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Abstract— Surrogate model-based optimization is a well-
known technique for optimizing expensive black-box functions.
By applying this function approximation, the number of real
problem evaluations can be reduced because the optimization is
performed on the model. In this case two contradictory targets
have to be achieved: increasing global model accuracy and
exploiting potentially optimal areas. The key to these targets is
the criterion for selecting the next point, which is then evaluated
on the expensive black-box function – the ’infill sampling cri-
terion’. Therefore, a novel approach – the ’Clustered Multiple
Generalized Expected Improvement’ (CMGEI) – is introduced
and motivated by an empirical study. Furthermore, experiments
benchmarking its performance compared to the state of the art
are presented.

I. INTRODUCTION

Optimization is a traditional challenge in almost any
technological science. A special area, which has received
much attention during the last decades, is the optimization
of functions where no closed form is available. The problem
is given as a black-box that can be fed by a single input
and provides a single corresponding output, usually called
an evaluation. This implies that no exact derivations are
available in advance, which impairs a lot of classical op-
timization approaches such as gradient descent. As a result,
evolutionary algorithms and guided random search are the
methods typically used. However, these algorithms tend to
require thousands of evaluations to sufficiently explore the
entire search space. Thus, their application to problems,
where each evaluation has to be performed in real-world
experiments or causes high computational effort, would be
to expensive. Therefore, we focus on methods which require
only a very limited number of these evaluations. In this case
a well designed balance between two conflicting targets has
to be achieved. The obvious target of optimization is to find
the global optimum or at least a ’well-performing’ solution.
The second target is to keep the costs of optimization as low
as possible by using a small number of evaluations.

An established method to handle both targets at once
is the introduction of an intermediate step by building a
surrogate model based on a few real evaluations and perform
the optimization on the model. This data-driven function
approximation approach is also called meta-modeling [1],
response surface method [2], fitness function modeling [3],
or behavioral modeling [4]. However, the inaccuracy of the
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surrogate model can deteriorate the final result in two ways.
It may only lead to a slight shift between the calculated
and the global optimum, but in cases, in which the real
global optimum is not replicated by the surrogate model, the
calculated optimum is placed at a completely different region.
Therefore, surrogate model-based approaches have to achieve
an accurate model within a small number of evaluations.
Fortunately, this is facilitated by the fact that high accuracy
is only required in the vicinity of potential optima.

Still, the main contradiction of global optimization – local
exploitation and global exploration – persists. The aim of
this work is to improve the ’Efficient Global Optimization’
(EGO) approach introduced by Jones et al. [5], which is one
of the most cited surrogate modeling algorithms. We enhance
this approach with an additional guided sampling step to
increase the robustness with respect to the global exploration
capability of EGO. A detailed description can be found in
Section IV.

In the next section the state of the art in surrogate model-
based optimization is outlined. Section III introduces the
actual EGO algorithm and an extension of its infill sampling
criterion called ’Generalized Expected Improvement’. Sec-
tion IV motivates two new extensions and details their imple-
mentation. In Section V experimental performance analyses
are carried out based on three test functions. The article
closes with a summary containing conclusions and future
work in Section VI.

II. STATE OF THE ART

Some surrogate model techniques, such as the Space
Mapping approach of Bandler and fellows [6], [7], exist for
more than a decade. These techniques can be distinguished
by the mathematical model used. Starting at simple poly-
nomial regression, Torczon and Trosset [8] introduced an
approach based on splines. These meta-models are enhanced
with an additive spreading term, which is responsible for
guiding the search for the optimum to unexplored regions.
Torczon performed experiments with a maximin function of
the distance to solutions already evaluated. Another mathe-
matical model is based on neural networks [9]. Björkman and
Holmström [10] presented an advanced neural network based
on radial basis functions (RBF). Their experiments indicate
that the approach is superior compared to other global opti-
mization algorithms, such as the DIRECT method of Jones
et al. [11]. Finally, there are mathematical models utilizing
the assumption that solutions, which are close with respect
to their parameter vectors, are more likely to have similar
objective values. The deviation from the regression function



is explicitly modeled by a stochastic process. In geostatistics
this method is called ’kriging’ [12], in global optimization it
is called ’Bayesian global optimization’ or ’random function
approach’ [13], for neural networks this is ’Gaussian process
regression’ [14], and in experimental design it is called ’De-
sign and Analysis of Computer Experiments’ (DACE) [15].
Fundamental to most of these mathematical models is the
assumption that the actual function is deterministic.

