
18 IEEE Instrumentation & Measurement Magazine August 2015

An AI-ESTATE Conformant Interface
for Net-Centric Diagnostic and

Prognostic Reasoning
Houston King, Nathan Fortier, and John W. Sheppard

1094-6969/15/$25.00©2015IEEE

T here exists a wide field of strong theoretical models,
which provide a basis for diagnostic and probabilis-
tic reasoning. Among these are Bayesian methods,

decision trees, D-matrices, logic based frameworks, and more.
The IEEE 1232–2010 Standard for Artificial Intelligence Ex-
change and Service Tie to All Test Environments (AI-ESTATE)
[1] strives to provide a common interface for interacting with
these reasoning models to establish a common platform for
prognosis and diagnosis. In this work, we propose a platform-
agnostic net-centric framework and interface, conformant to
the AI-ESTATE standard.

The IEEE AI-ESTATE provides platform-agnostic models
and a service interface facilitating the exchange of diagnostic
knowledge and reasoning capabilities. The Numerical Intel-
ligent Systems Laboratory at Montana State University has
been working continuously on promoting and enhancing this
standard. Within AI-ESTATE is defined a set of Reasoner Ma-
nipulation Services (i.e., a service API). These services provide
a standardized way to interact with a reasoning server for the
purposes of diagnostic and prognostics. Previously, the AI-
ESTATE service API had been implemented locally within
our tool, called the Standards-based Analysis Platform for
Predictive Health and Intelligent Reasoning Environment
(SAPPHIRE).

In this paper, we describe a net-centric architecture that
abstracts the Reasoner Manipulation Services provided by AI-
ESTATE to the network level. The client-server architecture is
described in detail, as well as the XML-based messaging sys-
tem that facilitates the communication between a reasoning
client performing a diagnostic session and a reasoner server
hosting the data-driven inference engine. Identified with
this abstraction are a variety of immediate advantages. The
server and client can be moved to distinct physical locations
and allowed to communicate via a network connection in a

standardized way. The protocol derived from the AI-ESTATE
services allows third-party clients and servers to communicate
with our tools directly. Data-driven diagnostics and prognos-
tics can be computationally intensive, and centralizing the task
of inference to a particular server can minimize the cost of add-
ing clients to the network.

Background
AI-ESTATE
The standard was proposed as a way to incorporate artifi-
cial intelligence (AI) into testing and diagnostics applications.
Since then, the standard has continued to grow and ma-
ture—most notably, the standard includes methods for
platform-agnostic diagnostic model exchange, as well as a
standard application programming interface (API) for inter-
acting with a reasoning engine. The most recent iteration of the
standard, IEEE Std 1232-2010 [1], schematically defines four
different models using the EXPRESS data modeling language:
fault trees, D-matrices, logic models, and Bayesian networks.
Derived from these EXPRESS models were eXtensible Markup
Language (XML) schemata, allowing the diagnostic models
and session information to be encapsulated and validated via
XML documents [2].

An early version of AI-ESTATE was evaluated over sev-
eral phases of a U.S. Air Force funded SBIR to demonstrate
the feasibility of implementing the standard in a compo-
nent-based Automatic Test System (ATS) [3]. Under support
from the U.S. Navy, prototype tools were developed, and a
controlled experiment was run to demonstrate the model ex-
change [4] and service interoperability [5] of the standard
across reasoners. A previous iteration of our current proj-
ect introduced an extension to the Bayesian Network Model
(BNM) and services API [6]. This extension permits the SAP-
PHIRE tool to model and interact with Dynamic Bayesian

This project was supported as an STTR under U.S. Navy contract N68335-11-C-0506.
This paper was presented at AUTOTEST 2014 (© IEEE 2014, in Proc. AUTOTEST 2014, used with permission), [10].

It was awarded the “Runner-Up Best Student Paper” at the conference.

August 2015 IEEE Instrumentation & Measurement Magazine 19

Networks (DBNs). Before this extension, the AI-ESTATE
standard had only been used to encapsulate and infer diag-
nostic data. With this work, the standard became capable of
modeling and inferring prognostic data represented through
a DBN.

