes of its range (0 and 1) at any time.

Hence, removing incorrect measurements, predicting correct

values, and eliminating noise become harder problems. Indeed

we show that solutions to the binary case can easily generalize

to the multivalued-state case.

One should also note that exploring systems of binary states

is more than just a step towards understanding more general

state representations. Binary state is a versatile abstraction. It

can indicate, for example, presence or absence of arbitrary

conditions, symptoms, features, or alarms in specified loca-

tions of the monitored system. More importantly, given the

general lack of reliability of human observers in crowd-sensing

scenarios, tasking humans with making simple binary obser-

vations makes more sense from the perspective of minimizing

opportunities for human error. Hence, the authors conjecture

that crowd-sensing will likely gravitate to an application space

where binary variables are the commonly measured state,

assuming that the algorithmic estimation challenge is solved,

which is the purpose of this work.

We denote the set of data sources by S. Time is slotted,

such that all the reports generated within time-slot k are

timestamped with k. Data is available from multiple time slots.

We use a 3D matrix SC to summarize the reports, where

SCi,j,k = v means that the source i reports (claims) that

variable j has value v in the k-th time-slot. SC is called the

source-claim matrix in this paper.

In a system with time-varying states, we need to account for

state transitions. We aim at a general formulation that is able to

support a wide range of crowd-sensing applications. Similarly

to what’s done in multi-target tracking and hypothesis testing,

we translate the dynamic or state transition model of a variable

into the joint probability of any given sequence of observed

values over a finite time horizon. A different probability is

computed for each possible sequence. For example, assuming

that a variable has three possible values, a, b, c, and that the

finite time horizon has two time-slots, we have 32 = 9 possible

sequences (or trajectory hypotheses), each has a probability

that is computable from the dynamic system model.

In general, suppose that a variable j has q possible val-

ues and we consider a window of H time-slots, then we

must consider qH hypotheses on its possible trajectory. The

probability of each hypothesis can be computed from the

dynamic state transition model. We call these probabilities

the trajectory probability vector for variable j. Combining the

trajectory probability vectors of all variables, we thus have

a trajectory probability matrix denoted by P . Note that, the

trajectory probability matrix represents prior beliefs that can

be computed in advance from the system model. It remains to

combine those prior beliefs with received claims of different

observers who report values of some variables in some time

slots.

It is not hard to see that the size of P increases expo-

nentially in H , which prevents us from considering a long

history. Fortunately, we only need a relatively short history

to estimate current system state within reasonable accuracy as
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shown in the evaluation, Section VIII. As per our evaluation

results, considering the past 5 time-slots leads to a reasonably

accurate estimation on the current state, and considering more

history actually results in very small increments in estimation

accuracy. This is because that the older state has less influence

on the current state, and thus can be omitted without much

loss of estimation accuracy. Therefore, our state transition

formulation is both general and computationally feasible in

practical settings.

Let us denote the two possible values of each binary state

variable in our model by T and F , respectively. (In Section V,

we generalize our model to the multivalued case.) Since in

crowd-sensing, participants report state at will, and in no

systematic fashion, in the binary case, three values become

possible in the source-claim matrix SC, namely, T , F , or

U , where U represents unknown, meaning “lack of reports”.

The default value of the source-claim matrix SC is U , which

means that we do not assume a default system state.

In contrast to much prior work on state estimation from

unreliable sources, we assume not only that source error

distribution is not known, but also that each source has a

different error distribution. In the case of binary signals,

one can summarize the error distribution by a single value,

ti, denoting the reliability of source i. It is defined as the

probability that when i claims that variable j has value v
at time j, it is indeed of value v at that time. Hence, the

probability of error is 1 − ti. (For multivalued signals, the

above is only a partial specification of the error probability

distribution since it does not mention how the probability of

error is split across possible error values.) Let Cj,k denote

the value of variable j in time-slot k, and SCi,j,k denote

the value of variable j that source i reports in time-slot

k. The reliability of source i can be formally defined as

ti = Pr (Cj,k = v|SCi,j,k = v). Let’s use a short notation

Cv
j,k for Cj,k = v, and SCv

i,j,k for SCi,j,k = v, then the

source reliability is:

ti = Pr
(
Cv

j,k|SCv
i,j,k

)
.

Let Ti,v denote the probability that source i reports that

variable j is in state v given that the variable is really in

state v at that time. Let Fi,v denote the probability that source

i reports that variable j is in state v̄ given that j is in state v.

Formally, Ti,v and Fi,v are defined as

Ti,v = Pr
(
SCv

i,j,k|Cv
j,k

)
, Fi,v = Pr

(
SC v̄

i,j,k|Cv
j,k

)
.

Note that, Ti,v + Fi,v ≤ 1, since it is also possible that the

source i does not report the value of the variable. Let u denote

the “Unknown” value in the source-claim matrix SC, we have:

1− Ti,v − Fi,v = Pr
(
SCu

i,j,k|Cv
j,k

)
.

We denote the prior probability that a source i makes a claim

by si, and denote the prior probability that any variable at any

time is in state v by dv . By the Bayesian theorem, we have:

Ti,v = ti · si/dv, Fi,v = (1− ti) · si/dv. (1)

Our problem can be formulated as follows: Given the
source-claim matrix SC for the past H time-slots, and given

the trajectory probability matrix P , jointly estimate both the
reliability of each source in S, and the current state of each
variable in C.