The ’Efficient Global Optimization’ (EGO) approach of
Jones, Schonlau, and Welch [5] represents the most popular
kriging-based method. Starting with a small initial sample, a
first rough surrogate model is generated. Applying a certain
figure of merit on the model, the next point for evaluation
is selected. Using the objective value of the new point, the
model is updated and the next evaluation is determined. This
iterative process is performed until a termination criterion
(e.g. maximum number of evaluations) is met.

During the optimization process the number of evaluated
solutions increases. This provides more information, which
increases accuracy, but also raises the complexity of calcu-
lating the model. Chandila [17] circumvents this problem by
only modeling the vicinity of the points of interest. In the
same way, Emmerich et al. [18] used a Gaussian random
field for a local meta-model based on a number of only
2d neighboring points (d as the number of dimensions).
Büche et al. [3] used these local models for an Evolutionary
Algorithm (EA)-based optimization of several test functions.
A drawback of these local modeling methods is that not the
entire amount of information is exploited. A comparison of
Büche’s approach to state-of-the-art EA did not show any
significant progress.

A large portion of the related scientific publication deals
with the incorporation of surrogate modeling techniques into
EA. Here, surrogate modeling is used to reduce the number
of evaluations required. An overview of RBF- and kriging-
assisted EA is presented by Ong and colleagues [14]. A
special version using both local and global modeling can
be found in Zhou et al. [19]. A more general overview of
function approximation-assisted EA is presented by Jin [20].
He outlines several surrogate model techniques and different
methods for their incorporation into EA.

One of the key elements of surrogate modeling approaches
is the selection of the next point to evaluate on the black-
box function. Two different requirements for the actual
optimization criterion have to be met: exploitation of optima
and increasing model accuracy by exploring uncertain areas.
With respect to machine learning, this is the critical step in
’active learning’. Sasena [16] called it the ’infill sampling
criterion’. He improved the kriging methodology by com-
paring several criteria. Jones [21] presents a comprehensive
overview of these criteria including the simple selection of
the minimum of the model, probability-based improvement
estimates, and single-step approaches combining modeling
and point selection.

III. EFFICIENT GLOBAL OPTIMIZATION (EGO)

We consider a sample of n points x(1), ..., x(n) already
evaluated on the function f(x) providing n corresponding
objectives y(1), ...y(n). Each of the input points is a vector
of dimension d (x(i)

1 , ..., x
(i)
d ). Sacks and colleagues [15]

developed a concept to approximate the unknown function
based on the known sample points. It is called Design and
Analysis of Computer Experiments (DACE). This surrogate
model consists of a constant regression function, which is
enhanced with an error function representing a Gaussian
stochastic process:

y(x) = µ + ε(x) (1)

with E[ε(x)] = 0 and covariance Cov[ε(x(i)), ε(x(j))] =
σ2R(x(i), x(j)) for two input points x(i) and x(j). The
core investigation of the DACE model is the form of the
correlation function

R(x(i), x(j)) =
d∏

h=1

exp(−Θh|x(i)
h − x

(j)
h |ph). (2)

The modeling parameter (0 < ph ≤ 2) controls the
smoothness of the approximated function and the parameter
(Θh > 0) adjusts the activity in dimension h. From these
definitions and for given parameters Θh and ph, a closed
form for the function prediction ŷ = predict(x∗) for any
input point x can be derived:

ŷ(x∗) = µ̂ + rT R−1(y − 1µ̂) (3)

where r is the n-vector of correlations between the er-
ror term at x∗ and the already sampled points r =
R(x∗, x(1)), ...., R(x∗, x(n)), and µ̂ is the generalized least
squares estimator of µ according to

µ̂ =
1T R−1y

1T R−11
. (4)

The key feature of the DACE model is the ability to estimate
its own uncertainty by providing the mean squared error of
the prediction

s2(x∗) = σ2
[
1 − rT R−1r +

(1 − 1T R−1r)2

1T R−11

]
, (5)

where σ2 is the standard deviation of the Gaussian process,
which can be estimated by

σ̂2 =
(y − 1µ̂)T R−1(y − 1µ̂)

n
. (6)

Jones et al. [5] use the mean squared error of the pre-
diction to calculate the so-called Expected Improvement
(EI) as the expected value of the potential improvement
I = max(fmin − Y, 0):

E[I(x)] = (fmin − ŷ)Φ(u) + sφ(u) (7)

where
u =

fmin − ŷ

s
, (8)

Φ and φ denote the cumulative distribution function and the
probability distribution function, respectively. The maximum



of the EI is used as the ’infill sampling criterion’ determining
the next point to evaluate.

