
Geometric Shortest Paths and Network OptimizationJoseph S.B. Mitchell �August 4, 19981 IntroductionA natural and well-studied problem in algorithmic graph theory and network optimization is that of com-puting a \shortest path" between two nodes, s and t, in a graph whose edges have \weights" associated withthem, and we consider the \length" of a path to be the sum of the weights of the edges that comprise it.E�cient algorithms are well known for this problem, as briey summarized below.The shortest path problem takes on a new dimension when considered in a geometric domain. In contrastto graphs, where the encoding of edges is explicit, a geometric instance of a shortest path problem is usuallyspeci�ed by giving geometric objects that implicitly encode the graph and its edge weights. Our goal indevising e�cient geometric algorithms is generally to avoid explicit construction of the entire underlyinggraph, since the full induced graph may be very large (even exponential in the input size, or in�nite).Computing an optimal path in a geometric domain is a fundamental problem in computational geometry,having many applications in robotics, geographic information systems (GIS) (see [134]), wire routing, etc.The most basic form of the problem is: Given a collection of obstacles, �nd a Euclidean shortest obstacle-avoiding path between two given points. A much broader collection of problems is de�ned by consideringthe several parameters that de�ne the problem, including theobjective function: How do we measure the \length" of a path? Options include the Euclidean length, Lplength, \link distance", etc.constraints on the path: Are we simply to get from point s to point t, or must we also visit other points orother regions along a path or cycle?input geometry: What types of \obstacles" or other entities are speci�ed in the input map?dimension of the problem: Are we in 2-space, 3-space, or higher dimensions?type of moving object: Are we moving a single point along the path, or is the robot speci�ed by some morecomplex geometry?single shot vs. repetitive mode queries: Do we want to build an e�ective data structure for e�cient queries?static vs. dynamic environments: Do we allow obstacles to be inserted or deleted, or do we allow obstaclesto be moving along known trajectories?exact vs. approximate algorithms: Are we content with an answer that is guaranteed to be within somesmall factor of optimal?�jsbm@ams.sunysb.edu; http://www.ams.sunysb.edu/~jsbm/. Department of Applied Mathematics and Statistics, StateUniversity of New York, Stony Brook, NY 11794-3600. This research was largely conducted while the author was a FulbrightResearch Scholar at Tel Aviv University. The author is also partially supported by NSF grant CCR-9504192, and by grantsfrom Boeing Computer Services, Bridgeport Machines, Hughes Aircraft, and Sun Microsystems.1



known vs. unknown map: Is the complete geometry of the map known in advance, or is it discoveredon-line, using some kind of sensor?In this survey chapter, we discuss several forms of the geometric shortest path problem, primarily for asingle point moving in a 2- or 3-dimensional space. We assume that the map of the environment is known,except in Section 5, where we discuss on-line path planning problems.We also discuss other geometric network optimization problems, including minimum spanning trees,Steiner trees, and the traveling salesperson problem. Many versions of these problems are known to beNP-hard; thus, much of our attention is devoted to approximation algorithms.We focus mostly on sequential algorithms in this survey, listing only a few results on parallel algorithms.See the surveys by Atallah [43] and by Reif and Sen [336] in this handbook, or the survey by Goodrich [179]for more extensive lists of results on parallel algorithms in geometry.We will freely use the \big-Oh" notation for upper bounds on time and space requirements. We also use\big-Omega" notation for lower bounds. (See [123] for de�nitions.) We use \ ~O(� � �)" to indicate an upperbound in which we suppress polylogarithmic factors.Many of the results discussed in this survey are also reported, in a more tabular form, in a surveychapter [288] of the recently released CRC Handbook, edited by Goodman and O'Rourke [178].Finally, we make a disclaimer that our survey concentrates primarily on theoretical results. Some ofthese results may well imply practical algorithms that may be implementable and useful; however, in manycases, the algorithms are too complex or have too large of a constant buried in the big-Oh notation to beof practical signi�cance. We hope that a future survey will address the important choices and issues facingpractitioners in the implementation of geometric shortest path and network optimization algorithms. One ofthe major issues facing an implementer of any geometric algorithm is, of course, robustness; see the surveyby Schirra [353] in this handbook.Shortest Paths in GraphsShortest paths in graphs and networks are well studied; see, e.g., Ahuja, Magnanti, and Orlin [10]. Here,we mention the case in which all edge weights are non-negative, as this is the most relevant for geometricinstances. Then, a standard algorithm given by Dijkstra [138] allows one to compute a tree of shortest pathsfrom any one source node to all other nodes of the graph. Early implementations of Dijkstra's algorithmrequired time O(v2) or O(e logv), where v denotes the number of vertices and e the number of edges. UsingFibonacci heaps, Fredman and Tarjan [160] gave an O(e + v log v) time implementation, and argued thatthis is optimal in a comparison-based model of computation. Exploiting planarity, Henzinger, Klein, andRao [198] have obtained a linear-time algorithm for computing all shortest paths from a single source inplanar graphs having nonnegative edge weights.There has been some recent progress too in devising new algorithms that di�er from Dijkstra's algorithmin that they do not necessarily visit nodes in increasing order of distance from the source node. Thorup [374]has in fact obtained an optimalO(e)-time algorithm for computing a tree of shortest paths in a graph havinginteger edge weights; see his paper, as well as the recent article of Raman [328], for a survey of other recentresults that led up to this one.Approximation AlgorithmsSeveral of the problems we will discuss in this survey are \provably hard" (e.g., NP-hard), meaning thatno polynomial-time algorithm is known to exist to solve it. An increasingly popular approach to \solving"NP-hard optimization problems is to obtain provably-good approximation algorithms, which are guaranteed,in polynomial time, to produce an answer that is close to optimal { say, whose objective function value atmost some factor c > 1 times optimal, for a minimization problem. Such an approximation algorithm is thencalled a c-approximation algorithm. (For a maximization problem, a c-approximation algorithm produces asolution whose objective function value is at least (1=c) times optimal.)2



A polynomial time approximation scheme (PTAS) is a method that allows one to compute a (1 + �)-approximation to the optimal (minimum), in time that is polynomial in n, for any �xed � > 0. (In general,the dependence on � may be exponential in (1=�).)The recent book edited by Hochbaum ([210]) contains several articles surveying the state of knowledgeon approximation algorithms for NP-hard problems. In particular, the survey of Bern and Eppstein [64]gives an excellent overview of the subject of approximating NP-hard geometric optimization problems.Approximation algorithms can also be quite useful for problems that are not necessarily NP-hard. First,an approximation algorithm may be considerably simpler and easier to implement than an algorithm thatsolves the problem to optimality. Further, the running time (both worst-case and average-case) for theapproximation algorithm may be much better than the best known for the exact solution, even when theexact algorithm has polynomial running time.Further, approximation algorithms are known for some problems whose complexity status is still open,such as the MAX TSP in the plane and the minimum-weight triangulation problem; see Section 7.Geometric PreliminariesThroughout the survey, we will have need of some basic terminology, which we outline in this section.First, a path is a continuous image of an interval. A polygonal s-t path is a path from point s to point tconsisting of a �nite number of line segments (edges, or links) joining a sequence of points (vertices).The length of an s-t path is a nonnegative number associated with the path, measuring its total costaccording to some prescribed metric. Unless otherwise speci�ed, the length will be the Euclidean length ofthe path.A shortest path is then a path of minimum length among all paths that are feasible (satisfying all imposedconstraints). We often refer to a shortest path also as an \optimal path" or a \geodesic path". (The word\geodesic" is sometimes used di�erently, to refer to paths that are \locally optimal", as de�ned below.)The shortest-path problem induces a metric, the shortest path metric, in which the distance between twopoints s and t is given by the length of a shortest s-t path; in many geometric contexts, this metric is alsoreferred to as geodesic distance.A simple polygon, P , having n vertices, is a closed, simply-connected region whose boundary is a unionof n (straight) line segments (edges), whose endpoints are the vertices of P . A polygonal domain, P , havingn vertices and h holes, is a closed, multiply-connected region whose boundary is a union of n line segments,forming h + 1 closed (polygonal) cycles. (A simple polygon is a polygonal domain with h = 0.)A triangulation of P is a decomposition of P into triangles such that any two triangles either intersectin a common vertex, a common edge, or not at all. A triangulation of a simple polygon P can be computedin O(n) time [91]; a polygonal domain can be triangulated in time O(n logn) [327] or O(n+ h log1+� h) [54]time. (See the chapter of Bern and Plassman [66] in this handbook, or the survey by Bern [63] for moreinformation on triangulations.)We will use the term obstacle to refer to any region of space whose interior is forbidden to paths. Thecomplement of the set of obstacles is the free space. If the free space is a polygonal domain P , the obstaclesare the h+ 1 connected components of the complement of P (h holes, plus the face at in�nity).A path that cannot be improved by making a small change to it that preserves its combinatorial structure(e.g., the ordered sequence of triangles visited, for some triangulation of a polygonal domain P ) is calleda locally shortest or locally optimal path. It is also known as a taut-string path in the case of a shortestobstacle-avoiding path.The visibility graph, V G(P ), is a graph whose nodes are the vertices of P and whose edges join pairs ofnodes for which the corresponding segment lies inside P . An example is shown in Figure 2.Given a source point, s, a shortest path tree, SPT(s; P ), is a spanning tree of s and the vertices of P suchthat the (unique) path in the tree between s and any vertex of P is a shortest path in P .A single-source query is a type of shortest path problem in which a source point, s, is �xed, and for eachquery (goal) point, t, one requests the length of a shortest path from the source point s to t. The query3



may also require the retrieval of an actual instance of a shortest s-t path; in general, this can be reported inadditional time O(k), where k is the complexity of the output (e.g., number of edges).One method of handling the single-source query problem is to construct a shortest path map, SPM(s),which is a decomposition of free space into regions (cells) according to the \combinatorial structure" ofshortest paths from a �xed source point s to points in the regions. Speci�cally, for shortest paths in apolygonal domain, SPM(s) is a decomposition of P into cells such that for all points t interior to a cell, thesequence of obstacle vertices along an s-t path is �xed. In particular, the last obstacle vertex along a shortests-t path is the root of the cell containing t. Each cell is star-shaped with respect to its root, which lies on theboundary of the cell, meaning that the root can \see" all points within the cell. Typically, we will store witheach vertex, v, of P the geodesic distance, d(s; v), from s to v, as well as a pointer to the predecessor of v,which is the vertex (possibly s) preceding v in a shortest path from s to v. (The predecessor pointers providean encoding of the SPT(s; P ).) Note that v will appear on the boundary of the star-shaped cell rooted atits predecessor. The boundaries of cells consist of portions of obstacle edges, extension segments (extensionsof visibility graph edges incident on the root), and bisector curves. The bisector curves are, in general,hyperbolic arcs that are the locus of points p that are (geodesically) equidistant from two roots, u andv: they satisfy d(s; u) + d2(u; p) = d(s; v) + d2(v; p), where d2(�; �) denotes Euclidean distance. (Extensionsegments can be considered to be degenerate cases of bisector curves.) In Figure 1, the root of the cellcontaining t is labeled r. If SPM(s) is preprocessed for point location (see the chapter by Goodrich [180] inthis handbook), then single-source queries can be answered e�ciently by locating the query point t within thedecomposition: If t lies in the cell rooted at r, the geodesic distance to t is given by d(s; t) = d(s; r)+d2(r; t).A shortest s-t path can then be output in time O(k), where k is the number of vertices along the path, bysimply following predecessor pointers back from r to s.In a two-point query problem, we are asked to construct a data structure that allows us to answere�ciently a query that speci�es two points, s and t, and requests the length of a shortest path betweenthem. In all cases discussed here, an actual instance of a shortest path can be reported in additional timeO(k), where k is the complexity of the output (e.g., number of edges).A geodesic Voronoi diagram (VD) is a Voronoi diagram for a set of sites, in which the underlying metricis the geodesic distance. See the chapter of Aurenhammer and Klein [45] in this handbook for details aboutVoronoi diagrams.The geodesic center of P is a point within P that minimizes the maximum of the shortest-path lengthsto any other point in P . The geodesic diameter of P is the maximum of the lengths of the shortest pathsjoining pairs of vertices of P .Finally, we remark that in most of the algorithmic results reported here, the model of computationassumed has been the real RAM, which assumes that exact operations on real numbers can be done inconstant time per operation. We acknowledge that this model is not, in general, realistic. At a couple placesin the survey, we will point to results involving bit complexity models.2 Geodesic Paths in a Simple PolygonWe begin by considering the most basic geometric shortest-path problem, that of �nding a shortest s-t pathinside a simple polygon, P (having no \holes"). The complement of P serves as an \obstacle" through whichthe path is not allowed to travel. In this case, simple local optimality arguments, based on the triangleinequality, yield:Proposition 1 There is a unique shortest s-t path in a simple polygon P ; consequently, SPT (s; P ) is unique.We now sketch an O(n) time algorithm for computing a shortest s-t path within a simple polygon P .We begin with a triangulation of P (O(n) time; [91]), whose dual graph is a tree. The sleeve is comprisedof the triangles that correspond to the (unique) path in the dual that joins the triangle containing s to thatcontaining t. By considering the e�ect of adding the triangles in order along the sleeve, [89, 252] have shownhow to obtain an O(n)-time algorithm for collapsing the sleeve into a shortest path. At a generic step of4
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Figure 1: A shortest path map with respect to source point s within a polygonal domain with h = 3. Theheavy dashed path indicates the shortest s-t path, which reaches t via the root r of its cell. Bisector curvesare shown in narrow solid curves; extension segments are shown thin and dashed.
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Figure 2: The visibility graph V G(P ): Edges of V G(P ) are of two types { (1) the heavy dark boundaryedges of P , and (2) the edges that intersect the interior of P , shown with thin dashed segments. A shortests-t path is highlighted. 5



the algorithm, the sleeve has been collapsed to a structure called a \funnel" (with \base" ab and \root"r) consisting of the shortest path from s to a vertex r, and two (concave) shortest paths joining r to theendpoints of the segment ab that bounds the triangle abc that is about to be considered (see Figure 3). Inadding triangle abc, we \split" the funnel in two according to the taut-string path from r to c, which will, ingeneral, include a segment, uc, joining c to some (vertex) point of tangency, u, along one of the two concavechains of the funnel. After the split, we keep that funnel (with base ac or bc) that contains the s-t taut-stringpath. The work needed to search for u can easily be charged o� to those vertices that are discarded fromfurther consideration. The end result is that a shortest s-t path is found in time O(n), which is worst-caseoptimal.
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cFigure 3: Computing a shortest path in a simple polygon: Splitting a funnel.In order to answer single-source query problems, we are interested in also computing the shortest pathmap in P . SPM(s) has a particularly simple structure, as the boundaries between cells in the map are simply(line segment) chords of P obtained by extending appropriate edges of the visibility graph V G(P ). Guibaset al. [186] have shown how it can be computed in time O(n), by using somewhat more sophisticated datastructures to do funnel splitting e�ciently (since, in this case, we cannot discard one side of each split funnel).Then, after storing the SPM(s) in an appropriate O(n)-size point location data structure (see, e.g., [180]),single-source queries can be answered in O(logn) time. Hershberger and Snoeyink [203] have substantiallysimpli�ed the original algorithm of [186].The above result can be strengthened even further to the case of two-point queries. Guibas and Hersh-berger [185] have shown how a simple polygon can be preprocessed in time O(n), into a data structure ofsize O(n), to support shortest-path queries between any two points s; t 2 P . In time O(logn) the length ofthe shortest path can be reported, and in additional time O(k), the shortest path can be reported, wherek is the number of vertices in the output path. The method has been simpli�ed with a new data structureintroduced by Hershberger [200].Theorem 2 ([185, 200]) For a simple polygon P having n vertices, there is a data structure of size O(n)that can be built in time O(n) so that the length of the shortest path between any two points s; t 2 P can bereported in time O(logn), and the shortest path itself can be reported in additional time proportional to itsnumber of vertices.We should emphasize that the above methods all rely on starting with a triangulation of the simplepolygon. Given the complexity of linear-time triangulations of polygons, we pose the following open problem:Open Problem 1 Can one devise a simple O(n) time algorithm for computing the shortest path betweentwo points in a simple polygon, without resorting to a (complicated) linear-time triangulation algorithm?6



In the dynamic version of the shortest path problem, one allows the polygon P to change, with the additionor deletion of edges and vertices. If the changes are always made in such a way that the set of all edgesyields a connected planar subdivision of the plane into simple polygons (i.e., no \islands" are created), thenone can maintain a data structure of size O(n) that supports two-point query time of O(log2 n) (plus O(k) ifthe path is to be reported), and update time of O(log2 n) for each addition/deletion of an edge/vertex [183].(The result of [183] improves the �rst results on the dynamic problem, obtained by Chiang, Preparata,and Tamassia [108, 109], who gave a data structure achieving O(log3 n) query and update bounds, usingO(n logn) space. The same data structure also gives the best known dynamic point location solution forconnected maps, with optimal O(logn) query time.)We turn briey to some results on parallel algorithms. ElGindy and Goodrich [147] gave a parallelalgorithm to compute a shortest path in a simple polygon in time O(logn), using O(n) processors (in theCREW PRAM model). Goodrich, Shauck, and Guha [181, 182] show how, with O(n= logn) processors andO(logn) time, one can compute a data structure that supports O(logn) (sequential) time shortest-pathqueries between pairs of points in a simple polygon. They also give an O(logn)-time algorithm using O(n)processors to compute a shortest path tree. Hershberger [201] builds on the results of [181, 182] and givesan algorithm for shortest path trees requiring only O(logn) time and O(n= logn) processors (CREW); healso obtains optimal parallel algorithms for related visibility and geodesic distance problems.Other Geodesic Distance ProblemsThe geodesic Voronoi diagram of k sites inside P can be constructed in time O((n + k) log(n + k)), usingO(n) space [320]; this improves an earlier result of Aronov [32] that required time O((n+k) log(n+k) logn).The furthest-site Voronoi diagram for geodesic distance can also be computed in time O((n+ k) log(n+ k)),and space O(n+ k), using an algorithm of Aronov, Fortune, and Wilfong [33]. Given that shortest paths insimple polygons require only linear time, it is natural to ask if the superlinear portion of the complexities ofthese algorithms can be moved to the \k" term; the only lower bound known is 
(n + k log k).Open Problem 2 Can the geodesic Voronoi diagram (closest-site or furthest-site) for k sites within a simplepolygon P be computed in time O(n+ k log k)?The geodesic diameter of a simple polygon can be computed in time O(n), using the method of \matrixsearching" in the geodesic distance, as developed by Hershberger and Suri [209]. This algorithm improvesan earlier O(n logn)-time solution given by Suri [366, 185]. Matrix searching also provides a powerful toolfor obtaining linear-time solutions to other geodesic distance problems, such as all nearest neighbors and allfurthest neighbors.The geodesic center of a simple polygon P can be computed in time O(n log2 n) [326] (see also [41]);however, it is believed that this bound can be improved.Open Problem 3 Can the geodesic center of a simple polygon be computed in O(n) time?Shortest paths within simple polygons give a wealth of structural information about the polygon. Inparticular, they have been used to give an output-sensitive algorithm for constructing the visibility graphof a simple polygon ([199]) and can be used for constructing a geodesic triangulation of a simple polygon,which allows for e�cient ray-shooting (see [92, 207]). They also form a crucial step in solving link distanceproblems (Section 4.2).3 Paths in a Polygonal DomainIn contrast to the situation in simple polygons, where there is a unique taut-string path between any twopoints, in a general polygonal domain P , there can be an exponential number of taut-string (locally optimal)simple paths between two points. 7



A special case of the shortest path problem in polygonal domains is that in which the \homotopy type"of the desired path is speci�ed, e.g., by giving the sequence (possibly with repetitions) of the N visitedtriangles, in some triangulation of P . In this case, Hershberger and Snoeyink [203] have shown how tocompute a shortest path of the given homotopy type in time O(N ), using a generalization of the linear-timemethods in simple polygons. This problem is of interest in applications to VLSI routing problems; see[122, 162, 256].To compute a shortest path in general polygonal domains, with no constraints on the homotopy type,we must e�ciently search over all possible \threadings" of paths. We discuss two methods below that havebeen used to do so: searching the visibility graph (see Figure 2), and performing a \continuous Dijkstra"search of the domain.Searching the Visibility GraphSince we can make \point" holes in P at s and t, we can assume, without loss of generality, that s and t arevertices of P . Using simple local optimality arguments, it is easy to show:Proposition 3 Any locally optimal s-t path in a polygonal domain P must lie on the visibility graph V G(P );it consists of a union of straight line segments joining pairs of visible vertices.Early algorithms to construct the visibility graph required time O(n2 logn) [251], and were based ona radial sweep about each vertex of P . The time complexity came from the use of n independent radialsortings of the vertices. Later improvements by Welzl [385] and by Asano et al. [38] gave a time boundO(n2). These methods were based on the use of point-line duality, which allowed the n sortings to be donemore e�ciently, in O(n2) time overall, by constructing the arrangement of the n lines that are dual to thevertices of P . But, given that the number, EV G, of edges in the visibility graph may be much smaller than itsworst-case quadratic size (in particular, EV G may be only linear in n), researchers pursued \output-sensitive"algorithms to compute it in time that is a function of EVG. Hershberger [199] studied the special case ofvisibility graphs in simple polygons, obtaining an O(EVG)-time and O(n)-space algorithm to compute thevisibility graph of a simple polygon. Overmars and Welzl [313] obtained a relatively simple O(EV G logn)-time method, requiring O(n) space. Then, Ghosh and Mount [173] obtained an algorithm with worst-caseoptimal running time, O(EVG+n logn), using O(EV G) working storage space. More recently, Pocchiola andVegter [324, 325] and Rivi�ere [346] have given algorithms to compute the visibility graph in optimal time(O(EVG + n logn)) and optimal space (O(n)).Once we have computed the graph V G(P ), whose edges are weighted by their Euclidean lengths, wecan use Dijsktra's algorithm1 to construct a tree of shortest paths from s to all vertices of P , in timeO(EVG + n logn) [160, 141]. Thus, Euclidean shortest paths among obstacles in the plane can be computedin time O(EVG+n logn). This bound is worst-case quadratic in n, since EVG � �n2�; note too that domainsexist with EVG = 
(n2).If our goal is to obtain the shortest path map, then, given the tree of shortest paths from s, we cancompute SPM(s) in time O(n logn) [282].Another method based on visibility graphs leads to an algorithm whose running time is only linear in n,while being quadratic in the number, h, of holes in P . Kapoor, Maheshwari, and Mitchell [237] have given anO(n+h2 logn)-time, O(n)-space algorithm, using visibility graph techniques developed by Rohnert [348, 347]for convex obstacles, and visibility \corridor" structure developed by Kapoor and Maheshwari [236].There has been an e�ort for many years to characterize which graphs correspond to visibility graphs ofsome geometric domain. For example, it is an interesting open problem to characterize the class of graphsthat can be realized as the visibility graph of a simple polygon; see, e.g., Abello and Kumar [1], Ghosh [172],and O'Rourke and Streinu [312] for some recent results and some pointers to related work.1In practice, it may be faster to apply the A� heuristic search algorithm (e.g., see Pearl [322]), using the straight-lineEuclidean distance as heuristic function, h(�) (which is a lower bound, so it implies an \admissible" algorithm).8



For further information on visibility, visibility graphs, and their use in shortest path problems, we referthe reader to the survey of Alt and Welzl [20], the survey (on visibility) by O'Rourke [310], and the chapteron visibility by Ghosh [171] in this handbook.Continuous Dijkstra MethodInstead of searching the visibility graph (which may have quadratic size), an alternative paradigm forshortest-path problems is to construct the (linear-size) shortest path map directly. The continuous Dijkstramethod [278, 279, 280, 282, 283, 291, 292] was developed for this purpose.Building on the success of the method in solving (in nearly linear time) the shortest-path problem forthe L1 metric (see Section 4.1), Mitchell [284, 286] developed a version of the continuous Dijkstra methodapplicable to the Euclidean shortest-path problem, obtaining the �rst subquadratic (O(n3=2+�)) time bound.Subsequently, this result was improved by Hershberger and Suri [205, 206], who achieve a nearly optimalalgorithm based also on the continuous Dijkstra method. They give an O(n logn) time and O(n logn) spacealgorithm, coming close to the lower bounds of 
(n+ h logh) time and O(n) space.The continuous Dijkstra paradigm involves simulating the e�ect of a \wavefront" propagating out fromthe source point, s. The wavefront at distance � from s is the set of all points of P that are at geodesicdistance � from s. It consists of a set of curve pieces, called wavelets, which are arcs of circles, centered atobstacle vertices that have already been reached. At certain critical \events," the structure of the wavefrontchanges due to one of the following possibilities:(1) a wavelet disappears (due to the \closure" of a cell of the SPM); or(2) a wavelet collides with an obstacle vertex; or(3) a wavelet collides with another wavelet; or(4) a wavelet collides with an obstacle edge at a point interior to that edge.It is not di�cult to see from the fact that SPM(s) has linear size that the total number of such events isO(n). The challenge in applying this propagation scheme is in devising an e�cient method to know whatevents are going to occur and in being able to process each event as it occurs (updating the combinatorialstructure of the wavefront).One approach, used in [284, 286], is to track a \pseudo-wavefront," which is allowed to run over itself,and \clip" only when a wavelet collides with a vertex that has already been labeled due to an earlier event.Detection of when a wavelet collides with a vertex is accomplished with range searching techniques, at a costof O(n0:5+�) per query. This leads to an overall running time of O(n3=2+�), for any �xed � > 0, using O(n)space.An alternative approach, used in [205, 206], simpli�es the problem by �rst decomposing the domain Pusing a \conforming subdivision," which allows one to propagate an \approximate wavefront" on a cell-by-cell basis. A key property of a conforming subdivision is that for any edge (of length L) of the subdivision,there are only a constant number of (constant-sized) cells within geodesic distance L of it.While the algorithm of [206] is optimal worst-case time when there are a large number of obstacles (e.g.,h = 
(n)), it fails to be optimal in its space complexity (O(n logn)) and in its complexity as a function ofn and h. One of the most intriguing open problems here is to obtain an (optimal) algorithm whose runningtime asymptotically matches the lower bound of 
(n+ h logh), while using only O(n) space. Currently, theonly algorithm known that is linear in n is also quadratic in h [237].Open Problem 4 Can one solve the Euclidean shortest-path problem in O(n + h logh) time and O(n)space? 9