Bayesian Networks
A Bayesian network is a probabilistic graphical model that
represents a joint probability distribution over a set of ran-
dom variables as a directed acyclic graph [7]. Each node in a
Bayesian network represents a random variable, while edges
between nodes represent probabilistic relationships between
the variables. For any set of random variables in the network,
the probability of any entry of the joint distribution can be
computed as:

where P(X) is a joint probability distribution over the variables
x1, x2,…, xn ∈ X in the network, and where P(xi|Pa(xi)) repre-
sents the probability distribution of xi given the parents of xi.

The Bayesian network model (BNM) defined by AI-ES-
TATE is used to represent a specific type of Bayesian network
used for diagnostics [1]. In the BNM, nodes are represented
using BayesDiagnosis (which can be subclassed further into
BayesFault and BayesFailure) and BayesTest entities. BayesDi-
agnosis entities are not dependent on any other entities, while
BayesTest entities can be dependent on both BayesDiagnoses
and other BayesTests.

Dynamic Bayesian Networks
A Dynamic Bayesian Network (DBN) extends the Bayesian
network by relating variables to one another over discrete
time slices [7]. Each time slice contains a traditional Bayes-
ian network indexed by time t. The conditional probability
distribution of a variable at a given time-slice can be de-
pendent on itself or other variables over any number of
previous time slices. Variables in first-order DBNs are only
conditionally dependent on variables within the preceding
time slice.

Thus, the full joint distribution for a first-order DBN can be
computed as:

A DBN can utilize evidence about previous time slices to
reason about the state of variables in future time slices. First-
order DBNs are often defined by specifying a prior network X0
and a temporal network Xt. DBNs are commonly applied in ar-
eas that require inferences based on sequences of observations
over time. While DBNs are often used to perform inference on
the current time slice based on prior observations, DBNs can
also be unrolled further to forecast future states based on the
conditional probabilities defined in the network. Thus, when
performing inference at some time slice k, the temporal net-
work is typically unrolled into X1, X2,…, Xk.

Within SAPPHIRE, we have extended the AI-ESTATE
BNM to support DBNs for use in diagnostics and prognostics.
These extensions include the introduction of temporal links
from diagnosis-to-diagnosis, test-to-test, and diagnosis-to-
test. Unlike previous links between DependentElements, these
temporal links allow for self-referencing elements.

Reasoner Manipulation Services
The AI-ESTATE reasoner manipulation services define proce-
dures and functions used to interact with a diagnostic reasoner
application during a diagnostic session [1]. The functions de-
fined by the services allow the reasoner to: recommend actions
to the client, perform inference over a model, receive test in-
formation from the client, set checkpoints for session recovery,
backtrack to undo service calls, and provide the client with di-
agnostic conclusions. The reasoner manipulation services are
independent of any one type of model, and as a result, the spe-
cific implementation of the services may vary.

Within SAPPHIRE, we have implemented the AI-ESTATE
API consisting of all required reasoner manipulation services
specified by the standard. This API makes use of the Dynamic
Context Model (DCM) and Reasoner Service Model (RSM)
entities to allow the functions and procedures defined by AI-
ESTATE to be executed on a variety of different systems. The
functions defined in the API provide feedback to the client and
make changes to DCM entities as specified in AI-ESTATE. The
services API makes use of several inference algorithms to in-
fer diagnostic conclusions and recommend potential actions
to the client.

Architecture
The major design goal of the work reported in this paper is
the division of the SAPPHIRE tool into distinct, network-ca-
pable processes. The reasoner client process is designed to be
lightweight; the data-driven reasoner and inference engine are
never used on the client when the tool connects to a remote
reasoner server. The reasoner server is a headless process con-
trolling threads to which reasoner clients may connect to start
a reasoning session. Common to the client and server is a small
communication stack that manages the transmission of mes-
sages between the client and server.

Communication Architecture
The reasoner client and server share several classes that fa-
cilitate the construction and sharing of XML messages over a
networked interface, namely the ReasonerXMLBuilder, Rea-
sonerXMLReciever, and ReasonerXMLSender classes.