IV. COMPUTING TRAJECTORY PROBABILITIES

Before describing our solution to the above problem, in this

section, we use two examples (with different state transition

models) to illustrate how a trajectory probability matrix P is

computed.

A. Independent State Change

We first start with a simple state transition model where

the value of each variable is independent from that of the

other variables as well as its history values. For simplicity,

we consider binary variables. The multivalued case can be

generalized trivially. In this system, two parameters are enough

to model state: (1) Pt, the probability that a variable is in state

T , and (2) Pf , the probability that a variable is in state F .

Given a value sequence of a variable, we can compute the

joint probability of all elements of the sequence easily. For

example, the joint probability of a value sequence TTF is

simply P 2
t Pf . Therefore, if we use the last H time-slots to

estimate the current system state, we can define the trajectory

probability matrix P using 2H joint probabilities; each joint

probability is for one possible sequence of length H .

B. Markov Model

We now consider a system whose state transitions follows

a Markov model, in which current state (the values of the

variables in the system) is determined only by its last state. For

simplicity, again, in this example, the variables are binary. The

multivalued variables can be easily generalized. In a Markov

model with binary variables, two transition probabilities are

enough to describe the system dynamics: (1) Ptf , the proba-

bility that a variable changes its current state from T to F (in

the next time-slot), and (2) Pft, the probability that a variable

changes its state from F to T . The probability that a variable

remains in the T state in the next time-slot (Ptt) can be easily

computed by Ptt = 1− Ptf . Similarly, Pff = 1− Pft.

Given a state trajectory, and the probability of its initial T
state P 0

t or F state P 0
f (such that P 0

t + P 0
f = 1), we can

easily compute its probability. For example, if the trajectory

is TTF the joint probability of the state sequence is P 0
t ·

Ptt · Ptf , where Ptt and Ptf are the transition probabilities.

Therefore, if we exploit the last H time-slot to estimate the

current system state, in this model, the trajectory probability

matrix P can be computed using the joint probabilities of 2H

state combinations, where each of the joint probabilities can

be easily computed as illustrated above.

The above examples are selected for the ease of illustration.

For evaluating trajectory probabilities in the presence of more

complex system dynamics, please refer to hypothesis testing

and target tracking literature.
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V. DYNAMIC STATE ESTIMATION

In this section we describe our state estimator for crowd-

sensing applications. We adopt a maximum-likelihood estima-

tion framework, and restate the problem as one of finding the

set of (i) source reliability values, and (ii) trajectories of state

variables that jointly maximize the likelihood of our observa-

tions (i.e., received claims). This problem is then solved using

the Expectation-Maximization framework [6]. We call the re-

sulting algorithm EM-VTC (Expectation-Maximization algo-

rithm for the time-Varying ground Truth case with Conflicting

claims).

A. Deriving a Crowd-sensing State Trajectory Estimator

Expectation-Maximization (EM)[6] is a machine learning

algorithm to find the maximum likelihood estimates of pa-

rameters in a statistical model when the likelihood function

contains latent variables. To apply the EM algorithm, we

need to define the likelihood function L(θ;x, Z)1, where θ
is the parameter vector to be estimated, x is the vector of

the observed data, and Z is the vector of the latent variables.

After defining the likelihood function, EM iteratively applies

two steps called the E-step and the M-step until they converge

to a solution that computes the values of both the parameter

vector and the latent vriables. The mathematical formulation

of these iterations is given below:

• E-step: Given the current (estimated) parameter vector

and the observed data, compute the expectation of the

latent variables.

Q(θ|θ(n)) = EZ|x,θ(n) [logL(θ;x, Z)]. (2)

• M-step: Find the parameters that maximize the Q function

defined in the E-step, and use these parameters for the

next iteration.

θ(n+1) = argmax
θ

Q(θ|θ(n)) (3)

We introduce a latent variable zj,k for each state variable j
in time-slot k to denote its estimated value in that time-slot.

We use vector zj to denote the estimated time-series of state

variable j in the last H time-slots, where H is a parameter of

the algorithm as described in Section III. We use Zj,k to denote

the random variable corresponding to zj,k, and the Zj,k’s, ∀j ∈
C and k ∈ {1, 2, · · · , H}, constitute the random matrix Z. We

define x to be the 3-dimension source-claim matrix SC, where

xj is the matrix of reported observations of variable j from

all sources in S of all of the H time-slots. Note that, the

matrix may be sparse (i.e., containing a lot of “U” values)

since many sources will not have observed many variables.

We define the parameter set θ to be {(Ti,v, Fi,v)|∀i ∈ S, v ∈
{True, False}}, where Ti,v and Fi,v is defined in Equation

(1).

The likelihood of receiving the claims reported by all

sources in a crowd-sensing application becomes as follows:

1In this paper, we use capital letters for random variables, such as Z, and
use small letters for the values of random variables, such as z.