Approximation AlgorithmsE�cient methods to approximate the Euclidean shortest path, in timeO(n logn), have existed for some time.Clarkson [119] gave an algorithm that spent O((n logn)=�) time to build a data structure of size O(n=�), afterwhich a (1+ �)-approximate shortest path query could be answered in time O(n logn+n=�). (These boundsrely also on an observation in [93].) Using a related approach, based on approximating Euclidean distancewith �xed orientation distances (see Section 4.1), Mitchell [279, 283] gave a method requiring O((n logn)=p�)time and O(n=p�) space to give an approximate Euclidean shortest path. Chen, Das, and Smid [95] haveshown an 
(n logn) lower bound, in the algebraic computation tree model, on the time required to computea (1 + �)-approximate shortest path; they also give 
(n logn) lower bounds on computing various typesof \t-spanners," which are graphs that, for every pair of points, contain a path whose length is at most ttimes the interpoint distance (Euclidean, geodesic, etc.); see the survey on spanners in this handbook byEppstein [150], as well as [79, 106, 351].Two-Point QueriesTwo-point queries in a polygonal domain are much more challenging than the case of simple polygons, whereoptimal algorithms are known.One approach, observed by Chen, Daescu, and Klenk [94], is to proceed as follows. Using O(n2) space,we can store the shortest path map, SPM(v; P ), rooted at all n vertices. Then, for any s and t, we can usethe visibility complex of Pocchiiola and Vegter [323] to compute the set of ks vertices visible to s and ktvertices visible to t, in time O(K logn), where K = minfks; ktg (using a standard \lock step" computation ofthe visibility from the two points). Then, assuming that K = ks, we simply locate t in each of the ks SPM'srooted at the vertices visible from s. This permits two-point queries to be answered in time O(K logn),which is 
(n logn) in the worst case, making this method no better than starting the computation fromscratch. However, this approach may be e�ective in cases in which K may be expected to be small.A recent study by Chiang and Mitchell [107] has yielded more e�cient query times, with various tradeo�sbetween preprocessing time and space. They use a visibility-based approach to achieve query timeO(logn+h)using O(n5) preprocessing time and space. They also achieve optimal query time, O(logn), using highpolynomial space (roughly n10), and they achieve slightly sublinear query time, using O(n5+�) space. Theseresults utilize an \equivalence decomposition" of the domain P , so that for all points z within a cell ofthe decomposition, the shortest path maps with respect to z are topologically equivalent. Then, for givenquery points s and t, one locates s within the decomposition, and then uses the resulting SPM, along with aparametric point location data structure, to locate t within the SPM with respect to s. The complexity of thedecomposition can be quite high; there can be 
(n4) topologically distinct shortest path maps with respectto points within P . Unfortunately, the upper bound on the complexity of the equivalence decomposition isstill considerably higher than this; obtaining tight bounds remains an interesting open question.Approximations have also been useful in attacking the two-point query problem. As observed in [93],the method of Clarkson [119] can be used to construct a data structure of size O(n2 + n=�) in O(n2 logn +(n=�) logn) time, so that two-point (1 + �)-optimal queries can be answered in time O((logn)=�), for any�xed � > 0. Chen [93] was the �rst to obtain nearly linear-space data structures for approximate shortestpath queries; these were obtained, though, at the cost of a higher approximation factor. He obtains a(6 + �)-approximation, using O(n3=2= log1=2 n) time to build a data structure of size O(n logn), after whichqueries can be answered in time O(logn). (Within this time bound, the approximate length is reported;in additional time proportional to the number of vertices, a path can be reported that achieves the lengthbound.) These results have been improved recently by Arikati et al. [21], who give a family of results, basedon planar spanners (see [150]), with tradeo�s among the approximation factor and the preprocessing time,storage space, and query time. One such result obtains a (3p2 + �)-approximation using O(n3=2= log1=2 n)time to build a data structure of size O(n logn), after which queries are performed in time O(logn). Forother results, and for bounds that apply to other metrics (Lp metrics), we refer the reader to the paper.Open Problem 5 How e�ciently, and using what size data structure, can one preprocess a polygonal do-10



main for exact two-point queries? Can exact two-point queries be done in sublinear query time using sub-quadratic storage? Can O(1)-approximate two-point queries be done in polylogarithmic time, using nearlylinear storage?Other Geodesic Distance ProblemsThe geodesic Voronoi diagram of k sites inside P can be constructed in time O((n+k) log(n+k)), using thecontinuous Dijkstra method, simply starting with multiple source points [206].While the geodesic center/diameter problem has been carefully examined for the case of simple polygons(Section 2), we are unaware of results (other than brute force) for polygonal domains:Open Problem 6 How e�ciently can one compute a geodesic center/diameter for a polygonal domain?4 Shortest Paths in Other MetricsSo far, we have considered only shortest path problems in the Euclidean metric. We turn now to otherpossible objective functions for measuring the length of a path.4.1 L1 MetricThe Lp metric de�nes the distance between q = (qx; qy) and r = (rx; ry) by dp(q; r) = [jqx�rxjp+jqy�ryjp]1=p.The Lp length of a polygonal path is the sum of the Lp lengths of each edge of the path. Special cases of theLp metric include the L1 metric (Manhattan metric) and the L1 metric (d1(q; r) = maxfjqx�rxj; jqy�ryjg).A polygonal path with each edge parallel to a coordinate axis is called a rectilinear (or isothetic) path.(For a rectilinear path, the L1 and L2 lengths are identical.) A natural generalization of the notion of arectilinear path is that of C-oriented paths, having each edge parallel to one of a set C of c = jCj �xedorientations. (See Widmayer, Wu, and Wong [386], who initiated the study of �xed orientation metrics incomputational geometry.)As with Euclidean shortest paths, algorithms for computing shortest paths in the L1 metric fall into twogeneral categories: searching a sparse \path preserving graph" (analogous to a visibility graph), or applyingthe continuous Dijkstra paradigm or tracking a wavefront.Clarkson, Kapoor, and Vaidya [121] showed how to construct a sparse graph, having O(n logn) nodesand O(n logn) edges, that is path preserving in that it is guaranteed to contain a shortest path between anytwo vertices. Applying Dijkstra's algorithm then gives an O(n log2 n) time (O(n logn) space) algorithm forL1 shortest paths. (Alternatively, one gets O(n log3=2 n) time and O(n log3=2 n) space.) Using observationsin [97, 98] the time-space tradeo� has been improved to yield somewhat improved bounds of O(n log3=2 n)time and O(n logn) space.The continuous Dijkstra paradigm has also been applied to the L1 shortest path problem, resulting in thecomputation of the SPM(s) in time O(n logn), using O(n) space [279, 283]. The special property of the L1metric that is exploited in this algorithm is the fact that the wavefront in this case is piecewise-linear, with\wavelets" that are line segments of slope �1, so that the �rst vertex hit by a wavelet can be determinede�ciently using rectangular range searching techniques (e.g., see [90]).Two-point query problems have also been studied for the L1 geodesic metric. In a simple rectilinearpolygon, Lingas, Maheshwari, and Sack [259] and Schuierer [354] give optimal algorithms, achieving O(logn)query time (O(1) for vertex-to-vertex queries), using O(n) preprocessing time and space; an optimal path canbe reported in additional O(k) time, where k is the number of links. (A previous algorithm of de Berg [130]achieved optimal query time using O(n logn) space and preprocessing.) Their methods are based upona histogram decomposition of the polygon and yield a path that is \smallest" { simultaneously optimal inboth the L1 and rectilinear link metric (see also [157, 274], as well as Section 4.7). They also yield anO(n) algorithm for computing the L1 geodesic diameter and furthest neighbors for all vertices. Further, thealgorithm of Lingas, Maheshwari, and Sack [259] is actually based on an optimal parallel (EREW PRAM)11



algorithm that preprocesses a polygon (with a given trapezoidization) in time O(logn), using O(n= logn)processors.Two-point queries in a polygonal domain, under the L1 metric, have been studied by Chen, Klenk, andTu [97, 98], who have shown how a polygonal domain can be preprocessed, using O(n2 log2 n) time andO(n2 logn) space, so that two-point queries can be answered in time O(log2 n). The special case in whichobstacles are disjoint axis-aligned rectangles has been studied by Atallah and Chen [44, 42] and by ElGindyand Mitra [148]; O(logn) query time is achievable, using O(n2) preprocessing time and space, or O(pn)query time is achievable, using O(n3=2) preprocessing time and space. In fact, they give parallel algorithms:with O(n2= logn) CREW processors, a data structure of size O(n2) can be built that permits two-pointqueries to be answered in time O(log2 n) on a single processor ([42]). Mitra and Bhattacharya [298] andChen and Klenk [96] have obtained approximation algorithms in the special case of disjoint rectangularobstacles; [96] describe a method achieving O(logn) query time for a 3-approximate query, using O(n logn)space and O(n log2 n) preprocessing time. (If the query points are both obstacle vertices, then the querytime is only O(1).) Arikati et al. [21] have recently obtained approximation results for two-point queries inpolygonal domains, as we mentioned already in the Euclidean case. Their results apply also to Lp metrics,where they obtain various tradeo�s between space and time resources, to achieve approximation factors thatare c+ �, 2c+ �, or 3c+ �, where c = 2(p�1)=p (so c = 1 for the L1 metric).Methods for �nding L1 shortest paths often generalize to the case of C-oriented paths, in which c = jCj�xed directions are given. Shortest C-oriented paths can be computed in time O(cn logn) [279, 283]. Two-point queries can be answered in query time O(c2 log2 n), after O(c2n2 log2 n) time and space preprocess-ing [94]. Since the Euclidean metric is approximated to within accuracy O(1=c2) if we use c equally spacedorientations, this results in an algorithm to compute, in time O((n=p�) logn), a path guaranteed to havelength within a factor (1 + �) of the Euclidean shortest path length [279, 283]. Clarkson [119] gave an alter-native approximation algorithm based also on discretizing directions that computes an �-optimal (Euclidean)shortest path in time O(n=�+ n logn), after spending O((n=�) logn) time to build a data structure of sizeO(n=�).4.2 Link DistanceThe link distance within P from s to t is the minimum number of edges in an s-t path in P . If the pathsare restricted to be rectilinear or C-oriented, then we speak of the rectilinear link distance or C-oriented linkdistance. A min-link s-t path is a polygonal path from s to t that achieves the link distance.In many problems, the link distance provides a more natural measure of path complexity than theEuclidean length. The link distance also has applications to curve simpli�cation [187, 222, 295].Since this handbook contains a chapter by Maheshwari and Sack [271] devoted entirely to the subject oflink distance, we refer the reader to that survey for further information.4.3 The Weighted Region MetricIn the \weighted region problem", we are given a piecewise-constant function, f : <2 ! <, that is de�nedby assigning a nonnegative weight to each face of a given triangulation in the plane. The weighted length ofan s-t path � is the path integral, R� f(x; y)d�, of the weight function along �. The weighted region metricassociated with f de�nes the distance df (s; t) to be the in�mum over all s-t paths � of the weighted lengthof �. The weighted region problem (WRP) asks for an s-t path of minimumweighted length.The WRP is a natural generalization of the shortest-path problem in a polygonal domain: Consider aweight function that assigns weight 1 to P and weight 1 (or a su�ciently large constant) to the obstacles(the complement of P ). The WRP models the minimum-time path problem for a point robot moving in aterrain of varied types (e.g., grassland, brushland, blacktop, bodies of water, etc), where each type of terrainhas an assigned weight equal to the reciprocal of the maximum speed of traversal for the robot.We usually assume that f is speci�ed by a triangulation having n vertices, with each face assigned aninteger weight � 2 f0; 1; : : : ;W;+1g. (We can allow edges of the triangulation to have a weight that is12



possibly distinct from that of the triangular facets on either side of it; in this way, \linear features" suchas \roads" can be modeled.) Using an algorithm based on the continuous Dijkstra method, Mitchell andPapadimitriou [292] show how to �nd a path whose weighted length is guaranteed to be within a factorof (1 + �) of optimal, where � > 0 is any user-speci�ed degree of precision. The time complexity of theiralgorithm is O(E �S), where E is the number of \events" in the continuous Dijkstra algorithm, and S is thecomplexity of performing a numerical search to solve the following subproblem: Find a (1+ �)-shortest pathfrom s to t that goes through a given sequence of k edges of the triangulation. It is shown that E = O(n4) andthat there are examples where E can actually achieve this upper bound. The numerical search can be doneusing a form of binary search that exploits the local optimality condition: An optimal path bends accordingto \Snell's Law of Refraction" when crossing a region boundary. (The earliest reference we have found tothe use of Snell's Law in optimal route planning applications is to the work of Warntz [384].) This leads toa bound of S = O(k2 log(nNW=�)) on the time needed to perform a search on a k-edge sequence, where Nis the largest integer coordinate of any vertex of the triangulation. Since one can show that k = O(n2), thisyields an overall time bound of O(n8L), where L = log(nNW=�) can be thought of as the bit complexity ofthe problem instance.Various special cases of the weighted region problem admit faster and simpler algorithms. In the casethat region weights are restricted to f0; 1;1g (while edges may have arbitrary (nonnegative) weights),then an O(n2)-time algorithm can be based on constructing a path-preserving graph similar to a visibilitygraph, as shown by Gewali et al. [168]. This also leads to an e�cient method for performing lexicographicoptimization, in which one prioritizes various types of regions according to which is most important for pathlength minimization. Lee, Yang, and Chen [253] consider the case in which the plane has weight 1, whileeach of a set of pairwise-disjoint rectilinear polygonal \obstacles" has a weight greater than 1, indicating thatit is more costly to travel through it than to go around it. They apply the techniques of [121], searching apath-preserving graph, to obtain an algorithm for minimum-cost rectilinear paths that takes time O(n log2 n)(with space O(n logn)) or O(n log3=2 n) (with O(n log3=2 n) space). A path-preserving graph approach canalso be applied to the more general case of rectilinear paths in an arbitrarily weighted rectilinear subdivision,to yield e�cient algorithms for single-source and two-point queries. Speci�cally, Chen, Klenk, and Tu [97]give an O(n log3=2 n)-time algorithm to construct a data structure of size O(n logn), permittingO(logn)-timesingle-source queries to be answered; for two-point queries, they use O(n2 log2 n) space and preprocessingtime, and answer queries in time O(log2 n).In recent experimental investigations, Mata and Mitchell [273] and Lanthier, Maheshwari, and Sack [246],have shown the practicality of solving the WRP using very simple methods based on searching a discretegraph which is assured of containing an approximately optimal path. One graph is based on discretizing theedges of the subdivision, placing evenly-spaced new (Steiner) vertices along each edge, with separation atmost weighted length �. The vertices on the boundary of each (convex) facet are interconnected (possiblyimplicitly)with a complete graph. Searching the resulting graph for a shortest path results in an approximateshortest path; the error is at most K�, where K is the number of segments in the path. Another option(in [273]) is to construct a \pathnet" graph, based on tracing k evenly-spaced \refraction rays" (that obeySnell's Law) out of each original vertex, and linking that vertex to one vertex (or \critical entry point") withineach of the k refraction cones de�ned by the rays. As k increases, the pathnet more closely approximatesa complete set of optimal paths connecting pairs of vertices. The experimental studies suggest that thesemethods are practical and are readily implementable, and that the observed dependence of the approximationfactor on the algorithm parameters (� or k) is better in practice that the worst-case bounds may suggest.Further, the graphs that are searched can be precomputed and stored, allowing reasonably e�cient solutionsto two-point queries. The reported path can also be postprocessed with a local optimality procedure thatresults in a solution even closer to optimal.Using a slightly di�erent discrete graph than the edge subdivision graph of [246, 273], Aleksandrov et al. [11]give alternative time bounds that depend on other parameters related to the \fatness" of the triangular facetsof a weighted polyhedral surface. They place Steiner points along edges in a geometric progression, as Pa-padimitriou [317] has done for approximating shortest paths in three dimensions (Section 6.3). This allowsone to compute a (1 + �)-approximate shortest path from s to t in time O(Mn logMn + nM2) (and space13



O(nM2)), where M = O(W=w� sin � log �Whw� ), � is the length of a longest edge, h is the minimum altitude ofa triangular facet, � is the smallest angle of any triangular facet, W is the maximum (resp., minimum)weight of a facet, and 0 < � < 13 + W2w . (See also Section 6.3, where the same method is mentioned in theunweighted case.) Note that, while the dependence on � and on geometric precision parameters is substan-tially worse than in the algorithm of Mitchell and Papadimitriou [292], the worst-case dependence on n ismuch better. (If, as in [292], the coordinates have integral values at most N , then sin � = O(1=N2) andh = O(1=N ), making the time bound roughly O(N4W2n�2 ).) An improved variant of their result ([12]) searchesa reduced subgraph, allowing them to remove the additive term nM2 in the complexity, resulting in timebound O(Mn logMn) (roughly O(N2Wn� )).Several other papers have also addressed practical and e�ective (possibly heuristic) methods for theWRP; see the work by Alexander and Rowe [13, 14, 15] and a recent pair of papers by Kindl, Shing,and Rowe [238, 239], which report practical experience with a simulated annealing approach to the WRP.Johansson [229] has implemented a version of the edge subdivision method (also investigated by [246, 273])and studied its use in uid ow computations for injection molding.Papadakis and Perakis [315, 314] have generalized the WRP to the case of time-varying maps, whereboth the weights and the region boundaries may change over time; they obtain generalized local optimalityconditions for this case and propose a search algorithm to �nd good paths.4.4 Minimum-Time Paths: Kinodynamic Motion PlanningOur discussion so far has focussed on path planning problems with holonomic constraints | those that arecompletely speci�ed in terms of the robot's con�guration, which is described by a k-vector, if the robot hask degrees of freedom. In non-holonomic motion planning, the constraints on the robot are speci�ed in termsof a non-integrable equation involving also the derivatives of the con�guration parameters. For example,non-holonomic constraints may specify bounds on the robot's velocity, acceleration, or the curvature of itspath. See Latombe [247] and Li and Canny [258] for more a more detailed discussion of non-holonomicconstraints and motion planning.The kinodynamic motion planning problem (also known as the minimum-time path problem) is a non-holonomic motion planning problem in which the objective is to compute a trajectory (a time-parameterizedpath, (x(t); y(t))) within a domain P that minimizes the total time necessary to move from an initialcon�guration (position and initial velocity) to a goal con�guration (position and velocity), subject to boundson the allowed acceleration and velocity along the path. The problem formulation is intended to model thefact that real mobile robots have a bounded acceleration vector and a maximum speed. In its general form,it is a di�cult optimal control problem; optimal paths will be complicated curves given by solutions todi�erential equations.The bounds on acceleration and velocity are most often given by upper bounds on the L1 norm (the\decoupled case") or the L2 norm (the \coupled case").Exact solutions to the kinodynamicmotion planning problem are known in one dimension (O'D�unlaing [306])and in two dimensions (Canny, Rege, and Reif [81]). The algorithm of [81] is for the decoupled case (L1bounds on velocity and acceleration); it requires exponential time and polynomial space. Their method isbased on characterizing a set of \canonical solutions" (related to \bang-bang" controls) that are guaranteedto include an optimal solution path. This leads to an expression in the �rst-order theory of the reals, whichcan then be solved exactly in exponential time. It remains open, however, whether or not a polynomial-timealgorithm exists in two dimensions. For three or more dimensions, the problem is at least NP-hard, asimplied by the lower bounds of Canny and Reif [82].Approximation methods have been developed by Donald et al. [140], who have given a polynomial-timealgorithm that produces a trajectory requiring time at most (1 + �) times optimal, for the decoupled case.Their approach is to discretize (uniformly) the four-dimensional phase space that represents position andvelocity, with special care to ensure that the size of the grid is bounded by a polynomial in 1=� and n. Theyprove that shortest paths in the induced grid graph are guaranteed to be close to optimal. The runningtime of their algorithm has been improved by Donald and Xavier [139]. Approximation algorithms for the14



coupled case have been given independently by Donald and Xavier [139] and by Reif and Tate [341]. Byusing a non-uniform discretization of d-dimensional con�guration space, Reif and Wang [338] have obtainedan approximation algorithm with a time complexity that improves that of [139], reducing the dependencyon � from O((1=�)6d�1) to O((1=�)4d�2).4.5 Curvature-Constrained Shortest PathsRelated to the kinodynamic motion planning problem is the problem of �nding shortest paths subjectto a bound on their curvature. The curvature-constrained shortest-path problem is to compute a shortestobstacle-avoiding smooth (C1) path joining point s, with prescribed orientation, to point t, with prescribedorientation, such that for every subinterval of the path, the average curvature is at most 1. (The averagecurvature of a path p : I ! <d in the interval [u1; u2] � I is de�ned to be jjp0(u1)� p0(u2)jj=ju1� u2j, wherethe parameter u denotes arc length.) Placing a bound on the curvature can be thought of as a means ofhandling an upper bound on the acceleration vector of a point robot (e.g., an idealized aircraft) whose speedis constant, or can be thought of as the constraint imposed when modeling a car-like mobile robot havinga minimum turning radius. The complexity of solving the general problem in a polygonal domain has beenopen until very recently; Reif and Wang [339] have shown that it is NP-hard in a polygonal domain havingn vertices, each having coordinates speci�ed by nO(1) bits.Since the general problem is di�cult to solve exactly, algorithms for restricted versions of the problem,as well as approximation algorithms, have been the topic of recent investigations.Early investigations into the problem were by Dubins [144], who characterized shortest curvature con-strained paths in the absence of obstacles: a shortest path consists of a sequence of at most three segments,each of which is a straight line segment (\S") or an arc of a unit radius circle (\C"), with the allowablesequences being CCC, CSC, or a subsequence of one of these two. Reeds and Shepp [334] extended thisresult, obtaining a characterization of shortest paths in the case in which the robot is allowed to move inreverse, as well as forward. Boissonnat, C�er�ezo, and Leblond [75] give an alternative method of obtainingcharacterizations in both cases, based on optimal control theory. (See also [368].)Approximation algorithms for a shortest \�-robust" path were given by Jacobs and Canny [227, 228].(See also Barraquand and Latomb [55].) Here, \�-robust" roughly means that small perturbations of certainpoints along the path do not cause the path to penetrate an obstacle. They place points that discretizethe boundaries of the polygonal obstacles and connect these points by paths (\jumps") of standard shapes(circular arcs and straight segments); the resulting algorithm takes time O((n3� ) logn + n2�2 ), where � isthe spacing of the discretization points on the boundary; � controls the robustness of the path as well asthe degree of approximation. They also give an alternative quadtree-based algorithm, having complexityO(n4 logn+ (n� )2). Wang and Agarwal [383] give time bounds that do not depend on the length parameter�: they give (1) an O((n� )2 logn)-time algorithm that produces a feasible path (not necessarily �-robust) thatis at most (1 + �) times the length of a shortest �-robust path; and (2) an O((n� )2:5 logn)-time algorithmthat produces a feasible path that is (�=2)-robust, with length at most (1 + �) times the length of a shortest�-robust path.For the special case in which the obstacles are \moderate" (have di�erentiable boundary curves, with ra-dius of curvature at least 1), Agarwal, Raghavan, and Tamaki [8] give an algorithm requiring timeO(n2 logn)to compute exactly a shortest curvature-constrained path from a starting con�guration (position-orientationpair) to a goal location (no orientation speci�ed), and an algorithm requiring time O(n2 logn + 1� ) forcomputing an approximate shortest path (having length at most � greater than optimal) between two con-�gurations. Boissonnat and Lazard [77] obtain exact algorithms between two con�gurations for moderateobstacles whose boundaries consist of unit-radius circular arcs and straight segments. If the boundary arcs(straight or curved) are each of length at least some constant, then their algorithm requires time O(n2 logn);otherwise, the complexity is O(n4 logn). (Their algorithm remains polynomial even if the obstacles are notpairwise disjoint.)Sellen [358] uses a simple discretization of the unit square to search, in O(��3) time, for a path among aset of constant-complexity obstacles that is \�-approximate" (which roughly means that it is within factor15



(1 + �) of being shortest, while maintaining an �-clearance from obstacles and obeying an approximate (upto �) curvature constraint). He also provides a decision procedure to determine the existence of a curvature-constrained path, in time polynomial in the reciprocal of a parameter that measures the di�erence betweenthe radius of curvature in the constraint and the supremum of all radii for which a constrained path exists.For the special case of curvature-constrained paths inside a convex polygon having n vertices, Agar-wal et al. [4] use a careful characterization of the structure of shortest paths to obtain an algorithm withrunning time O(n log2 n). Their result may be an important �rst step towards the solution of the moregeneral problem inside a simple polygon:Open Problem 7 How e�ciently can one compute a curvature-constrained shortest path in a simple poly-gon?Boissonnat et al. [76] examine curvature-constrained motion in a convex polygon (withm vertices), havinga single simple polygonal hole (with n vertices). They compute, in time O(m+ n), a cycle surrounding thehole having the minimum possible curvature.Wilfong [387, 388] considers the case in which the robot is to follow a given network of lanes, speci�ed bya set of m line segments in free space, among a set of obstacles (having a total of n vertices). The robot isallowed to turn from one segment to another along a circular arc, of radius � rmin, if the two lanes intersectand the robot does not collide with the obstacles. In Wilfong [387], a polynomial-time (O(m2(n2 + logm)))algorithm is given for preprocessing, after which, in O(m2) time, one can report a path (if one exists) havinga minimum number of turns. (See also Mirtich and Canny [277].) Wilfong [388] shows that the problemof �nding a minimum-length curvature-constrained path on a set of lanes is NP-complete; however, he alsogives a dynamic programming algorithm to compute a shortest path (in time O(m6n2)) for a given (feasible)sequence of turns (e.g., to optimize, locally, the path produced by the algorithm in [387]).Fortune and Wilfong [159] give an exponential-time algorithm for determining if a curvature-constrainedpath exists between two con�gurations, assuming the robot is not allowed to reverse; their algorithm solvesthis reachability question in time and space 2O(poly(n;m)), where n is the number of vertices in the polygonalobstacles, and m is the total number of bits required to specify the vertices. Sellen [357] shows that theexistence of a curvature-constrained path can be decided in time that is polynomial in d�1min and W�1, wheredmin is the smallest distance between obstacle features and W = jR � Rcj=R is the \relative width" ofthe problem, relating the maximal curvature, R�1, with the critical curvature, R�1c , which is the in�mumover the curvatures R�1 for which a curvature-constrained path (with constraint R�1) exists. Sellen alsoshows how to approximate the critical curvature R�1c to within any relative error � > 0, and to produce acorresponding path; the algorithm is polynomial in n and Rc=�.If the robot following the path is allowed to reverse direction, then Laumond [248] has shown that it isalways possible to obtain a curvature-constrained path from s to t if the s and t lie in the same open, path-connected component of free space. Further, when allowing reversals, Laumond et al. [249] give an algorithmthat determines a path (if one exists), producing a path having a local optimality property. Desaulniers [137]shows that, in the presence of reversals, in may be that no shortest path exists, even when there is a feasiblepath.�Svestka and Overmars [369] also study problems of planning routes for car-like robots, using a \proba-bilistic learning paradigm."All of the discussion so far has been for paths in a two-dimensional environment. For three-dimensionalspaces, Sussmann [367] gives a characterization of curvature-constrained shortest paths. Polynomial-timeapproximation algorithms for three and higher dimensions are given by Reif and Wang [338], by applyingtheir discretization techniques developed for the kinodynamic motion planning problem.Another interesting open area of research on curvature-constrained optimal paths is to consider net-work optimization problems in the curvature-constrained model. For example, we may desire a travelingsalesperson tour (cycle) of minimum length, subject to the curvature constraint (see Section 7.2):Open Problem 8 What is the complexity of the curvature-constrained TSP for points in the unit square?What is the best approximation algorithm that can be given for the problem?16