The sequence of the derived EGO algorithm as presented
by Jones et al. [5] is visualized in Figure 1. After evaluation
of a small starting sample, the surrogate DACE model and
all its 2d+2 parameters are calculated. Using this model, the
point with a maximal EI is selected to be evaluated on the
expensive function. This iterative modeling and evaluation
loop is performed until some termination criterion is met.

Fig. 1. Procedure of the Efficient Global Optimization algorithm by Jones
et al. [5]

As already mentioned in Section I, the infill sampling
criterion is the key for successful surrogate model-based
optimization approaches. The EI function (Eq. (7)) consists
of a term (fmin − ŷ) describing the possible improvement,
which is responsible for a local exploitative search, and a sec-
ond term s including the uncertainty of the surrogate model,
which is responsible for a global exploration of the search
space. Accordingly, the EI performs an automatic balancing
between local and global search during optimization.

A. Generalized Expected Improvement (GEI)

It is well-known that DACE slightly underestimates the
prediction error s, which is already mentioned in the original
EGO paper of Jones et al. [5]. This is caused by DACE
calculating this error under the assumption that each model
parameter (µ, σ2,Θ1, ...,Θd, p1, ..., pd) is known. During the
calculation of the expected improvement, the lower pre-
diction error leads to a higher emphasis on the estimated
value (see Eq. (7)). Therefore, the original EGO algorithm
emphasizes on the exploitation of a minimum already found.
It performs many evaluations in the vicinity of this at-
tractor until the uncertainty at this region gets too low.
This especially affects the beginning of the search since

in such situations the model itself is imprecise, and the
underestimation of the error forces the search being focused
on local optima already detected. In contrast, a more global
search at the beginning of the optimization would be desired.

One possibility to use the EGO framework for a more
global optimization search is to extend the EI calcula-
tion to the so-called ’Generalized Expected Improvement’
(GEI) [22]. In this case the improvement is exponentiated to
the power of g, Ig = max{(fmin −Y )g, 0}. The calculation
of the GEI E[Ig] can be performed by an iterative calculation
scheme [22], which is summarized in the following. For the
case of g = 0, the expected improvement is reduced to the
probability of improvement

E(I0) = P (y < fmin) = P (
y − ŷ

s
< u) = Φ(u). (9)

For g = 1, 2, ... the GEI is calculated by:

E(Ig) = sg

g∑
k=0

(−1)k

(
g

k

)
ug−kTk, (10)

where

T0 = Φ(u) and T1 = −Φ(u), (11)

and Tk for k > 1 can be computed recursively from

Tk = −uk−1φ(u) + (k − 1)Tk−2. (12)

A higher value of g involves a higher emphasis to the sg

factor. Since s = 0 is met at already evaluated solutions,
a high g value tends to make the search more global.
Accordingly, a low value of g implies a more local search.
Therewith, the g parameter enables the control over the
search behavior of the EGO algorithm.

Schonlau and colleagues [22] used the g parameter to
manually tune the EGO search behavior. In contrast, an
automatically tuned version is suggested by Sasena [23].
He proposes a ’Simulated Annealing’-like approach. The g
value is predefined by a static look-up table according to the
number of the corresponding iteration (see Table I).

TABLE I

THE SCHEME TO SET THE EI-POWER EIg ACCORDING TO THE NUMBER

OF ITERATION (PROPOSED BY SASENA ET AL. [23]).

Iteration g value
1 - 4 20
5 - 9 10

10 - 19 5
20 - 24 2
25 - 34 1
≥ 35 0

A comparison of the search performance between the
original EGO algorithm and the use of the GEI as suggested
by Sasena can be found in section V.



IV. ENHANCED USE OF THE GENERALIZED EXPECTED

IMPROVEMENT

As long as no evaluation is situated in the vicinity of
the real global optimum, the DACE model will not predict
minimal values in this region. If the infill criterion empha-
sizes on promising predictions without sufficiently including
the uncertainty of predictions, this status holds until all
detected local optima are exhaustively explored. In contrast,
the distance between a suggested solution and the real optima
would be an appropriate performance indicator for the infill
sampling criterion. Accordingly, an analysis of the distance
in the decision space between the GEI profiles and the
optima of the real problem is performed on the well-known
Branin [24] test function. The idea is to utilize global and
local maxima in the GEI profiles as potential indicators for
the real optimum.

