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Abstract: Managing the complexity of designing chips containing billions of transistors requires
decoupling computation from communication. For the communication, scalable and compositional
interconnects, such as networks on chip (NoC), must be used. It is shown that guaranteed services
are essential in achieving this decoupling. Guarantees typically come at the cost of lower resource
utilisation. To avoid this, they must be used in combination with best-effort services. The key
element of this NoC is a router consisting conceptually of two parts; the so-called guaranteed-
throughput (GT) and best-effort (BE) routers. The GT and BE router architectures are combined in
an efficient implementation by sharing resources. The trade-offs between hardware complexity and
efficiency of the combined router are shown that motivate the choices. The reasoning for the trade-
offs is validated with a prototype router implementation. A layout is shown of an input-queued
wormhole 5 � 5 router with an aggregate bandwidth of 80 Gbit/s. It occupies 0:26mm2 in a 0.13mm
technology. This shows that our router provides high performance at reasonable cost, bringing
NoCs one step closer.

1 Introduction

Recent advances in technology raise the challenge of
managing the complexity of designing chips containing
billions of transistors. A key ingredient in tackling this
challenge is decoupling the computation from communi-
cation [1, 2]. This decoupling allows IPs (the computation
part) and the interconnect (the communication part) to be
designed independently from each other.

In this paper, we focus on the communication part.
Existing interconnects (e.g. buses) may no longer be
feasible for chips with many IPs, because of the diverse
and dynamic communication requirements of advanced
current and future applications. Networks on a chip (NoC)
are emerging as an alternative to existing on-chip
interconnects because they

(a) structure and manage global wires in new deep-
submicron technologies [3–7]
(b) share wires, lowering their number and increasing their
utilisation [6, 7]
(c) can be energy efficient and reliable [4, 8]
(d) are scalable when compared to traditional buses [9].

Decoupling the computation from communication requires
that the services that IPs use to communicate are
well defined, and hide the implementation details of
the interconnect [1], Fig. 1a. NoCs help, because they

are traditionally designed using layered protocol stacks
[10], where each layer provides a well-defined
interface which decouples service usage from service
implementation [2, 5], Fig. 1b.

In particular, guaranteed services are essential because
they make the requirements on the NoC explicit and limit
the possible interactions of IPs with the communication
environment. IPs can also be designed independently
because their use of guaranteed services is not affected by
the interconnect or by other IPs. This is essential for a
compositional construction (design and programming) of
systems on chip (SoC). Moreover, failures are restricted to
the IP configuration phase (a service request is either
granted or denied by the NoC), which simplifies the IP
programming model [7]. We view the guaranteed services
to be offered by an interconnect as a requirement from the
applications, Fig. 1c.

The drawback of using guaranteed services is that
they require resource reservations for worst-case scenarios.
This is not acceptable in an SoC where cost constraints are
typically very tight, Fig. 1d. Therefore, we also provide
best-effort services to exploit the network capacity that is
left over, or reserved but unused. Guaranteed services are
then used for the critical (e.g. real-time) communication,
and best-effort services are used for noncritical
communication.

The combination of guaranteed and best-effort classes is
known from general computer network research [11], but
not for on-chip networks. As on-chip and off-chip networks
have different characteristics, the trade-offs in their design
are different. In this paper, we present the trade-offs between
hardware complexity and efficiency for networks on chip,
and motivate our choices.

We present a prototype router architecture that reflects
one particular set of design choices. It has an aggregate
bandwidth of 80 Gbit/s and its layout in a 0.13 micron
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technology occupies 0:26mm2. We list other feasible
variations that either increase performance or lower the
router cost.

In this paper, we first list a set of network-independent
communication services that are essential in chip design
(Section 2). Then, we show the trade-offs between
efficiency and cost that we make in our NoC. In Section
3, we present some general network-related issues that are
used in the Sections that follow. In Section 4, we zoom into
the internals of the key component of our NoC; a router
that efficiently provides both guaranteed and best-effort
services. In Section 5, we demonstrate the feasibility of
our router design through a prototype implementation in a
0.13mm technology.

2 Services

The NoC services that we consider essential for chip design
are [12]:

. data integrity, meaning that data is delivered uncorrupted

. lossless data delivery, which means no data is dropped in
the interconnect
. in-order data delivery, which specifies that the order in
which data is delivered is the same order in which it has
been sent
. throughput and latency services that offer time-related
bounds.

As motivated in Section 1, guaranteed services are essential
to simplify IP design and integration. With the current
technology we assume data integrity is solved at the data-
link layer. All the other services can be guaranteed or not on
request. In the following Section, we describe briefly how
these services are provided by our NoC, and in Section 4 we
describe how our router architecture enables an efficient
implementation of these services.