4.6 Optimal Motion of Non-Point RobotsSo far, we have considered only the problem of optimally moving a point robot. If the robot is modeled asa circle, or as a nonrotating polygon, then many of the results carry over by simply applying the standardcon�guration space approach in motion planning: \shrink" the robot to a (reference) point, and \grow"the obstacles (using a Minkowski sum) so that the complement of the grown obstacles model the regionof the plane for which there is no collision with an obstacle if the robot has its reference point placedthere. Chew [105] has examined the speci�c case of a circular robot; Hershberger and Guibas [202] haveconsidered more general convex robots, obtaining essentially quadratic-time algorithms for optimal pathsunder translation.Optimal motion of rotating non-circular robots is a much harder problem. Even the simplest case ofmoving a (unit) line segment (a ladder) in the plane is highly nontrivial. One notion of \optimal" motionrequires that we minimize the average distance traveled by a set of k �xed points, evenly distributed alongthe ladder. This \dk-distance" in fact de�nes a metric (for k � 2). The special case of k = 2 is the well-known Ulam's problem, for which optimal motions have been fully characterized, in the absence of obstacles,by Icking et al. [217].The case of k =1 is an especially interesting case, requiring that we compute a minimum work motionof a ladder; however, no results are known yet for this problem. (The work measures the integral (over� 2 [0; 1]) of the path length, L(�), for each in�nitesimal subsegment of length d�.) O'Rourke [308] hasstudied a restricted case of the d1-optimal motion problem.Open Problem 9 Characterize the d1-optimal (minimum-work) motion for a ladder that is allowed totranslate and rotate in the plane. What if it is restricted to move within a polygonal domain?While d1 does not de�ne a metric, several cases of d1-motion, and its generalization of measuring thedistance traveled by any �xed \focus" F on the ladder, have been studied. In particular, if F is restrictedto move on the visibility graph of a polygonal environment, Papadimitriou and Silverberg [318] (see alsoSharir [361]) have obtained polynomial-time algorithms. Without restrictions, minimizing the d1-distance,for any F not at an endpoint of the ladder, is NP-hard, but there exists an approximation algorithm; seeAsano, Kirkpatrick, and Yap [40].Open Problem 10 Does minimizing the d1-distance of a ladder endpoint remain NP-hard? Also, is itNP-hard to obtain a d2-optimal motion of a ladder in a polygonal domain?Chen and Ierardi [100] have studied a velocity-constrained version of the problem of moving a ladder,such that no point of the ladder is allowed to have its speed exceed a given bound, and the objective isto minimize the time required to move the ladder from one con�guration to another. For the case of noobstacles, they give a complete characterization of the optimal motion and give an explicit construction.See also the related work of Reister and Pin [344], who study time-optimal motion of mobile robots havingindependently controlled wheels.4.7 Multiple Criteria Optimal PathsThe standard shortest-path problem asks for paths that minimize some one objective (length) function.Frequently, however, an application requires us to �nd paths to minimize two or more objectives; theresulting problem is a bicriteria (or multi-criteria) shortest-path problem. A path is called e�cient orPareto optimal if no other path has a better value for one criterion without having a worse value for theother criterion.For example, in mobile robotics applications, we may wish to �nd a path that simultaneously is short in(Euclidean) length and has few turns. Note that a minimum-link path may be far from optimal with respectto Euclidean length; similarly, a shortest Euclidean length path may have thousands of links, while thereexists a path joining start and goal that has only 2 links.17



Multi-criteria optimization problems tend to be di�cult. Even the bicriteria path problem in a graphis NP-hard [164]: Does there exist a path from s to t whose length is less than L and whose weight is lessthan W? Pseudo-polynomial time algorithms are known, such as the algorithm of Hansen [191], who �ndsall Pareto-optimal paths in a graph, in time polynomial in the number of paths and n. Experimental studiessuggest that the average number of Pareto-optimal paths remains very small in practice, although in theorythis number may be exponential. Various heuristics have also been devised; e.g., see Handler and Zang [190]and Henig [197].In geometric problems, various optimality criteria are of interest, including any pair from the followinglist: Euclidean (L2) length, rectilinear (L1) length, other Lp metrics, link distance, total turn, etc.NP-hardness lower bounds are known for several versions, including: [30] (1) Find a path in a polygonaldomain whose L2 length is at most L, and whose \total turn" is at most T ; (2) Find a path in a polygonaldomain whose Lp length is at most �p and whose Lq length is at most �q (p 6= q); and (3) Given a subdivisionof the plane into red and blue polygonal regions, �nd a path whose length within blue regions is at most Band whose length within red regions is at most R.One problem of particular interest is to compute a Euclidean shortest path within a polygonal domain,constrained to have at most k links. No exact solution is currently known for this problem. Part of thedi�culty is that a minimum-link path will not, in general, lie on the visibility graph (or any simple discretegraph). Furthermore, the computation of the turn points of such an optimal path appear to require thesolution to high-degree polynomials.Open Problem 11 For a polygonal domain (with holes) what is the complexity of computing a shortestk-link path between two given points?For a given k (k � dL, where dL is the s-t link distance), one can compute a path in a simple polygonP whose length is guaranteed to be within a factor (1 + �) of the length of a shortest k-link path, for anytolerance � > 0. The algorithm runs in time O(n3k3 log (Nk=�1=k)), polynomial in n and k, and logarithmicin 1=� and the largest integer coordinate N of any vertex of P [294]. Within the same time bound, onecan compute an �-optimal path under any (single) combined objective, f(L;G), where L and G denote linkdistance and Euclidean length, and f is an increasing function in G for each L.Aside from the problem of computing a shortest k-link path, one may ask if there always exists an s-tpath that is simultaneously close to Euclidean shortest and minimum-link? In a simple polygon, such apath always exists and can be computed e�ciently (in time O(n)): There is an s-t path whose link lengthis within a factor of 2 of the link distance from s to t, while also having Euclidean length within a factorof p2 of the Euclidean shortest-path length [31]. A corresponding result is not possible for polygons withholes. However, in O(kE2VG) time, one can compute a path in a polygonal domain having at most 2k linksand length at most that of a shortest k-link path [294].In a rectilinear polygonal domain, some of these bicriteria path problems become easier, since there is apath-preserving graph (grid). In particular, e�cient algorithms are known for the bicriteria path problemthat combines rectilinear link distance and L1 length. Yang, Lee, and Wong [390] and Chen, Daescu, andKlenk [94] give e�cient algorithms for computing a shortest k-link rectilinear path, a minimum-link shortestrectilinear path, or any combined objective that uses a monotonic function of rectilinear link length andL1 length in a rectilinear polygonal domain. Single-source queries can be answered in time O(logn), afterO(n log3=2 n) preprocessing time to construct a data structure of size O(n logn) [94]; two-point queries can beanswered in time O(log2 n), using O(n2 log2 n) preprocessing time and space [94]. (See also the survey articleof Lee, Yang, and Wong [254] on the subject of rectilinear path problems.) A related problem is studied byde Berg et al. [132, 133], who give e�cient algorithms in two or more dimensions for computing optimal pathsamong a set of axis-parallel (possibly crossing) line segment obstacles according to a \combined metric,"de�ned to be a linear combination of rectilinear link distance and L1 path length: In the plane, using O(n2)preprocessing time and O(n logn) space, a data structure for a �xed source point can be computed, so thatpath length queries to a goal point can be answered in time O(logn). (Note, however, that optimal pathsin this metric are not equivalent to the Pareto-optimal solution paths.) It would be interesting to study thecomplexity of the problem in a more general setting:18



Open Problem 12 How e�ciently can one compute a (general) polygonal path in a polygonal domain,under a combined metric cost function that takes into account Euclidean length, the number of turns, andpossibly the amount of turning?4.8 Other Optimal Path ProblemsWe briey mention some various other optimal path problems:(1) In the sailor's problem, the goal is to compute a minimum-cost path, where the cost of motion isdirection-dependent, and there is a cost L per turn (in a polygonal path). For L = 0, Sellen [356] givesan algorithm for computing optimal paths in a polygonal domain, in time O(n2) times a bit complexityterm. Sellen also considers the case in which L > 0, obtaining a (1 + �)-approximation algorithm thatrequires time polynomial in n and 1=�. See also the study by Rowe [350] on anisotropic weightedregions.(2) In the maximum concealment path problem, the goal is to determine a path within a polygonal domainP that minimizes the length during which the robot is exposed to a given set of v \enemy" observers.This problem is a special case of the weighted region problem, in which weights are 0 (for travel inconcealed free space), 1 (for travel in exposed free space), or 1 (for travel through obstacles). Gewaliet al. [168] use visibility graph methods, based on the local optimality conditions, to obtain polynomial-time algorithms for this problem. In a simple polygon, their time bound is O(v2(v+n)2); in a polygonaldomain, the bound becomes O(v4n4).(3) In the minimum total turn problem, the goal is to compute a polygonal s-t path that minimizes thesum of the absolute values of the turn angles at its vertices. This problem is solved in polynomial time(O(EVG logn) time, O(EVG) space) by reducing it to a shortest path problem in an augmentation ofa visibility graph [30]. (See also Section 7.4, on angular-metric traveling salesperson problems.)(4) In the fuel-consuming problem, one is given a set of n point sites in the plane and the goal is to �nd a\cheap" polygonal path from one site to another, with the vertices of the path being restricted to theset of point sites. The cost of a path, though, is not measured in terms of its Euclidean length, butin terms of a more general cost function, l(p; q), which assigns a nonnegative cost to a ight from p toq. Naturally, one can compute a minimum-cost path in time O(n2) simply by searching the completegraph for a shortest path. However, it turns out that more e�cient algorithms that exploit geometryare possible, if we assume that l(�; �) has some simple properties: its description is of size O(1) and l(p; q)can be evaluated in O(1) time, and l(p; q) < l(p; q0) if and only if d2(p; q) < d2(p; q0) (where d2(�; �)denotes Euclidean distance). Efrat and Har-Peled [146] show that a cheapest route can be computedin time O(n1:5+�), for any �xed � > 0). Further, they show that if the cost function grows with atleast a quadratic rate as a function of Euclidean distance (i.e., l(p; q) = (d2(p; q))2 � f(d2(p; q)), wheref(�) is a positive, nondecreasing function), then it su�ces to search the Gabriel graph (a subgraph ofthe Delaunay triangulation) of the point sites; thus, cheapest routes can be found in time O(n logn)in this case.(5) In the problem of shortest paths in an arrangement, one is given a set of n lines in the plane, and points sand t on the lines, and must compute a shortest s-t path that is contained within the union of the lines.Since the arrangements can be computed in time O(n2) (see the chapter on arrangements by Agarwaland Sharir [2]), and shortest paths in planar graphs can be computed in linear time ([198]), the problemis trivially solved in time O(n2). It is an intriguing open question if there exists a subquadratic-timealgorithm. There has been partial progress towards addressing this question: Bose et al. [78] give a 2-approximation algorithm that requires O(n logn) time, and Eppstein and Hart [151] give an algorithmfor computing an exact shortest path in time O(n + k2), where k is the number of di�erent lineorientations. 19



(6) In the asteroid avoidance problem, one is given a set of obstacles, each moving along a �xed (known)trajectory, and the problem is to �nd a minimum-time obstacle-avoiding path for a point robot thatis subject to a velocity bound. This problem was �rst studied by Reif and Sharir [337], who showthat the general problem is PSPACE-hard in three dimensions and that the two-dimensional problemcan be solved in exponential time in the case of pure translational motion. Canny and Reif [82] provethat the two-dimensional problem is NP-hard, even for convex translating obstacles, moving with �xedvelocity, that do not collide. (E�ectively, the fact that the obstacles are moving lifts the dimension ofthe problem from two to three, making it substantially more di�cult; see Section 6.) Canny [80] hasgiven a PSPACE algorithm to solve the asteroid avoidance problem.5 On-Line Algorithms and Navigation Without MapsIn all of the optimal path problems we have discussed so far, we have assumed that we know in advancethe exact layout of the environment in which the robot moves; i.e., we assume we are given a perfect map.In many situations, the robot does not have prior information about the obstacles in the environment; e.g.,the robot may be placed in a completely new environment, or it may roam on a factory oor or an o�cebuilding where there are frequent changes in the positions of obstacles. In such cases, we may have perfectinformation about the robot's current location, as well as the location of the goal, but we acquire informationabout the environment on-line, as the robot encounters or senses obstacles.Common assumptions about the sensory capabilities of the robot include (1) a tactile robot, in which therobot learns of the boundary of an obstacle only as it encounters it, and moves along it; or a (2) vision-basedrobot, in which the robot learns of obstacles only as it is able to see them. (It is common to assume that therobot has 360-degree vision, allowing it to look in all directions; however, this assumption may be relaxed aswell.) For a vision-based robot, there are also di�erent assumptions that can be made about the nature ofthe sensor: (a) it may be that it knows only about that portion of the obstacle boundaries that it has seen;or (b) it may be that it has recognition capabilities, so that as soon as it sees any part of the boundary ofan obstacle, it is able to determine the shape, size, and position of the obstacle, thereby learning the entireobstacle boundary.Our goal is to obtain a navigation strategy that controls the motion of the robot, while utilizing sensoryinput, in order to minimize some notion of length (e.g., Euclidean length) of the path of the robot, which isto get from a start point, s, to a goal (target) location, t (which may be a point, a line, a region, etc.). Theenvironment is assumed to be a polygonal domain, P , that is unknown to us. Often, there is very specialstructure assumed about the obstacles that constitute the holes of P .Some of the �rst work that obtained worst-case bounds on the length of a path produced by a navigationstrategy was that of Lumelsky and Stepanov [268, 269]. They give navigation strategies for a tactile robotmoving among a set of arbitrary obstacles. The robot is assumed to know, at any given time, its ownposition, the position of the goal, and whether or not it is in contact with an obstacle; it is assumed tohave only a small constant-size memory for recording other information that is learned along the way. Onesimple strategy (\BUG1"), attempts to head towards the goal until an obstacle is encountered; then, therobot follows the boundary of the obstacle, all the way around the perimeter, keeping track of the point pthat is closest to the goal; �nally, the robot returns to point p (by following the boundary) and heads againtowards the goal. This strategy �nds a path whose length is at most d2(s; t)+ 32L, where L is the sum of theperimeters of the obstacles that intersect a disk of radius d2(s; t) centered at t. Within their model, they alsoprove a lower bound, showing that no strategy can guarantee a path length better than d2(s; t) + L� �, forany � > 0. A second strategy (\BUG2") attempts to stay on the straight segment st, at the cost of possiblyvisiting obstacles more than once. BUG2 is shown to produce a path of length at most d2(s; t) +Pi niLi2 ,where ni is the number of times st crosses the ith obstacle, and Li is the perimeter of the ith obstacle. Forconvex obstacles, BUG2 is essentially optimal in their model. See also [129] for some further work on anextension of the Lumelsky-Stepanov model. Other papers on maze traversal strategies include [74, 329], aswell as the surveys of Lumelsky [265, 266, 267]. 20



While the Lumelsky-Stepanov result gives a worst-case additive error bound on the robot's path length,it does not give a bound on the ratio between the robot's path length and the (true) shortest path length,d(s; t;P ), in P . In order to evaluate the e�ectiveness of a navigation strategy, �, in an on-line setting, it isnow common to use the notion of a competitive ratio, �(n), where n = d2(s; t) here denotes the Euclideandistance between s and t, and the ratio �(n) is de�ned by�(n) = supP;s;t:d2(s;t)=n d�(s; t;P )d(s; t;P ) ;where d�(s; t;P ) is the length of the s-t path produced by strategy � in P , and we assume that a unit diametercircle can be inscribed in each obstacle. In other words, our goal is to minimize the ratio between the lengthof the path obtained using the strategy to the length of a shortest path (with perfect information); thecompetitive ratio �(n) is the maximum value of this ratio, over all environments having a given start-to-goaldistance n.The competitive ratio, in this context, has been studied �rst by Papadimitriou and Yannakakis [319],and independently by Eades, Lin, and Wormald [145]. In particular, [319] show that if the obstacles are allaxis-aligned squares, and the robot is equipped with a vision sensor, then one can achieve a competitive ratioof �(n) = p263 + o(1), for all n. (The bound is 53 if s and t are points having the same x- or y-coordinate.) Ifthe obstacles are in fact aligned unit squares, they prove that �(n) is at least 3=2, while supplying a strategythat achieves �(n) = 3=2 + o(1), for all n. (It is now known that a ratio of �(n) = 3=2 is possible for squareobstacles, even if they have di�erent sizes and are not axis-aligned; see the citation of Chan and Lam [86]below.) Further, by an adversary argument, they show that, for arbitrary (e.g., \thin") aligned rectangularobstacles2, there is no strategy with a bounded competitive ratio, for a robot with line-of-sight vision. Infact, in [145, 319], it is shown that if the goal region t is an in�nite vertical line (\wall"), at distance nfrom s, and the obstacles are aligned rectangles, then �(n) = 
(pn). Blum, Raghavan, and Schieber [73]provide a \sweep algorithm" for this wall problem that shows a matching upper bound of �(n) = O(pn),both for a vision-based robot and for a tactile robot (utilizing a \doubling" search procedure, suggested byBaeza-Yates, Culberson, and Rawlins [48]).If the obstacles are aligned rectangles having aspect ratio at most f and longest side at most g (andshortest side at least 1), then Mei and Igarashi [275] give an \adjusted bias heuristic" that achieves compet-itive ratio 1 + 35f + o(1), if f = o(pn) and fg = o(n), assuming s and t have a common x- or y-coordinate(the competitive ratio is slightly higher otherwise). (See also [276].)Blum et al. [73] also study the \room problem", in which P consists of an n-by-n (aligned) squareroom, with aligned rectangular holes (obstacles). For the room problem, they give an algorithm achieving�(n) = O(2p3 logn). Bar-Eli et al. [53] have improved upon this result, establishing a tight bound of�(n) = �(logn), for deterministic algorithms. The wall and room problems can be combined, resulting in acompetitive ratio of �(n) = O(pn) for point-to-point navigation among aligned rectangular obstacles.While, for deterministic algorithms, we have the tight bound �(n) = �(pn) for the competitive ratioin both the wall and point-to-point versions of the problem, it has been shown by Berman et al. [61] thatrandomized strategies are \powerful", in that one can obtain a competitive ratio of O(n 49 logn) for the walland point-to-point navigation problems among aligned rectangular obstacles. For randomized strategies, wede�ne �(n) to be the supremum of the ratio of the expected path length to d(s; t;P ), assuming that P isselected by an oblivious adversary, with knowledge of the strategy, but not of the coin tosses made duringa walk using the strategy. Berman and Karpinski [62] obtained a randomized strategy for general convexobstacles with competitive ratio O(n 34 ).Blum and Chalasani [70] have shown that if the robot is to make multiple trips from s to t, it can makee�ective use of information gained on each trip, allowing it to improve its performance as it learns more2Note that if the obstacles (holes of P ) are rectangles or squares, they are disjoint, but allowed to touch; however, the robotcan \squeeze" between two touching obstacles. Thus, we cannot synthesize nonconvex obstacles by putting together rectangularobstacles. Also, unless otherwise stated (e.g., in the \room problem"), we are assuming that P is the in�nite plane, with holesthat are the obstacles; i.e., there is no outer boundary of P . 21



about the environment. In particular, they show a strategy in which, for every i � n, the ith trip of therobot is a path of length O(pn=i) times d(s; t;P ). Their results apply to the wall problem, as well as thepoint-to-point problem, in the presence of aligned rectangular obstacles. They also provide a lower bound,for deterministic strategies, of 
(pn=k) on the cumulative k-trip competitive ratio (which measures theratio of the total length of all k trips, over k times d(s; t;P )).If the obstacles are arbitrary nonaligned rectangles, then the competitive ratio for the room problem goesup: Blum et al. [73] show that �(n) = 
(pn); they also give (non-tight) upper bounds that either assumean excluded range of orientations of the rectangles, or allow a randomized algorithm. If the nonalignedrectangles have aspect ratio at most r, then a strategy of Chan and Lam [86] obtains a competitive ratio of( r2 +1), which is shown to be tight. In particular, in the case of nonaligned squares (r = 1), Chan and Lam'sresult implies a competitive ratio of 3=2, improving the earlier bound of Papadimitriou and Yannakakis [319].An asymptotic competitive ratio of 3=2 has been obtained by Bezdek [68] for the case of nonaligned cubesin three dimensions; this result in fact implies the two-dimensional result for squares.For even more general environments P , Blum et al. provide some results in special cases of convexobstacles, as well as general polygonal domains (\mazes"), where the competitive ratio is �(jV j), where V isthe set of vertices of P . A simple \L-shaped" maze example shows that even a randomized algorithm cannotachieve a competitive ratio better than (jV j�10)=6. Blum et al. also consider the three-dimensional versionof the wall problem, obtaining a lower bound of 
(n2=3) for the competitive ratio, and matching upperbounds in special cases (obstacles that are generalized cylinders, in the wall problem, or aligned boxes, inthe point-to-point problem). Berman et al. [61] show that randomization can, again, help, allowing a strategywith competitive ratio O(n2=3��) for the point-to-point and wall problems.The on-line version of the weighted region problem (Section 4.3) has been studied by Reif and Wang [342],who consider an environment in which the axis-aligned rectangular \obstacles" are penetrable, with eachhaving a weight (cost per unit distance) greater than one (the background has weight one). Using a modi�edsweeping strategy of Blum et al. [73], they show that a competitive ratio of O(pn) is achievable in thewall problem with penetrable obstacles (and this is tight). See their paper for generalizations to \recursive"weighted environments, in which penetrable obstacles may include other penetrable obstacles of higherweight.In the search version of the on-line problem, our objective is to search for an entity at some unknowntarget location in an unknown environment, minimizing the total distance traveled from the starting point,until the visually identi�able target is �rst seen; see [48, 234, 242].While for general simple polygons P , no constant competitive ratio is possible when searching for a targett, Klein [241] has shown that if one is navigating in a special type of simple polygon, called an s-t street (fors and t on the polygon boundary), then there is a strategy for searching for a path from s to t that achievesa competitive ratio of 1 + 32� � 5:71. (Points s and t split the boundary of P into two subchains; P is ans-t street if each point on one subchain is visible from some point on the opposite subchain.) Here, bothP and the coordinates of t are unknown to the robot; the robot is equipped with a vision sensor, and weassume that the goal t is visually identi�able. Streets (as well as \star-shaped polygons"; see below) enjoythe special property that in the tree of shortest paths from s, left-turning paths and right-turning paths aregrouped. Klein's strategy is based on the idea of minimizing the \local absolute detour," while moving fromone point known to be on the shortest s-t path to another such point. Klein's analysis was improved byIcking [215], who proved a bound of �=2+p1 + �2=4 � 4:44 on the competitive ratio. Kleinberg [242] givesa simpler strategy and analysis, achieving a competitive ratio of p4 +p8 � 2:61, and shows further thatit achieves an optimal ratio of p2 in the case of rectilinear streets. L�opez-Ortiz and Schuierer [261] presenta strategy, similar to Klein's, having a substantially simpler analysis, resulting in a ratio of � + 1 � 4:14;they show that a hybrid strategy based on this one achieves a ratio of 12p�2 + 4� + 8 � 2:76. L�opez-Ortizand Schuierer [260] have given a further improved strategy, using ideas similar to Kleinberg's (but witha substantially more complex analysis), achieving competitive ratio p1 + (1 + �=4)2 � 2:05. L�opez-Ortizand Schuierer [263] have given an extension of the original approach of Klein, to \continuous local absolutedetour," that results in a competitive ratio of 2.03; further, by combining this approach with their earliermethod ([260]), L�opez-Ortiz and Schuierer obtain a hybrid strategy achieving competitive ratio of 1.73. Most22



