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ABSTRACT
Wireless Sensor Networks (WSNs) have become a new in-
formation collection and monitoring solution for a variety of
applications. Faults occurring to sensor nodes are common
due to the sensor device itself and the harsh environment
where the sensor nodes are deployed. In order to ensure the
network quality of service it is necessary for the WSN to be
able to detect the faults and take actions to avoid further
degradation of the service. The goal of this paper is to lo-
cate the faulty sensors in the wireless sensor networks. We
propose and evaluate a localized fault detection algorithm to
identify the faulty sensors. The implementation complexity
of the algorithm is low and the probability of correct diag-
nosis is very high even in the existence of large fault sets.
Simulation results show the algorithm can clearly identify
the faulty sensors with high accuracy.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Communication

General Terms
Algorithm, Performance, Design

Keywords
Wireless sensor networks, Fault tolerance, Distributed algo-
rithm

1. INTRODUCTION
The dramatic advances in wireless communication and elec-
tronics have enabled the development of low cost, low power,
and multifunctional wireless sensor nodes which consist of
sensing, data processing, and communication components.
These tiny sensor nodes can easily be deployed into a des-
ignated area to form a wireless network and perform spe-
cific functions. With recent intensive research in this area,
wireless sensor networks have been applied in various areas,
such as environment and habitat monitoring, ecophysiology,

condition-based equipment maintenance, disaster manage-
ment, and emergency response.

Due to the low cost and the deployment of a large number
of sensor nodes in an uncontrolled or even harsh or hostile
environments, it is not uncommon for the sensor nodes to
become faulty and unreliable. The networks must exclude
the faulty sensors to ensure the network quality of service.
To identify the faulty sensor nodes is not trivial at all be-
cause of the existing challenges. Sensor nodes are powered
by batteries, which are considered as limited resources. It
is very expensive for the base station to collect information
from every sensor and identify faulty sensors in a centralized
manner. Different applications may require the fault detec-
tion to be conducted in a real-time mode with low latency
or high throughput. Therefore, a localized and distributed
generic algorithm for each node is highly preferred in wire-
less sensor networks.

Traditional testing and fault detection in computer systems
are carried out in the form of built-in self-test (BIST) sub-
systems or in the form of signature verification subsystems.
Built-in self-repair (BISR) techniques are often used to im-
prove the yield in DRAM memories. Our approach adopted
the mutual testing method at the processor level where each
processing element is capable of testing its neighbors [1].
A processing element tests another processing element and
generates a test result based on the success of the test re-
sults. The test results may be arbitrary because the tester
itself can be faulty. A processor is determined to be good
or faulty by diagnosing the collection of all such test results.
The algorithm proposed in [1] is applied to regular connected
multiprocessor systems. However, the topology of wireless
sensor networks is not regular. Therefore, each sensor must
maintain a certain number of neighbors, that is the degree
of the network must be high. In a densely deployed sensor
environment, this condition can be easily realized.

Our major contribution of this paper is the development of a
generic localized fault detection algorithm for wireless sensor
networks. The paper is organized as follows. We first review
the literature in the fault detection area in Section 2. Then,
we define the network model and fault model in Section 3.
The distributed algorithm for faulty sensor identification is
proposed in Section 4. A simple example is also illustrated
in Section 4. Performance analysis is presented in Section
5. Simulation results are reported in Section 6. Finally we
conclude the paper and suggest future work in Section 7.



2. RELATED WORK
In this section, we briefly review the related works in the
area of fault detection in wireless sensor networks.

Fault tolerance in VLSI-based systems and fault tolerance
in distributed systems have been studied intensively in the
past. In VLSI systems, fault tolerance has been addressed
at all levels of abstraction, including circuit level, logic level,
register transfer level, program level, and system level.

In [2], a watchdog processor is used for concurrent system-
level error detection techniques. A watchdog processor is a
small and simple coprocessor that detects errors by moni-
toring the behavior of a system. They showed that a large
number of errors can be detected by monitoring the control
flow and memory-access behavior.