Guaranteed services require resource reservation for
worst-case scenarios, which can be expensive. For example,
guaranteeing throughput for a stream of data implies
reserving bandwidth for its peak throughput, even when
its average is much lower. As a consequence, when using
guarantees, resources are often underutilised.

Best-effort services do not reserve any resources, and
hence provide no guarantees. Best-effort services use
resources well because they are typically designed for
average-case scenarios instead of worst-case scenarios.
They are also easy and fast to use, as they require no
resource reservation. Their main disadvantage is their
unpredictability; one cannot rely on a given performance
(i.e. they do not offer guarantees). In the best case, if certain
boundary conditions are assumed, a statistical performance
can be derived.

An example of diverse service requirements is that of a
video processing IP; it will typically require a lossless, in-
order video stream with guaranteed throughput, but possibly
allows corrupted samples. Another example is cache
updates which require uncorrupted, lossless, low-latency
data transfer, but ordering and guaranteed throughput are
less important.

The requirements for guaranteed services and the
efficiency constraint (i.e. good resource utilisation) seem
conflicting. Our approach to a predictable and low-cost
interconnect is to integrate the guaranteed and best-effort
services in the same interconnect. Guaranteed services
would be used for critical traffic and best-effort services
used for noncritical traffic. In this way the best-effort
services can exploit the available resources left over by the
guaranteed services. This is illustrated in Fig. 2 and is
described in more detail in [13].

To meet the bandwidth requirements of a guaranteed
service, the network must be dimensioned worst-case for
that service, Fig. 2a. All bandwidth that is not used, i.e. the
white space in Fig. 2a, can be used for a best-effort service
in Fig 2b. The best-effort traffic is delivered in bounded time
when its volume is less than the white space in Fig. 2a.

For example a video processing IP requires a lossless,
in-order video stream with guaranteed throughput, but
possibly allows corrupted samples. Another example is
cache updates which require uncorrupted, lossless, low-
latency data transfer, but ordering and guaranteed through-
put are less important. In Section 4.3 we show how
integrated guaranteed and best-effort services efficiently
use common resources. In the remainder of this Section
we analyse the minimum level of abstraction at which
the communication services must be offered to hide the
network internals.

Traditionally, network services have been implemented
and offered using a layered protocol stack, typically aligned
to the ISO–OSI reference model [9], Fig. 1b. NoCs also
take this approach [2, 4, 5, 7], because the protocol stack

Fig. 1 Network services

a Hide the interconnect details and allow the construction of diverse
applications on top of them
b Are built using a layered approach
c Are driven by the application requirements
d Their efficiency relies on technology and network organisation

Fig. 2 Guaranteed services requires worst-case ðrRTÞ resource allocation (here: bandwidth) Best-effort service of (b) consumes the
unused bandwidth of (a), resulting in (c)
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concept structures and decomposes the service implemen-
tation, and aid the service positioning.

To achieve the decoupling of computation from com-
munication, the communication services must be offered at
least at the level of the transport layer in the OSI reference
model. It is the first layer that offers end-to-end services,
hiding the network details; see Figs. 1a and 1b [5].

The lowest three layers in the protocol stack, namely
physical, data-link, and network layers, are network
specific. Therefore, these services should not be visible
to the IPs when decoupling of computation from
communication is desired. However, these layers are
essential in implementing the services because constructing
guarantees without guarantees at the layer below is either
very expensive, or even impossible. For example, imple-
menting a lossless communication on top of a lossy service
requires acknowledgment, data retransmission and filtering
duplicated data. This leads to an increase in traffic, and
possibly larger buffer space requirements. Even worse,
providing guarantees for time-related services is impos-
sible if lower layers do not offer these guarantees. For
example, latency cannot be guaranteed if communication at
a lower layer is lossy. As a consequence, guarantees can
only be built on top of guarantees, Fig. 1c. Similarly, a
layer’s efficiency is based on efficient implementations of
the layers below it, Fig. 1d.

3 Networks on chip

General computer network research is a mature research
field [10] which has many issues in common with NoCs.
However, two significant differences between computer
networks and on-chip networks make the trade-offs in their
design very different [6]. First, routers of a NoC are more
resource-constrained than those in a computer network, in
particular in the control complexity and in the amount of
memory. Secondly, communication links of a NoC are
relatively shorter than those in computer networks, allowing
tight synchronisation between routers.

To place the work described in this paper in context see
Fig. 3. The services that are described in the previous
Section are provided by the network interfaces. It is these
services that are visible to the users (IP) of the network.