To detect these local and global GEI maxima, a simplex
search according to Nelder and Mead [25] is applied. The
challenge of setting the starting points for the simplex search
is simplified by using the fact that E(Ig(x(i))) = 0 for
each evaluated solution x(i). Therefore, the starting points are
placed between the evaluated solutions. A detailed descrip-
tion of the procedure can be found in Schonlau et al. [22].
The result is the desired set of local and global optima of
the E(Ig) profiles (see Figure 2).

Fig. 2. Distribution of local optima for different powers g of the GEI
(E(Ig)) after the first model generation based on the Branin [24] test
function, which is visualized by the bottom contours.

Our analysis consists of 10 runs starting with an initial
sampling set of 11d − 1 points [5] generated by a Latin
Hypercube sampling [26]. Furthermore, all corner points of
the search domain are added to the initial sampling1. This
initial sampling is evaluated on the Branin test function.
Using these objective values, a DACE model is generated
and all local and global GEI optima are determined.

This study analyses the different performance of the global
GEI optima and the local GEI optima based on their Eu-

1The corner points are included in the initial sampling because DACE is
a purely interpolating approach.

Fig. 3. Euclidian distance of local GEI optima to the real global optima
for different powers g of the GEI (E(Ig)) on the Branin [24] test function.

clidean distance to the real optimum of the test function in
decission space. Figure 3a) shows the distribution of these
distances just for the global GEI optima for different g
values. The infill sampling criteria presented so far only
suggest the selection of these global GEI optima. Hence,
these distance values are the resulting displacements of the
respective algorithms. Figure 3b) shows the distribution of
the minimal distances for all local GEI optima for different g
values. Using these distance values as performance indicator,
these local GEI optima are superior to the commonly used
global GEI optima. Finally, all GEI optima are ordered
according to their GEI value. Accordingly, the assigned rank
of the global GEI optima is one. Figure 3c) presents the rank
of the local GEI optima with the minimal distance values of
Figure 3b) with respect to the ordered GEI value. As can
be seen in Figure 3c) the one that is closesed to the real
optimum is within the 20 highest ranked GEI optima.

Concluding this analysis, it can be stated that the global
maximum GEI value is not the best solution available. In
contrast, the local GEI maxima of g ≥ 1 are significantly
better than the GEI maxima proposed by the model, which
is shown by the notches indicating the 95 percent confidence
intervals of the box-and-whiskers plot. Additionally, the



general GEI behavior is independent of the GEI power g.
Furthermore, there is no obvious correlation between the rank
with respect to the GEI and the real distance to the optima.
The new challenge emerging from this analysis is the lack
of evidence for identifying the local GEI maximum, which
indicates the real global optimum.

A. Multiple Generalized Expected Improvement (MGEI)

Taking this knowledge into account, a new infill sampling
criterion – the ’Multiple Generalized Expected Improvement’
(MGEI) – is implemented. The idea is to introduce a data
guided sampling step between the initial sampling and the
final EGO exploration. First, the generalized expected im-
provement values are normalized enabling comparability2:

E(Ig)N = [E(Ig)]1/g, (13)

In a straightforward approach, a set of the k best local optima
out of all E(Ig)N values is selected to be evaluated in the
next iteration. The control parameter g is set by a ’Simulated
Annealing’-like strategy:

gmax = max{1, 11 − #iteration}. (14)

As already motivated by Sasena [23], this strategy provides
a dynamic control for a global search at the beginning and
a more local search at the end of the optimization.

The performance of this approach for k = 10 is evaluated
in section V. It can be concluded that this method is very
robust in finding the global optimum. The main drawback of
this approach is the enormous number of evaluations required
since for every single iteration k solutions are evaluated.

B. Clustered Multiple Generalized Expected Improvement
(CMGEI)

The ultimate target is to develop an approach, which:

• utilizes the generalized expected improvement (GEI) to
enable a controlled transition from a global search to a
local one,

• takes multiple, potentially local optima of the GEI into
account since the previous empirical study documents
that the optimum of the actual function are usually close
to one of the GEI optima, which is not necessarily the
global GEI optimum, and

• keeps the number of evaluation trials low.