In distributed systems, fault detection and identification has
long been the subject of active research. A large number
of testing connections among units in multiprocessor fault
diagnosis, which is too expensive and even not allowed in
many applications. In [3], they proposed a general approach
to fault diagnosis that is widely applicable and only needs
a limited number of connections among units. The algo-
rithm uses a majority vote among the neighbors of a unit to
determine the status of the unit.

A distributed diagnosis algorithm to locate faulty PE’s in
large-scale regular interconnected structures based on the
concepts of system-level diagnosis is developed in [1]. This
algorithm can either work in a systolic manner or be exe-
cuted on a supervisory processor to identify the faulty pro-
cessor. They showed the probability of correct diagnosis is
very high even in the presence of a large faulty sets.

Recently, fault tolerance and management in WSNs have
drawn attention from the researchers in the area. In [5], a
failure detection scheme using a management architecture
for WSNs called MANNA, is proposed and evaluated. The
scheme creates a manager located externally to the WSN.
It has the global vision of the network and can perform
complex tasks that would not be possible inside the net-
work. Management activities take place when sensor nodes
are collecting and sending temperature data. Every node
will check its energy level and send a message to the man-
ager/agent whenever there is a state change. The manager
can then obtain the coverage map and energy level of all sen-
sors based upon the collected information. To detect node
failure, the manager sends GET operations to retrieve the
node state. Without hearing from the nodes, the manager
will consult the energy map to check its residual energy. In
this way, MANNA architecture is able to locate faulty sensor
nodes. However, this approach require an external manager
to perform the centralized diagnosis. And the communica-
tion between nodes and the manager is too expensive for
WSNs.

In [6], a taxonomy for classification of faults in sensor net-
works and the first on-line model-based testing technique are
introduce. The technique considers the impact of readings
of a particular sensor on the consistency of multi-sensors
fusion. The sensor is most likely to be faulty if the elim-
ination of it significantly improves the consistency of the

results. A way to distinguish a random noise is to run a max-
imum likelihood or Bayesian approach on the multi-sensor
fusion measurements.If the accuracy of final results of multi-
sensor fusion improve after running these procedure, a ran-
dom noise should exist. To get a consistent mapping of the
sensed phenomena, different sensors’ measurements need to
be combined in a model. This cross-validation-based tech-
nique can be applied to a broad set of fault models. It is
generic and can be applied to an arbitrary system of sensors
that use an arbitrary type of data fusion. However, this
technique is centralized. Sensor node information must be
collected and sent to the base station to conduct the on-line
fault detection.

An energy efficient fault-tolerant detection scheme is pro-
posed in [7] to introduce the sensor fault probability into
the optimal event detection process. The optimal detection
error was shown to decrease exponentially with the increase
of the neighborhood size. They attempted to disambiguate
events from both noise related measurement error and sensor
fault and limit the effects of faulty sensor on the event detec-
tion accuracy. The measurement noise and sensor faults are
likely to be stochastically unrelated, while event measure-
ments are likely to be spatially correlated. The Bayesian
detection scheme in [7] selects the minimum neighbors for
a given detection error bound such that the communication
volume is minimized during the fault correction. Luo et al.
in [7] did not explicitly attempt to detect faulty sensors,
instead the algorithms they proposed improve the event de-
tection accuracy in the presence of faulty sensors.

In [8], a faulty sensor identification algorithm is developed
and analyzed. The algorithm is purely localized and requires
low computational overhead, it can be easily scaled to large
sensor networks. In the algorithm, the reading at a sensor is
compared with its neighbors’ median reading. If the differ-
ence is large or large but negative, the sensor is very likely
to be faulty. Although this algorithm works for large size
of sensor networks, the probability of sensor faults needs to
be small. If half of the sensor neighbors are faulty and the
number of neighbors is even, the algorithm cannot detect
the faults as expected. The paper also mentioned the need
of sensors’ physical location, which require expensive GPS
or other techniques to realize. Our localized faulty detection
algorithm does not need any physical position and works for
large size of faulty sensors. Even when half neighbors fail,
it can still successfully identify the faulty sensors.