recently, Semrau [359] has developed a strategy that results in a competitive ratio of �=2 � 1:57, which isgetting very close to the theoretical lower bound of p2.Open Problem 13 Is there a strategy achieving a competitive ratio of p2 in streets?The results on searching in streets discussed above have assumed that the robot does not know thelocation of the target t. For such problems, it is easy to show that p2 is a lower bound on the competitiveratio (see Klein [242]). However, L�opez-Ortiz and Schuierer [260] have shown a p2 lower bound on thecompetitive ratio for deterministic strategies, even if the coordinates of the target are known to the robotand the street is rectilinear. Thus, for rectilinear streets, knowledge of the target location does not assistthe robot.L�opez-Ortiz and Schuierer [264] give a strategy with a constant competitive ratio (12.72) that �nds apath to a target point in an unknown star-shaped polygon3, even if the coordinates of the target point areunknown, and it is not necessarily on the polygon's boundary. They also prove a lower bound of 9 on anystrategy that must �nd a path in an unknown star-shaped polygon to a target point whose coordinates arenot speci�ed. Star-shaped polygons, like streets, enjoy the property that the left-turning and right-turningpaths in the shortest path tree rooted at s are grouped. Note too that a star-shaped polygon can be madeinto an s-t street, for any vertex s, by adding, if necessary, a vertex t such that the diagonal st intersectsthe kernel.4Some results are also known for more general polygons than streets or star-shaped polygons. Datta andIcking [128] introduced the notion of a \generalized street;" for rectilinear generalized streets they give analgorithm with competitive ratio of p82 � 9:06 (or 9, in the L1 metric) and prove a lower bound of 9 on thecompetitive ratio of any strategy, assuming the target t is not known to the robot. (A simple polygon P isa generalized street (G-street) with respect to two points s and t on its boundary if for any point p on theboundary of P , there exists a horizontal chord, whose endpoints are on di�erent subchains of the boundary,such that p is weakly visible to the chord. The class of generalized streets strictly contains the class ofstreets.) L�opez-Ortiz and Schuierer [260] show a lower bound of 9 even in the case that the coordinates ofthe target are known. Datta, Hipke, and Schuierer [127] de�ne even more generalized notions of rectilinearstreets (\HV-streets" and \�-G-streets"), for which they prove bounds in the L1 metric: 14.5 is an upper andlower bound on the competitive ratio for HV-streets, while 19.97 is an upper bound for �-G-streets. (See alsoSchuierer [355] for lower bounds on the competitive ratio in �-G-streets.) L�opez-Ortiz and Schuierer [262]give a competitive strategy (with ratio 80) in arbitrarily oriented (nonrectilinear) G-streets. Kleinberg [242]considers searching in general rectilinear simple polygons, obtaining a strategy with competitive ratio O(m),where m is the number of essential cuts, which may be much smaller than the number of vertices.Streets have also been studied with respect to searching in link distance, instead of L2 or L1 length.Ghosh and Saluja [174] give a deterministic strategy for searching for an s-t path in a street, using at most2m � 1 links, where m is the link distance from s to t. Further, they show that this bound is best possiblefor deterministic strategies in general streets. For rectilinear streets, a rectilinear link distance of m + 1 isachievable, and this is best possible; here, m is the rectilinear link distance from s to t. Ghosh and Salujaobserve that in general (non-street) simple polygons, no competitive ratio better than n=4 is possible, wheren is the number of vertices.On-line path problems arise also for objectives other than that of �nding a path from a start s to atarget point t. Icking and Klein [216] have given a competitive strategy for the problem of searching for thekernel of an unknown star-shaped polygon; the goal is for the robot to get to some point of the kernel. (Avision-equipped robot can recognize when it reaches a point in the kernel.) The competitive ratio is basedon the distance from s to the point of the kernel that is closest to s. Icking and Klein [216] obtain a ratioof 5.48 (which they have subsequently improved slightly); they also prove a lower bound of p2 (which wassubsequently increased to 1.48 by [264]). The best current bound is that of Lee et al. [255], who obtain a3A polygon is star-shaped if there exists a point within it from which all other points of the polygon are visible.4The kernel of a polygon P is the locus of points within P from which every point of P is visible. If the kernel is non-empty,then the polygon is star-shaped. 23



competitive ratio of 1 + 2p2 � 3:829. L�opez-Ortiz and Schuierer [264] give a constant competitive ratio (of46.35) for the on-line recognition of a star-shaped polygon, in which the robot must execute a path until itcan prove or disprove the star-shapedness of P . They also show a lower bound of 9 on the competitive ratioof any such strategy.In the explore (or mapping) version of the problem, our objective is to execute a path such that the robotcan map out the entire space, by seeing every point of free space; see [135, 242]. (See also Section 7.4 on the\watchman route problem," which is the o�-line version of the problem, to compute a shortest route that seesthe entire space when the map is given.) In particular, Deng, Kameda, and Papadimitriou [135] have shownthat no competitive strategy exists, in general, if there are an unbounded number of obstacles; however, ifthe number of obstacles is bounded, they obtain a competitive strategy with a constant competitive ratio(O(k), where k is the number of obstacles). In particular, if P is a simple rectilinear polygon, there is a2-competitive deterministic algorithm [135, 136], and a 5/4-competitive randomized algorithm [242] for theexploration problem. For general simple polygons, the competitive ratio of [135] is proved to be constant,but is only estimated to be in the thousands. A bound of 133 was later given by Ho�man et al. [211], andhas recently been improved to (18p2 + 1) � 26:5 by the same set of authors [212].Kalyanasundaram and Pruhs [231] study the search and explore problems for a vision-equipped robotamong a set of k disjoint convex obstacles having average aspect ratio5 �. They obtain tight bounds onthe competitive ratio for both problems: �(minfk;pk�g). (In the mapping problem of [231], the robotis required to see all of the boundary of the work space, but not necessarily all of its interior; this is incontrast with the mapping problem of [135].) They also show that the natural greedy \nearest neighbor"heuristic for the search problem can be quite bad, showing an 
(2k) lower bound on the competitive ratio forthat strategy. In the visual traveling salesperson problem (visual TSP), the robot's objective is to visit andtraverse the boundary of every obstacle; this formulation is meant to model the fact that a robot (equippedwith a vision sensor) may have to get close to an object in order to map it completely. For the visual TSP,Kalyanasundaram and Pruhs [232] give a 19-competitive algorithm, based on applying their 18-competitivealgorithm for the \on-line TSP" in planar graphs to a type of \relative neighborhood graph" in the presenceof obstacles. (See also [233].)For other related work, without theoretical guarantees on the competitive ratio, but useful in autonomousvehicle navigation, we refer the reader to the book edited by Iyengar and Elfes [225], as well as [226, 281,293, 330, 331]. Mitchell [281] has considered a model, based on a special case of the weighted region problem(Section 4.3), in which the robot gathers information, which it accumulates in a map, and at each stepapplies the best possible local strategy, assuming travel within known free space has a cost-per-unit-distanceof 1, while travel in unexplored terrain has cost � > 1 per unit distance.For a recent survey of on-line searching and navigation algorithms, see Berman [60].6 Shortest Paths in Higher DimensionsWe turn our attention now to the problem of computing shortest paths in higher dimensional geometricspaces. Most of the discussion will focus on three-dimensional spaces, since most e�ort has been devoted tothis case. We begin with a few de�nitions.A polyhedral domain is a connected subset, P , of <3 whose boundary consists of a union of a �nitenumber of triangles. (The de�nition is readily extended to d dimensions, where the boundary must consistof a union of \simplices.") The complement of P consists of connected (polyhedral) components, whichare the obstacles. A polyhedral domain is orthohedral if each boundary facet is orthogonal to one of thecoordinate axes. A polyhedral domain P is a (convex) polytope if it is the convex hull of its vertices.A polyhedral surface is a connected union of a �nite number of polygonal faces, with any two polygonsintersecting in a common edge, a common vertex, or not at all, and each edge belonging to exactly twopolygons.5Here, the aspect ratio of a convex body is the ratio of the radius of the smallest circumscribing circle to the radius of alargest inscribed circle. 24



Throughout this section, n will denote the number of edges in a polyhedral domain or surface. Withoutloss of generality, we can assume that all faces of a polyhedral surface are triangles, since a polygon triangu-lation algorithm can be applied to decompose each polygonal face into triangles, introducing a total of O(n)additional edges and faces.6.1 ComplexityIn three or more dimensions, most shortest-path problems are very di�cult. The problem is di�cult evenin the most basic Euclidean shortest-path problem in a three-dimensional polyhedral domain P , and even ifthe obstacles are convex, or the domain P is simply connected. There are two sources of complexity, as wenow discuss.One di�culty arises from algebraic considerations. In general, the structure of a shortest path in apolyhedral domain need not lie on any kind of discrete graph. Shortest paths in a polyhedral domain willbe polygonal, with bend points that generally lie interior to obstacle edges, obeying a simple \unfolding"property: The path must enter and leave at the same angle to the edge. It follows that any locally optimalsubpath joining two consecutive obstacle vertices can be \unfolded" at each edge along its edge sequence,thereby obtaining a straight segment. (The edge sequence of a path is the ordered list of obstacle edges thatare intersected by it.) Given an edge sequence, this local optimality property uniquely identi�es a shortestpath through that edge sequence. However, to compare the lengths of two paths, each one shortest withrespect to two (di�erent) edge sequences, requires exponentially many bits, since the algebraic numbers thatdescribe the optimal path lengths may have exponential degree [50, 51].A second di�culty arises from combinatorial considerations. The number of combinatorially distinct (i.e.,having distinct edge sequences) shortest paths between two points may be exponential. Canny and Reif [82]have used this fact to prove that the shortest-path problem is NP-hard, even if the obstacles are simply aset of parallel triangles. While this result is strong evidence that we will not be able to solve the problemexactly in polynomial time, it does not rule out the possibility that we could construct a shortest path mapin time proportional to its combinatorial size, which may be exponential in general, but far smaller in manypractical cases.Open Problem 14 Can one compute a shortest path map for a polyhedral domain in output-sensitive time?Sharir and Schorr [362] gave a doubly exponential time (22O(n)) exact algorithm, based on reducing toan algebraic decision problem in the theory of real closed �elds. This result was improved by Reif andStorer [340], who give a singly exponential time algorithm (requiring 2nO(1) time and nO(logn) space), basedon the same theory, but using a more e�cient reduction. Finally, Canny [80] has given a PSPACE algorithm,which applies not only to the shortest path problem in three dimensions, but also to the two-dimensionalasteroid avoidance problem (see Section 4.8).Given the di�culty of solving the general problem exactly, it is natural to consider approximation algo-rithms for the general case, or to consider special cases in which we can obtain polynomial bounds.6.2 Special CasesIf the polyhedral domain P has only a small number, k, of convex obstacles, a shortest path can be foundin nO(k) time, as shown by Sharir [360]. If the obstacles are known to be \vertical buildings" having only kdi�erent heights, then shortest paths can be found in time O(n6k�1) [169]; however, it is not known if thisversion of the problem is NP-hard if k is allowed to be large. Both of these special cases have worst-caseexponential algorithms; is there some nontrivial case of disjoint obstacles in three dimensions that is nothard to solve exactly? We have noted that Canny and Reif's hardness proof applies even to simple (convex)triangular \plates" that lie in parallel planes; however, their construction seems to rely on some edges of thetriangles not being axis-parallel. This suggests an interesting question:25



Open Problem 15 What is the complexity of the Euclidean shortest-path problem in 3-space for obstaclesthat are disjoint aligned boxes? What about for disjoint (unit) spheres?If we require paths to stay on a polyhedral surface (i.e., the domain P is essentially 2-dimensional), thenthe unfolding property of optimal paths can be exploited to yield polynomial-time algorithms. This was�rst used by Sharir and Schorr [362] to obtain an O(n3 logn)-time algorithm for convex surfaces. Mitchell,Mount, and Papadimitriou [291] obtained an O(n2 logn)-time algorithm for general polyhedral surfaces,by developing a continuous Dijkstra method of propagating a shortest path map over the surface, takingadvantage of the local optimality (unfolding) property. Chen and Han [99] have improved the time boundeven further, obtaining an algorithm requiring O(n2) time and O(n) space. (The algorithm of [99] relies onthe nonoverlapping property of the \star unfolding", as shown by Aronov and O'Rourke [34]; see below.)These algorithms not only construct a shortest path map with respect to a single source, but can be used toconstruct a geodesic Voronoi diagram for multiple source points within the same time bound (where n nowincludes the number of source points).One of the most interesting open problems in this area is to break the quadratic time barrier, even forthe case of convex polytopes:Open Problem 16 Can one compute shortest paths on the surface of a convex polytope in <3 in sub-quadratic time? In O(n logn) time?Several facts are known about the set of edge sequences corresponding to shortest paths on the surfaceof a convex polytope P in <3. In particular, Mount [300] has shown that the worst-case number of distinctedge sequences that correspond to a shortest path between some pair of points is �(n4). Further, Agarwalet al [3] have shown that the exact set of such sequences can be computed in time O(n6�(n) logn), where�(n) = o(log� n). (A simpler O(n6) algorithm can compute a small superset of the sequences [3].) Thenumber of maximal edge sequences for shortest paths is �(n3), as shown by Schevon and O'Rourke [352].Some of these results depend on a careful study of the \star unfolding" with respect to a point p on theboundary, @P , of P . The star unfolding is the (nonoverlapping [34]) cell complex obtained by subtractingfrom @P the shortest paths from p to vertices of P , and then \attening" the resulting boundary.Agarwal et al [3] have also shown that two-point queries can be answered in time O((pn=m1=4) logn),after spending O(n6m1+�) preprocessing time and storage, for any choice of 1 � m � n2, and � > 0. (Ifone query point always lies on an edge of the polytope, the algorithm can be improved to use O(n5m1+�)preprocessing time and storage and guarantee O((n=m)1=3 logn) query time, for any choice of 1 � m � n.)Further, the geodesic diameter is obtained in time O(n8 logn), improving an earlier O(n14 logn) boundof O'Rourke and Schevon [311]. Chiang and Mitchell [107] show how two-point queries can be answerede�ciently (even in optimalO(logn) time) on nonconvex polyhedral surfaces; however, the preprocessing andspace complexities are even higher than in the convex case. Performing e�cient two-point queries whileusing only a small polynomial amount of storage remains an open problem:Open Problem 17 How e�ciently, and using what size data structure, can one preprocess a polyhedralsurface for exact two-point queries? Can exact two-point queries be done in sublinear query time usingsubquadratic storage? What if the surface is convex?In the special case of terrain surfaces (polyhedral surfaces having at most one intersection point withany line parallel to the z-axis), de Berg and van Kreveld [131] have studied various optimal path problems,including some bicriteria versions, with constraints imposed on the maximum allowed altitude. They builda \height-level map," in time O(n logn), stored implicitly using O(n) space, which enables O(logn) timequeries to compute a shortest s-t path that stays below a given elevation z, or an s-t path having a minimumtotal ascent.6.3 Approximation AlgorithmsPapadimitriou [317] was the �rst to study the general problem from the point of view of approximations.He gave a fully polynomial approximation scheme that produces a path guaranteed to be no longer than26



(1 + �) times the length of a shortest path. His algorithm requires time O(n4(L+ log(n=�))2=�2), where L isthe number of bits necessary to represent the value of an integer coordinate of a vertex of P . Clarkson [119]gives an alternative method, requiring roughly O(n2 logO(1) n=�4) time (the exact expression includes also aprecision parameter that depends on the geometry of P ).Choi, Sellen, and Yap [114, 113] have re-examined closely the analysis of Papadimitriou and have ad-dressed some inconsistencies found in the original algorithm. To this end, it is important to distinguishbetween the bit framework and the algebraic framework of studying the complexity of the problem. Almostall shortest path algorithms (and most computational geometry algorithms) assume an algebraic model ofcomputation, in which the time complexity is measured in terms of the number of algebraic operations per-formed on real numbers. It is assumed that these operations are performed exactly. In the bit framework,though, time complexity is measured in terms of the number of boolean operations on bits, assuming theinput is encoded with binary strings. Given the nature of current computer hardware, it is likely that thebit framework more accurately models actual computation times.Choi, Sellen, and Yap [114] give upper bounds on the bit complexity of the approximate shortest-pathproblem. They have also introduced the important notion of \precision-sensitivity" in algorithms, where thegoal is to write the complexity in terms of an implicit parameter, �, that measures the implicit precisionof the input instance [113]. For example, in the shortest-path problem, they de�ne � = (d2 � d�)=d� to bethe relative di�erence between the length d� of an optimal path, and the length, d2, of the second-shortest,locally optimal path; i.e., d2 > d� is the length of a shortest path that uses an edge sequence distinct fromany optimal edge sequence, but is closest in length to d� among all such locally optimal paths. Provided thatthe optimal edge sequence is in some sense nondegenerate, one obtains an approximation algorithm that ispolynomial in 1=� and the other parameters of the input, with only linear dependence on 1=�.Recently, Har-Peled [194] has shown how to compute an approximate shortest path map in polyhedraldomains. In particular, he shows that, for a given source point s, and real parameter 0 < � � 1, a subdivisionof <3 of size O(n2=�4+�) can be constructed in time roughly O(n4=�6), so that for any point t 2 <3 a (1+ �)-approximation of the length of a shortest s-t path can be reported in time O(log(n=�)). His techniqueis to sprinkle a carefully selected set S of discrete points within P and to record with each point of S a\weight" that corresponds to the approximate shortest path distance from s to it; the approximate shortestpath map is then given by the additive-weight Voronoi diagram of S.In addition to approximation results for shortest paths in polyhedral domains, there have been a numberof results on approximating shortest paths on polyhedral surfaces.Hershberger and Suri [208] obtain a 2-approximation for a shortest s-t path on a convex polytope in timeO(n), using a relatively simple algorithm that considers the shortest path on the surface of the polytope'sbounding box, between an appropriate pair of points. An extension to the algorithm allows one to computea 2.38(1 + �)-approximate shortest path tree, SPT(s), in O(n logn) time. The method also results in a2k-approximation algorithm for shortest paths in a polyhedral domain consisting of k convex polytopes.Agarwal et al. [6] extend the method of [208] by surrounding the input (convex) polytope with a tighter-�tting constant-size (depending on �) bounding polytope, which approximately preserves shortest path dis-tances. The result is that in time O(n log(1=�) + 1=�3) one can compute a (1 + �)-approximate shortest s-tpath, for any 0 < � � 1. (The approximate length of a shortest path can be reported in time O(n+ 1=�3).)Har-Peled [193, 192] improves this result, obtaining results for the approximate two-point query version: Hegives an O(n)-time algorithm to preprocess a convex polytope so that a two-point query can be answeredin time O((logn)=�3=2 + 1=�3), yielding the (1 + �)-approximate shortest path distance, as well as a pathhaving O(1=�3=2) segments that avoids the interior of the input polytope. He also gives an O(n+1=�6)-timealgorithm to compute an approximate diameter of the polytope's surface, obtaining a pair of points on thesurface whose shortest path distance is least (1� �) times the diameter.Varadarajan and Agarwal [382] have considered the problem of approximating shortest paths on general(nonconvex) polyhedral surfaces. They have obtained the �rst subquadratic-time algorithms for provablygood approximating paths, computing a 13-approximation in O(n5=3 log5=3 n) time, or a 15-approximationin O(n8=5 log8=5 n) time. Their method is based on a partitioning of the surface into O(n=r) patches, each27



having at most r faces, using a planar separator theorem. (The parameter r is chosen to be n1=3 log1=3 n orn2=5 log2=5 n.) Then, on the boundary of each patch, a carefully selected set of points (\portals") is selected,and these are interconnected with a graph that approximates shortest paths within each patch. Finally,Dijkstra's algorithm is used to search for a shortest path in the resulting graph, which is proven to containan approximately shortest path.Open Problem 18 Can one compute a (1+�)-approximate shortest path on a nonconvex polyhedral surface(or even on a terrain) in subquadratic time? Can one compute an O(1)-approximate shortest path in closeto linear time?Har-Peled [194] has shown how to compute an approximate shortest path map on polyhedral surfaces,using techniques mentioned above. Given a source point and a parameter 0 < � � 1, he constructs asubdivision of the surface of size O((n=�) log(1=�)), so that a (1+ �)-approximate shortest path query to anypoint t can be answered in time O(log(n=�)), by locating t within the subdivision. The preprocessing timeis O(n2 logn + (n=�) log(1=�) log(n=�)) for general surfaces, and O((n=�3) log(1=�) + (n=�3=2) log(1=�) logn)for convex polytopes.Finally, we mention some investigations on practical methods for computing nearly shortest paths onsurfaces. By using the same methods that have been applied to the weighted region problem (Section 4.3)in subdivisions, Lanthier, Maheshwari, and Sack [246] and Mata and Mitchell [273] have shown that verysimple algorithms based on searching a discrete graph (an \edge subdivision graph", or a \pathnet") producepaths that are remarkably close to optimal, and approach optimal as a parameter (�, or 1=k) approacheszero. The discrete graph can be constructed in advance, to assist in speeding two-point queries. Further,the path obtained can be postprocessed with a local optimality procedure that pulls the path \taut" withinthe sleeve of facets that it crosses, resulting in a solution even closer to optimal. Using a slightly di�erentdiscrete graph than the edge subdivision graph of [246, 273], Aleksandrov et al. [11] give alternative timebounds that depend on other parameters related to the \fatness" of the triangular facets of a polyhedralsurface. They place Steiner points along edges in a geometric progression, as in Papadimitriou [317]. Thisallows one to compute a (1 + �)-approximate shortest path from s to t in time O(Mn logMn + nM2) (andspace O(nM2)), where M = O( 1� sin � log �h� ), � is the length of a longest edge, h is the minimum altitudeof a triangular facet, � is the smallest angle of any triangular facet, and 0 < � < 23 . By searching a sparsersubgraph, they have recently ([12]) improved the time bound to O(Mn logMn).6.4 Other MetricsLink distance in a polyhedral domain in <d can be approximated (within factor 2) in polynomial time, bysearching a weak visibility graph whose nodes correspond to simplices in a simplicial decomposition of thedomain. The complexity of computing the exact link distance is open.Open Problem 19 How e�ciently can link distance be computed in polyhedral domains in 3-space?For the case of orthohedral domains, and rectilinear (L1) shortest paths, the shortest-path problem in<d becomes relatively easy to solve in polynomial time, since the \grid graph" induced by the facets ofthe domain serves as a path preserving graph that we can search for an optimal path. In <3, we cando better than to use the O(n3) grid graph induced by O(n) facets, as shown by Clarkson, Kapoor, andVaidya [121]; an O(n2 log2 n) size subgraph su�ces for the case of n (possibly overlapping) axis-parallelboxes, allowing shortest paths to be found using Dijkstra's algorithm in time O(n2 log3 n). More generally,for a set of obstacles given by n axis-aligned (not necessarily disjoint) boxes in <d, de Berg et al. [132, 133]show that one can compute a data structure of size O((n logn)d�1), in O(nd logn) preprocessing time, thatsupports �xed-source link distance queries in O(logd�1 n) time. Further, this result applies, within the samecomplexities, to the case of a combined metric, in which path cost is measured as a linear combination of L1length and the rectilinear link distance (see also Section 4.7).28



In the case of axis-parallel disjoint box obstacles in <3, Choi and Yap [115] have shown that rectilinearshortest paths can be computed in time O(n2 logn). Also, for this same problem in higher dimensions, arecent structural result of Choi and Yap [117, 116] may help in devising very e�cient algorithms: Therealways exists a coordinate direction such that every shortest path from s to t is monotone in this direction.7 Other Network Optimization ProblemsUntil now, we have been considering problems of computing a shortest path from one point to another (orfrom one point to all others). We consider now some other network optimization problems, in which theobjective is to compute a shortest path, cycle, tree, or other graph, subject to various types of constraints.We focus primarily on two classes of problems: those of �nding minimum-cost trees or tours that spansome or all elements of a set S. We discuss the resulting \minimumspanning tree" and \traveling salesperson"problems in the next subsections, and then give more details of a general method of obtaining approximationsto these problems. The subject of spanning trees and spanners is surveyed extensively in the chapter byEppstein [150] in this handbook.Other well-studied network optimization problems that we do not attempt to survey here include min-imum cost matching (which has polynomial-time exact and approximate solutions; see [36, 379, 380, 389])and minimum weight triangulation (MWT) (whose complexity status is still open, although constant-factorapproximation algorithms exist for both the Steiner and non-Steiner versions; see Bern and Eppstein [64]and Levcopoulos and Krznaric [257]). We also refer the reader to the article of Smith and Winter [365],which surveys a large class of topological network design problems. Kalyanasundaram and Pruhs [233] surveyon-line versions of standard network optimization problems.7.1 Optimal Spanning TreesMinimum Spanning TreesA minimum spanning tree (MST) of a set of n points S is a tree of minimum total length whose nodes arethe set S of n points, and whose edges are line segments joining pairs of points.The (Euclidean) minimum spanning tree problem can be solved to optimality in the plane in timeO(n logn), by appealing to the fact that the MST is a subgraph of the (O(n)-size) Delaunay diagram;after computation of the Delaunay diagram, results of Cheriton and Tarjan [104] can be applied to �nd theMST in only O(n) additional time.Proposition 4 An edge in a Euclidean MST is Delaunay.The above proposition remains valid in <d, for d � 3; however, the result does not lead directly toa subquadratic-time algorithm for MST in higher dimensions, since there can be 
(n2) Delaunay edges,even in <3. However, geometry can be exploited to avoid examining the full set of �n2� = 
(n2) weightededges in the complete graph. Yao [391] was the �rst to compute an MST in <d in subquadratic time.His general method yields a time bound of O(n2��d(logn)1��d), where �d is a constant depending on thedimension d. His algorithm is based on partitioning the space around each point p into su�ciently smallcones so that there is at most one MST edge incident on p per cone, with this edge linking p to its nearestneighbor within that cone. In Yao [391], �d = 2�(d+1), but this has improved as better data structuresfor nearest-neighbors have been developed. Agarwal et al. [5] give a randomized algorithm whose expectedrunning time has �d = 2dd=2e+1 � , for any �xed  > 0. In three dimensions, their algorithm requiresO(n4=3 log4=3 n) expected time. (See also Agarwal, Matou�sek, and Suri [7], who study maximum spanningtrees (Section 7.1); a variant of their somewhat simpler randomized algorithm applies also to minimumspanning trees.) These algorithms exploit the close relationship between the problem of computing an MSTand that of computing a bichromatic closest pair of points between n red points and m blue points. LettingTd(n;m) denote the complexity of solving the bichromatic closest pair problem, Agarwal et al. [5] show29