The scope of this paper is limited to the router network
and we identify three important issues in its design. These
are the switching mode, contention resolution and network
flow control. Equally important are end-to-end flow control
and congestion control, but these are handled by the

network interfaces and hence are out of the scope of this
paper. Moreover, we assume guaranteed data integrity at
the link level and retain it at the network layer and higher.

3.1 Switching mode

The switching mode of a network specifies how data
and control are related. We distinguish circuit switching
and packet switching. In circuit switching data and control
are separated. The control is provided to the network to
set up a connection. This results in a circuit over which
all subsequent data of the connection is transported. To
better share the potential bandwidth of the links one can
time-division multiplex circuits over the network. Circuit-
switched networks inherently offer time-related guaranteed
services after resources are reserved during the connection
setup.

In packet switching data is divided into packets and every
packet is composed of a control part, the header, and a data
part, the payload. Network routers inspect, and possibly
modify, the headers of incoming packets to switch the
packet to the appropriate output port. Since in packet
switching the packets are self-contained, there is no need for
a setup phase to allocate resources. Therefore, best-effort
services are naturally provided by packet switching.

3.2 Contention resolution

When a router attempts to send multiple data items over
the same link at the same time contention is said to occur.
As only one data item can be sent over a link at any point in
time, a selection among the contending data must be made;
this process is called contention resolution.

In circuit switching, contention resolution takes place at
set up at the granularity of connections, so that data sent
over different connections do not conflict. Thus, there is no
contention during data transport, and time-related guaran-
tees can be given.

In packet switching contention resolution takes place at
the granularity of individual packets. Because packet arrival
cannot be predicted contention cannot be avoided. It is
resolved dynamically by scheduling which data items
are sent in turn. This requires data storage in the router
(Section 4.2.1) and delays the data in an unpredictable
manner which complicates the provision of guarantees
(Section 4.1.1).

3.3 Network flow control

Network flow control, also called routing mode, addresses
the limited amount of buffering in routers and data
acceptance between routers. In circuit switching connec-
tions are set up. The data sent over these connections is
always accepted by the routers and hence no network flow
control is needed. In packet switching, data items must be
buffered at every router before they are sent on. Because
routers have a limited amount of buffering, they accept
data only when they have enough space to store the
incoming data.

There are three types of network flow control, namely
store-and-forward, virtual cut-through and wormhole rout-
ing. In store-and-forward routing, an incoming packet is
received and stored in its entirety before it is forwarded to
the next router. This requires storage for the complete
packet and implies a per-router latency of at least the time
required for the router to receive the packet.

In virtual cut-through routing, a packet is forwarded as
soon as the next router guarantees that the complete packet
will be accepted. When no guarantee is given, the router

Fig. 3 SoC composed of heterogeneous IP together with a NoC

NoC comprises interconnected routers (R) and network interfaces (NI) that
connect the IP to the routers
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must be able to store the whole packet. Thus, virtual
cut-through routing requires buffer space for a complete
packet, like store-and-forward routing, but allows lower-
latency communication.

In wormhole routing packets are split into so-called flits
(flow control digits). A flit is passed to the next router when
the flit can be accepted, even when there is not enough
buffer space for the complete packet. As soon as a flit of
a packet is sent over an output port, that output port
is reserved for flits of that packet only. When the first flit
of a packet is blocked, the trailing flits can therefore be
spread over multiple routers, blocking the intermediate
links. Wormhole routing requires the least buffering (buffer
flits instead of packets) and also allows low-latency
communication. However, it is more sensitive to deadlock
and generally results in lower link utilisation than virtual
cut-through routing.

To allow low latency we consider both virtual cut-
through and wormhole routing, which are both feasible in
terms of buffer area, as shown in Section 5.

4 Combined GT–BE router

Section 2 defines our requirements for NoCs in terms
of services that are to be offered, in particular, both
guaranteed and best-effort services. Using the general
network issues of the previous Section we show in
the following two Subsections that the guaranteed and
best-effort services can conceptually be described by
two independent router architectures. The combination
of these two router architectures is efficient and
has a flexible programming model, as described in Section
4.3. Section 5 then shows a prototype implementation.

4.1 GT router architecture

Our guaranteed-throughput (GT) router guarantees uncor-
rupted, lossless and ordered data transfer, and both latency
and throughput over a finite time interval. As mentioned
earlier, data integrity is solved at the data-link layer; we do
not address it further. The GT router is lossless because we
use a variant of circuit switching, described in the following
Section. Data is transported in fixed-size blocks. As only
one block is stored per input in the GT router, data items
remain ordered per connection. We now turn to the more
challenging time-related guarantees, namely throughput
and latency.