3. NETWORK MODEL AND FAULT MODEL
We assume sensors are randomly deployed in the interested
area and all sensors have a common transmission range. The
area is assumed to be entirely covered by the sensors. As
shown in Figure 3, the dark circles represent faulty sensors
and the light gray circles are good sensors. There could
be a failure occurring in a certain area as illustrated in the
figure. All sensors in the area go out of service. Since we are
depending on majority voting, we assume that each sensor
has at least 3 neighboring nodes. Because a large amount of
sensors are cast into the interested area to form a wireless
network, this condition can be easily obtained. Each sensor
node is able to locate the neighbors within its transmission
range through a broadcast/acknowledge protocol.
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Figure 1: Sensor nodes randomly deployed over an
area

Faults may occur at different levels of the sensor network,
such as physical layer, hardware, system software, and mid-
dleware [4]. In this paper, we focus on hardware level faults
by assuming all system software as well as the application
software are already fault tolerant. The first of the two
groups of components at hardware level consists of a com-
putation engine, storage subsystem and power supply infras-
tructure, which are very reliable. Another group of compo-
nents are sensors and actuators which are most prone to
malfunctioning. Because in the first group of components
the heterogeneous BISR fault tolerant schemes will provide
the targeted level of fault tolerance [4], we only consider the
sensor faults which include three types of faults: calibration
systematic error, random noise error, and complete malfunc-
tioning. Nodes are still capable of receiving, sending, and
processing when they are faulty.

4. LOCALIZED FAULTY SENSOR
DETECTION

In this section, we first give some definitions for the vari-
ables. Then, we present the localized fault detection algo-
rithm.

4.1 Definitions
We list the notations used in our algorithm and analysis
below,

• n: total number of sensors;

• p: probability of failure of a sensor;

• k: number of neighbor sensors;

• S: set of all the sensors;

• N(Si): set of the neighbors of Si;

• xi: measurement of Si;

• dt
ij : measurement difference between Si and Sj at time

t, dt
ij = xt

i − xt
j ;

• ∆tl = tl+1 − tl;

• ∆d
∆tl
ij : measurement difference between Si and Sj from

time tl to tl+1, ∆d
∆tl
ij = d

tl+1
ij −d

tl
ij = (x

tl+1
i −x

tl+1
j )−(x

tl
i −

x
tl
j );

• cij : test between Si and Sj , cij ∈ {0, 1}, cij = cji;

• θ1 and θ2: two predifined threshold values;

• Ti: tendency value of a sensor, Ti ∈ {LG, LT, GD, FT};

• Maxd: an estimate of propagation distance from a set
of identified good sensors in the first round of the algorithm
iterations. The worst case is n, the best case is log n, and
we take a reasonable

√
n.

Sensors are considered as neighboring sensors if they are
within the transmission range of each other. Each node
regularly sends its measured value to all its neighbors.

We are interested in the history data if more than half of the
sensor’s neighbors have a significantly different value from it.
We can use this ∆d

∆tl
ij to find if the current measurement is

different from previous measurement. If the measurements
change over the time significantly, it is more likely the sensor
is faulty.

A test result cij is generated by sensor Si based on its neigh-
bor Sj ’s measurements using two variables, dij and ∆dij ,
and two predefined threshold value θ1 and θ2. If a sensor
is faulty, it can generate arbitrary measurements. If cij is
0, most likely either both Si and Sj are good or both are
faulty. Otherwise, if cij is 1, Si and Sj are most likely in
different status.

Sensors can be either LG or LF, determined by using test
value from its neighboring sensors. Each sensor sends its
tendency value to all its neighbors. The number of the LG
sensors with coincident test results determines whether the
sensors are GD or FT. That is ∀Sj ∈ N(Si) and Tj = LG,∑

(1− cij)−
∑

cij =
∑

(1− 2cij) must be greater or equal
to d|N(Si)|/2e to claim Si is good. In other words, a good
Si will be diagnosed as GD in the first round if it has less
than k/4 bad neighbors. The probability of a sensor being
diagnosed as GD in first round of iteration is:

i=bk/4c∑
i=0

(
k

i

)
pi(1− p)k−i (1)

where i is the bad neighboring sensors.

If a GD sensor is found in the network, its test result can
be used to diagnose other sensors’ status. The information
can be propagated through the whole network to diagnose
all other sensors as good or faulty.