that the Euclidean MST can be computed in time O(Td(n; n) logd n) (if Td(n; n) = o(n1+�)), or in timeO(Td(n; n)), if Td(n; n) is superlinear. Since they give a randomized algorithm for the bichromatic closestpair, with expected time O((nm)1�1=(dd=2e+1)+�), their result implies that the MST can be computed inexpected time O(n2�2=(dd=2e+1)+�). Callahan and Kosaraju [79] show a bound of O(Td(n; n) logn), whileKrznaric, Levcopoulos, and Nilsson [244], as well as Kapoor [235], obtain O(Td(n; n)). These bounds holdfor any Lp metric (p � 1); O(Td(n; n)) is optimal in the algebraic computation tree model.For some Lp metrics, more e�cient algorithms are known. Agarwal et al. [5] give a deterministic algorithmrequiring O(n logd n) time for any metric having a polyhedral unit ball (e.g., L1 and L1); see also Gabow,Bentley, and Tarjan [161]. In three dimensions, there is now an optimal O(n logn) time algorithm forthe MST in the L1 or L1 metric, due to Krznaric, Levcopoulos, and Nilsson [244] (improving an earlierO(n logn log logn) bound of [161]).Clarkson [120] and Vaidya [378] have given algorithms that are particularly e�cient for points thatare independently and uniformly distributed in a unit cube in <d. Their algorithms have expected timeO(n�(cn; n)), where c is a constant depending on dimension, and � is the very slowly growing inverseAckermann function.Several results are also known about approximation algorithms for the MST. Clarkson [118] gives anO(n(logn+ 1� log �)) time (O(n log �) space) algorithm for a (1+�)-approximate Euclidean MST in <3; he alsogives results in higher dimensions for the L1 metric (O(n(�(m;n)+logd�1(1� ) log �)) time,O(n(log(1� )+log �))space). Here, m = O(n), and � is a parameter that depends on the data: it is the ratio between the maximumand the minimum distance between pairs of points. Vaidya [377] gives a (1 + �)-approximation for any Lpmetric, requiring time O(n(logn)d+1��(d�1)), which he later improves to O(��dn logn) time [378]. Callahanand Kosaraju give an approximation, based on their \well-separated pair decomposition," for the EuclideanMST that requires time O(n logn+ (��d=2 log 1� )n).Das, Kapoor, and Smid [126] have studied the problem of r-approximating the Euclidean MST, forlarge values of r: For 4 < r < n, and for any d � 1, they prove a lower bound of 
(n log(n=r)), in thealgebraic tree model of computation, and prove that this is tight by exhibiting an algorithm having thesame asymptotic time complexity. If the (non-algebraic) oor function and random access operations arepermitted, then they obtain a 3pdn1�1=d-approximation algorithm requiring O(n) time. For this morepowerful model, Bern et al. [67] compute a (1+ �)-approximate MST in the plane in time O((1=�)n log logn)(time O(n+ n log(1=�)logn ) in <1).The best lower bound for the (exact) MST problem is currently 
(n logn), in any �xed dimension d � 1,in the algebraic tree model of computation for a general input of unordered points. In contrast, the seeminglyrelated all-nearest-neighbors problem can be solved in time O(2dn logn), using the algorithm of Vaidya [381].The all-nearest-neighbors problem is to compute the nearest neighbor for each of the n input points; giventhe MST, it is readily solved in O(n) time, since the MST must include an edge linking each point to one ofits nearest neighbors.Open Problem 20 Does there exist a near-linear time algorithm for Euclidean MST (or bichromatic near-est neighbors) in <d, for d � 3?Maximum Spanning TreesIf instead of �nding aminimum spanning tree, the objective is changed to ask for amaximum-length spanningtree on a set of points, the problem changes its nature. (Applications are given in [39].) While in graphs thesame algorithms that �nd minimum spanning trees also can be used for computing maximum spanning trees,by negating edge lengths, the geometric version of the problem changes because it is not obvious how to�nd a small subgraph of the complete graph that is guaranteed to contain the maximum spanning tree. Thenatural generalization of the MST result might be to expect that the maximum spanning tree must appearas a subgraph of the (linear-size) furthest-point Delaunay diagram (see the chapter on Voronoi diagrams, byAurenhammer and Klein [45]). However, this is not true in general, since the only points that are verticesof the furthest-point Delaunay diagram are the points on the convex hull; further, even if the input point30



set is in convex position, the maximum spanning tree need not lie on the furthest-point Delaunay diagram(see [296]). A di�erent approach is taken by Monma et al. [299], who provide an optimal O(n logn)-timealgorithm for computing a maximum spanning tree of n points in the plane. They start with computing,in O(n logn) time, the furthest neighbor graph, joining each point to its furthest neighbor; the resultinggraph is a forest, whose connected components are called clusters. They then show that the clusters can becyclically ordered around their convex hull, allowing a maximum spanning tree to be computed by addinga longest edge between adjacent clusters. (If the input points are already in convex position, the algorithmrequires only O(n) time.) Subquadratic-time algorithms for higher dimensions are also known, based one�cient methods to compute bichromatic farthest neighbors. [7] give randomized algorithms with expectedtime O(n4=3 log7=3 n) in <3, and O(n2��d) in <d (d � 4), where �d = 2dd=2e+1+ , for any �xed  > 0. Theyalso give a simpler (deterministic) approximation algorithm, giving a tree at least (1� �) times optimal, thatrequires O(�(1�d)=2n log2 n) time.Minimum Steiner Spanning TreesA minimum Steiner spanning tree (or simply Steiner tree) of S is a tree of minimum total length whosenodes are a superset of the given set S. Those nodes that are not points of S are generally called Steinerpoints. It turns out that allowing the exibility of adding Steiner points in order to obtain a potentiallyshorter spanning tree makes the problem much more di�cult. In fact, the Steiner tree problem is known tobe NP-hard [163], even for points in the Euclidean plane.The Steiner tree problem is in sharp contrast with the MST problem, which can be solved exactly inlow-degree polynomial time. It is natural, therefore, to study how closely the MST solution approximatesthe Steiner tree. The supremum, over all point sets, of the ratio between the length of the MST and thelength of the Steiner tree is known as the Steiner ratio6; it has been studied extensively in the last severalyears. A simple example (the three corners of an equilateral triangle) shows that the Euclidean Steiner ratioin the plane can be as high as 2=p3. Gilbert and Pollak [175] conjectured that this ratio can in fact neverbe greater than 2=p3. This conjecture was �nally con�rmed by a proof due to Du and Hwang [142]. (Forthe L1 metric, the Steiner ratio in the plane is 3/2, and this is tight [214].)Approximation algorithms have also been obtained for the Steiner tree problem. First, because of theSteiner ratio, the MST algorithms already give a 2=p3-approximation for the Euclidean Steiner tree problemin the plane. However, in a series of results, starting with important work by Zelikovsky [392], improvedapproximation algorithms were obtained, for both graph versions and geometric versions of the problem. Inthe Euclidean plane, the approximation factor has been improved to just over 1.1 by Zelikovsky's \relativegreedy" algorithm [393]. We refer the reader Bern and Eppstein [64] and Du and Hwang [143], for excellentsurveys on these problems and the recent results. Finally, though, a PTAS was discovered by Arora [35]and Mitchell [289]. This result serves to separate the geometric versions of the problem from the \metric"version (in an arbitrary graph whose edge lengths satisfy the triangle inequality), since the metric version isknown to be MAXSNP-hard (meaning that no PTAS exists, unless P=NP), even if all edge lengths are 1 or2 [65].A problem that arises in some applications in VLSI is that of computing a minimum-length rectilinearSteiner tree within a rectilinear polygon P , for a set of n sites on the boundary of the polygon. If P isrectilinear convex (any horizontal/vertical line intersects it in a connected set), having k vertices, Richardsand Salowe [345] solve this problem exactly in timeO(k4n). For the same problem, Cheng, Lim, and Wu [102]give an O(n3) algorithm, and Cheng and Tang [103] give an O(k2n) algorithm. If P is a general rectilinearpolygon, then an exact solution requiring timeO(k3n) is given by Cheng [101], using a dynamic programmingalgorithm.In the on-line version of the Steiner tree problem, the n points S appear one at a time, and the on-linealgorithm must decide how to connect each successive point to the previously constructed Steiner tree. Asin the case of on-line navigation problems, our interest is in establishing bounds on the competitive ratio,6Many authors have de�ned the Steiner ratio to be the reciprocal of what we call the Steiner ratio. We follow the notationof Bern and Eppstein [64]. 31



which is the supremum over all n-point sets S of the ratio between the weight of the connected graphconstructed by the on-line algorithm and the weight of the minimum Steiner tree for S. As shown by Imaseand Waxman [223], a natural greedy strategy results in an O(logn) competitive ratio, for any metric space:at step i, simply join the ith point vi to the connected graph Ti�1 built so far, by linking vi to the pointof Ti�1 that is closest to it. In general metric spaces, Imase and Waxman also establish a lower bound of
(logn) on the competitive ratio. However, their construction does not apply to Euclidean instances. Forsets of points in the Euclidean plane (or even on a grid), Alon and Azar [16] are able to prove a lower bound of
(logn= log logn) on the competitive ratio for the on-line Steiner tree problem, even for randomized on-linealgorithms. (See also [233] for a survey of on-line network optimization problems.)Group Steiner Tree ProblemIn the group Steiner tree problem (also known as the \class Steiner problem," the \tree cover problem,"or the \one-of-a-set Steiner problem"), we are given an undirected graph with edge weights, and a set ofk subsets (\groups") of the graph's n vertices. The objective is to �nd a minimum-weight tree having atleast one vertex from each group. Because of a reduction from set cover, it is NP-hard to approximate thegroup Steiner tree to a factor of o(log k); see [219, 240, 363, 270]. A (k�1)-approximation algorithm is givenby Reich and Widmayer [335] and Ihler [218]. (See also Ihler, Reich, and Widmayer [221].) Slav�ik [363]gives an O(log k)-approximation algorithm for the special case of an edge-weighted tree. Bateman et al. [58]give the �rst sublinear approximation factor for general graphs, with an approximation factor of (1 + ln k2 ) �pk. Charikar et al. [87] give a k�-approximation algorithm that runs in polynomial time, as well as anO(log2 n)-approximation algorithm that runs in quasi-polynomial time. Garg, Konjevod, and Ravi [167] givea randomized O(log3 n logk)-approximation algorithm for general graphs, which improves to O(log2 n logk)for a class of graphs that includes planar graphs, as well as graphs induced by a set of points in the Euclideanplane. Most recently, Charikar et al. [88] have derandomized the rounding scheme of [167], and obtained adeterministic O(log2 n logk log logn)-approximation algorithm for general edge-weighted graphs.Arkin et al. [22] obtained an O(K log k)-approximation algorithm, where K is the maximum numberof elements in a group; their algorithm is based on repeated applications of approximations to the k-MSTproblem (Section 7.1). Slav�ik [363] provides a 2K-approximation algorithm, using an algorithm based onlinear programming relaxations. (His approximation factor becomes 3K=2 for the one-of-a-set TSP problem(Section 7.4), matching the Christo�des factor of 3/2 when each group has size one; see Section 7.2.)An outstanding open question is to determine if a constant-factor approximation algorithm exists forgeometric instances of the problem; the hardness result for obtaining an o(log k)-approximation does notapply to point sites in the plane.Open Problem 21 Is there an O(1)-approximation algorithm for the group Steiner problem on a set ofpoints in the Euclidean plane?If the groups of points are in fact connected sets (e.g., polygons) in the plane, then an O(logk)-approximation algorithm is given by Mata and Mitchell [272]. The special case in which the groups areintervals that lie on two parallel lines has a polynomial-time algorithm by Ihler [220].The group Steiner problem is closely related to the one-of-a-set traveling salesperson problem (TSP), andthe TSP with neighborhoods, which are discussed below in Section 7.4.k-Minimum Spanning TreesA k-minimum spanning tree (k-MST) is a minimum-length tree that spans some subset of k � n points of S.The fact that the particular subset of k points is not speci�ed, but must be selected by the algorithm, makesthe problem much more di�cult than the usual MST problem (the case k = n). In fact, the problem isNP-hard, even for points in the Euclidean plane; see [158, 333]. A series of approximation results have beenobtained for this problem. Ravi et al. [333] give an approximation algorithm with ratio O(k1=4), which wasimproved to a factor of O(log k) by Garg and Hochbaum [166] and Mata and Mitchell [272]. Eppstein [149]32



has improved the approximation ratio to O(logk= log logn), and has given general techniques to improve therunning times (as a function of n) of existing algorithms; further, he shows that the exact k-MST problemcan be solved in time 2O(k logk)n+O(n log n), which is simplyO(n logn) for �xed k. Blum et al. [72] obtainedthe �rst O(1)-approximation; this was greatly simpli�ed with the 2p2-approximation of Mitchell [285, 290].Ultimately, a PTAS was given by Arora [35] and Mitchell [289]. More details will be given below.In general graphs having nonnegative edge weights, the current best approximation algorithm is a 3-approximation by Garg [165], which applies also to the \rooted" case (in which the tree is required toinclude a given node); this has been improved to a 2.5-approximation, by Arya and Ramesh [37], if the treeis not \rooted."7.2 Traveling Salesperson ProblemIn the traveling salesperson problem (TSP), we are given a set S of n points (\sites") and are asked to �nda shortest cycle (\tour") that visits every point of S. (There is a variant of the problem in which one wantsa shortest path that visits S.) The TSP is a classical problem in combinatorial optimization, and has beenstudied extensively in many forms, including geometric instances; see [59, 250, 343, 230]. The problem isNP-hard, as shown by Papadimitriou [316], even for points in the Euclidean plane.The TSP has a simple approximation algorithm based on \doubling" the minimum spanning tree. Sincean optimal tour spans all of the sites (and is converted into a spanning tree by deleting any one edge), it mustbe at least as long as the minimum spanning tree; thus, by doubling the spanning tree (and shortcuttingin order to obtain a tour visiting each site exactly once), we obtain a tour that is at most twice the lengthof the optimal TSP tour. This 2-approximation algorithm has been improved to yield a factor of 1.5by Christo�des; instead of doubling the minimum spanning tree, this method augments the tree with aminimum-weight matching on the set of odd-degree vertices in the tree. Since the resulting graph, afteraugmentation, is connected and has even degree, it has an Euler cycle, which is taken as the approximatingtour. The approximation factor is 1.5 since a minimum-weight matching is at most 0.5 times the length ofan optimal TSP tour.For general metric spaces, the 1.5-approximation factor remains the best that is known. Until veryrecently, this was also the best known factor for geometric instances of the TSP. However, there are nowpolynomial-time approximation schemes for geometric versions of the TSP; more details are given below.Das, Kapoor, and Smid [126] have studied the problem of r-approximating the Euclidean TSP, for largevalues of r: For 8 < r < n, and for any d � 1, they prove a lower bound of 
(n log(n=r)), in the algebraic treemodel of computation, and prove that this is tight by exhibiting a matching asymptotic upper bound. (If theoor function and random access operations are permitted, then they obtain a 6pdn1�1=d-approximationalgorithm requiring O(n) time. In this more powerful model, Bern et al. [67] compute a (2+ �)-approximateTSP in the plane in time O((1=�)n log logn).)An important class of heuristics for the TSP are insertion methods, in which sites are added one by one toan existing tour: At the ith stage, site vi is inserted by deleting that edge (u;w) of Ti�1 (the tour constructedon sites fv1; : : : ; vi�1g) which minimizes d(u; vi) + d(vi; w)� d(u;w), and replacing it with the edges (u; vi)and (vi; w). (The initial tour T1 is a self-loop of length zero through site v1.) Various insertion methods arepossible based on the choice of ordering of the sites for insertion. In a landmark paper, Rosenkrantz, Stearns,and Lewis [349] show that an arbitrary order of insertion of the sites gives a (dlog ne+ 1)-approximation ofthe TSP, in arbitrary metric spaces. Further, they showed that nearest insertion and cheapest insertion leadto a 2-approximation. It remained open for some time whether or not an insertion order exists that doesnot achieve a constant-factor approximation. Independently, Azar [47] and Bafna, Kalyanasundaram, andPruhs [49] showed that indeed an insertion order exists that has worst-case factor 
(logn= log logn), even forinstances in the Euclidean plane. Furthermore, Azar shows that the worst-case factor for random insertion(add the sites in random order) is 
(log logn= log log logn), also for points in the Euclidean plane. One ofthe best insertion methods in practice is furthest insertion, in which the site furthest from the existing touris added at each stage; for this method, a 2.43 lower bound is known on the approximation factor for pointsin the plane (see Hurkens [213]). 33



7.3 Approximation SchemesWe now briey survey some recent progress on approximation algorithms for geometric network optimization,which has led to polynomial-time approximation schemes (PTAS's) for several of these problems, includingthe TSP, Steiner tree, and k-MST problems. Many of these results are in a current state of ux, beingsimpli�ed and improved. In order to keep abreast of latest developments, we encourage the reader to referto web pages (and personal email) with the authors.In early 1996, Arora [35] and Mitchell [289] gave PTAS's for a class of geometric optimization problems inthe plane, which included the TSP, Steiner tree, and k-MST. Both of these methods were based on methodsof approximating an optimal solution with one that comes from a special class of networks, and then applyingdynamic programming to optimize over that class of networks. Both methods led to algorithms with runningtimes nO(1=�), to obtain a (1+�)-approximation. The method of Mitchell [289] was based on exactly the samemethod as he used in earlier work ([285]) to obtain a very simple 2-approximation for the rectilinear k-MST;the only change necessary was to observe that if one replaced the \1" by an \m" in the de�nition of \guillotinesubdivision", then the approximation factor became (1 + 1=m) instead of (1 + 1=1) = 2. The method wasalso based on earlier work on \division trees" introduced by Blum, Chalasani, and Vempala [72, 290], andthe guillotine rectangular subdivision methods of Mata and Mitchell [272].During the last year, there have been several improvements to the original PTAS results. Mitchell [287]has reduced the running time of his method to O(nO(1)), using a relatively minor modi�cation to the earliermethod. Arora [36] has obtained a randomized algorithm, based on a clever use of quadtrees and an improvednew structure theorem, with expected running time that is nearly linear: O(n logO(1=�) n). Further, Arora'smethod applies to higher dimensional versions of the problem, with an expected running time in <d ofO(n(logn)(O( d� ))d�1 ). The randomized algorithms can be derandomized at the cost of an extra factor of ndin the running times.In a very recent improvement to these results, Rao and Smith [332] obtain an O(n logn) time deterministicalgorithm for any �xed � and any �xed dimension d. They introduce a remarkable generalization of the notionof t-spanners { the \t-banyan" { which approximates to within factor t the interconnection cost (allowingSteiner points) for subsets of sites of any cardinality (not just 2 sites, as in the case of t-spanners). Theyprove that for any �xed � > 0 and d � 1, there exists a (1+ �)-banyan having O(n) vertices and O(n) edges,computable in O(n logn) time.Trevisan [375] has shown that approximation schemes in <d must have time bounds that are doublyexponential in d; he proves that it is NP-hard to obtain a (1+ �)-approximation in <O(logn), for some � > 0.We should remark that, while these results are of considerable theoretical interest, it is not yet knownif they hold any practical implications. The \constants" hidden in the big-Oh notation are quite large(exponential) as functions of (1=�) and d.7.4 TSP Variants and Related Geometric Problemsk-TSP, Quota-Driven TSPThe k-TSP, like the k-MST, takes as input an additional integer parameter, k, and requires that one computea minimum-length tour that visits some subset of k sites. Optionally, a site is speci�ed as a root that isrequired to be visited. For the graph version of the k-TSP, with edge weights obeying triangle inequality,Garg's method [165] for the k-MST yields a 3-approximation for both the rooted and unrooted version; theimprovement of Arya and Ramesh [37] does not apply to the k-TSP.A related problem is the quota-driven salesperson problem, in which each site has an associated integralvalue, wi, and a salesperson has a given integer quota, R. The objective is to �nd a shortest possible cyclehaving the sum of the values for the sites visited is at least R. A k-TSP approximation algorithm givesalso applies to this problem, since each site can be replicated wi times; the running time is then polynomialin n and R. Another related problem is the prize-collecting salesperson problem, as studied by Balas [52](see also [69]). It di�ers from the quota-driven salesperson problem, in that, in addition to \values" wi,there are non-negative penalties associated with each site, and the objective function is now to minimize the34



sum of the distances traveled plus the sum of the penalties on the points not visited, subject to satisfyingthe quota R. As discussed in [46], an approximation algorithm follows from concatenating a cycle obtainedfor the quota-driven salesperson, with the 2-approximation cycle given by the algorithm of Goemans andWilliamson [176] (which considers the e�ect of penalties, but does not use the quota constraint).Orienteering ProblemIn the orienteering problem (also known as the \bank robber" problem, or the \generalized TSP"), thetraveling salesperson is allowed to travel at most a distance B, and has the objective to maximize the numberof sites that he can visit, subject to the distance constraint. We can distinguish between the \rooted" and\unrooted" versions of the problem, depending on whether or not there is a speci�ed site where the travelerstarts. This resource-constrained optimization problem is, in a sense, dual to the problem of minimizing thelength of a cycle, subject to meeting a quota on the number of sites visited (the k-TSP) or the sum of thevalues of the sites visited (the quota-driven salesperson problem).For the unrooted orienteering problem, Awerbuch et al. [46] give a method for obtaining a 2c-approximationalgorithm, where c is the approximation factor for the k-TSP. For geometric instances, this, together withPTAS results, implies a (2 + �)-approximation algorithm for the unrooted case. The �rst results on therooted case have recently been given by Arkin et al. [28], who obtain a 2-approximation for both the rootedand unrooted cases, for geometric instances of the problem. Their methods rely on recent results on m-guillotine subdivisions. (It remains an open question whether or not the rooted orienteering problem hasany approximation algorithm in general graphs.)MAX TSPThe MAX TSP changes the objective in the ordinary TSP from that of minimizing to that of maximizingthe length of a tour that visits every point of S. For the MAX TSP in graphs, the problem is easily seen(from Hamiltonian cycle) to be NP-complete, even if edge lengths obey the triangle inequality; however, a5/7-approximation algorithm has recently been obtained [195, 243].For geometric instances of the MAX TSP, Alon et al. [17] provide a constant-factor approximationalgorithm for MAX TSP, as well as the problem of computing a longest noncrossing tour. Barvinok [57] hasobtained a PTAS for the MAX TSP, computing a tour whose length is guaranteed to be at least (1��) timesoptimal, for any �xed � > 0; his algorithm applies in any �xed dimension d, for Lp metrics, and more generalmetrics too. Most recently, Barvinok et al. [56] have resolved the complexity of the MAX TSP for geometricinstances of the problem in metrics de�ned by a convex polytope, in any �xed dimension d; they providea polynomial-time algorithm to solve the problem exactly in time O(nf�2 logn), where f is the number offacets de�ning the polytope. For example, for the L1 or L1 metric in the plane, their algorithm requiresO(n2 logn) time. (This has been improved recently to an optimal, O(n)-time, algorithm of Fekete [154],which applies to the planar L1 and L1 problems, using special structure of the problem in the plane.)Their approach is to reduce the problem to solving a set of maximum weight b-matching problems (whichare actually transportation problems) on an appropriate (bipartite) graph. This remarkable result is one ofthe rare cases in which a TSP problem can be solved exactly in polynomial time. The complexity of theEuclidean MAX TSP has been open. Very recently, Fekete [154] was able to prove that the Euclidean MAXTSP is NP-hardness in dimension three or greater. The complexity remains open in the Euclidean plane:Open Problem 22 What is the complexity of the MAX TSP in the Euclidean plane? What if the tour isrequired to be noncrossing?We should remark, though, that there is an issue about the model of computation here since, for boththe TSP and MAX TSP, we do not know if the problem lies in NP for the Euclidean metric. In particular,for sites having rational coordinates, in order to compare the length of a tour to a given rational number, wemust evaluate a sum of n square roots to su�cient precision; the best known bound on the number of bitsof precision in order to guarantee a correct answer is exponential in n. It may be that the Euclidean MAX35



TSP can be solved in polynomial time if we assume that arithmetic operations (including square roots andcomparisons) can be done in constant time, but the algorithm may require exponential time on a standardTuring machine.Bottleneck and Maximum Scatter TSPIn the bottleneck TSP, the goal is to obtain a tour minimizing the length of the longest edge in the tour. Ingraphs, the problem is NP-complete [250]. If the edge lengths do not satisfy the triangle inequality, then noconstant factor approximation algorithm can exist, unless P=NP. If the edge lengths do satisfy the triangleinequality, then Parker and Rardin [321] have given a 2-approximation algorithm and shown that this is bestpossible (unless P=NP). For the geometric version of the problem, it is easy to show that the problem isNP-hard, from the fact that Hamiltonian cycle in grid graphs is hard [250].In the maximum scatter TSP, the goal is to obtain a tour maximizing the length of the shortest edge in thetour. (Such problems arise, e.g., in sequencing rivet operations.) Arkin et al. [23] have studied the problem ingraphs, showing that the problem is NP-complete, that the general problem has no polynomial-time constant-factor approximation algorithm (unless P=NP), and that if edge lengths obey the triangle inequality thereis a 2-approximation (a tour whose shortest edge has length at least one half that of optimal), which is bestpossible. However, it is not yet known if the geometric version of the problem is hard. Also, while the factor2 approximation algorithms are best possible in graphs whose edge lengths obey the triangle inequality,the current approximation algorithm results for bottleneck TSP and maximum scatter TSP do not exploitgeometric structure, which may lead to an improved factor:Open Problem 23 What is the complexity of the maximum scatter TSP for points in the plane? Can oneobtain approximation factors better than 2 for geometric instances of bottleneck TSP or maximum scatterTSP?Minimum Latency ProblemIn the minimum latency problem (MLT), also known as the deliveryman problem and the traveling repairmanproblem, the goal is to �nd a tour on S that minimizes the sum of the \latencies" of all points, where thelatency of a point p is the length of the tour from a given starting point to the point p. (Thus, the latency ofa point measures how long a job at that point must wait before being served by the repairman/deliverymanthat is traveling along the tour.) For the problem in graphs, Blum et al. [71] have given a 128-approximationalgorithm; this has been improved by Goemans and Kleinberg [177], who obtain a factor of 29. By adirect application of Theorem 2 of [71], which states that a c-approximation for the k-MST implies an8c-approximation for the MLP, we see that recent PTAS results on the geometric k-MST imply an (8 + �)-approximation for geometric instances of MLP. It is an interesting open problem to improve on this factor:Open Problem 24 Is there a PTAS for the minimum latency problem on a set of points in the Euclideanplane?Area Optimization ProblemsIn the min-area TSP (resp., max-area TSP), the goal is to determine a cycle on a given set S of points suchthat the cycle de�nes a simple polygon of minimum (resp., maximum) area. Fekete [153] (in part togetherwith Pulleyblank [155]) has studied these problems extensively. He has shown that both the min-area andmax-area TSP problems are NP-complete.For the max-area TSP, Fekete gives a (1=2)-approximation algorithm, showing how, in O(n logn) time,one can obtain a cycle surrounding area that is at least half that of the convex hull of S. Further, he showsthat it is NP-complete to decide if one can obtain a simple polygon whose area is more than (2=3+ �) timesthat of the convex hull.For the min-area TSP, Fekete conjectures that no polynomial-time approximation algorithm exists (unlessP=NP); he bases this conjecture on evidence suggested by a potentially related result of his: The min-area36