4.1.1 Time-related guarantees: Latency is
defined as the duration as a packet is transported over the
network. Guaranteeing latency, therefore, means that a
worst-case upper bound must be given for this time. We
define throughput for a given producer–consumer pair as
the amount of data transported by the network over a finite,
fixed time interval. Guaranteeing throughput means giving a
lower bound.

We observe that guaranteeing latency even in a lossless
router is difficult because contention requires scheduling
and hence cause delays. Guaranteeing throughput is less
problematic. Rate-based packet switching (for an overview
see [14]) offers guaranteed throughput over a finite period,
and hence a latency bound. This bound is very high,
however, and the cost of buffering is also high. Deadline-
based packet switching [15] offers preferential treatment for
packets close to their deadline. This allows differential
latency guarantees (under certain admissible traffic assump-
tions), but also at high buffer costs.

Circuit switching solves the contention at setup, so
naturally providing guaranteed latency and throughput.

Circuits can be pipelined to improve throughput [16], at the
cost of additional buffering and latency. Time division
multiplexing connections over pipelined circuits additio-
nally offers flexibility in bandwidth allocation. This requires
a logical notion of router synchronicity, which is possible
because a NoC is better controllable than a general network.
We explain this variation in more detail in the following
Subsection. The associated programming model is
described in Section 4.3.2.

4.1.2 Contention-free routing: A router uses a
slot table to

(a) avoid contention on a link
(b) divide up bandwidth per link between connections
(c) switch data to the correct output.

Every slot table T has S time slots (rows) and N router
outputs (columns). There is a logical notion of synchroni-
city; all routers in the network are in the same fixed-duration
slot. In a slot s at most one block of data can be read/written
per input/output port. In the next slot, ðs þ 1Þ%S; the read
blocks are written to their appropriate output ports. Blocks
thus propagate in a store-and-forward fashion. However,
blocks are small as will be explained in Section 4.3.1. The
latency a block incurs per router is equal to the duration of a
slot, and bandwidth is guaranteed in multiples of block size
per S slots.

The entries of the slot table map outputs to inputs for
every slot; Tðs; oÞ ¼ i; meaning that blocks from input i
(if present) are passed to output o at times s þ kS; k 2 N: An
entry is empty when there is no reservation for that output in
that slot. No contention can arise in table T because there is
at most one input per output for each slot. Sending a single
input to multiple outputs (multicast) is possible.

Figure 4 illustrates the operation of contention-free
routing. It shows a snapshot of a router network with three
routers R1, R2 and R3 at slot s ¼ 2; indicated by the arrows
pointing to the third slot in the table (recall that slots are
numbered from 0). The size of the slot tables is S ¼ 4; and
only the relevant columns are depicted.

Three connections, a, b and c, are shown with the gray
arrows; the black circles represents packets on the
connection with the corresponding letter. Packets a and c
were switched from the input of the network to their output
links in slot 1. In slot 2, shown in Fig. 4, packet b is switched
from input i1 to output o2 in router R1, as indicated by the
slot table T1ð2; o2Þ ¼ i1: Packets a and c are switched
similarly by the network.

The slots reserved for a block along its path from source
to destination increase by one (modulo S ). If slot s is
reserved in a router, slot ðs þ 1Þ%S must be reserved in the
next router on the path. The assignment of slots to
connections in the network is an optimisation problem,

Fig. 4 Contention-free routing
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and is described in Section 4.3.3. Section 4.3.2 explains how
slots are reserved in our network.

4.2 BE router architecture

Best-effort traffic can have a better average performance
than offered by guaranteed services. This depends on
boundary conditions, such as network load, that are
unpredictable. Best-effort services thus fulfil our efficiency
requirement, but without offering time-related guarantees.
This Section describes an architecture for a best-effort
service with uncorrupted, lossless, in-order data transport.

The BE router cost and performance are largely
dependent on the contention resolution scheme of the
router. The contention resolution scheme has two com-
ponents; buffering and scheduling. The main trade-off in
Section 4.2.1 is between total buffer size, buffering strategy
and link utilisation. Without taking global network require-
ments into account, no decisions will be made, rather we
present a router that allows different instances to trade-off
hardware complexity for link utilisation at instantiation
time. In Section 4.2.2 the trade-off is between link
utilisation and schedule complexity and we select an
efficient scheduling algorithm that is easily specialised to
the different instances.

4.2.1 Buffering strategy: The buffering strategy
determines the location of buffers inside the router. We
distinguish output queuing and input queuing. In the
following, N is the number of inputs, equal to the number
of outputs, of our router. In output queuing N2 queues are
located at the outputs of the router as in Fig. 5a. From the
inputs to the outputs there is a fully connected bipartite
interconnect to allow every input to write to the correspond-
ing output simultaneously. Output queuing has the best
performance among the buffering strategies. However, the
interconnect will make the router wire dominated and
expensive already for small values of N.