If the diagnosis is consistent with the test results, the di-
agnosis is valid. If there’s no sensor being diagnosed, all
its neighbors are either not diagnosed or are diagnosed as
faulty.



4.2 Algorithm
The localized faulty sensor detection algorithm is summa-
rized in the following:

Algorithm 1 (Localized Fault Detection):

Step 1: Each sensor Si tests every member of Sj ∈ N(Si)
to generate test cij{0, 1} using the following method:
1: Each sensor Si, set cij = 0 and compute dt

ij ;
2: IF |dt

ij | > θ1 THEN

3: Calculate ∆d
∆tl
ij ;

4: IF |∆d
∆tl
ij | > θ2 THEN cij = 1;

Step 2: Si generates a tendency value Ti based upon its
neighboring sensors’ test value:
1: IF

∑
Sj∈N(Si)

cij < d|N(Si)|/2e, where |N(Si)| is the

number of the Si’s neighboring nodes THEN
2: Ti = LG;
3: ELSE Ti = LF;
4: Communicate Ti to neighbors;

Step 3: Compare the number of Si’s LG neighboring nodes
with different test results to determine its status:
1: IF (

∑
Sj∈N(Si)andTj=LG(1−2cij) ≥ d|N(Si)|/2e THEN

2: Tj = GD;
3: Communicate Ti to neighbors;

Step 4: For the remaining undetermined sensors, do the
following steps in parallel for Maxd cycles:
1: FOR i = 1 to n
2: IF Ti = LG or Ti = LF THEN
3: IF Tj = GD ∀Sj ∈ N(Si), THEN
4: IF cji = 0 THEN
5: Ti = GD;
6: ELSE Ti = FT;
7: ELSE repeat
8: Communicate Ti to neighbors;

Step 5: If ambiguity occurs, then the sensor’s own tendency
value determine its status:
1: FOR each Si, IF Tj = Tk = GD

∀Sj , Sk ∈ N(Si), where j 6= k,
and IF cji 6= cki THEN

2: IF Ti = LG (or LF) THEN
3: Ti = GD (or FT)

End Algorithm 1

Test results c depends on the threshold θ, which can be
defined according to various applications at the deployment
time. In step 1, we can also set two θ1 and θ2 values to
be different as we desire. Step 5 is a validation check to
make sure the diagnosis is consistent throughout the entire
network.

4.3 Example
In this section, we present an example to illustrate our algo-
rithm. Fig.2 shows a partial set of sensor nodes in a wireless
sensor network with some faulty nodes. Nodes S1 − S9 in-
side the circle area are the nodes we are interested in. If
the two nodes are neighbors, they are connected by dotted
line. Communication between nodes outside the circle are

not shown in the figure.

Each node inside the interested area are tested by its neigh-
bors. Test results are either 0 or 1 depending upon the
measurement difference and threshold value θ. Tendency
value Ti is finalized at the third iteration. Table 1 lists the
analysis results obtained by applying the Localized Fault
Detection Algorithm. Four out of nine sensor nodes in the
area are faulty. The other five nodes are good and there is no
ambiguity occurring in this example. Each node’s neighbors
with GD tendency value generate the same testing results
when they determine the node’s status.
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Figure 2: A partial set of sensor nodes in a wireless
sensor networks with faulty sensors

First, each of S1 − S9 generates cij test results for all their
neighbors in the way as specified in step 1 of our algorithm.
The results are shown under the 2nd and 3rd columns of
Table 1.

Secondly, S1−S9 decide their own tendency value, T1−T9. If
the summation of test results is less than half of the number
of its neighbors, the sensor is likely good. Otherwise, it’s
likely faulty. For example, for S1,

∑
sj∈N(S1) c1j = 1 <

d|N(S1)|/2e = 3 ⇒ T1 = LG. The same test is done for all
other nodes. For S2,

∑
sj∈N(S2) c2j = 3 > d|N(S2)|/2e =

2 ⇒ T2 = LF. We assume that sensors outside the circle
can decide their tendency value in the same way.

Then, we need to find GD sensors from all the sensors. Look
at S1, as specified in step 3 of our localized fault detection al-
gorithm,

∑
sj∈N(S1)andTj=LG(1−2c1j) = 3 > d|N(S1)|/2e ⇒

T1 = GD. We obtained all the values under the Iteration 1
column in Table 1 from this step.