disjoint triangle matching problem (to determine a minimum-area set of disjoint triangles on 3n points) hasno approximation algorithm (unless P=NP).Open Problem 25 Is there a polynomial-time approximation algorithm for the min-area TSP?Angular-Metric TSP and Angle-Restricted ToursIn the angular-metric TSP, the goal is to determine a cycle on a given set S of points such that the sumof the direction changes at each vertex (point of S) is minimized. Aggarwal et al. [9] have proven that thisproblem is NP-complete.In the angle-restricted tour (ART) problem, one is given a set A of allowable angles and asks if a tourexists on the set S such that every angle between consecutive edges of the tour lies in the set A; such a touris called an A-tour. (This problem is related to that of generating a simple polygon, given a sequence ofangles; see Culberson and Rawlins [124].) Fekete [152] and Fekete and Woeginger [156] have studied the classof ART problems, showing that (1) if jSj 6= 4 and A = [0; �], then an A-tour always exists for any �nite S;(2) if A = f��=2; �=2g, then, based on results of O'Rourke [309], there exists a polynomial-time algorithmto detect if S admits an A-tour; (3) if A = f��=2; �=2; �g, f��=2; �g. or f�; �=2g, then it is NP-completeto decide if S admits an A-tour; and (4) if A = (��=2; �=2) (the \acute" case) or A = (��;��=2)[ (�=2; �](the \obtuse" case), there are arbitrarily large points sets S that do not admit an A-tour (an \acute tour"or an \obtuse tour"). Their work suggests a number of open questions, including:Open Problem 26 What is the computational complexity of deciding whether a point set has an acute (orobtuse) tour?TSP with NeighborhoodsIn the TSP with neighborhoods, the goal is to �nd a shortest tour that visits at least one point in each ofa set of k (possibly overlapping) neighborhoods. The neighborhoods may be connected sets (e.g., disks orpolygons), or possibly disconnected sets (e.g., pairs of discrete points, or sets of disjoint polygons). Since itis a generalization of TSP, the problem is clearly NP-hard.When the neighborhoods are connected and \well behaved" (e.g., disks, or having roughly equal-lengthand parallel diameter segments), Arkin and Hassin [26] have obtained O(1)-approximation algorithms, withrunning time O(n + k log k), where n is the total complexity of the k neighborhoods. Further, they provea form of \combination lemma" that allows one to consider unions of sets of well-behaved neighborhoods;the resulting approximation factor is given by the sum of the approximation factors obtained for each classindividually. For the general case of connected polygonal neighborhoods, Mata and Mitchell [272] obtained anO(logk)-approximation algorithm, based on \guillotine rectangular subdivisions," with time bound O(n5).Gudmundsson and Levcopoulos [184] have recently obtained a faster method, which, for any �xed � > 0,is guaranteed to perform at least one of the following two tasks (although one does not know in advancewhich one will be accomplished): (1) it outputs in time O(n + k log k) a tour with length at most O(log k)times optimal; or (2) it outputs a tour with length at most (1+ �) times optimal, in time O(n3) (if � � 3) orO(n2 logn) (if � > 3). However, no polynomial-time method guaranteeing a constant factor approximationis known for general neighborhoods.If the neighborhoods are disconnected, then the problem seems to be even more di�cult. The problemthen is called the \one-of-a-set TSP" or the \group TSP," referring to the fact that the tour is requiredonly to visit one point from each set (group). It has also been called the errand scheduling problem (seeSlav�ik [364]), since it models the problem of �nding the best order in which to perform a set of errands,each of which can be performed at some subset of the nodes of an edge-weighted graph. The one-of-a-setTSP in graphs generalizes both the set cover problem and the TSP. It is a special case of the \travelingpurchaser problem" [307], in which a traveler is required to purchase each item on a shopping list, by visitingan appropriate subset of sites, in hopes of minimizing the total cost of travel plus the amount paid for theitems; each site has a given inventory of items, and the prices of items vary from site to site. Polylogarithmic37



approximation algorithms follow from the results known on the closely related \group Steiner tree" problem(Section 7.1). Further, since the problem generalizes set cover, we cannot hope for a better approximationratio than �(log k) in general graphs ([270]). However, for sets of points in the plane, no reduction fromset cover is known; it is possible that there is a constant-factor approximation algorithm for general discretesets of points in the plane. We note that a constant-factor approximation algorithm for the group Steinertree problem implies a constant-factor approximation for the one-of-a-set TSP (just by doubling the Steinertree to obtain a tour).Open Problem 27 Does the TSP with (connected) neighborhoods problem have a polynomial-time O(1)-approximation algorithm? What if the neighborhoods are not connected sets (e.g., if the neighborhoods arediscrete sets of points)?Lawnmowing and MillingIn the lawnmowing problem, the goal is to �nd a shortest cycle (or path) for the motion of a disk (representinga \lawnmower") such that every point of a given (possibly disconnected) region R is covered by the disk atsome position of the disk. It is easy to see that the problem is NP-hard, in general; R may be a set of n wellseparated points, making the problem that of a TSP with disjoint circular neighborhoods. However, Arkin,Fekete, and Mitchell [24, 25] have shown that the problem is NP-hard, even if R is simply connected (e.g., asimple polygon). Their proof also applies to the milling problem, which adds the constraint that the cutterstay within R, in a multiply-connected region. What is not yet known, though, is if the milling problem ishard when R is simply connected:Open Problem 28 Is the milling problem NP-hard for a region R that is simply connected?A recent result that is potentially related to this question is that of Umans and Lenhart [376], who haveshown that one can determine Hamiltonicity of a \solid grid graph" (a grid graph induced by the points thatlie inside a simply connected region) in polynomial time.Approximation algorithms for the lawnmowing problem allow one to get within a constant factor ofoptimal [24, 25, 224]; the best current factor is (3 + �), based on the algorithm of Arkin, Fekete, andMitchell [25], together with recent PTAS results for TSP. They also give a 2.5-approximation algorithm forthe milling problem; the approximation factor becomes 11/5 if R is a rectilinear simple polygon.The model of the milling problem as discussed above is oversimpli�ed. In practice, there are several otherissues in the millingprocess to consider; these are discussed in detail in the book of Held [196], who introducedcomputational geometry techniques to the pocket machining problem. (See also the survey by Guyder [188]and two recent special issues (March'94 and November'94) of the journal CAD devoted to machining.) It isimportant in practice to avoid re-milling a region where the cutter has already been, as this can damage the�nished surface; the model of [24, 25] allows for re-milling. The most common strategies used in practice arebased on contour-parallel (\window-pane") milling, in which the cutter follows the boundary of the regionand spirals inward, and zig-zag (\axis-parallel", \staircase") milling, in which the cutter sweeps out stripsparallel to the coordinate axis. It both of these methods, if one is to avoid re-milling portions of the pocket,the cutting tool must be retracted and moved (rapidly) to a new location, where it can then resume cutting.In the case of zig-zag milling, Arkin, Held, and Smith [27] have considered the problem of �nding tool pathsthat minimize the number of tool retractions. They prove that the problem is NP-hard in general, but giveconstant-factor approximation algorithms that are shown experimentally to perform well in practice.Watchman Route ProblemIn the watchman route (path) problem, the goal is to �nd a shortest possible cycle (path) within a polygonaldomain P , such that every point of P is seen by some point of the cycle. This problem is seen to be closelyrelated to the TSP with neighborhoods, since it can be thought of as a shortest-path/cycle problem in whichwe have the constraint that the path/cycle must visit the visibility region associated with each point of thedomain. 38



The watchman route problem was �rst investigated by Chin and Ntafos, who give an O(n)-time algorithmif P is a rectilinear simple polygon [110], and claimed an O(n4)-time algorithm if P is a simple polygon andwe are given an anchor (\door") point, p, on the boundary of P , through which the cycle is required togo [112]. Their algorithms are based on identifying a set of essential cuts, which are directed line segmentchords (extensions of selected polygon edges) that any watchman route must visit, in the order that theyappear about the polygon. Further, a locally shortest watchman route that visits an essential cut withoutcrossing it must do so either at a point where the cut intersects another cut, or at a point where the route\reects" on the cut, with equal incidence and reection angles. Given a subsequence of \active" essentialcuts, where reection is to occur, the polygon can be \unrolled", resulting in a shortest path problem ina simple polygon, which is readily solved in linear time (Section 2). On the basis of these facts, Chin andNtafos devise an incremental \adjustment" algorithm, using an \adjust at the �rst choice" rule, for searchingfor the combinatorial type of a shortest watchman route, anchored at p. Subsequently, Tan, Hirata, andInagaki [373] claimed an improved time complexity of O(n3), based on showing a linear bound on the numberof adjustments required. Then, Tan and Hirata [370] developed a divide-and-conquer algorithm, with claimedtime complexity of O(n2) for this same anchored version of the watchman route problem. Building on theseresults, Carlsson, Jonsson, and Nilsson [84] (see the updated version in [301]) gave a method of removingthe assumption that there is a prescribed anchor point through which the watchman must go; they claim anO(n4)-time algorithm for computing an unrestricted (\oating") shortest watchman cycle, basing it on theO(n2) result of [370] for the anchored case.Recent work of Hammar and Nilsson [189] has shown, however, that there is a aw in the earlier works,starting with the paper of Chin and Ntafos [112], and including subsequent work [373, 370, 84, 301]. Chinand Ntafos had made an observation, which is not true in general, about a monotonicity in the directionsof adjustments along cuts. Hammar and Nilsson give an example in which oscillations can occur in theoptimization, causing the algorithm of Chin and Ntafos to exhibit exponential behavior. Hammar andNilsson also propose a new adjustment rule to �x the problem; however, it too su�ers from a similar problem.Tan, Hirata, and Inagaki [372] have proposed a new approach to �xing the problem, based on a dynamicprogramming optimization over \partial watchman routes" on a cut. Applying this �x to their earlierincremental algorithm ([373]) results in a time complexity ofO(n4) for the anchored watchman route problem.(Applying the �x to the algorithm of Chin and Ntafos results in time O(n5).) To our knowledge, this isthe current best time bound that is generally accepted to be correct. (The divide-and-conquer approach in[370] does not yet yield an error-free algorithm with an improved time bound.) The time complexity of theunrestricted (oating) watchman route algorithm ([84, 301]) also goes up by a quadratic factor, as a resultof the �x, to O(n6).In the case of a polygonal domain P with holes, the problem is easily seen to be NP-hard (from EuclideanTSP) [110]. Mata and Mitchell [272] obtain an O(logn)-approximation algorithm, for a version that considers\rectilinear visibility", using dynamic programming on a class of guillotine rectangular subdivisions. In lightof the recent PTAS results for TSP, based on guillotine subdivisions and their generalizations, it is interestingto ask if improved approximation results can now be improved:Open Problem 29 Does the watchman route problem in a polygonal domain have a polynomial-time O(1)-approximation algorithm? Is there a PTAS?For the watchman path problem in a simple polygon, Carlsson and Jonsson [83] have obtained the �rstpolynomial-time algorithm. (The claimed time bound is O(n12), but, since it too is based on previous workhaving errors pointed out by [189, 372], the actual time complexity of a corrected version is likely to have anadditional quadratic factor.) The problem turns out to be considerably more di�cult than the cycle version,since one must determine the order in which the path visits essential cuts. An interesting problem that issolved as part of this work is the shortest postman path problem, in which the goal is to �nd a shortest paththat visits all vertices of P ; [83] give an O(n3) algorithm.The robber route problem [303] requires that the watchman see only a speci�ed subset of the edges of P ,while avoiding to be seen from a set of point \threats" within P ; see also Gewali et al. [168].39



There have been several other results on generalizations and variations of the watchman route problem,including watchman routes in \weak visibility" polygons [245], in \spiral" polygons [302], external to a simplepolygon [305], external to two convex polygons [170], under limited visibility distance [304], and for multiplewatchmen [85, 297, 301] (in restricted simple polygons). Also, minimum-link watchman tours have beenstudied. In simple polygons, Alsuwaiyel and Lee [18, 19] show that the problem is NP-hard and give anO(1)-approximation algorithm. In polygonal domains, Arkin, Mitchell, and Piatko [29] show the problemto be NP-hard (even for convex obstacles) and give an O(logn)-approximation algorithm. We know of noresults yet, though, for approximating watchman routes in three dimensions:Open Problem 30 Give an e�cient approximation algorithm for watchman routes in polyhedral domainsin 3-space.Zookeeper's ProblemThe zookeeper's problem is to �nd a shortest cycle in a simple polygon P (the zoo), through a given vertex v(the zookeeper's chair), such that the cycle visits every one of a set of k disjoint convex polygons (cages),each sharing an edge with P , without entering any of the cages.This problem is a special case of the TSP with neighborhoods problem, constrained within a simplepolygon. The simple polygon constraint helps to simplify the problem; it implies that an optimal cyclemust visit the cages in the same order that they appear on the boundary of P (otherwise, the cycle wouldself-intersect and could be shortened). This observation, together with the reection principle, allowed Chinand Ntafos [111] to solve the problem with a procedure that searches for the combinatorial type (sequenceof cage edges) of an optimal cycle by incremental updates, at each stage computing a shortest path in a2-manifold that results from \unfolding" a sequence of cage edges (according to the reection principle). Byshowing that there are only O(n) updates, and each can be done in time O(n), they achieve an O(n2)-timealgorithm. Hershberger and Snoeyink [204] have shown how each update can be done in time O(log2 n),resulting in overall time O(n log2 n), using the structure of hourglasses in simple polygons, and the shortestpath query data structures of [185, 200]Open Problem 31 Can the zookeeper problem be solved in time O(n)?The related safari route problem, introduced by Ntafos [304], requires that the cycle visit all of the cages,but it allows travel through a \cage." If the cages are not attached to the boundary of a simple polygon P ,then we get the (NP-hard) TSP with neighborhoods. However, for cages that are attached to P , Ntafos [304]obtains an O(kn2) algorithm. Tan and Hirata [371] improve the time bound to O(n2), while removing theconstraint that the cycle pass through a given point v on the boundary of P .Aquarium Keeper's ProblemThe aquarium keeper's problem is to �nd a shortest cycle in a simple polygon P (the aquarium), such thatthe cycle touches every edge of P . Thus, the aquarium keeper's problem is a special case of the zookeeper'sproblem (and thus of the TSP with neighborhoods) in which there is a \cage" erected on every edge of P ,and each cage consists simply of the edge itself. This extra structure allows an O(n)-time solution, as shownby Czyzowicz et al. [125], since there is no issue of obtaining the combinatorial type of the path. Carlssonand Jonsson [83] solve the path version of the problem in time O(n4); there is added complexity in searchingfor a shortest path, since we do not know the order in which a path must visit the edges of P .ACKNOWLEDGEMENTSI want thank several people who have contributed suggestions that have improved this survey: PankajAgarwal, Yi-Jen Chiang, Sariel Har-Peled, Christian Icking, Doug Ierardi, Andrei Iones, Peter Johansson,Rolf Klein, Kevin Klenk, Sylvain Lazard, Bengt Nilsson, Joe O'Rourke, J�org Sack, Sven Schuierer, J�urgenSellen, Chee Yap, and Sergey Zhukov. 40



References[1] J. Abello and K. Kumar. Visibility graphs and oriented matroids. In R. Tamassia and I. G. Tollis,editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes Comput. Sci., pages 147{158.Springer-Verlag, 1995.[2] P. Agarwal and M. Sharir. Arrangements. In J.-R. Sack and J. Urrutia, editors, Handbook of Compu-tational Geometry, page ?? Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1998.[3] P. K. Agarwal, B. Aronov, J. O'Rourke, and C. A. Schevon. Star unfolding of a polytope withapplications. SIAM J. Comput., 26:1689{1713, 1997.[4] P. K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S. Whitesides. Curvature-constrainedshortest paths in a convex polygon. In Proc. 14th Annu. ACM Sympos. Comput. Geom., page toappear, 1998.[5] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning treesand bichromatic closest pairs. Discrete Comput. Geom., 6(5):407{422, 1991.[6] P. K. Agarwal, S. Har-Peled, M. Sharir, and K. R. Varadarajan. Approximate shortest paths on aconvex polytope in three dimensions. J. ACM, 44:567{584, 1997.[7] P. K. Agarwal, J. Matou�sek, and S. Suri. Farthest neighbors, maximum spanning trees and relatedproblems in higher dimensions. Comput. Geom. Theory Appl., 1(4):189{201, 1992.[8] P. K. Agarwal, P. Raghavan, and H. Tamaki. Motion planning for a steering-constrained robot throughmoderate obstacles. In Proc. 27th Annu. ACM Sympos. Theory Comput., pages 343{352, 1995.[9] A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani, and B. Schieber. The angular-metric trav-eling salesman problem. In Proceedings of the Eighth Annual ACM-SIAM Symposium on DiscreteAlgorithms, pages 221{229, Jan. 1997.[10] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications.Prentice Hall, Englewood Cli�s, NJ, 1993.[11] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack. An �-approximation algorithm forweighted shortest path queries on polyhedral surfaces. In Abstracts 14th European Workshop Comput.Geom., pages 19{21, 1998.[12] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack. An �-approximation algorithm forweighted shortest paths on polyhedral surfaces. In Proc. 6th Scand. Workshop Algorithm Theory,volume ?? of Lecture Notes Comput. Sci., page to appear. Springer-Verlag, 1998.[13] R. Alexander. Construction of Optimal-Path Maps for Homogeneous-Cost-Region Path-Planning Prob-lems. Ph.D. thesis, Computer Science, U.S. Naval Postgraduate School, Monterey, CA, 1989.[14] R. Alexander and N. Rowe. Geometrical principles for path planning by optimal-path-map constructionfor linear and polygonal homogeneous-region terrain. Technical report, Computer Science, U.S. NavalPostgraduate School, Monterey, CA, 1989.[15] R. Alexander and N. Rowe. Path planning by optimal-path-map construction for homogeneous-costtwo-dimensional regions. In Proc. IEEE Internat. Conf. Robot. Autom., 1990.[16] N. Alon and Y. Azar. On-line Steiner trees in the Euclidean plane. Discrete Comput. Geom., 10:113{121, 1993. 41



[17] N. Alon, S. Rajagopalan, and S. Suri. Long non-crossing con�gurations in the plane. In Proc. 9thAnnu. ACM Sympos. Comput. Geom., pages 257{263, 1993.[18] M. H. Alsuwaiyel and D. T. Lee. Minimal link visibility paths inside a simple polygon. Comput. Geom.Theory Appl., 3(1):1{25, 1993.[19] M. H. Alsuwaiyel and D. T. Lee. Finding an approximate minimum-link visibility path inside a simplepolygon. Inform. Process. Lett., 55(2):75{79, 1995.[20] H. Alt and E. Welzl. Visibility graphs and obstacle-avoiding shortest paths. Zeitschrift f�ur OperationsResearch, 32:145{164, 1988.[21] S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. H. M. Smid, and C. D. Zaroliagis. Planar spannersand approximate shortest path queries among obstacles in the plane. In J. D��az and M. Serna, editors,Algorithms|ESA '96, Fourth Annual European Symposium, volume 1136 of Lecture Notes Comput.Sci., pages 514{528, Barcelona, Spain, Sept. 1996. Springer-Verlag.[22] E. M. Arkin, Y.-J. Chiang, J. S. B. Mitchell, and S. S. Skiena. A note on the group steiner problem.Manuscript, University at Stony Brook, 1997.[23] E. M. Arkin, Y.-J. Chiang, J. S. B. Mitchell, S. S. Skiena, and T. Yang. On the maximum scatterTSP. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pages 211{220, 1997.[24] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. The lawnmower problem. In Proc. 5th Canad. Conf.Comput. Geom., pages 461{466, 1993.[25] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Approximation algorithms for lawn mowing andmilling. Technical report, Mathematisches Institut, Universit�at zu K�oln, 1997.[26] E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering salesman problem.Discrete Appl. Math., 55:197{218, 1994.[27] E. M. Arkin, M. Held, and C. L. Smith. Optimization problems related to zigzag pocket machining.In Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, pages 419{428, 1996.[28] E. M. Arkin, J. S. B. Mitchell, and G. Narasimhan. Resource-constrained geometric network optimiza-tion. In Proc. 14th Annu. ACM Sympos. Comput. Geom., page to appear, 1998.[29] E. M. Arkin, J. S. B. Mitchell, and C. Piatko. Minimum-link watchman tours. Report, University atStony Brook, 1994.[30] E. M. Arkin, J. S. B. Mitchell, and C. D. Piatko. Bicriteria shortest path problems in the plane. InProc. 3rd Canad. Conf. Comput. Geom., pages 153{156, 1991.[31] E. M. Arkin, J. S. B. Mitchell, and S. Suri. Logarithmic-time link path queries in a simple polygon.Internat. J. Comput. Geom. Appl., 5(4):369{395, 1995.[32] B. Aronov. On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica, 4:109{140, 1989.[33] B. Aronov, S. J. Fortune, and G. Wilfong. Furthest-site geodesic Voronoi diagram. Discrete Comput.Geom., 9:217{255, 1993.[34] B. Aronov and J. O'Rourke. Nonoverlap of the star unfolding. Discrete Comput. Geom., 8:219{250,1992.[35] S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric problems.In Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., pages 2{11, 1996.42



[36] S. Arora. Nearly linear time approximation schemes for Euclidean TSP and other geometric problems.In Proc. 38th Annu. IEEE Sympos. Found. Comput. Sci., pages 554{563, 1997.[37] S. Arya and H. Ramesh. A 2.5 factor approximation algorithm for the k-MST problem. Inform.Process. Lett., 65(3):117{118, 1998.[38] T. Asano, T. Asano, L. J. Guibas, J. Hershberger, and H. Imai. Visibility of disjoint polygons.Algorithmica, 1:49{63, 1986.[39] T. Asano, B. K. Bhattacharya, J. M. Keil, and F. Yao. Clustering algorithms based on minimum andmaximum spanning trees. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 252{257, 1988.[40] T. Asano, D. Kirkpatrick, and C. K. Yap. d1-optimal motion for a rod. In Proc. 12th Annu. ACMSympos. Comput. Geom., pages 252{263, 1996.[41] T. Asano and G. Toussaint. Computing the geodesic center of a simple polygon. In D. S. Johnson,editor, Discrete Algorithms and Complexity, Perspectives in Computing, pages 65{79. Academic Press,1987.[42] M. Atallah and D. Chen. On parallel rectilinear obstacle-avoiding paths. Comput. Geom. TheoryAppl., 3:307{313, 1993.[43] M. J. Atallah. Parallel algorithms in computational geometry. In J.-R. Sack and J. Urrutia, edi-tors, Handbook of Computational Geometry, page ?? Elsevier Science Publishers B.V. North-Holland,Amsterdam, 1998.[44] M. J. Atallah and D. Z. Chen. Parallel rectilinear shortest paths with rectangular obstacles. Comput.Geom. Theory Appl., 1:79{113, 1991.[45] F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack and J. Urrutia, editors, Handbook ofComputational Geometry, page ?? Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1998.[46] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. In Proc. 27th Annu. ACM Sympos. Theory Comput.,pages 277{283, 1995.[47] Y. Azar. Lower bounds for insertion methods for TSP. Combinatorics, Probability and Computing,3:285{292, 1994.[48] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inform. Comput., 106:234{252,1993.[49] V. Bafna, B. Kalyanasundaram, and K. Pruhs. Not all insertion methods yield constant approximatetours in the Euclidean plane. Theoret. Comput. Sci., 125:345{353, 1994.[50] C. Bajaj. The algebraic complexity of shortest paths in polyhedral spaces. In Proc. 23rd AllertonConf. Commun. Control Comput., pages 510{517, 1985.[51] C. Bajaj. The algebraic degree of geometric optimization problems. Discrete Comput. Geom., 3:177{191, 1988.[52] E. Balas. The prize collecting traveling salesman problem. Networks, 19:621{636, 1989.[53] E. Bar-Eli, P. Berman, A. Fiat, and P. Yan. Online navigation in a room. J. Algorithms, 17:319{341,1994.[54] R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains. Internat. J. Comput. Geom.Appl., 4(4):475{481, 1994. 43



[55] J. Barraquand and J.-C. Latombe. Nonholonomicmulti-bodymobile robots: controllability and motionplanning in the presence of obstacles. Algorithmica, 10:121{155, 1993.[56] A. Barvinok, D. S. Johnson, G. J. Woeginger, and R. Woodroofe. The maximum traveling salesmanproblem under polyhedral norms. In Sixth International Conference on Integer Programming and Com-binatorial Optimization, volume 1412 of Lecture Notes Comput. Sci., pages 195{201, Rice University,Houston, TX, June 1998. Springer-Verlag.[57] A. I. Barvinok. Two algorithmic results for the TSP. Math. Oper. Res., 21:65{84, 1996.[58] C. D. Bateman, C. S. Helvig, G. Robins, and A. Zelikovsky. Provably good routing tree construc-tion with multi-port terminals. In Proc. ACM/SIGDA International Symposium on Physical Design,page ??, Apr. 1997.[59] J. L. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA J. Comput., 4(4):387{411, 1992.[60] P. Berman. On-line searching and navigation. In A. Fiat and G. Woeginger, editors, CompetitiveAnalysis of Algorithms. Springer-Verlag, 1998.[61] P. Berman, A. Blum, A. Fiat, H. Karlo�, A. Rosen, and M. Saks. Randomized robot navigationalgorithms. In Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, pages 75{84, 1996.[62] P. Berman and M. Karpinski. Randomized navigation to a wall through convex obstacles. TechnicalReport 85118-CS, Bonn University, 1994.[63] M. Bern. Triangulations. In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete andComputational Geometry, chapter 22, pages 413{428. CRC Press LLC, Boca Raton, FL, 1997.[64] M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In D. S. Hochbaum,editor, Approximation Algorithms for NP-Hard Problems, pages 296{345. PWS Publishing Company,Boston, MA, 1997.[65] M. Bern and P. Plassman. The Steiner problem with edge lengths 1 and 2. Inform. Process. Lett.,32:171{176, 1989.[66] M. Bern and P. Plassmann. Mesh generation. In J.-R. Sack and J. Urrutia, editors, Handbook ofComputational Geometry, page ?? Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1998.[67] M. W. Bern, H. J. Karlo�, P. Raghavan, and B. Schieber. Fast geometric approximation techniquesand geometric embedding problems. Theoret. Comput. Sci., 106(2):265{281, Dec. 1992.[68] A. Bezdek. On optimal route planning evading cubes in the three space. Beitr�age zur Algebra undGeometrie, ??:to appear, ??[69] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize collectingtraveling salesman problem. Math. Prog., 59:413{420, 1993.[70] A. Blum and P. Chalasani. An on-line algorithm for improving performance in navigation. In Proc.34th Annu. IEEE Sympos. Found. Comput. Sci., pages 2{11, 1993.[71] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The minimumlatency problem. In Proc. 26th Annu. ACM Sympos. Theory Comput. (STOC 94), pages 163{171,1994.[72] A. Blum, P. Chalasani, and S. Vempala. A constant-factor approximation for the k-MST problem inthe plane. In Proc. 27th Annu. ACM Sympos. Theory Comput., pages 294{302, 1995.44