L(θ;x, Z) =
∏
j∈C

p(xj , Zj |θ) =
∏
j∈C

{ ∑
zj∈ΛH

p(xj , zj |θ) · 1{Zj=zj}
}

=
∏
j∈C

{ ∑
zj∈ΛH

p(zj)1{Zj=zj} ·
∏
i∈S

H∏
k=1

αi,j,k

}

(4)

where Λ = {T, F}, ΛH denotes the Cartesian product2 of the

set Λ itself for H times, and 1{x} is an indicator function

whose value is 1 only if x is true otherwise 0. Please note

that p(zj) is the input (prior) trajectory probability vector

(the j-th row of the trajectory probability matrix P), which is

independent of the parameters θ. Therefore, p(zj) = p(zj |θ).
The αi,j,k is defined as follows:

∀v ∈ Λ, αi,j,k =

⎧⎨
⎩

Ti,v if zj,k = v, SCi,j,k = v
Fi,v if zj,k = v, SCi,j,k = v̄
1− Ti,v − Fi,v if zj,k = v, SCi,j,k = u

(5)

where u denotes the “Unknown” value U in the source-claim

matrix SC.

The derivations of the E-step and M-step are in the Ap-

pendix. In the next subsection, we present our algorithm in

pseudo code.

B. The EM-VTC Algorithm

The pseudo code of our EM-VTC algorithm is shown in

Algorithm 1. The inputs of our algorithm are the source-claim

matrix SC with H time-slots, where H is a fixed parameter,

and the trajectory probability matrix P that is learned from

history data. Both the source reliability and the estimated

variable value in the current time-slot are returned by the

algorithm. We estimate the source reliability using Equation

(1), where svi can be calculated from the source-claim matrix

SC, dv can be computed by
∑

j∈C
∑H

k=1 Z
c
v(j, k), and T c

i,v

and F c
i,v are calculated after the EM iterations are converged.

VI. ACCURACY GUARANTEES

After developing the EM-VTC algorithm, the next natural

question is: How accurate is its estimation results? In this

section, we answer the above question by first deriving the

Cramer-Rao lower bound (CRLB) for the EM-VTC algorithm

and then deriving a confidence interval based on the CRLB.

In statistics, the CRLB represents a lower bound on the

estimation variance of a deterministic parameter [5]. Note that

the CRLB derived here is assuming there are enough sources

participating in the crowd-sensing application therefore the

truth of the variables are known with full accuracy, thus the

CRLB is asymptotic. The derivation of the CRLB is in the

appendix.

2For example, if A = {1, 2} and B = {a, b}, the Cartesian product of A
and B is A×B = {(1, a), (1, b), (2, a), (2, b)}.
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Algorithm 1 EM-VTC: Exepctation-Maximization Algorithm

with Time-Varying Variables

Input: The source-claim matrix SC in the latest H time-slots, and the
trajectory probability matrix P .
Output: The estimated values of variables in the current time-slot, and the
estimated reliability of each source.

1: Initialize θ(0) by setting Ti,v and Fi,v to random values between 0 and
0.5.

2: n← 0
3: repeat
4: for Each j ∈ C, each k ∈ {1, 2, · · · , H}, and each v in {T, F} do
5: Compute Z

(n)
v (j, k) based on Equation (11)

6: end for
7: for Each i ∈ S and each v in {T, F} do
8: Compute T ∗

i,v anf F ∗
i,v based on Equation (10)

9: end for
10: n← n+ 1
11: until θ∗ and θ(n) converge

12: Zc
v(j, k) is the converged value of Z

(n)
v (j, k), and T c

i,v is the converged

value of T
(n)
i,v , F c

i,v is that of F
(n)
i,v , for every i ∈ S, j ∈ C, k ∈

{1, 2, · · · , H} and v ∈ {T, F}.
13: for Each j ∈ C do
14: if Zc

T (j, 1) > Zc
F (j, 1) then

15: Variable j is assigned T in the current time-slot
16: else
17: Variable j is assigned F in the current time-slot
18: end if
19: end for
20: for Each i ∈ S do
21: Compute source i’s reliability ti by Equation (1)
22: end for

A. Confidence Interval of Source Reliability

In this subsection, we derive a confidence interval of source

reliability based on the obtained (asymptotic) CRLB (in ap-

pendix). Maximum likelihood estimators exhibit several nice

properties, one of which is asymptotic normality that the MLE

estimator is asymptotically distributed in Gaussian as the data

size is large enough [3]:

(θ̂MLE − θ0)→D N(0, J−1(θ̂MLE)) (6)

where J is the Fisher information matrix as defined in Equa-

tion (13), θ0 and θ̂MLE are the ground truth and MLE of

the parameter θ respectively. In other words, as the data size

growing up, the difference between the true value and the MLE

of the parameters follows normal distribution with mean 0, and

covariance matrix given by the CRLB J−1(θ̂MLE).
The variance of estimation error on parameter Ti,T is

J−1(θ̂MLE)i,i. We know that the reliability of source i is

ti =
dT

sTi
Ti,T by Equation 1. Therefore, by the Δ-method [3],

we have the variance of reliability estimation error equals to

(d
T

sTi
)2J−1(θ̂MLE)i,i. We denote this variance by Vi. There-

fore, the confidence interval to quantify the source reliability

ti is given as follows:

(t̂MLE
i − cp ·

√
Vi, t̂

MLE
i + cp ·

√
Vi) (7)

where cp is the standard score of the confidence level p. For

example, for the 95% confidence level, cp = 1.96.