The ReasonerXMLBuilder class handles the majority of
the workload for constructing and parsing the XML messages
that are transmitted over the networked connection between
the client and server. For example, the initializeDiagnos-
ticProcess service, responsible for initializing a new reasoning
session, requires two strings as arguments: an itemID, which
is the unique identifier for the system being diagnosed or prog-
nosed, and a systemItemName, which gives the name of the
system item under test. To facilitate the construction of such

20 IEEE Instrumentation & Measurement Magazine August 2015

a message, three calls are made to an instance of the Reason-
erXMLBuilder class. The first call is to a function that creates
a template function-call document, which contains various pa-
rameters required for validation, as well as the name of the
service the message is intended to call. The next two calls are
to a helper function that takes the template function-call doc-
ument and adds string elements with the associated IDs and
values. Example results of such calls are in Fig. 1.

Upon receipt of a message by the reasoner server thread,
the server’s copy of ReasonerXMLBuilder is used to parse the
needed information from the XML document. The class parses
the service name from the document, and then an ancillary
function uses the parameter IDs associated with the service to
extract the requisite parameters. In the case of Fig. 1, the strings
for systemItemName and itemID would be extracted from the
document. After extracting all parameters, the server invokes
the named service. After the service is completed, ReasonerX-
MLBuilder is used to construct a function-response message and
to attach any return parameters. The document is sent back to
the client, and the process is then allowed to repeat.

The ReasonerXMLSender and ReasonerXMLReceiver
classes handle the actual transmission and receipt of the XML
messages between the client and server. Both classes facili-
tate communication by managing a socketed connection to the
designated client or server. The ReasonerXMLSender begins
the communication process by accepting an XML document
to be sent over the connection. After the document is passed
to the class, the sender validates the document against a va-
riety of XML schemata, including schemata for XML-based
representations of objects from the AI-ESTATE standard. This
validation is required, since many parameters passed via the
service API are objects drawn directly from the Bayesian Net-
work Model and Common Element Model of AI-ESTATE.

Once a message has been validated, whitespace is stripped,
and the message length in characters is calculated. The sender
transmits the length in characters over the socket first, notify-
ing the receiver of the size of the incoming message. Following
this, the message itself is transmitted over the connection. The
ReasonerXMLReceiver first receives the number of characters
in the incoming message, and then reconstructs the message

from the expected number of incoming characters. After this
reconstruction, the message is again validated, and after val-
idation the message is handed up to the reasoner server for
processing.

Reasoner Client
The reasoner client utilizes the same service API as that used
in the previous iteration of SAPPHIRE. From this abstrac-
tion, the transition between a local reasoning session (without
a networked reasoning server) and a remote reasoning ses-
sion (with a networked reasoning server) is seamless. In this
sense, the networked reasoner client is simply a surrogate for
the local reasoner—the GUI for the tool is identical in both in-
stances. Additionally, while SAPPHIRE provides a reference
implementation for the service API and for the network inter-
face described in this document, the XML-based abstraction
between the server and client permits other tools to be used in-
terchangeably with this client and server. Provided a client or
server replied using the same XML formatting as that put forth
in this work and as in the AI-ESTATE standard, intercommuni-
cation between clients and servers should be trivial.

Reasoner Server
The reasoner server implements two primary classes to
provide its intended function: ReasonerServer and Reasoner-
Worker. ReasonerServer acts as the driving class, handling the
establishment of a socketed connection and dispatching Rea-
sonerWorkers to handle reasoning sessions with connected
clients. The server itself is designed using the fixed-size thread
pool paradigm: a fixed, specified, number of threads (Rea-
sonerWorkers) are initialized when the server is first started.
Each of these threads is dedicated to a client upon connection,
and if all threads are allocated to a client, then the server will
block until one of the existing sessions ends. Motivating the
use of the fixed-size thread pool is the computational complex-
ity of data-driven inference. Though notable gains have been
made in reducing this cost of inference [7], it remains an ex-
pensive process. The thread pool allows an administrator to
control how many simultaneous clients are appropriate for a
given server.