Finally, by using the GD sensors, we can test other non-GD
sensors to find out their status base upon the test results.
The values under Iteration 2 column in Table 1 are gener-
ated from this step. The last step is to check if there is
any ambiguity between any neighbors test results. All test
results are consistent in this example.

From this localized fault detection algorithm and the above
example, we make the following observations:
1. A sensor node Si’s tendency value can be LG if Si is good
and has dN(Si)/2e or more good neighbors. It can also be
LG if Si is faulty and has over dN(Si)/2e faulty neighbors.



Table 1: Analysis of Faults in Fig.2

Si Sj with cij = 0 Sj with cij = 1
Ti in Iterations
0 1 2

1 3,5,11,12 10 LG GD GD
2 4 3,12,13 LF LF FT
3 1,7 2,6 LG GD GD
4 2 7,14,20 LF LF FT
5 1,15 6,8 LG GD GD
6 8 3,5,7,9 LF LF FT
7 3,9,14 4,6,16 LG GD GD
8 6,17 5,9,18 LF LF FT
9 7,18,19 6,8,16 LG GD GD

2. If no GD sensor is determined at step 3, the network can
not determine the sensor nodes’ status at all and the algo-
rithm will exit at this step. Only at least one sensor node is
diagnosed as GD in step 4, can this algorithm continue to
execute and determine more sensors’ status.
3. A faulty sensor can only be diagnosed as good sensor in
step 3 because the system will not use any incorrect infor-
mation in step 4.
4. A good sensor can be diagnosed as a faulty sensor only
when some faulty sensors are diagnosed as good nodes in
step 3. By using these observations, we can further analyze
the algorithm.

5. ANALYSIS OF THE ALGORITHM
We define that the diagnosis of faulty sensors is correct if
no good sensor is diagnosed as faulty and no faulty sensor
is diagnosed as good. The diagnosis is complete if all sen-
sor nodes are identified as faulty or good in a predefined
time. An incorrect diagnosis happens when a good sensor
is labeled as faulty or a faulty sensor is labeled as good. A
diagnosis is incomplete if any node’s status cannot be di-
agnosed in the network. A complete and correct diagnosis
is desired. Generally, an incorrect diagnosis is unaccept-
able because the error information may be propagated to
the base station or users. However, an incomplete diagno-
sis is acceptable under certain circumstances. Our proposed
algorithm minimizes the likelihood of incorrect diagnosis.

The probability of correct and complete faulty sensor diag-
nosis is computed and analyzed in the following. Let p be
the probability of failure of node Si. Let k = |N(Si)|. A
sensor node with tendency value LG can be either good or
faulty. A sensor node with tendency value LF can also be
either good or faulty. The probability of a good sensor node
having a likely good tendency value is:

Pglg = (1− p)

dk/2e−1∑
i=0

(
k

i

)
pi(1− p)k−i (2)

The probability of a good sensor with a likely faulty ten-
dency value is:

Pglf = (1− p)

dk/2e−1∑
i=0

(
k

i

)
(1− p)ipk−i (3)

The probability that a sensor is faulty and has a likely good

tendency value is:

Pflg = p

dk/2e−1∑
i=0

(
k

i

)
(1− p)ipk−i (4)

The probability that a sensor is faulty and has a likely faulty
tendency value is:

Pflf = p

dk/2e−1∑
i=0

(
k

i

)
(1− p)k−ipi (5)

From the observations in Section 4, a faulty sensor’s LG
value is determined by its neighboring nodes. Only when at
least half of its neighbors are faulty and have LG tendency
value, the faulty sensor will be diagnosed as good. The
probability of a faulty sensor being diagnosed as good is:

PFG = p

k∑
a=d k

2 e

{

(
k

a

)
P a

flg

a−d k
2 e∑

b=0

[P b
glg

k−a−b∑
c=0

(P k−a−b−c
flf P c

glf)]}

(6)
The probability that none of the faulty sensors is diagnosed
as good in the entire network is:

PNFG =

n∑
i=0

(
n

i

)
pi(1− p)n−i(1− PFG)i (7)