VII. MULTIVALUED VARIABLE EXTENSION

In this section, we extend our EM-VTC algorithm from

the binary case to a general multivalued case, where each

variable has q (≥ 2) possible values. Although Wang et al. [34]

designed an EM algorithm that takes multivalued variables

for the static state case, we found that their algorithm is not

suitable in the time-varying state case. The main reason is that

the time complexity of each EM iteration in their algorithm is

O(qH), if the last H time-slots are considered in estimating

the current system state. Please note that the EM iterations are

the major time-consuming part of an algorithm under the EM

framework. Therefore, for a large q, the heavy computational

overhead of their algorithm makes it not practically applicable,

especially in time sensitive systems. One of our goal is to

time-efficiently extend our binary solution for the multivalued

case. Specifically, we require a solution in the q-valued case

in which the time complexity of each EM iteration grows no
faster than linearly in q compared with the binary solution.

The pseudo code is shown in Algorithm 2. Our high-

level idea is to reduce the multivalued case to a binary

case. Suppose that in the multivalued case the value set

Λ = {λ1, λ2, · · · , λq}. We first construct q new binary

variables for each q-nary variable (line 1 to line 3). Next, we

construct the source-claim matrix SCb
m for the binary variables

corresponding to each q-nary variable m based on the SC
(line 4 to line 12). We then construct the trajectory probability

matrix Pb
m for the constructed binary variables corresponding

to each multivalued variable m from the trajectory probability

matrix P that is an input of our algorithm (line 13 to line

20). The combinations of SCb
m and Pb

m are denoted as SCb

and Pb respectively. Next, we apply Algorithm 1 with inputs

SCb and Pb to get the source reliability and the converged Zc
T

value of each of the binary variables (line 21). Please note that

here we do not estimate the state of each binary variable, but

only exploit the converged Zc
T values. Finally, we assign each

of the q-nary variables with the value whose corresponding

binary variable has the highest Zc
T value among all the binary

variables corresponding to the q-nary variable (line 22 to line

25).

Please note that here the time complexity for constructing

the trajectory probability matrix for the binary variables is

O(qH+1), and this procedure is executed only once. With the

constructed trajectory probability matrix Pb and the source-

claim matrix SCb, each EM iteration in Algorithm 1 has the

time complexity O(q · 2H). Therefore, we observe that the

computational complexity for the multivalued case increases

almost linearly in the number of possible values that each

variable can take (i.e. q).

VIII. EVALUATION

In this section, we evaluate the performance of our algo-

rithm compared with other state-of-the-art solutions and a

simple baseline algorithm. We first study the performance in

a simulation study, then we evaluate our algorithm in a real-

world crowd-sensing application.

A. Simulation Study

1) Methodology: We build a crowd-sensing simulator in

Matlab R2013b. In the simulation, 200 binary variables are

created whose initial values are assigned randomly. Each
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Algorithm 2 EM-VTC for multivalued variables

Input: The source-claim matrix SC in the last H time-slots, the trajectory
probability matrix P
Output: The estimation of source reliability and the current variable values

1: for Each q-nary variable j ∈ C do
2: Construct q binary variables j1, j2, · · · , jq , such that ji = T if j =

λi and F otherwise.
3: end for
4: Allocate the memory for the source-claim matrix SCb

m for the new binary
variables corresponding to each q-nary variable m. Totally, allocate SCb

with size |S| × q · |C|, and initiate SCb with the “Unknown” value U .
5: for Each i ∈ S, j ∈ C, k ∈ {1, 2, · · · , H} do
6: if SCi,j,k = λm then
7: SCb

i,jm,k ← T

8: for Each m′ ∈ {1, · · · ,m− 1,m+ 1, · · · , q} do
9: SCb

i,jm′ ,k ← F

10: end for
11: end if
12: end for
13: Allocate the memory for the trajectory probability matrix Pb

m for the
new binary variables corresponding to each q-nary variable m. Totally,
allocate Pb with size 2H × q, and initiate Pb by 0.

14: for Each q-nary variable j ∈ C, each value λm ∈ Λ do
15: for Each element γ of Pj do
16: � (Comment: γ is some combination of H q-nary values, and

Pj is a column vector.)
17: Compute the corresponding combination of H binary values of

variable jm and the index γb in Pb
jm

.

18: Pb
jm
← Pb

jm
+ Pj .

19: end for
20: end for
21: Use Algorithm 1 with SCb and Pb to get the source reliability ti for

each i ∈ S and Zc
T (jm, 1) for each j ∈ C,m ∈ {1, · · · , q}

22: for Each j ∈ C do
23: m← argmaxqm=1 Z

c
T (jm, 1)

24: Variable j is assigned with value λm.
25: end for

variable represents a physical event with state T or F . The

initial value of each variable is distributed uniformly at random

(i.e., with probability 0.5 the value is assigned to T and 0.5
it is assigned to F ). For transition probabilities, we assume a

two state Markov model. That is, the value of each variable

in one time-slot depends only on its value in the preceding

one. There are only two states, T and F . The transition

probability from T to T is Ptt, and from F to F is Pff .