Fig. 1. Example initializeDiagnosticProcess XML Document.

August 2015 IEEE Instrumentation & Measurement Magazine 21

Each ReasonerWorker thread handles direct input from
the connected client. Once a session is initialized, the worker
loops, waiting for a function-call document from the client.
Upon receipt, the function name of the service is parsed from
this document and any additional parameters for the given
service are pulled from the document. The worker then in-
vokes its local reasoning engine, performing the desired
service. After completion, the worker builds and transmits a
function-response message to the client. Upon receipt of a desig-
nated close-connection message, the worker stops its main loop,
closes the connection to the client, and returns the thread to the
thread pool for later use.

XML-Based Protocol
The eXtensible Markup Language (XML) is a widely-used
human-readable markup language that provides platform
agnostic encoding of information. In previous work [7], the
SAPPHIRE tool had been developed to create, process, and
validate objects in XML that were defined in accordance with
the AI-ESTATE standard. The XML-based representations
of objects from the Common Element Model (CEM), Bayes-
ian Network Model (BNM), and other parts of the AI-ESTATE
standard were found to be effective for encapsulating the in-
formation required for the reasoning process. This efficacy
even held when the models were extended to represent Dy-
namic Bayesian Networks, as described in [6]. These previous
successes, the human-readability of XML documents, and the
pre-existing XML-centric tools in SAPPHIRE motivated the
decision to use XML as the basis for communicating over a net-
worked interface, even when such messages may suffer from
larger size.

Protocol Overview
The protocol used for this project is straightforward, and in
many ways, is a natural and network-focused extension of the
Reasoner Manipulation Services defined within AI-ESTATE.

A normal reasoning session is expected to proceed as
follows:

 ◗ A client establishes a socket-based connection with
a network-based host known to be running an
instance of the ReasonerServer. Upon connection,
the server dispatches one of the reasoning server
threads, which will remain dedicated to the current
client until the completion of the reasoning session.
For each service evocation, a function-call XML message
is generated and sent from the client to the server,
commanding the server to run the desired service.

 ◗ After completing the service, the server replies to the
client by constructing and sending a function-response
XML message corresponding the completed function
call. If the service defines any returned parameters, or
if any errors are encountered in completing the service,
they will be encapsulated within this function-response
message.

 ◗ Once the reasoning client has processed all desired
services, a close-connection message is sent to the server.

Once this message is received, the reasoner’s thread shuts
down and the socket between the client and server is
severed.

All messages transmitted over the socket between the cli-
ent and server in this process are proceeded with an integer
indicating the number of characters in the following message.

Primitive Objects
The primitive objects in the protocol are represented by fully-
contained XML nodes within a function-call or function-response
message. These structures are those that have a direct corre-
spondence with the basic structures in most programming
languages, such as strings, integers, and enumerations. Fig. 2
shows examples of primitive objects that could be contained
within a message.

AI-ESTATE Objects
Many of the service calls within the API involve passing or
returning AI-ESTATE objects. From [6] there is a pre-exist-
ing framework for marshalling and unmarshalling XML
representations of all AI-ESTATE objects used in the service
API. This marshalling and unmarshalling works with an ob-
ject-reference system to avoid repetition of potentially large
XML objects. This object-reference system has been incorpo-
rated into the protocol. Any transferred AI-ESTATE objects are
split into a reference and the object itself. The references are
a child in the params or results nodes of function-call and func-
tion-response messages, respectively. The objects themselves
are contained within a separate, dedicated objects child of
the message. All of these objects are validated upon transmis-
sion and receipt by the client and server. Fig. 3 shows a snippet
from a function-call message, showing the params and objects
nodes. The params node only contains the reference to the ob-
ject, whereas the objects node contains the complete object. In
this way, we are able to decouple multiple references to an ob-
ject from the object itself.

Function Call Messages
Function call messages are sent from the client to the server
when the client wishes to evoke a particular service from
the API. Each function-call message is a self-contained XML
document describing the service to be evoked as well as all
parameters required for the function call. All function-call mes-
sages can have up to three child nodes: an fname node, a params
node, and an objects node. The value of the fname node is sim-
ply the name of the service to be called by the server. The

Fig. 2. Example Primitive XML Objects.