Our suggested solution reuses the MGEI already presented
to obtain the normalized GEI. The main idea is to handle the
large amount of evaluations by clustering all normalized and
filtered E(Ig)N values.

The procedure is presented in Figure 4. First, the local
maxima are generated by the simplex optimization algorithm
presented in the first part of Section IV. Afterwards, the
GEI values are normalized using Eq. (13) and only the
values E(Ig)N > 1%fmin are considered to filter out
negligible results. The clustering method itself consists of
three stages. At first, pair-wise distances between all GEI

2The normalization is further used to identify solutions meeting the final
EGO termination criteria (E(Ig)N > 1% · ymin).

optima are calculated and normalized by the Mahalanobis
distance with respect to the GEI optima distribution. Using
this data, a hierarchical cluster tree is generated based on
the nearest neighbors. Finally, this tree is partitioned into
the resulting clusters by restricting the intra-cluster distance
to a certain threshold, which is dynamically set similar to
’Simulated Annealing’ to handle the different requirements
at the beginning and the end of the optimization process

dThresh,Normalized =
1

2#iteration
. (15)

Fig. 4. Realization of the Clustered Multiple Generalized Expected
Improvement. For the use within an optimization algorithm, these procedure
details the ’Optimize Expected Improvement’ step of Figure 1.

In the end, the cluster centers and the maximal normal-
ized GEI value are calculated to represent each cluster as
visualized in Figure 5. Finally, to account for the explorative
behavior at the beginning and the more and more exploitative
behavior at the end, once more a ’Simulated Annealing’-like
strategy for the number (k) of solutions filtered and chosen
as infill samplings is applied

k = max{2, 11 − #iteration} (16)

V. EXPERIMENTS

This section provides a performance analysis with respect
to the different ’infill sampling criteria’ presented in this
paper. A set of three well-known test functions is used to
evaluate their performance. All of them are unconstrained
beside the hyper-rectangular borders, have between 2 and
6 dimensional search domains, are continuous, non-convex,
and multimodal, and are available at Hedar’s global opti-
mization webpage3:

• Branin [24] has two input dimensions and three global
optima.

• Rastrigin [27], [28] is used with three input dimensions,
it has several local optima and one global optimum.

3http://www-optima.amp.i.kyoto-u.ac.jp/member/...
student/hedar/Hedar files/TestGO files/Page364.htm



Fig. 5. Distribution of the locally optimal solutions after the first model
generation on the Branin [24] test function. The generated clusters are
indicated by different grayscales and their center of gravity is visualized
by a star.

• Hartmann3,4 [24] has three input dimensions, four
local optima and one global optimum.

All approaches within this comparison are initialized
with the same Latin Hypercube sampling with 11d − 1
points. Furthermore, all corner points of the search domain
are added to the initial sampling. The model parameters
(Θ1, ...,Θd, p1, ..., pd) are calculated by maximizing the like-
lihood of the model using the ’Restart CMA-Evolution Strat-
egy With Increasing Population Size’ (CMA-ES) proposed
by Auger and Hansen [29] with logarithmized Θ values.
The iterative optimization starts with the model generation.
Applying one of the ’infill sampling criteria’, the next
points for evaluation are determined. The iterative process
is stopped after 5 · (11d − 1) sampling points have been
evaluated.

The ’infill sampling’ approaches compared are:
• EI is the criterion proposed by Jones et al. [5] and

results in an implementation of the original EGO al-
gorithm.

• Sasena uses the GEI in a ’Simulated Annealing’-like
approach already presented in Section III-A.

• MGEI uses all local optima of the GEI as proposed in
Section IV-A. The maximum EI power is set according
to Eq. (14)

• CMGEI is an implementation of the approach detailed
in Section IV-B.

A. Results

In order to circumvent a focus on a special kind of
optimization, the distance between the global optimum of
the model and the real global optimum is visualized in the
objective and in the decision space. The model optimum is
calculated by a simplex optimization according to Nelder and
Mead [25] with 100 starting points. These starting points are
distributed by a Latin Hypercube Sampling [26]. For each
approach and each test function 20 runs are performed.

Fig. 6. Converge plots of the considered algorithms on the Branin test
function [24].