[73] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain. SIAM J. Comput.,26(1):110{137, Feb. 1997.[74] M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search than graphs).In Proc. 19th Annu. IEEE Sympos. Found. Comput. Sci., pages 132{142, 1978.[75] J.-D. Boissonnat, A. C�er�ezo, and J. Leblond. Shortest paths of bounded curvature in the plane.Internat. J. Intell. Syst., 10:1{16, 1994.[76] J.-D. Boissonnat, J. Czyzowicz, O. Devillers, J.-M. Robert, and M. Yvinec. Convex tours of boundedcurvature. In Proc. 2nd Annu. European Sympos. Algorithms, volume 855 of Lecture Notes Comput.Sci., pages 254{265. Springer-Verlag, 1994.[77] J.-D. Boissonnat and S. Lazard. A polynomial-time algorithm for computing a shortest path of boundedcurvature amidst moderate obstacles. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 242{251, 1996.[78] P. Bose, W. Evans, D. Kirkpatrick, M. McAllister, and J. . Snoeyink. Approximating shortest paths inarrangements of lines. In Proc. 8th Canad. Conf. Comput. Geom., pages 143{148. Carleton UniversityPress, Ottawa, Canada, 1996.[79] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in higherdimensions. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 291{300, 1993.[80] J. Canny. Some algebraic and geometric computations in PSPACE. In Proc. 20th Annu. ACM Sympos.Theory Comput., pages 460{467, 1988.[81] J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic planning in the plane. DiscreteComput. Geom., 6:461{484, 1991.[82] J. Canny and J. H. Reif. New lower bound techniques for robot motion planning problems. In Proc.28th Annu. IEEE Sympos. Found. Comput. Sci., pages 49{60, 1987.[83] S. Carlsson and H. Jonsson. Computing a shortest watchman path in a simple polygon in polynomial-time. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes Comput. Sci.,pages 122{134. Springer-Verlag, 1995.[84] S. Carlsson, H. Jonsson, and B. J. Nilsson. Finding the shortest watchman route in a simple polygon.In Proc. 4th Annu. Internat. Sympos. Algorithms Comput., volume 762 of Lecture Notes Comput. Sci.,pages 58{67. Springer-Verlag, 1993.[85] S. Carlsson, B. J. Nilsson, and S. Ntafos. Optimum guard covers and m-watchmen routes for restrictedpolygons. Internat. J. Comput. Geom. Appl., 3:85{105, 1993.[86] K. F. Chan and T. W. Lam. An on-line algorithm for navigating in unknown environment. Internat.J. Comput. Geom. Appl., 3:227{244, 1993.[87] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approximation algorithmsfor directed Steiner problems. In Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, page to appear,1998.[88] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via tree: Deterministic approximationalgorithms for group Steiner trees and k-median. In Proc. 30th Annu. ACM Sympos. Theory Comput.,page to appear, 1998.[89] B. Chazelle. A theorem on polygon cutting with applications. In Proc. 23rd Annu. IEEE Sympos.Found. Comput. Sci., pages 339{349, 1982. 45



[90] B. Chazelle. An algorithm for segment-dragging and its implementation. Algorithmica, 3:205{221,1988.[91] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6:485{524, 1991.[92] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Rayshooting in polygons using geodesic triangulations. In Proc. 18th Internat. Colloq. Automata Lang.Program., volume 510 of Lecture Notes Comput. Sci., pages 661{673. Springer-Verlag, 1991.[93] D. Z. Chen. On the all-pairs Euclidean short path problem. In Proc. 6th ACM-SIAM Sympos. DiscreteAlgorithms, pages 292{301, 1995.[94] D. Z. Chen, O. Daescu, and K. S. Klenk. On geometric path query problems. In Proc. 5th WorkshopAlgorithms Data Struct., volume 1272 of Lecture Notes Comput. Sci., pages 248{257. Springer-Verlag,1997.[95] D. Z. Chen, G. Das, and M. Smid. Lower bounds for computing geometric spanners and approximateshortest paths. In Proc. 8th Canad. Conf. Comput. Geom., pages 155{160, 1996.[96] D. Z. Chen and K. S. Klenk. Rectilinear short path queries among rectangular obstacles. Inform.Process. Lett., 57:313{319, 1996.[97] D. Z. Chen, K. S. Klenk, and H.-Y. T. Tu. Shortest path queries among weighted obstacles in therectilinear plane. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 370{379, 1995.[98] D. Z. Chen, K. S. Klenk, and H.-Y. T. Tu. Shortest path queries among weighted obstacles in therectilinear plane. Manuscript, Dept. Comput. Sci., Purdue Univ., West Lafayette, IN, 1996.[99] J. Chen and Y. Han. Shortest paths on a polyhedron. In Proc. 6th Annu. ACM Sympos. Comput.Geom., pages 360{369, 1990.[100] Y.-B. Chen and D. Ierardi. Time-optimal trajectories of a rod in the plane subject to velocity con-straints. Algorithmica, 18(2):165{197, June 1997.[101] S.-W. Cheng. The Steiner tree problem for terminals on the boundary of a rectilinear polygon. InProc. of the DIMACS Workshop on Network Design: Connectivity and Facilities Location, Apr. 1997.[102] S.-W. Cheng, A. Lim, and C.-T. Wu. Optimal rectilinear Steiner tree for extremal point sets. In Proc.4th Annu. Internat. Sympos. Algorithms Comput., volume 762 of Lecture Notes Comput. Sci., pages523{532. Springer-Verlag, 1993.[103] S.-W. Cheng and C.-K. Tang. A fast algorithm for computing optimal rectilinear Steiner trees forextremal point sets. In Proc. 6th Annu. Internat. Sympos. Algorithms Comput., volume 1004 of LectureNotes Comput. Sci., pages 322{331. Springer-Verlag, 1995.[104] D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM J. Comput., 5:724{742, 1976.[105] L. P. Chew. Planning the shortest path for a disc in O(n2 logn) time. In Proc. 1st Annu. ACM Sympos.Comput. Geom., pages 214{220, 1985.[106] L. P. Chew. There are planar graphs almost as good as the complete graph. J. Comput. Syst. Sci.,39:205{219, 1989.[107] Y.-J. Chiang and J. S. B. Mitchell. Two-point Euclidean shortest path queries in the plane. In Abstracts14th European Workshop Comput. Geom., pages 55{57, 1998.46



[108] Y.-J. Chiang, F. P. Preparata, and R. Tamassia. A uni�ed approach to dynamic point location, rayshooting, and shortest paths in planar maps. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms,pages 44{53, 1993.[109] Y.-J. Chiang, F. P. Preparata, and R. Tamassia. A uni�ed approach to dynamic point location, rayshooting, and shortest paths in planar maps. SIAM J. Comput., 25:207{233, 1996.[110] W. Chin and S. Ntafos. Optimum watchman routes. Inform. Process. Lett., 28:39{44, 1988.[111] W.-P. Chin and S. Ntafos. Optimum zookeeper routes. Congr. Numer., 58:257{266, 1987. Combina-torics, Graph Theory and Computing. Proc. 20th South-East Conf., Boca Raton.[112] W.-P. Chin and S. Ntafos. Watchman routes in simple polygons. Discrete Comput. Geom., 6(1):9{31,1991.[113] J. Choi, J. Sellen, and C.-K. Yap. Precision-sensitive Euclidean shortest path in 3-space. In Proc. 11thAnnu. ACM Sympos. Comput. Geom., pages 350{359, 1995.[114] J. Choi, J. Sellen, and C. K. Yap. Approximate Euclidean shortest paths in 3-space. Internat. J.Comput. Geom. Appl., 7(4):271{295, Aug. 1997.[115] J. Choi and C.-K. Yap. Rectilinear geodesics in 3-space. In Proc. 11th Annu. ACM Sympos. Comput.Geom., pages 380{389, 1995.[116] J. Choi and C.-K. Yap. Monotonicity of rectilinear geodesics in d-space. In Proc. 12th Annu. ACMSympos. Comput. Geom., pages 339{348, 1996.[117] J. S. Choi. Geodesic problems in high dimensions. PhD thesis, Courant Institute, New York University,New York, June 1995.[118] K. L. Clarkson. Fast expected time and approximation algorithms for geometric minimum spanningtrees. In Proc. 16th Annu. ACM Sympos. Theory Comput., pages 342{348, 1984.[119] K. L. Clarkson. Approximation algorithms for shortest path motion planning. In Proc. 19th Annu.ACM Sympos. Theory Comput., pages 56{65, 1987.[120] K. L. Clarkson. An algorithm for geometric minimum spanning trees requiring nearly linear expectedtime. Algorithmica, 4:461{469, 1989.[121] K. L. Clarkson, S. Kapoor, and P. M. Vaidya. Rectilinear shortest paths through polygonal obstaclesin O(n(logn)2) time. In Proc. 3rd Annu. ACM Sympos. Comput. Geom., pages 251{257, 1987.[122] R. Cole and A. Siegel. River routing every which way, but loose. In Proc. 25th Annu. IEEE Sympos.Found. Comput. Sci., pages 65{73, 1984.[123] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge,MA, 1990.[124] J. Culberson and G. J. E. Rawlins. Turtlegons: generating simple polygons from sequences of angles.In Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 305{310, 1985.[125] J. Czyzowicz, P. Egyed, H. Everett, D. Rappaport, T. Shermer, D. Souvaine, G. Toussaint, andJ. Urrutia. The aquarium keeper's problem. In Proc. 2nd ACM-SIAM Sympos. Discrete Algorithms,pages 459{464, Jan. 1991.[126] G. Das, S. Kapoor, and M. Smid. On the complexity of approximating Euclidean traveling salesmantours and minimum spanning trees. Algorithmica, 19:447{460, 1997.47



[127] A. Datta, C. A. Hipke, and S. Schuierer. Competitive searching in polygons { Beyond generalisedstreets. In Proc. 6th Annu. Internat. Sympos. Algorithms Comput., volume 1004 of Lecture NotesComput. Sci., pages 32{41. Springer-Verlag, 1995.[128] A. Datta and C. Icking. Competitive searching in a generalized street. In Proc. 10th Annu. ACMSympos. Comput. Geom., pages 175{182, 1994.[129] A. Datta and K. Krithivasan. Path planning with local information. In Proc. Conf. Found. Softw.Tech. Theoret. Comput. Sci., volume 338 of Lecture Notes Comput. Sci., pages 108{121, New Delhi,India, Dec. 1988. Springer-Verlag.[130] M. de Berg. On rectilinear link distance. Comput. Geom. Theory Appl., 1(1):13{34, July 1991.[131] M. de Berg and M. van Kreveld. Trekking in the alps without freezing or getting tired. Algorithmica,18:306{323, 1997.[132] M. de Berg, M. van Kreveld, and B. J. Nilsson. Shortest path queries in rectilinear worlds of higherdimension. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 51{60, 1991.[133] M. de Berg, M. van Kreveld, B. J. Nilsson, and M. H. Overmars. Shortest path queries in rectilinearworlds. Internat. J. Comput. Geom. Appl., 2(3):287{309, 1992.[134] L. De Floriani and E. Puppo. Applications in geographic information systems. In J.-R. Sack andJ. Urrutia, editors, Handbook of Computational Geometry, page ?? Elsevier Science Publishers B.V.North-Holland, Amsterdam, 1998.[135] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment. In Proc. 32ndAnnu. IEEE Sympos. Found. Comput. Sci., pages 298{303, 1991.[136] X. Deng, T. Kameda, and C. H. Papadimitriou. How to learn an unknown environment I: the rectilinearcase. Technical Report CS-93-04, Department of Computer Science, York University, Canada, 1993.[137] G. Desaulniers. On shortest paths for a car-like robot maneuvering around obstacles. Les Cahiers duGERAD G-94-35, Ecole des Hautes Etudes Commerciales, Montreal, Canada, 1994.[138] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269{271,1959.[139] B. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic planningfor cartesian robots and open chain manipulators. Algorithmica, 14(6):480{530, 1995.[140] B. R. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. J. ACM, 40(5):1048{1066, Nov. 1993.[141] J. R. Driscoll, H. N. Gabow, R. Shrairaman, and R. E. Tarjan. Relaxed heaps: An alternative toFibonacci heaps with applications to parallel computation. Commun. ACM, 31:1343{1354, 1988.[142] D.-Z. Du and F. K. Hwang. A proof of Gilbert-Pollak's conjecture on the Steiner ratio. Algorithmica,7:121{135, 1992.[143] D.-Z. Du and F. K. Hwang. The state of art on Steiner ratio problems. In D.-Z. Du and F. K. Hwang,editors, Computing in Euclidean Geometry, volume 1 of Lecture Notes Series on Computing, pages163{191. World Scienti�c, Singapore, 1992.[144] L. E. Dubins. On curves of minimal length with a constraint on average curvature and with prescribedinitial and terminal positions and tangents. Amer. J. Math., 79:497{516, 1957.48



[145] P. Eades, X. Lin, and N. C. Wormald. Performance guarantees for motion planning with temporaluncertainty. Australian Computer Journal, 25(1):21{28, 1993.[146] A. Efrat and S. Har-Peled. Fly cheaply: On the minimum fuel-consumption problem. In Proc. 14thAnnu. ACM Sympos. Comput. Geom., page to appear, 1998.[147] H. ElGindy and M. T. Goodrich. Parallel algorithms for shortest path problems in polygons. VisualComput., 3:371{378, 1988.[148] H. ElGindy and P. Mitra. Orthogonal shortest route queries among axis parallel rectangular obstacles.Internat. J. Comput. Geom. Appl., 4:3{24, 1994.[149] D. Eppstein. Faster geometric k-point MST approximation. Comput. Geom. Theory Appl., 8(5):231{240, Oct. 1997.[150] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook of Com-putational Geometry, page ?? Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1998.[151] D. Eppstein and D. Hart. Shortest paths in an arrangement with k line orientations. Manuscript,University of California, Irvine, 1997.[152] S. P. Fekete. Geometry and the Travelling Salesman Problem. Ph.D. thesis, Department of Combina-torics and Optimization, University of Waterloo, Waterloo, ON, 1992.[153] S. P. Fekete. Area optimization of simple polygons. Technical Report 97-256, Mathematisches Institut,Universit�at zu K�oln, 1997.[154] S. P. Fekete. Simplicity and hardness of the maximum traveling salesman problem under geometricdistances. Manuscript (submitted), Mathematisches Institut, Universit�at zu K�oln, 1998.[155] S. P. Fekete and W. R. Pulleyblank. Area optimization of simple polygons. In Proc. 9th Annu. ACMSympos. Comput. Geom., pages 173{182, 1993.[156] S. P. Fekete and G. J. Woeginger. Angle-restricted tours in the plane. Comput. Geom. Theory Appl.,8(4):195{218, 1997.[157] A. Ferreira and J. G. Peters. Finding smallest paths in rectilinear polygons on a hypercube multipro-cessor. In Proc. 3rd Canad. Conf. Comput. Geom., pages 162{165, Aug. 1991.[158] M. Fischetti, H. W. Hamacher, K. J�rnsten, and F. Ma�oli. Weighted k-cardinality trees: Complexityand polyhedral structure. Networks, 24:11{21, 1994.[159] S. Fortune and G. Wilfong. Planning constrained motion. Annals of Math. and AI, 3:21{82, 1991.[160] M. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimizationproblems. J. ACM, 34:596{615, 1987.[161] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry problems.In Proc. 16th Annu. ACM Sympos. Theory Comput., pages 135{143, 1984.[162] S. Gao, M. Jerrum, M. Kaufmann, K. Mehlhorn, W. R�ulling, and C. Storb. On continuous homotopicone layer routing. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 392{402, 1988.[163] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing Steiner minimal trees.SIAM J. Appl. Math., 32:835{859, 1977.[164] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.49



[165] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In 37th Annual Symposiumon Foundations of Computer Science, pages 302{309, Burlington, Vermont, October 14-16 1996.[166] N. Garg and D. S. Hochbaum. An O(log k) approximation algorithm for the k minimum spanning treeproblem in the plane. In Proc. 26th Annu. ACM Sympos. Theory Comput., pages 432{438, 1994.[167] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steinerproblem. In Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, pages 253{259, 1998.[168] L. Gewali, A. Meng, J. S. B. Mitchell, and S. Ntafos. Path planning in 0=1=1 weighted regions withapplications. ORSA J. Comput., 2(3):253{272, Summer 1990.[169] L. Gewali, S. Ntafos, and I. G. Tollis. Path planning in the presence of vertical obstacles. Technicalreport, Computer Science, University of Texas at Dallas, 1989.[170] L. P. Gewali and S. Ntafos. Watchman routes in the presence of a pair of convex polygons. In Proc.7th Canad. Conf. Comput. Geom., pages 127{132, 1995.[171] S. Ghosh. Visibility. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry,page ?? Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1998.[172] S. K. Ghosh. On recognizing and characterizing visibility graphs of simple polygons. Discrete Comput.Geom., 17:143{162, 1997.[173] S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing visibility graphs. SIAMJ. Comput., 20:888{910, 1991.[174] S. K. Ghosh and S. Saluja. Optimal on-line algorithms for walking with minimum number of turns inunknown streets. Comput. Geom. Theory Appl., 8(5):241{266, Oct. 1997.[175] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM J. Appl. Math., 16(1):1{29, 1968.[176] M. Goemans and D. Williamson. General approximation technique for constrained forest problems.In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms (SODA '92), pages 307{315, 1992.[177] M. X. Goemans and J. M. Kleinberg. An improved approximation ratio for the minimum latencyproblem. In Proc. 7th ACM-SIAM Sympos. Discrete Algorithms (SODA '96), pages 152{158, 1996.[178] J. E. Goodman and J. O'Rourke, editors. Handbook of Discrete and Computational Geometry. CRCPress LLC, Boca Raton, FL, 1997.[179] M. T. Goodrich. Parallel algorithms in geometry. In J. E. Goodman and J. O'Rourke, editors, Handbookof Discrete and Computational Geometry, chapter 36, pages 669{682. CRC Press LLC, Boca Raton,FL, 1997.[180] M. T. Goodrich. Geometric data structures. In J.-R. Sack and J. Urrutia, editors, Handbook ofComputational Geometry, page ?? Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1998.[181] M. T. Goodrich, S. Shauck, and S. Guha. Parallel methods for visibility and shortest path problemsin simple polygons. Algorithmica, 8:461{486, 1992.[182] M. T. Goodrich, S. Shauck, and S. Guha. Addendum to \parallel methods for visibility and shortestpath problems in simple polygons". Algorithmica, 9:515{516, 1993.[183] M. T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths via balanced geodesictriangulations. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 318{327, 1993.50



[184] J. Gudmundsson and C. Levcopoulos. A fast approximation algorithm for TSP with neighborhoods.Technical Report LU-CS-TR:97-195, Dept. of Comp. Sci., Lund University, 1997.[185] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J. Comput. Syst.Sci., 39:126{152, 1989.[186] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms forvisibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209{233,1987.[187] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Approximating polygons andsubdivisions with minimum link paths. Internat. J. Comput. Geom. Appl., 3(4):383{415, Dec. 1993.[188] M. K. Guyder. Automating the optimization of 212-axis milling. In F. Kimura and A. Rolstad�as, editors,Proc. Computer Applications in Production and Engineering, page (supplement). North-Holland, Oct.1989.[189] M. Hammar and B. J. Nilsson. Concerning the time bounds of existing shortest watchman routealgorithms. In Proc. 11th International Symposium on Fundamentals of Computation Theory, volume1279 of Lecture Notes Comput. Sci., pages 210{221, Krakow, Poland, 1-3 September 1997. Springer-Verlag.[190] G. Y. Handler and I. Zang. A dual algorithm for the constrained shortest path problem. Networks,10:293{310, 1980.[191] P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, Multiple Criteria Deci-sion Making: Theory and Applications, volume 177 of Lecture Notes in Economics and MathematicalSystems, pages 109{127. Springer Heidelberg, 1980.[192] S. Har-Peled. Approximate shortest paths and geodesic diameters on convex polytopes in three di-mensions. Discrete Comput. Geom., ??(??):to appear, ??[193] S. Har-Peled. Approximate shortest paths and geodesic diameters on convex polytopes in three di-mensions. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 359{365, 1997.[194] S. Har-Peled. Constructing approximate shortest path maps in three dimensions. In Proc. 14th Annu.ACM Sympos. Comput. Geom., page to appear, 1998.[195] R. Hassin and S. Rubinstein. An approximation algorithm for the maximum traveling salesman prob-lem. Manuscript, submitted, Tel Aviv University, Tel Aviv, Israel, 1997.[196] M. Held. On the Computational Geometry of Pocket Machining, volume 500 of Lecture Notes Comput.Sci. Springer-Verlag, June 1991.[197] M. Henig. The shortest path problem with two objective functions. European J. Oper. Res., 25:281{291,1985.[198] M. R. Henzinger, P. Klein, and S. Rao. Faster shortest-path algorithms for planar graphs. J. Comput.Syst. Sci., 55:3{23, 1997.[199] J. Hershberger. Finding the visibility graph of a simple polygon in time proportional to its size.Algorithmica, 4:141{155, 1989.[200] J. Hershberger. A new data structure for shortest path queries in a simple polygon. Inform. Process.Lett., 38:231{235, 1991. 51



[201] J. Hershberger. Optimal parallel algorithms for triangulated simple polygons. In Proc. 8th Annu. ACMSympos. Comput. Geom., pages 33{42, 1992.[202] J. Hershberger and L. J. Guibas. An O(n2) shortest path algorithm for a non-rotating convex body.J. Algorithms, 9:18{46, 1988.[203] J. Hershberger and J. Snoeyink. Computingminimumlength paths of a given homotopy class. Comput.Geom. Theory Appl., 4:63{98, 1994.[204] J. Hershberger and J. Snoeyink. An e�cient solution to the zookeeper's problem. In Proc. 6th Canad.Conf. Comput. Geom., pages 104{109, 1994.[205] J. Hershberger and S. Suri. E�cient computation of Euclidean shortest paths in the plane. In Proc.34th Annu. IEEE Sympos. Found. Comput. Sci., pages 508{517, 1993.[206] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane. Manuscript,Washington University, 1995.[207] J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk. J.Algorithms, 18:403{431, 1995.[208] J. Hershberger and S. Suri. Practical methods for approximating shortest paths on a convex polytopein <3. In Proc. 6th ACM-SIAM Sympos. Discrete Algorithms, pages 447{456, 1995.[209] J. Hershberger and S. Suri. Matrix searching with the shortest path metric. SIAM J. Comput.,26(6):1612{1634, Dec. 1997.[210] D. Hochbaum, editor. Approximation Problems for NP-Complete Problems. PWS Publishing Company,Boston, MA, 1997.[211] F. Ho�mann, C. Icking, R. Klein, and K. Kriegel. A competitive strategy for learning a polygon. InProc. 8th ACM-SIAM Sympos. Discrete Algorithms, pages 166{174, 1997.[212] F. Ho�mann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration problem: A new strategyand a new analysis technique. In Proc. 1998 Workshop Algorithmic Found. Robot., page to appear,1998.[213] C. Hurkens. Nasty TSP instances for farthest insertion. In Proc. 2nd IPCO Conference IntegerProgramming and Combinatorial Optimization, page ??, 1992.[214] F. K. Hwang. On Steiner minimal trees with rectilinear distance. SIAM J. Appl. Math., 30(1):104{114,1976.[215] C. Icking. Motion and Visibility in Simple Polygons. PhD thesis, FernUniversit�at Hagen, 1994.[216] C. Icking and R. Klein. Searching for the kernel of a polygon: A competitive strategy. In Proc. 11thAnnu. ACM Sympos. Comput. Geom., pages 258{266, 1995.[217] C. Icking, G. Rote, E. Welzl, and C. Yap. Shortest paths for line segments. Algorithmica, 10:182{200,1993.[218] E. Ihler. Bounds on the quality of approximate solutions to the group Steiner problem. In Graph-Theoret. Concepts Comput. Sci.: Proc. Internat. Workshop, volume 484 of Lecture Notes Comput. Sci.,pages 109{118, Berlin, Germany, 1991. Springer-Verlag.[219] E. Ihler. The complexity of approximating the class Steiner tree problem. In Graph Theoretic Conceptsin Computer Science: Proc. Internat. Workshop WG '91, volume 570 of Lecture Notes Comput. Sci.,pages 85{96, Berlin, Germany, 1992. Springer-Verlag.52



[220] E. Ihler. The rectilinear Steiner tree problem for intervals on two parallel lines. Math. Program. Ser.B, 63:281{296, 1994.[221] E. Ihler, G. Reich, and P. Widmayer. On shortest networks for classes of points in the plane. InProc. Computational Geometry: Methods, Algorithms and Applications, volume 553 of Lecture NotesComput. Sci., pages 103{111. Springer-Verlag, 1991.[222] H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algorithms. In G. T.Toussaint, editor, Computational Morphology, pages 71{86. North-Holland, Amsterdam, Netherlands,1988.[223] M. Imase and B. M. Waxman. Dynamic Steiner tree problem. SIAM J. Discrete Math., 4:369{384,1991.[224] K. Iwano, P. Raghavan, and H. Tamaki. The traveling cameraman problem, with applications toautomatic optical inspection. In Proc. 5th Annu. Internat. Sympos. Algorithms Comput., volume 834of Lecture Notes Comput. Sci., pages 29{37. Springer-Verlag, 1994.[225] S. S. Iyengar and A. Elfes, editors. Autonomous Mobile Robots: Perception, Mapping, and Navigation.IEEE Computer Society Press, Los Alamitos, CA, 1991.[226] S. S. Iyengar, C. C. Jorgensen, S. V. N. Rao, and C. R. Weisbin. Robot navigation algorithms usinglearned spatial graphs. Robotica, 4:93{100, 1986.[227] P. Jacobs and J. Canny. Planning smooth paths for mobile robots. In Proc. IEEE Internat. Conf.Robot. Autom., pages 2{7, 1989.[228] P. Jacobs and J. Canny. Planning smooth paths for mobile robots. In Z. Li and J. F. Canny, editors,Nonholonomic Motion Planning, pages 271{342. Kluwer Academic Pubishers, Norwell, MA, 1992.[229] P. Johansson. On a weighted distance model for injection moulding. Link�oping Studies in Scienceand Technology, Thesis No. 604 LiU-TEK-LIC-1997:05, Division of Applied Mathematics, Link�opingUniversity, Link�oping, Sweden, Feb. 1997.[230] M. J�unger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In M. O. Ball, T. L.Magnanti, C. L. Monma, and G. L. Nemhauser, editors, Network Models, Handbook of OperationsResearch/Management Science, pages 225{330. Elsevier Science, Amsterdam, 1995.[231] B. Kalyanasundaram and K. Pruhs. A competitive analysis of algorithms for searching unknown scenes.Comput. Geom. Theory Appl., 3:139{155, 1993.[232] B. Kalyanasundaram and K. Pruhs. Constructing competitive tours from local information. Theoret.Comput. Sci., 130:125{138, 1994.[233] B. Kalyanasundaram and K. Pruhs. Online network optimization problems. In A. Fiat and G. Woeg-inger, editors, Competitive Analysis of Algorithms. Springer-Verlag, 1998.[234] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomizedalgorithm for the cow-path problem. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages441{447, 1993.[235] S. Kapoor. Approximate geographic neighbor tree with applications. Manuscript, IIT, New Delhi,1997.[236] S. Kapoor and S. N. Maheshwari. E�cient algorithms for Euclidean shortest path and visibilityproblems with polygonal obstacles. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 172{182,1988. 53