22 IEEE Instrumentation & Measurement Magazine August 2015

params node contains the parameters required for the function
call. If a parameter is a primitive object, it is fully contained
within the params node. If a parameter is an AI-ESTATE ob-
ject, the node will only contain a reference to the object. The
objects node contains the full XML representations of AI-ES-
TATE objects passed for a service call. The fname node is always
required within a function-call document, whereas the params
and objects nodes can be omitted if there are no parameters or
AI-ESTATE objects, respectively.

Described in [6] are extensions to the AI-ESTATE standard
permitting prognostics using Dynamic Bayesian Networks
(DBNs). Included in this previous work was the addition of a
timeStep parameter to several services in order to specify the
step to which the service applies. For example, the getDiag-
nosticResults service calculates a list of diagnostic conclusions
using the inference engine. With the prognostic capabilities of
a DBN, these diagnostic conclusions could be calculated for
any arbitrary future time step, so specifying the time at which
the service applies is required. The XML protocol handles this
difference between models in a straightforward manner: if a
service is to be applied at or relative to a particular timestep, a
timeStep element is added to the params node present in every
function-call message. If the model does not require a specific
time step, then this element is omitted from the outgoing func-
tion-call message.

Function Response Messages
Function response messages are sent from the server to the cli-
ent after completion of a service invocation. The structure of a
function-response message strongly mirrors that of a function-
call message. The message contains (up to) three child nodes:
an fname node, a results node, and an objects node. The fname
node names the service call being responded to, the results
node contains any returned primitive objects or references to
AI-ESTATE objects, and the objects node contains the full XML
representations of any returned AI-ESTATE objects.

Error Handling
The AI-ESTATE standard defines a variety of errors that can
occur in the course of interacting with a reasoner. To facilitate

reporting these errors in a standardized way, there is a variety
of status codes described as part of the Reasoner Manipulation
Services. Originally, SAPPHIRE implemented these various
status codes as exceptions that may be thrown in the course of
processing a service. With the extension of the tool to the net-
worked interface, these status codes were incorporated into
the function-response messages. Included in the function-re-
sponse node is a statusCode attribute. This attribute will have
a value of “OPERATION COMPLETED SUCCESFULLY” if
the service was able to complete as intended. In the event of
a failed service call, the attribute will instead equal the status
code corresponding to the failure, such as “INVALID MODEL
SCHEMA” or “MISSING OR INVALID ELEMENT.” If a client
attempts to call a service that does not exist, the server will re-
turn a “SERVICE NOT AVAILABLE” error.

Example Transmission
Fig. 4 demonstrates a service call between a reasoner client and
server. First, the client calls initializeDiagnosticProcess lo-
cally, passing the itemID and systemItemName as required
by the standard. Then, using the ReasonerXMLBuilder class,
a function-call document is created for transmission. This doc-
ument contains the name of the function and the parameters
required to call the service. The document is sent from the SAP-
PHIRE client’s ReasonerXMLSender instance to the server’s
ReasonerXMLReceiver. Once at the server, the Reasoner-
Worker thread responsible for the session takes the document
and begins to process it locally. After the service completes, the
worker generates a function-response document to inform the
client of the successful call. Included in this document is the
sessionName string, which, as per AI-ESTATE, is the unique
ID of the current session. This document is sent from the server
to the client, allowing the process to continue.

Information Assurance and Security
Development of our client and server tools has borne a vari-
ety of advantages. Formerly, the tool was a single process, and
any machine running the tool was required to run all tasks si-
multaneously. With the client and server architecture, this is
no longer the case: separate physical machines can run the

Fig. 3. Example AI-ESTATE params and objects nodes within an XML message.