These two parameters are enough to determine the other two

transition probabilities in the Markov model. While we could

have considered more complex and realistic systems, our goal

from considering the two-state Markov model was to help

understand the fundamental performance trends of our state

estimator as a function of parameters of the system model.

Results for more complex models would have been harder to

interpret due to the multitude of confounding factors at play.

For the sources, the simulator also choose a reliability

ti for each source i. We set the reliability of each source

randomly distributed in [0.5, 1). In the simulation, each source

is assigned a probability of making claims, si, meaning the

probability that a source reports an observation. The higher

the si is, the more “talkative” the source is.

The default values of the parameters are as follows: the

number of sources is 30, the expected source reliability

E(ti) = 0.6, the factor si = 0.6, the number of history time-

slots to be considered H = 5, the state transition probabilities

Ptt = Pff = 0.5, and the initial ground bias dTj = 0.5

denoting the probability that a variable is assigned T initially.

We compare our algorithm EM-VTC with two state-of-

the-art algorithms proposed in [35] and [34]. The algorithm

proposed in [35] does not consider state changes. It assumes

that the default physical state of each variable is “F”, allowing

sources to report only “T” values of the observed variables.

The algorithm proposed in [34] extends the above algorithm by

considering conflicting claims (i.e., both “T” and “F” values).

However, it still assumes that system state is immutable. For

each of the two algorithm, we further consider two cases: (1)

Applying the algorithm with the data in the current time-slot,

and (2) Applying the algorithm with the data in the last H
time-slots. The algorithm in [35] is denoted by EM-R1 when

it is fed with the data of the current time-slot, and by EM-
Rall when it is fed with the data of the last H time-slots.

The algorithm in [34] is denoted by EM-C1 when used in the

current time-slot, and by EM-Call when used in the last H
time-slots.

We also compare our algorithm to a simple baseline algo-

rithm Voting. Voting estimates the variable to be equal to the

majority vote (i.e., most frequently reported value at the time).

Each simulation runs 100 times and each result is averaged on

the 100 executions.

2) Evaluation Results: In Figure 2, we evaluate the per-

formance of our algorithm as the number of sources varies

from 20 to 100. Other parameters are set to the default values.

From Figure 2(a), we can observe that the false estimation

rate of our algorithm EM-VTC is the smallest among all

the algorithms. The EM-Call and EM-Rall algorithms are

the worst in estimating the variable values, since they do

not consider the fact that the physical state of each variable

changes in time. Without considering the time-varying states,

it is very unlikely to correctly estimate the source reliability,

as shown in Figure 2(b). The reason is that the reports from a

100% reliable source might look “self-conflicting” to EM-Call

and EM-Rall in a system with time-varying states, because

they assume the system state is immutable. Therefore, the

EM-Call and EM-Rall assigns a relatively low reliability to

the 100% reliable source.

EM-C1 and EM-R1 performs worse than EM-VTC, because

they use only the data in the current time-slot, while the EM-

VTC algorithm uses all the data in the last H time-slots.

With more data, the source reliability can be learned better as

shown in Figure 2(b), which in turn results a better estimation

of variable values. EM-C1 outperforms than EM-R1, because

EM-R1 does not distinguish “Unknown” from “False”, thus

EM-R1 gives the F state a higher weight (so higher false

negative rate).

We can also observe from Figure 2, as the number of sources

increases, the estimation of EM-VTC becomes better and

better. The reason is that more sources means potentially less

“Unknown” values in the source-claim matrix SC. Therefore,

estimation becomes more accurate.

Figure 3 shows the performance as the factor si (probability

of reporting) varies from 0.2 to 0.8. Other parameters are set

to the default values. As si increases, the estimation error of

EM-VTC becomes smaller as shown in Figure 3(a). With less

unknown values in the source-claim matrix, the EM algorithm
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(a) Variable state estimation

(b) Source reliability estimation

Fig. 2. Performance as the number of sources
varies.

(a) Variable state estimation

(b) Source reliability estimation

Fig. 3. Performance as the talkative factor si of
sources varies.

(a) Variable state estimation

(b) Source reliability estimation

Fig. 4. Performance as the source reliability ti
varies.

can jointly estimate the source reliability (Figure 3(b)) and

variable value (Figure 3(a)) more accurately. In Figure 3, we

show that EM-VTC outperforms all the baselines in source

reliability estimation as well.

Figure 4 shows the performance as the expected source

reliability E(ti) changes from 0.5 to 0.9. As the expected

reliability increases, our algorithm performs better. When the

expected source reliability is 0.5, the sources essentially make

random reports, offering no information. Therefore, error rate

is around 50%. However, when source reliability increases,

our EM-VTC algorithm outperforms all the others. When the

source reliability is 90%, our algorithm actually estimates the

values of variables 100% correctly.

(a) Variable state estimation as Pff

varies
(b) Source reliability estimation as
Pff varies

(c) Variable state estimation as
Ptt, Pff vary

(d) Source reliability estimation as
Ptt, Pff vary

Fig. 5. Performance as the state transit probability varies.