A good sensor is not diagnosed as a good sensor only when
the difference between LG faulty sensors and LG good sen-
sors is less than half of its neighbors. The probability of a
good sensor not being diagnosed as good node is:

PGG = (1−p)

d k
2 e−1∑
a=0

{

(
k

a

)
P a

flg

a∑
b=0

[P b
glg

k−a−b∑
c=0

(P k−a−b−c
flf P c

glf)]}

(8)
The probability that no good sensor nodes are diagnosed as
good in the entire network is:

PNGG =

n∑
i=0

(
n

i

)
pi(1− p)n−iP n−i

GG
(9)

From Equation 7 and Equation 9, PNFG and PNGG approach
1 and 0 respectively when network size goes to exponentially
large. Since the number of sensors in WSN can be hundreds
and network size is relatively large, the probability that none
of the faulty sensors is diagnosed as good approaches one.
The probability that all good sensors are not being diag-
nosed as good is very small, which is approaching 0.

Table 2: Probability of No Faulty Sensor Diagnosed
as Good

p
Average Number of Sensors

4 6 10 15 20
0.05 1 1 1 1 1
0.10 1 1 1 1 1
0.15 1 1 1 1 1
0.20 0.9999 1 1 1 1
0.25 0.9994 1 1 1 1



Table 3: Probability of No Good Sensor Diagnosed
as Good

p
Average Number of Sensors
4 6 10 15 20

0.05 8.93E-66 8.88E-66 0 0 0
0.10 1.04E-50 1.00E-50 0 0 0
0.15 7.17E-42 6.39E-42 0 0 0
0.20 1.43E-35 1.14E-35 0 0 0
0.25 1.16E-30 8.14E-31 0 0 0

Tables 2 and 3 show the probabilities PNFG and PNGG under
different probabilities of failure of sensors and with different
average number of neighbors. The results demonstrate that
with large network size almost all the good and faulty sen-
sors will be diagnosed correctly. The probabilities calculated
in the tables show that our algorithm performs well. How-
ever, in real situation, when sensors are deployed in the field
randomly, they may not have enough number of neighbors
for the correct and complete analysis. This can cause the
incorrect diagnosis, resulting faulty sensors being diagnosed
as good or good sensor being diagnosed as faulty.

6. SIMULATION RESULTS
For simulation we used C++ as the tool. An example sim-
ulation scenario composed of total 1024 sensor nodes are
randomly deployed in a region of size 32×32 units as shown
in Figure 3. The measurement parameter xi is considered
to be temperature. We set the values of xi as good and
faulty with ranges as follows, ”Good” = 70-75 degrees and
”Faulty” as 100-105 degrees. Also transmission range was
chosen to ensure that sensors have the average number of
neighbors in simulation runs. In step 1 of the algorithm, a
threshold value θ1 and θ2 are needed to determine the test-
ing value. We set both θ1 and θ2 to be 15 for the simulation.
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Figure 3: A 32 × 32 region with 1024 sensor nodes
randomly deployed in it

Faulty sensor detection accuracy (FSDA) and false alarm
rate (FAR) are the two metrics used to evaluate our algo-
rithm performance. FSDA is defined as the ratio of the
number faulty sensor detected to the total number of faulty
sensors in the field. The FAR is the ratio of the number of
non-faulty sensor diagnosed as faulty to the total number of
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Figure 4: Faulty Sensor Detection Accuracy
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Figure 5: False Alarm Rate in Faulty Sensor Detec-
tion

non-faulty sensors.

In the simulation, sensors are randomly chosen to be faulty
with the probabilities of 0.05, 0.10, 0.15, 0.20, and 0.25 re-
spectively under different average number of neighbors for
each sensor. Average number of neighbors/sensor is chosen
to be 7, 10, 15, and 20 respectively.

Figures 4 and 5 show the faulty sensor detection accuracy
and false alarm rate against the sensor fault probability for
different average number of neighbors. In Figure 4, the de-
tection accuracy for 7 neighbors and 10 neighbors decreases
when the fault probability becomes larger. But the fault
detection accuracy is still about 97% when there are about
25% of the sensors being faulty. There are several faulty
sensors not being diagnosed as faulty because the randomly
deployment of the sensors in the network results in very few
neighbors for those sensors. When the average of number
neighbors is greater than 15, the fault detection is very high
and almost all the faulty sensors can be detected even un-
der a high faulty sensor probability. This result is consistent
with our probability analysis in Section 5.