August 2015 IEEE Instrumentation & Measurement Magazine 23

distinct processes. Beyond this, hardware is customizable to
these processes: clients are lightweight and require few re-
sources, while the server can be made robust to deal with the
computational cost of inference. Various data files can be cen-
tralized to the server, including reasoning session information,
reasoning models, test results, and maintenance information.
However, even with these advantages, we strove to remain
cognizant of the security and information assurance implica-
tions of these architecture changes. With the Department of
Defense funding this work, the necessity of risk mitigation has
been kept at the forefront through our development. As such,
we have considered a variety of areas where we can protect the
data used by the client and server in the pursuit of developing
a robust and secure tool.

The first area we consider is control of user access. With
a centralization of the server and data repository, it would
be possible to add a permissions layer to the tool. This per-
missions layer could control which clients can access which
models, increasing control over the distribution of model in-
formation and reducing the risk associated with having these
models available and accessible in a networked setting.

Second, as part of the efforts towards standardization, we
have developed the tool to use IEEE Std 1636.1—Test Results
and Session Information [8] and IEEE Std 1636.2—Mainte-
nance Action Information [9] files. As indicated by the security
classification attributes associated with entities defined by
these standards, conformant files may be sensitive and have
policy restrictions, thus disallowing ubiquitous access. Our cli-
ent/server architecture would again be amenable to including

user and file permissions that would restrict using these files to
only qualified and appropriately cleared parties.

Third, while the XML messages transmitted by the tool
are currently plaintext, this need not be the case in general.
The ReasonerXMLSender and ReasonerXMLReceiver classes
could be extended to permit building an encryption scheme di-
rectly into the tool. Alternately, since the tool uses an IP socket
based approach, many off-the-shelf solutions such as Virtual
Private Networks could immediately secure the transmis-
sions between clients and servers, greatly reducing the risk of
interception.

Finally, centralization of data files and reasoning mod-
els lends itself to many of the same techniques that have been
found favorable for client-server architectures as a whole. A
central data repository would simplify preparations for disas-
ter recovery. The data files could be stored using a distributed
parity scheme, such as RAID 5, allowing for recovery in the
event of drive failure. Furthermore, the data in the repository
could be mirrored securely to an off-site location in the event of
site failure. The reasoning server process itself could be setup
using well-established rollover techniques, allowing for lit-
tle to no downtime in the event of machine or site disruption.

Future Work
While there are many benefits to this system, it must be noted
that this is a preliminary implementation of the networked in-
terface. The protocol itself is fairly naive XML, which could
suffer from a certain degree of bloat: a compression or encod-
ing system may be appropriate to shrink transmission sizes.

Fig. 4. Example XML function-call and function-response between the reasoner client and server.

24 IEEE Instrumentation & Measurement Magazine August 2015

The messages are currently transmitted in plaintext across the
network interface. While this is sufficient for the initial imple-
mentation, a certain amount of security or encryption may be
desirable when approaching information assurance issues.
The reasoning server currently handles session and model in-
formation in a naive manner as well. The system as a whole
could benefit from the design and implementation of a central-
ized data repository to which the server and clients may refer,
eliminating the need for transmission of “heavier” AI-ESTATE
objects, such as complete Bayesian Network Models. Finally,
there has not been a formal study examining the efficacy of the
networked interface. Such a study would likely lead towards
other significant areas for future improvement.

Conclusion
In this paper we described a network-focused extension to the
AI-ESTATE standard. SAPPHIRE has been segmented into
two distinct processes: a reasoner client and a reasoner server.
These processes communicate via a socketed interface, permit-
ting transmission across a network connection. XML messages
corresponding to AI-ESTATE API calls and responses are con-
structed and sent between the client and server.

Separating SAPPHIRE into these distinct processes has
yielded a variety of immediate advantages. SAPPHIRE now
has the capacity to connect multiple reasoner clients from
multiple, distinct, remote locations. The reasoner server can
be specially constructed to handle the computationally in-
tense reasoning process, with dedicated processing power and
memory. This enables the clients to be constructed conserva-
tively, reducing the cost of adding another reasoning client to
the system as a whole. Beyond this, the information from rea-
soning sessions is centralized to the server, simplifying the
task of storing the results of the sessions, and potentially elimi-
nating redundancy between storage of reasoning models.