In Figure 5(a) and (b), we evaluate how the single-sided
system dynamics affect the performance of our algorithm. In

this experiment, the probability of staying in one state, Ptt,

is fixed at 0.5, and the probability of staying in the other

Pff varies from 0.1 to 0.9, emulating how “sticky” that state

is. Figure 5(a) and (b) shows that our algorithm consistently

performs the best no matter what value that Pff takes in terms

of both the variable value estimation and the source reliability

estimation.
In Figure 5(c) and (d), we set Ptt = Pff and vary both from

0.1 to 0.9. The other parameters are set to the default values.

Please note that since the initial ground bias dTj is set to 0.5,

in this simulation the expected number of the T variables and

the expected number of the F variables will always be the

same, although the switching frequency changes. Again, our

algorithm consistently performs the best.

Fig. 6. Variable value estimation performance as the number of history
time-slots being considered varies.

In Figure 6, we evaluate the performance of our EM-VTC

algorithm when the number of time-slots, H , in the sliding
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window considered for prediction varies from 1 to 10. Here

we compare EM-VTC with EM-C1 that only considers the

current time-slot. As shown in Figure 6, when we consider

more history, the estimation is more accurate. However, the

marginal increase in the estimation accuracy decreases.

In Figure 7 we study the performance bounds of our EM-

VTC algorithm in terms of the confidence intervals (CI), which

aims at validating our derived CRLB. In this experiment,

we set the number of sources to 40, and the rest of the

parameters to their default values. The area between the red

solid lines is a 90% confidence interval of the estimators,

and that between the blue dashed lines is a 95% confidence

interval. The confidence intervals are computed from the

CRLB as derived in Section VI. From CRLB, we can compute

the variances of the false positive Fi,F (V ar(FMLE
i,F )) and

false negative Fi,T (V ar(FMLE
i,T )) respectively. By Equa-

tion 6, the 90% confidence interval for the false negative is

FMLE
i,T ± 1.65V ar(FMLE

i,T ), and the 95% confidence interval

for the false negative is FMLE
i,T ± 1.96V ar(FMLE

i,T ). We can

also compute the confidence intervals for the source reliability

estimator. Please note that a 90% confidence interval means

that no more than 10% of the sample points are outside

the confidence interval with high probability, while a 90%
confidence interval means that no more than 5% of the sample

points are not included in that interval with high probability.

From Figure 7(a), we observe that 3 sample points are out

of the 90% CI, which validates our confidence interval since

we allow no more than 4 points out of the 90% CI. For the

95% CI, all points are within it, which validates our confidence

interval again.

In Figure 7(b), 1 points falls out of the 90% CI and no points

falls out of the 95% CI. In Figure 7(c), 3 points fall out of

the 90% CI and no points falls out of the 95% CI. Therefore,

our confidence intervals are computed correctly, which also

validates the derived CRLB.

We also run the above simulation for 100 times, and

compute the average percentage of “bad” sample points among

the whole sample, where “bad” sample points means the points

fall out of the corresponding confidence interval. The results

are shown in the Table I, which also validates our confidence

intervals and thus the derived CRLB.

TABLE I
PERCENTAGE OF SAMPLE POINTS FALLING OUT OF THE CORRESPONDING

CONFIDENCE INTERVAL FOR DIFFERENT ESTIMATORS.

Reliability False negative False positive

90% CI 0.0648 0.0807 0.0865
95% CI 0.0093 0.0138 0.0158

B. A Real-world Case Study

In this subsection, we study the performance of our al-

gorithm through a real-world crowd-sensing application that

aims at assisting drivers to find the available street parking

spots nearby. Recent work on assisting drivers in street parking

relies on pre-deployed infrastructures (e.g. smart meters with

communication capability to a remote center server [20]),

or relies on special sensors to be embedded on cars (e.g.

ultrasonic sensor on the side of a car [19]). We want to

test whether a zero-infrastructural overhead crowd-sensing

approach can be used in this application with the help of our

algorithm.

In this case study, we recorded the availabilities of metered

parking spots on two streets near the department of Computer

Science at University of Illinois Urbana-Champaign for 8 days

(from April 11th, 2014 to April 18th, 2014) using webcams.

30 participants were involved in this case study to report the

availabilities of the parking spots on the two streets from 2pm
to 6pm on April 18th, 2014, and 2833 reports were collected.

We deliberately picked the period from 2pm to 6pm is because

in this period of time the availability of parking spots around

the department of Computer Science has some clear time-

varying pattern; students drive to attend the afternoon classes,

and leave school for dinner around 5pm, then some of them

drive back to school for self studies after dinner. The time-

varying ground truth of the parking availability is shown in

Figure 8.

We first define the time-slot, and define the availability

(occupied/avaiable) of a parking spot corresponding the slotted

time. We partition the time into slots such that each time-slot

is 10 minutes. Therefore, during our experiment on April 18th,

there are 24 time-slots totally. Each parking spot is assigned

with a corresponding variable with values T (representing that

it is occupied) and F (representing that it is available). There

are totally 15 parking spots in our experiment, therefore 15
variables are defined. In each time-slot, if more than half of

the time a parking spot is occupied and the corresponding

variable is assigned T , else the parking spot is defined free

and the corresponding variable is assigned F .