Each of the Figures 6, 7, and 8 contains four different
plots. For each plot the best value up to the evaluation
number is drawn. The first two plots present the distance
between the minimum of the model and the real minimum
in the objective space (Y). The first plot depicts the mean of
the 20 evaluation runs and the second one the corresponding
standard deviation. The next two plots present the distance
between the minimum of the model and the real one in
the decision space (X). Again, the first plot visualizes the
mean of the 20 runs and the second one illustrates the
corresponding standard deviation.

The performance figures do not allow to detect an obvious
best infill sampling criterion. On closer inspection with
regard to the properties of the test functions and the focus of
the infill criterion used, some presumptions can be supported.
The original EI criterion is the most direct figure of merit. On
the simpler Branin test function without any local minimum,
the search based on the EI is fast and accurately achieves
the global minimum. For more complex functions with many
local minima, such as the Rastrigin function, the EI criterion
prematurely converges towards one of these local minima.
This is visible in both mean differences of Figure 7. Sasena’s
’Simulated Annealing’-based infill criterion converges quite
well at the first third of the evaluations. Nevertheless, on
more complex test functions its mean performance is slightly
inferior to CMGEI. Compared to the other versions, the
MGEI infill criterion updates its model just every tenth



Fig. 7. Converge plots of the considered algorithms on the Rastrigin test
function [27].

Fig. 8. Converge plots of the considered algorithms on the Hartmann3,4

test function [24].
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Fig. 9. Box-and-whiskers plots of the distance to the global optimum in
the objective space of Hartman3,4 over all 20 runs performed.

evaluation. Accordingly, it shows no improvements in the be-
ginning and is just able to converge towards the optimum on
the Hartmann3,4 test function. The finally suggested CMGEI
initially behaves similar to the MGEI for the same reason.
However, due to the decreasing amount of evaluations per
iteration (eq. (16)), it converges towards the global optimum
in the end. An analysis of variance (ANOVA) of the results
using the significance level α = 0.05 indicates no significant
differences between EI, Sasena, and CMGEI. Only MGEI
is outperformed on the Branin (X and Y) and Rastrigin test
function (X) due to the reasons already mentioned.

In summary, the experiments confirm an expected result.
The emphasis on global search improves the robustness
against premature convergence. Although the common EI
infill criterion converges faster than the other approaches on
modest problems, the utilization of more global information
improves the performance in the long run. Comparing the
three different methods based on the generalized expected
improvement (GEI), our experiments indicate that the use
of more local GEI optima can improve the search on multi-
modal problems. Whereas the non-clustered implementation
(MGEI) fails due to rare model updates, CMGEI is very
robust as reflected by the successful identification of the
global minimum on all considered test functions and small
standard deviations. Fig. 9 supports this fact with respect
to the distance to the global optimum in the objective
space of Hartman3,4. The intended balance between global
exploration and local exploitation has been achieved. This
benefit is at the expense of a slower convergence in the
beginning.

VI. CONCLUSION

The task of black-box optimization is extremely challeng-
ing in cases of expensive evaluations. The restricted budget of
evaluations requires a very sensitive balancing between the
global explorative search behavior and the local exploiting
one. The use of surrogate models reduces the number of ex-
pensive evaluations, but introduces a new trade-off between



the focus on model accuracy and optimal areas. Modern
’infill sampling criteria’, such as the Expected Improvement
(EI), tackle this task by using statistical quality measures.
Motivated by the known underestimation of the prediction
error underlying the EI criterion and the empirical findings
regarding the quality of different local generalized EI (GEI)
optima, new approaches based on multiple - global and local
- GEI optima have been presented. The use of clustering en-
ables the efficient incorporation of potential local GEI optima
and results in the suggested ’Clustered Multiple Generalized
Expected Improvement’ (CMGEI) infill sampling criterion.

The experimental results point out the robustness of the
proposed CMGEI approach. Especially on complex functions
with many local minima, such as the Rastrigin test function,
the emphasis on the global exploratory search in the begin-
ning provides better results in the end. Evidently, this has to
be paid by a slower convergence in the initial phase compared
to the common EI approach.

A task for future work is a structured analysis of the
parameters of CMGEI criterion (see Eq. (14), (15) and
(16)). This may provide an adaptation of the parameters
to the type of problem at hand, which is specified by the
number of dimensions, the modality of the problem, and the
allowed number of function evaluations. Finally, the authors
intend to apply the new criterion to (multiple) multi-objective
problems [1], [30], [31] and real-world process optimization
[32].
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