Acknowledgment
The authors thank Mike Malesich and Jennifer Fetherman for
their continued support and also thank Patrick Kalgren, John
Gorton, Brian Drost, and Myra Torres of Impact Technologies/
Sikorsky Innovations for their continued collaboration with
this STTR.

References
[1] IEEE Standard for Artificial Intelligence Exchange and Service Tie to

All Test Environments (AI-ESTATE), IEEE Standard 1232, 2010,

Piscataway, NJ, USA: IEEE Standards Association Press, 2010.

[2] Industrial Automation Systems-Product Data Representation and

Exchange,Part 28: XML Representation of EXPRESS Schemas and Data

Using XML Schemas, ISO 10303-28:2007, Geneva, Switzerland: The

International Organization for Standardization, 1994.

[3] J. W. Sheppard and A. J. Giarla, “Information-based standards

and diagnostic component technology,” in Proc. IEEE

AUTOTESTCON 2000, pp. 425–433, 2000.

[4] J. W. Sheppard, S. G. Butcher, P. J. Donnelly, and B. R. Mitchell,

“Demonstrating semantic interoperability of diagnostic models

via AI-ESTATE,” in Proc. IEEE Aerospace Conference 2009, pp. 1–13,

2009.

[5] J. W. Sheppard, S. G. Butcher, and P. J. Donnelly, “Demonstrating

semantic interoperability of diagnostic reasoners via AI-

ESTATE,” in Proc. IEEE Aerospace Conference 2010, pp. 1–10, 2010.

[6] L. Sturlaugson, N. Fortier, P. Donnelly, and J. W. Sheppard,

“Implementing AI-ESTATE with prognostic extensions in Java,”

in Proc. IEEE AUTOTESTCON 2013, pp. 1–8, 2013.

[7] D. Koller and N. Friedman, Probabilistic Graphical Models:Principles

and Techniques, Cambridge, MA, USA: MIT Press, 2009.

[8] Software Interface for Maintenance Information Collection and

Analysis (SIMICA): Exchanging Test Results and Session Information

via the eXtensible Markup Language (XML), IEEE Standard 1636.1,

2013, Piscataway, NJ, USA: IEEE Standards Association Press,

2013.

[9] Software Interface for Maintenance Information Collection and

Analysis (SIMICA): Exchanging Maintenance Action Information

via the Extensible Markup Language (XML), IEEE Standard 1636.2,

2010, Piscataway, NJ, USA: IEEE Standards Association Press,

2010.

[10] H. King, N. Fortier, and J. W. Sheppard, “An AI-ESTATE

conformant interface for net-centric diagnostic and prognostic

reasoning,” in Proc. IEEE AUTOTEST 2014, pp. 226-232, 2014.

Houston King is a software engineer with Workiva and re-
ceived his M.S. in computer science from Montana State
University in Bozeman, MT in 2014. Houston King attended
the Massachusetts Institute of Technology and South Dakota
State University for his B.S. in Computer Science, awarded
from SDSU in 2012. Since arriving at MSU, he has worked
under Dr. Sheppard at the Numerical Intelligent Systems
Laboratory on several Department of Defense projects. His re-
search focus has included machine learning and probabilistic
graphical models, most notably Continuous-Time Bayesian
Networks.

Nathan Fortier is a Ph.D. student in the Department of Com-
puter Science at Montana State University in Bozeman, MT.
He received his B.S. in software engineering from Montana
Tech in 2011 and his M.S. in computer science from Mon-
tana State in 2013. He completed his Ph.D. in May 2015.
His research interests include swarm-based optimization
and factored evolutionary algorithms. He has also been in-
volved developing standards-based diagnostic tools for the
US Navy.

John W. Sheppard (john.sheppard@cs.montana.edu) is a Pro-
fessor of Computer Science at Montana State University and
Director of the Numerical Intelligent Systems Laboratory.
He is also an Adjunct Professor in Computer Science at Johns
Hopkins University. Dr. Sheppard received his B.S. in com-
puter science from Southern Methodist University in 1983
and his M.S. and Ph.D. in computer science from Johns Hop-
kins in 1990 and 1997, respectively. Dr. Sheppard is a Fellow of
the IEEE.