Next, we define the source-claim matrix SC, and the

trajectory probability matrix P that are the inputs of our

algorithm. Each report from the participants is associated with

the time-slot during which it is generated. Both the sources and

the events (variables) are indexed by integers. Therefore, we

can naturally define the source-claim matrix SC to contain

all the reports. In our case study, we only consider past two

time-slots when estimating the variable values in the current

time-slot, which means that the H is set 2 here. The state

transition is modeled by the trajectory probability matrix P
where each element is a joint probability of the current value

and the last time-slot value of a variable. The joint probabilities

are learned from history data between 2pm and 6pm from

April 11th to April 17th. Please note that we did not use the

data on April 18th to learn the trajectory probability matrix.

In this case study, we set all the variable share the same

trajectory probability matrix P . Please note that this is not

exactly accurate, since different variables might have different

dynamics behaviors. However, our evaluation results show that

our EM-VTC algorithm still achieves an accurate estimation

under this imperfect setting.

We compare with 4 baseline algorithms: (1) EM-C1 as

described in the previous subsection, (2) EM-R1 that is also

described previous, (3) Voting, and (4) History where we

only use the state in the last time-slot to estimate the current

state for each variable. The experiment works in a “sliding-

window” style: We start from estimating the variable values
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(a) CI for source reliability estimation (b) CI of false negatives for variable value
estimation

(c) CI of false positives for variable value
estimation

Fig. 7. Performance bounds of EM-VTC in terms of confidence intervals.

of the second time-slot (2:10pm-2:20pm) using the data (the

source reports) in the first time-slot and the second time-slot,

then move on to estimate the system state in the third time-

slot (2:20pm-2:30pm) using data from the second and the third

time-slots, and so on.

The ground truth is shown in Figure 8. From Figure 8, we

can observe that the system state (the availability of parking

spots) did change overtime. During the dinner time (from

5:00pm to 6:00pm), the system state changes more frequently

than that during the working time (before 5:00pm).

Fig. 8. The ground truth of the availability of parking spots.

Fig. 9. The performance of variable state estimation.

The estimation results are presented in Figure 9. In the

figure, the x-axis represents the time-slots that are indexed

using integers, and the y-axis is the estimation error. The red

bar shows the estimation error of our EM-VTC algorithm.

From Figure 9, we hardly observe the red bars, which shows

that our solution in most of the time has zero estimation errors.

The average errors are summarized in Table II.

TABLE II
ESTIMATION ERROR IN PARKING CASE STUDY

Algorithm EM-VTC EM-C1 EM-R1 Voting History

Est. Error 0.0319 0.1855 0.2261 0.2203 0.1420

Please note that the EM-C1 and EM-R1 algorithms perform

worse than the History heuristic that using the variable value

in the last time-slot to estimate its current value, which is

because that our parking data has high correlation between the

last time-slot and the current time-slot as shown in Figure 8,

and that those two algorithms only use the data in the current

time-slot which is not enough to estimate the system state with

high accuracy. Our algorithm uses more data and considers the

system state trajectory, therefore performs the best.

IX. DISCUSSION AND FUTURE WORK

In this work, the source reliability is assumed to be static,

that is a reliable source consistently reports what he/she

has truly observed while an unreliable source reports almost

randomly at all time. A better model would assume a time-

varying reliability. For example, a source might report the

availability of a parking spot more accurately when it is close

to that parking spot than when it is far away. Considering the

mobility of the data sources, we can no longer assume that

the reliability is static. An interesting future work would be

how to solve the data reliability problem in CPS when the

source reliability is time-varying. In this work, the trajectory

probability matrix P is computed in advance and input into

the EM algorithm. It might be better to jointly compute

the trajectory probability while addressing the data reliability

challenges, since the trajectory probability matrix might also

change during the computation, especially when the evolution

of the physical environment is modeled by a set of complicated

differential equations. We left it as a future work as well.

X. CONCLUSIONS

In this paper, we developed a state estimator for crowd-

sensing applications, where humans act as data sources re-

porting observed variables in a dynamic environment. We

demonstrated how a model of environmental dynamics can

significantly enhance our ability to estimate correct state even
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though the reliability of observers is not known. We also

analytically studied its performance by deriving a Cramer-

Rao lower bound for our estimator. Our solution was eval-

uated using both simulations and a real-world crowd-sensing

application. The results show that the solution outperforms

prior approaches that do not properly account for differences

in source reliability (e.g., voting) or do not properly leverage

knowledge of the system model.
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APPENDIX

A. Deriving the E-step

We plug-in the likelihood function, given by Equation (4),

into Equation (2) to derive the E-step.

Q(θ|θ(n)) = EZ|x,θ(n) [logL(θ;x, Z)]

=
∑
j∈C

EZj |xj ,θ(n)

[
log
{ ∑

zj∈ΛH

p(zj)1{Zj=zj}
∏
i∈S

H∏
k=1

αi,j,k

}]

=
∑
j=∈C

∑
zj∈ΛH

p(zj |xj , θ
(n))

{
log p(zj) +

∑
i∈S

H∑
k=1

logαi,j,k

}

(8)

, where

p(zj |xj , θ
(n)) =

p(xj , zj |θ(n))
p(xj |θ(n))

=
p(xj |zj , θ(n)) · p(zj |θ(n))∑

zj∈ΛH p(xj |zj , θ(n)) · p(zj |θ(n))

=
p(zj)

∏
i∈S
∏H

k=1 α
(n)
i,j,k∑

zj∈ΛH p(zj)
∏

i∈S
∏H

k=1 α
(n)
i,j,k

.