In Figure 5, for the 7 neighbors and 10 neighbors, the higher
the fault probability, the higher false alarm rate. This is be-



cause the large number of faulty sensor test good sensors
to be Likely Faulty and these good sensors are then diag-
nosed as faulty sensors. For 15 and 20 neighbors, the false
alarm rate is as low as 0. Again, this is consistent with our
probability analysis.

Overall, our algorithm outperforms previous fault detection
algorithm proposed in [8] in terms of the faulty sensor de-
tection accuracy and false alarm rate. Our localized fault
detection algorithm achieves high detection accuracy and
low false alarm rate even with a large set of faulty sensors.

7. CONCLUSION
We proposed a distributed localized faulty sensor (DLFS)
detection algorithm where each sensor identifies its own sta-
tus to be either ”good” or ”faulty” and the claim is then
supported or reverted by its neighbors as they also evalu-
ate the node behavior. The proposed algorithm is analyzed
using a probabilistic approach. In our probabilistic anal-
ysis, the probabilities of faulty sensors being diagnosed as
”good” and good sensors not being diagnosed as ”good” in
the entire sensor network are very low.

Finally, the algorithm is tested using a simulation for an ex-
ample case under different number of faulty sensors in the
same area. Our simulation results show that the FSDA is
over 97% even when 25% nodes are faulty. The FAR is very
accurate when the sensor fault probability is low. Simu-
lation results support and demonstrate that our proposed
algorithm can have a high fault detection accuracy and low
false alarm rate with a large number of faulty sensors exist-
ing in the network.

At this time there may be issues related to scalability and
overhead due to exchange of information between neighbors.
However, the aim of this work is to detect a faulty sensor as
”faulty” in a distributed environment. The success of doing
so is promising and we would like to extend it to see how
it behaves in extremely large deployments. We are further
working on developing an algorithm to find the event edge by
partially using the algorithm proposed in this paper. Future
work should include the implementation of the algorithms
on NS2 sensor network simulators.

8. REFERENCES
[1] A. K. Somani and V. K. Agarwal. Distributed

Diagnosis Algorithms for Regular Interconnected
Structures. IEEE Transaction of Computers, Vol.41,
No.7: 899-906, July 1992.

[2] A. Mahmood and E. J. McCluskey. Concurrent error
detection using watchdog processors-a survey. IEEE
Transactions on Computers, Vol.37, No.2: 160-174,
Feb.1988.

[3] D. Blough, S. Sullivan, and G. Masson. Fault diagnosis
for sparsely interconnected multiporcessor systems. In
Proc. of FTCS-19, 1989, pp.62-69.

[4] F. Koushanfar, M. Potkonjak, and A.
Sangiovanni-Vincentelli. Fault-Tolerance in Sensor
Networks. Handbook of Sensor Networks, I. Mahgoub
and M. Ilyas (eds.), CRC press, Section VIII, no. 36,
2004.

[5] L. B. Ruiz, I.G.Siqueira, L. B. Oliveira, H. C. Wong, J.
M. S. Nogueira, and A. A. F. Loureiro. Fault
management in event-driven wireless sensor networks.
MSWiM’04, October 4-6, 2004, Venezia, Italy.

[6] F. Koushanfar, M. Potkonjak, and A.
Sangiovanni-Vincentelli. On-line Fault Detection of
Sensor Measurements. Sensors, 2003. Proceedings of
IEEE Volume 2, 22-24, Oct. 2003, pp.974-979.

[7] X. Luo, M. Dong, and Y. Huang. On distributed
fault-tolerant detection in wireless sensor networks.
IEEE Transactions on Computers, Vol.55, No.1: 58-70,
Jan. 2006.

[8] M. Ding, D. Chen, K. Xing, and X. Cheng. Localized
fault-tolerant event boundary detection in sensor
networks. Proceedings of IEEE INFOCOM 2005,
Miami, March 2005.