[237] S. Kapoor, S. N. Maheshwari, and J. S. B. Mitchell. An e�cient algorithm for Euclidean shortest pathsamong polygonal obstacles in the plane. Discrete Comput. Geom., 18:377{383, 1997.[238] M. Kindl, M. Shing, and N. Rowe. A stochastic approach to the weighted-region problem, I: Thedesign of the path annealing algorithm. Technical report, Computer Science, U.S. Naval PostgraduateSchool, Monterey, CA, 1991.[239] M. Kindl, M. Shing, and N. Rowe. A stochastic approach to the weighted-region problem, II: Perfor-mance enhancement techniques and experimental results. Technical report, Computer Science, U.S.Naval Postgraduate School, Monterey, CA, 1991.[240] P. N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted Steinertree. J. Algorithms, 19:104{115, 1995.[241] R. Klein. Walking an unknown street with bounded detour. Comput. Geom. Theory Appl., 1:325{351,1992.[242] J. M. Kleinberg. On-line search in a simple polygon. In Proc. 5th ACM-SIAM Sympos. DiscreteAlgorithms, pages 8{15, 1994.[243] S. Kosaraju, J. Park, and C. Stein. Long tours and short superstrings. In Proc. 35th Annu. IEEESympos. Found. Comput. Sci. (FOCS 94), 1994.[244] D. Krznaric, C. Levcopoulos, and B. J. Nilsson. Minimum spanning trees in d dimensions. In Proc.5th Annu. European Sympos. Algorithms, volume 1284 of Lecture Notes Comput. Sci., pages 341{349.Springer-Verlag, 1997.[245] P. Kumar and C. Veni Madhavan. Shortest watchman tours in weak visibility polygons. In Proc. 5thCanad. Conf. Comput. Geom., pages 91{96, 1993.[246] M. Lanthier, A. Maheshwari, and J.-R. Sack. Approximating weighted shortest paths on polyhedralsurfaces. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 274{283, 1997.[247] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.[248] J. P. Laumond. Feasible trajectories for mobile robots with kinematic and environment constraints.In L. O. Hertzberger and F. C. A. Groen, editors, Conference on Intelligent Autonomous Systems(Amsterdam, the Netherlands, December 8{11, 1986), pages 346{354. Elsevier Science Publishers,Dec. 1986.[249] J.-P. Laumond, P. Jacobs, M. Taix, and R. M. Murray. A motion planner for nonholonomic mobilerobots. IEEE Trans. Robot. Autom., 10(5):577{593, 1994.[250] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. The Traveling SalesmanProblem. Wiley, New York, NY, 1985.[251] D. T. Lee. Proximity and reachability in the plane. Report R-831, Dept. Elect. Engrg., Univ. Illinois,Urbana, IL, 1978.[252] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers. Networks,14:393{410, 1984.[253] D. T. Lee, C. D. Yang, and T. H. Chen. Shortest rectilinear paths among weighted obstacles. Internat.J. Comput. Geom. Appl., 1(2):109{124, 1991.[254] D. T. Lee, C. D. Yang, and C. K. Wong. Rectilinear paths among rectilinear obstacles. Discrete Appl.Math., 70:185{215, 1996. 54



[255] J.-H. Lee, C.-S. Shin, J.-H. Kim, S. Shin, and K.-Y. Chwa. New competitive strategies for searching inunknown star-shaped polygons. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 427{429,1997.[256] C. E. Leiserson and F. M. Maley. Algorithms for routing and testing routability of planar VLSI layouts.In Proc. 17th Annu. ACM Sympos. Theory Comput., pages 69{78, 1985.[257] C. Levcopoulos and D. Krznaric. Quasi-greedy triangulations approximating the minimum weighttriangulation. In Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, pages 392{401, 1996.[258] Z. Li and J. F. Canny, editors. Nonholonomic Motion Planning. Kluwer Academic Pubishers, Norwell,MA, 1992.[259] A. Lingas, A. Maheshwari, and J.-R. Sack. Parallel algorithms for rectilinear link distance problems.Algorithmica, 14:261{289, 1995.[260] A. L�opez-Ortiz and S. Schuierer. Going home through an unknown street. In Proc. 4th WorkshopAlgorithms Data Struct., volume 955 of Lecture Notes Comput. Sci., pages 135{146. Springer-Verlag,1995.[261] A. L�opez-Ortiz and S. Schuierer. Simple, e�cient and robust strategies to traverse streets. In Proc.7th Canad. Conf. Comput. Geom., pages 217{222, 1995.[262] A. L�opez-Ortiz and S. Schuierer. Generalized streets revisited. In J. Diaz and M. Serna, editors, Proc.4th Annu. European Sympos. Algorithms, volume 1136 of Lecture Notes Comput. Sci., pages 546{558.Springer-Verlag, 1996.[263] A. L�opez-Ortiz and S. Schuierer. Walking streets faster. In Proc. 5th Scand. Workshop AlgorithmTheory, volume 1097 of Lecture Notes Comput. Sci., pages 345{356. Springer-Verlag, 1996.[264] A. L�opez-Ortiz and S. Schuierer. Position-independent near optimal searching and on-line recognitionin star polygons. In F. Dehne, A. Rau-Chaplin, J.-R. Sack, and R. Tamassia, editors, Algorithmsand Data Structures, 5th International Workshop, volume 1272 of Lecture Notes Comput. Sci., pages284{296, Halifax, Nova Scotia, Canada, Aug. 1997. Springer-Verlag.[265] V. J. Lumelsky. Algorithmic and complexity issues of robot motion in an uncertain environment. J.Complexity, 3:146{182, 1987.[266] V. J. Lumelsky. Algorithmic issues of sensor-based robot motion planning. In Proc. 26th IEEE Conf.Decision Control, pages 1796{1801, 1987.[267] V. J. Lumelsky. A comparative study on the path length performance of maze-searching and robotmotion planning algorithms. IEEE Trans. Robot. Autom., 7(1):57{66, 1991.[268] V. J. Lumelsky and A. A. Stepanov. Dynamic path planning for a mobile automaton with limitedinformation on the environment. IEEE Trans. Autom. Control, AC-31:1058{1063, 1986.[269] V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile automaton movingamidst unknown obstacles of arbitrary shape. Algorithmica, 2:403{430, 1987.[270] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. J. ACM,41:960{982, 1994.[271] A. Maheshwari and J.-R. Sack. Link distance problems. In J.-R. Sack and J. Urrutia, editors, Handbookof Computational Geometry, page ?? Elsevier Science Publishers B.V. North-Holland, Amsterdam,1998. 55



[272] C. Mata and J. S. B. Mitchell. Approximation algorithms for geometric tour and network designproblems. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 360{369, 1995.[273] C. Mata and J. S. B. Mitchell. A new algorithm for computing shortest paths in weighted planarsubdivisions. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 264{273, 1997.[274] K. M. McDonald and J. G. Peters. Smallest paths in simple rectilinear polygons. IEEE Trans. onComputer Aided Design, 11:864{875, 1992.[275] A. Mei and Y. Igarashi. An e�cient strategy for robot navigation in unknown environment. Inform.Process. Lett., 52:51{56, 1994.[276] A. Mei and Y. Igarashi. A robot navigation strategy in unknown environment and its e�ciency. IEICETrans. Fundamentals Electronics, Comm. and Comput. Sci., E77-A(7):1157{1162, July 1994.[277] B. Mirtich and J. Canny. Using skeletons for nonholonomic path planning among obstacles. In Proc.9th IEEE Internat. Conf. Robot. Autom., pages 2533{2540, 1992.[278] J. S. B. Mitchell. Planning shortest paths. Ph.D. thesis, Stanford Univ., Stanford, CA, 1986.[279] J. S. B. Mitchell. An optimal algorithm for shortest rectilinear paths among obstacles. In Abstracts1st Canad. Conf. Comput. Geom., page 22, 1989.[280] J. S. B. Mitchell. On maximum ows in polyhedral domains. J. Comput. Syst. Sci., 40:88{123, 1990.[281] J. S. B. Mitchell. An algorithmic approach to some problems in terrain navigation. In S. S. Iyengar andA. Elfes, editors, Autonomous Mobile Robots: Perception, Mapping, and Navigation, pages 408{427.IEEE Computer Society Press, Los Alamitos, CA, 1991.[282] J. S. B. Mitchell. A new algorithm for shortest paths among obstacles in the plane. Ann. Math. Artif.Intell., 3:83{106, 1991.[283] J. S. B. Mitchell. L1 shortest paths among polygonal obstacles in the plane. Algorithmica, 8:55{88,1992.[284] J. S. B. Mitchell. Shortest paths among obstacles in the plane. In Proc. 9th Annu. ACM Sympos.Comput. Geom., pages 308{317, 1993.[285] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple new method forthe geometric k-MST problem. In Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, pages 402{408,1996.[286] J. S. B. Mitchell. Shortest paths among obstacles in the plane. Internat. J. Comput. Geom. Appl.,6:309{332, 1996.[287] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: Part III { Fasterpolynomial-time approximation schemes for geometric network optimization. Manuscript, Universityat Stony Brook, 1997.[288] J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman and J. O'Rourke, editors, Handbookof Discrete and Computational Geometry, chapter 24, pages 445{466. CRC Press LLC, Boca Raton,FL, 1997.[289] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput.,??:??, 1998. 56



[290] J. S. B. Mitchell, A. Blum, P. Chalasani, and S. Vempala. A constant-factor approximation algorithmfor the geometric k-MST problem in the plane. SIAM J. Comput., ??:To appear, 1998.[291] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem. SIAM J.Comput., 16:647{668, 1987.[292] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem: �nding shortest pathsthrough a weighted planar subdivision. J. ACM, 38:18{73, 1991.[293] J. S. B. Mitchell, D. W. Payton, and D. M. Keirsey. Planning and reasoning for autonomous vehiclecontrol. Internat. J. Intell. Syst., II:129{198, 1987.[294] J. S. B. Mitchell, C. Piatko, and E. M. Arkin. Computing a shortest k-link path in a polygon. In Proc.33rd Annu. IEEE Sympos. Found. Comput. Sci., pages 573{582, 1992.[295] J. S. B. Mitchell and S. Suri. Separation and approximation of polyhedral objects. Comput. Geom.Theory Appl., 5:95{114, 1995.[296] J. S. B. Mitchell and S. Suri. A survey of computational geometry. In M. O. Ball, T. L. Mag-nanti, C. L. Monma, and G. L. Nemhauser, editors, Network Models, Handbook of Operations Re-search/Management Science, pages 425{479. Elsevier Science, Amsterdam, 1995.[297] J. S. B. Mitchell and E. L. Wynters. Watchman routes for multiple guards. In Proc. 3rd Canad. Conf.Comput. Geom., pages 126{129, 1991.[298] P. Mitra and B. Bhattacharya. E�cient approximate shortest-path queries among isothetic rectangularobstacles. In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes Comput. Sci.,pages 518{529. Springer-Verlag, 1993.[299] C. Monma, M. Paterson, S. Suri, and F. Yao. Computing Euclidean maximum spanning trees. Algo-rithmica, 5:407{419, 1990.[300] D. M. Mount. The number of shortest paths on the surface of a polyhedron. SIAM J. Comput.,19:593{611, 1990.[301] B. J. Nilsson. Guarding Art Galleries | Methods for Mobile Guards. PhD thesis, Lund University,1995.[302] B. J. Nilsson and D. Wood. Optimumwatchmen routes in spiral polygons. In Proc. 2nd Canad. Conf.Comput. Geom., pages 269{272, 1990.[303] S. Ntafos. The robber route problem. Inform. Process. Lett., 34(2):59{63, Mar. 1990.[304] S. Ntafos. Watchman routes under limited visibility. Comput. Geom. Theory Appl., 1(3):149{170,1992.[305] S. Ntafos and L. Gewali. External watchman routes. Visual Comput., 10:474{483, 1994.[306] C. �O'D�unlaing. Motion-planning with inertial constraints. Algorithmica, 2:431{475, 1987.[307] H. L. Ong. Approximate algorithms for the traveling purchaser problem. Oper. Res. Lett., 1:201{205,1982.[308] J. O'Rourke. Finding a shortest ladder path: a special case. IMA Preprint Series 353, Inst. Math.Appl., Univ. Minnesota, Minneapolis, MN, 1987.[309] J. O'Rourke. Uniqueness of orthogonal connect-the-dots. In G. T. Toussaint, editor, ComputationalMorphology, pages 97{104. North-Holland, Amsterdam, Netherlands, 1988.57



[310] J. O'Rourke. Visibility. In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete andComputational Geometry, chapter 25, pages 467{480. CRC Press LLC, Boca Raton, FL, 1997.[311] J. O'Rourke and C. Schevon. Computing the geodesic diameter of a 3-polytope. In Proc. 5th Annu.ACM Sympos. Comput. Geom., pages 370{379, 1989.[312] J. O'Rourke and I. Streinu. Vertex-edge pseudo-visibility graphs: Characterization and recognition.In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 119{128, 1997.[313] M. H. Overmars and E. Welzl. New methods for computing visibility graphs. In Proc. 4th Annu. ACMSympos. Comput. Geom., pages 164{171, 1988.[314] N. Papadakis and A. Perakis. Minimal time vessel routing in a time-dependent environment. Transp.Sci., 23(4):266{276, 1989.[315] N. Papadakis and A. Perakis. Deterministic minimal time vessel routing. Oper. Res., 38(3):426{438,1990.[316] C. H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theoret. Comput.Sci., 4:237{244, 1977.[317] C. H. Papadimitriou. An algorithm for shortest-path motion in three dimensions. Inform. Process.Lett., 20:259{263, 1985.[318] C. H. Papadimitriou and E. B. Silverberg. Optimal piecewise linear motion of an object amongobstacles. Algorithmica, 2:523{539, 1987.[319] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoret. Comput. Sci.,84(1):127{150, 1991.[320] E. Papadopoulou and D. T. Lee. E�cient computation of the geodesic Voronoi diagram of points in asimple polygon. In P. G. Spirakis, editor, Algorithms|ESA '95, Third Annual European Symposium,volume 979 of Lecture Notes Comput. Sci., pages 238{251, Corfu, Greece, Sept. 1995. Springer-Verlag.[321] R. Parker and R. Rardin. Guaranteed performance heuristics for the bottleneck travelling salesmanproblem. Operations Research Letters, 2(6):269{272, 1984.[322] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley,Reading, MA, 1984.[323] M. Pocchiola and G. Vegter. The visibility complex. In Proc. 9th Annu. ACM Sympos. Comput.Geom., pages 328{337, 1993.[324] M. Pocchiola and G. Vegter. Computing the visibility graph via pseudo-triangulations. In Proc. 11thAnnu. ACM Sympos. Comput. Geom., pages 248{257, 1995.[325] M. Pocchiola and G. Vegter. Topologically sweeping visibility complexes via pseudo-triangulations.Discrete Comput. Geom., 16:419{453, Dec. 1996.[326] R. Pollack, M. Sharir, and G. Rote. Computing of the geodesic center of a simple polygon. DiscreteComput. Geom., 4:611{626, 1989.[327] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, NewYork, NY, 1985.[328] R. Raman. Recent results on the single-source shortest paths problem. SIGACT News, 28(2):81{87,1997. 58



[329] N. S. V. Rao. Algorithmic framework for learned robot navigation in unknown terrain. IEEE Computer,22:37{43, 1989.[330] N. S. V. Rao, S. S. Iyengar, C. C. Jorgensen, and C. R. Weisbin. Robot navigation in an unexploredterrain. Journal of Robotic Systems, 3(4):389{407, 1986.[331] N. S. V. Rao, S. S. Iyengar, B. J. Oommen, and R. L. Kashyap. On terrain model acquisition by apoint robot amidst polyhedral obstacles. Internat. J. Robot. Autom., 4(4):450{455, 1988.[332] S. B. Rao and W. D. Smith. Improved approximation schemes for traveling salesman tours. In Proc.30th Annu. ACM Sympos. Theory Comput., page to appear, 1998.[333] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning trees short andsmall. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages 546{555, 1994.[334] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards and backwards. Paci�cJournal of Mathematics, 145(2), 1990.[335] G. Reich and P. Widmayer. Beyond Steiner's problem: A VLSI oriented generalization. In Proc. 15thInternat. Workshop Graph-Theoret. Concepts Comput. Sci., volume 411 of Lecture Notes Comput. Sci.,pages 196{210, Heidelberg, NY, 1989. Springer-Verlag.[336] J. Reif and S. Sen. Parallel computational geometry: An approach using randomization. In J.-R. Sackand J. Urrutia, editors, Handbook of Computational Geometry, page ?? Elsevier Science PublishersB.V. North-Holland, Amsterdam, 1998.[337] J. Reif and M. Sharir. Motion planning in the presence of moving obstacles. J. ACM, 41(4):764{790,July 1994.[338] J. Reif and H. Wang. Non-uniform discretization for kinodynamicmotion planning and its applications.In J.-P. Laumond and M. Overmars, editors, Algorithms for Robotic Motion and Manipulation, pages97{112, Wellesley, MA, 1997. A.K. Peters. Proc. 1996 Workshop on the Algorithmic Foundations ofRobotics, Toulouse, France, July 1996.[339] J. Reif and H. Wang. The complexity of the two dimensional curvature-constrained shortest-pathproblem. In Proc. 1998 Workshop Algorithmic Found. Robot., page to appear, 1998.[340] J. H. Reif and J. A. Storer. A single-exponential upper bound for �nding shortest paths in threedimensions. J. ACM, 41(5):1013{1019, 1994.[341] J. H. Reif and S. R. Tate. Approximate kinodynamic planning using L2-norm dynamic bounds.Comput. Math. Appl., 27(5):29{44, 1994.[342] J. H. Reif and H. Wang. On-line navigation through weighted regions. Technical report, Dept. Com-puter Science, Duke University, 1993.[343] G. Reinelt. Fast heuristics for large geometric traveling salesman problems. ORSA J. Comput., 4:206{217, 1992.[344] D. B. Reister and F. G. Pin. Time-optimal trajectories for mobile robots with two independentlydriven wheels. Internat. J. Robot. Res., 13:38{54, 1994.[345] D. S. Richards and J. S. Salowe. A linear-time algorithm to construct a rectilinear Steiner minimaltree for k-extremal point sets. Algorithmica, 7:247{276, 1992.[346] S. Rivi�ere. Topologically sweeping the visibility complex of polygonal scenes. In Proc. 11th Annu.ACM Sympos. Comput. Geom., pages C36{C37, 1995.59



[347] H. Rohnert. A new algorithm for shortest paths avoiding convex polygonal obstacles. Report A86/02,Fachber. Inform., Univ. Saarlandes, Saarbr�ucken, West Germany, 1986.[348] H. Rohnert. Shortest paths in the plane with convex polygonal obstacles. Inform. Process. Lett.,23:71{76, 1986.[349] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. An analysis of several heuristics for the travelingsalesman problem. SIAM J. Comput., 6:563{581, 1977.[350] N. C. Rowe. Obtaining optimal mobile-robot paths with non-smooth anisotropic cost functions usingqualitative-state reasoning. Internat. J. Robot. Res., 16(3):375{399, June 1997.[351] J. S. Salowe. Constructing multidimensional spanner graphs. Internat. J. Comput. Geom. Appl.,1(2):99{107, 1991.[352] C. Schevon and J. O'Rourke. The number of maximal edge sequences on a convex polytope. In Proc.26th Allerton Conf. Commun. Control Comput., pages 49{57, Oct. 1988.[353] S. Schirra. Robustness issues. In J.-R. Sack and J. Urrutia, editors, Handbook of ComputationalGeometry, page ?? Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1998.[354] S. Schuierer. An optimal data structure for shortest rectilinear path queries in a simple rectilinearpolygon. Internat. J. Comput. Geom. Appl., 6:205{226, 1996.[355] S. Schuierer. Lower bounds in on-line geometric searching. In 11th International Symposium onFundamentals of Computation Theory, volume 1279 of Lecture Notes Comput. Sci., pages 429{440.Springer-Verlag, Krakow, Poland, 1-3 September 1997.[356] J. Sellen. Direction weighted shortest path planning. In Proc. IEEE Internat. Conf. Robot. Autom.,pages 1970{1975, 1995.[357] J. Sellen. Planning paths of minimal curvature. In Proc. IEEE Internat. Conf. Robot. Autom., pages1976{1982, 1995.[358] J. Sellen. Approximation and decision algorithms for curvature-constrained path planning: A state-space approach. In Proc. 1998 Workshop Algorithmic Found. Robot., page to appear, 1998.[359] I. Semrau. Analyse und experimentelle Untersuchung von Strategien zum Finden eines Ziels in Stra�en-polygonen. Master's thesis (Diplomarbeit), Fernuniversit�at Hagen, July 1996.[360] M. Sharir. On shortest paths amidst convex polyhedra. SIAM J. Comput., 16:561{572, 1987.[361] M. Sharir. A note on the Papadimitriou-Silverberg algorithm for planning optimal piecewise linearmotion of a ladder. Inform. Process. Lett., 32:187{190, 1989.[362] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM J. Comput., 15:193{215, 1986.[363] P. Slav�ik. The errand scheduling problem. Technical report 97-2, Department of Computer Science,SUNY, Bu�alo NY, March 14 1997.[364] P. Slav�ik. On the approximation of the generalized traveling salesman problem. Manuscript, submitted,Department of Computer Science, SUNY, Bu�alo NY, 1998.[365] J. M. Smith and P. Winter. Computational geometry and topological network design. In D.-Z. Duand F. K. Hwang, editors, Computing in Euclidean Geometry, volume 1 of Lecture Notes Series onComputing, pages 287{385. World Scienti�c, Singapore, 1992.60



[366] S. Suri. Computing geodesic furthest neighbors in simple polygons. J. Comput. Syst. Sci., 39:220{235,1989.[367] H. J. Sussman. Shortest 3-dimensional paths with a prescribed curvature bound. In Proc. 34th IEEEConf. Decision Control, pages 3306{3311, 1995.[368] H. J. Sussmann and G. Tang. Shortest paths for the Reeds-Shepp car: A worked out example of theuse of geometric techniques in nonlinear optimal control. Research Report SYCON-91-10, RutgersUniversity, New Brunswick, NJ, 1991.[369] P. �Svestka and M. H. Overmars. Motion planning for car-like robots using a probabilistic learningapproach. Internat. J. Robot. Res., 16(2):119{143, Apr. 1997.[370] X. Tan and T. Hirata. Constructing shortest watchman routes by divide-and-conquer. In Proc. 4thAnnu. Internat. Sympos. Algorithms Comput., volume 762 of Lecture Notes Comput. Sci., pages 68{77.Springer-Verlag, 1993.[371] X. Tan and T. Hirata. Shortest safari routes in simple polygon. In Proc. 5th Annu. Internat. Sympos.Algorithms Comput., volume 834 of Lecture Notes Comput. Sci., pages 523{531, Beijing, 1994. Springer-Verlag.[372] X. Tan, T. Hirata, and Y. Inagaki. Corrigendum to `An incremental algorithm for constructing shortestwatchman routes'. Manuscript (submitted to internat. j. comput. geom. appl.), Tokai University, Japan,1998.[373] X. H. Tan, T. Hirata, and Y. Inagaki. An incremental algorithm for constructing shortest watchmanroutes. Internat. J. Comput. Geom. Appl., 3(4):351{365, 1993.[374] M. Thorup. Undirected single source shortest path in linear time. In Proc. 38th Annu. IEEE Sympos.Found. Comput. Sci., page To appear, 1997.[375] L. Trevisan. When Hammingmeets Euclid: The approximability of geometric TSP and MST. In Proc.29th Annu. ACM Sympos. Theory Comput., pages 21{29, 1997.[376] C. Umans and W. Lenhart. Hamiltonian cycles in solid grid graphs. In Proc. 38th Annu. IEEE Sympos.Found. Comput. Sci., page To appear, 1997.[377] P. M. Vaidya. A fast approximation for minimum spanning trees in k-dimensional space. In Proc. 25thAnnu. IEEE Sympos. Found. Comput. Sci., pages 403{407, 1984.[378] P. M. Vaidya. Minimum spanning trees in k-dimensional space. SIAM J. Comput., 17:572{582, 1988.[379] P. M. Vaidya. Approximate minimumweight matching on points in k-dimensional space. Algorithmica,4:569{583, 1989.[380] P. M. Vaidya. Geometry helps in matching. SIAM J. Comput., 18:1201{1225, 1989.[381] P. M. Vaidya. An O(n logn) algorithm for the all-nearest-neighbors problem. Discrete Comput. Geom.,4:101{115, 1989.[382] K. R. Varadarajan and P. Agarwal. Approximating shortest paths on an nonconvex polyhedron. InProc. 38th Annu. IEEE Sympos. Found. Comput. Sci., page To appear, 1997.[383] H. Wang and P. K. Agarwal. Approximation algorithms for curvature constrained shortest paths. InProc. 7th ACM-SIAM Sympos. Discrete Algorithms, pages 409{418, 1996.[384] W. Warntz. Transportation, social physics, and the law of refraction. The Professional Geographer,9(4):2{7, 1957. 61



[385] E. Welzl. Constructing the visibility graph for n line segments in O(n2) time. Inform. Process. Lett.,20:167{171, 1985.[386] P. Widmayer, Y. F. Wu, and C. K. Wong. On some distance problems in �xed orientations. SIAM J.Comput., 16:728{746, 1987.[387] G. Wilfong. Motion planning for an autonomous vehicle. In Proc. IEEE Internat. Conf. Robot. Autom.,pages 529{533, 1988.[388] G. Wilfong. Shortest paths for autonomous vehicles. In Proc. 6th IEEE Internat. Conf. Robot. Autom.,pages 15{20, 1989.[389] D. P. Williamson and M. X. Goemans. Computational experience with an approximation algorithmon large-scale Euclidean matching instances. INFORMS J. Comput., 8(1):29{40, 1996.[390] C. D. Yang, D. T. Lee, and C. K. Wong. Rectilinear paths problems among rectilinear obstaclesrevisited. SIAM J. Comput., 24:457{472, 1995.[391] A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems.SIAM J. Comput., 11:721{736, 1982.[392] A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica,9:463{470, 1993.[393] A. Z. Zelikovsky. Better approximation bounds for the network and Euclidean Steiner tree problems.Technical Report CS-96-06, University of Virginia, Charlottesville, VA, 1996.

62