(9)

Please note that in the Q function, the parameters are

embedded into the αi,j,k that is assigned different values under

different (i, j, k) settings as defined in Equation (5). Also note

that p(zj |xj , θ
(n)) is a constant with respect to θ.

B. Deriving the M-step

In the M-step, we set the partial derivatives of the Q function

to 0 to get the θ∗ that maximizes the value of Q. That is by

solving ∂
∂Ti,v

Q = 0, and ∂
∂Fi,v

Q = 0, we can get T ∗i,v and

F ∗i,v , for each i ∈ S and v ∈ {T, F}.

T ∗i,v =

∑
j∈C

∑
k:SCi,j,k=v Z

(n)
v (j, k)∑

j∈C
∑H

k=1 Z
(n)
v (j, k)

F ∗i,v =

∑
j∈C

∑
k:SCi,j,k=v̄ Z

(n)
v (j, k)∑

j∈C
∑H

k=1 Z
(n)
v (j, k)

(10)

, where Z
(n)
v (j, k) is defined as:

Z(n)
v (j, k) =

∑
zj :zj,k=v

p(zj |xj , θ
(n)). (11)

The parameter θ∗ is used in our EM-VTC algorithm as

shown in Algorithm 1.

C. Deriving Cramer-Rao Lower Bound

By definition, CRLB is the inverse of the

Fisher information matrix J(θ), where J(θ) =
EX [∇θ log p(X|θ)∇H

θ log p(X|θ)]. Here matrix XH is

the conjugate transpose of matrix X . The CRLB derived in

this subsection is asymptotic by assuming that the values

of variables are correctly estimated by the EM algorithm.

This assumption is valid when the number of sources is
high, as shown in [33]. The loglikehood function under this

assumption is �em(θ;x), as defined in Equation (12).

�em(θ;x) =
∑
j∈C

H∑
k=1

{
1{zj,k=T}

(∑
i∈S

(
1{xi,j,k=T} log Ti,T

+ 1{xi,j,k=F} logFi,T + 1{xi,j,k=U} log(1− Ti,T − Fi,T )
))

+ 1{zj,k=F}

(∑
i∈S

(
1{xi,j,k=F} log Ti,F + 1{xi,j,k=T} logFi,F

+ 1{xi,j,k=U} log(1− Ti,F − Fi,F )
))}

.

(12)

We compute the Fisher information matrix from its defi-

nition, similar as [33]. The parameters in the loglikelihood is

order such that the Ti,T ’s come first, then Ti,F ’s, following by

Fi,T ’s, and finally Fi,F ’s. Let denote the number of sources

by M , so M = |S|. So, we have 4M parameters in total, and

the size of the Fisher information matrix is 4M × 4M . Let’s

denote the n-th parameter by θn. For example, when n ≤M ,

θn = Ti,T where i = n, and when n ∈ [M+1, 2M ], θn = Ti,F

where i = n − M , so on. We denote the total number

of variables by N , i.e., N = |C|. Let J(θ)m,n denote the

element in the m-th row and j-th column of the Fisher

information matrix J(θ). The Fisher information is defined

in Equation (13).

J(θ)m,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−E[ ∂2

∂θm∂θn
�em] = 0 m �= n

−E[ ∂2

∂T 2
i,T

�em]
0 < m = n ≤M,
where i = n

−E[ ∂2

∂T 2
i,F

�em]
M < m = n ≤ 2M,
where i = n−M

−E[ ∂2

∂F 2
i,T

�em]
2M < m = n ≤ 3M,
where i = n− 2M

−E[ ∂2

∂F 2
i,F

�em]
3M < m = n ≤ 4M,
where i = n− 3M

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 m �= n

dT ·N ·H(1−Fi,T )
Ti,T (1−Ti,T−Fi,T )

0 < m = n ≤M,
where i = n

dF ·N ·H(1−Fi,F )
Ti,F (1−Ti,F−Fi,F )

M < m = n ≤ 2M,
where i = n−M

dT ·N ·H(1−Ti,T )
Fi,T (1−Ti,T−Fi,T )

2M < m = n ≤ 3M,
where i = n− 2M

dF ·N ·H(1−Ti,F )
Fi,F (1−Ti,F−Fi,F )

3M < m = n ≤ 4M,
where i = n− 3M

(13)

The Fisher information matrix J(θ) is actually diagonal.

Therefore, the CRLB defined by J−1(θ) can be computed

efficiently by inversing each non-zero element in J(θ).
Note that the CRLB should be computed by the actual

ground truth value of the parameters. However, in real-world

applications, due to lack of the ground truth of those param-

eters, we feed the maximum likelihood estimations of the pa-

rameters to approximate the CRLB, i.e. CRLB is J−1(θ̂MLE).
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