In input queuing the queues are at the input of the router.
A scheduler determines at which times which queues are
connected to which output ports, such that no contention
occurs. The scheduler derives contention-free connections,
a switch matrix (crossbar switch) can be used to implement
the connections. In traditional input queuing, or input
queuing for short, there is a single queue per input, resulting
in a buffer cost of N queues per router. However, due to the
so-called head-of-line blocking, for large N, router utili-
sation saturates at 59% [16]. Therefore, input queuing
results in weak utilisation of the links.

Another version of input queuing is virtual output
queuing (VOQ) [17]. VOQ combines the advantages of

input queuing and output queuing. It has a switch as in input
queuing and has link utilisation close to that of output
queuing; 100% link utilisation can still be achieved, when
N is large [18]. As for output queuing, there are N2 queues.
For every input i there are N queues Q(i, o), one for each
output o, Fig. 5b. Typically the set of N queues at each input
port of a VOQ router are mapped onto a single RAM.
However, for NoCs we strive at a small router and,
therefore, we require the RAMs to have few addresses.
But such RAMs have a large overhead. Therefore, we use
dedicated fifos developed in-house, which have almost no
overhead, see Section 5.

The decision to select traditional input queuing or VOQ
depends on system-level aspects like topology, network
utilisation and global wiring cost, and is outside the scope of
this paper. In Section 5 we show a prototype of an input-
queued router with dedicated hardware fifos and explain that
VOQ is a valid option with minor additional cost.

4.2.2 Matrix scheduling: The switch matrix, pre-
sent in input-queued architectures (see Fig. 5), is controlled
by a contention resolution algorithm, also known as matrix
scheduling, that computes which inputs and outputs must
be connected.

The matrix scheduling problem can be modelled as a
bipartite graph matching problem. Every input port i is
modelled by a node ui and every output port o by a node vo.
There is an edge between ui and vo if and only if queue
Qði; oÞ is nonempty. A match is a subset of these edges
such that every node is incident to, at most, one edge.
For example, Fig. 6c is a match of Fig. 6a.

Matching can be done optimally, but because of time
complexity and fairness, a nonoptimal algorithm is
preferred [19].

Our matching algorithm is iterative and one iteration has
three stages, illustrated by an example in Fig. 6 for N ¼ 4:

Fig. 5 Schematics of two router architectures

a Output queued architecture
b Virtual-output queued architecture

Fig. 6 Three stages of a schedule iteration

a Request
b Grant
c Accept
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In the first stage, Fig. 6a, every nonempty queue Q(i, o)
requests access to output port o from input port i. In the
second stage, Fig. 6b, every output port o grants one
request, solving link contention at the output ports. In the
third stage, Fig. 6c, every input port i accepts one grant, to
resolve memory contention at the input port. A next
iteration then starts with the matching found so far. This
scheme is used in various scheduling algorithms, including
parallel iterative matching, round robin matching and SLIP
[19], and applies to both input queuing and VOQ. For input
queuing, however, stage (c) in Fig. 6 is omitted since no
contention on input ports can occur. To keep schedule
latency as low as possible we use one iteration only.

4.3 Combining the GT and BE routers

The GT and BE router architectures are combined to share
resources, in particular the links and the switch. Moreover,
best-effort traffic enables a packet-based programming
model for the guaranteed traffic, as shown in Section 4.3.2.

The principal constraint for a combined router architec-
ture is that guaranteed services are never affected by
best-effort services. Figure 7a shows that, conceptually, the
combined router contains both router architectures (fat
lines represent data, thin lines represent control). Incoming
data is switched to either the GT or the BE router. The GT
traffic, the traffic that is served by the GT router, has
the higher priority to maintain guarantees. This is ensured
by the arbitration unit, which therefore affects the best-
effort scheduling. Furthermore, best-effort packets can
program the guaranteed router, as shown by the arrow-
labelled program. Thin lines going from the right to the left
indicate network flow control, which is only required for
best-effort packets because guaranteed blocks never
encounter contention.

Figure 7b shows that the data path, consisting of buffers
and switch matrix, is shared and that the control paths of the
BE and GT routers are separate, yet interrelated. Moreover,
the arbitration unit of Fig. 7a has been absorbed by the
BE router. The following Subsection shows how this can
be done.

4.3.1 Arbitration and flit size: When combining
GT and BE traffic in a single network the impact on the
network flow control scheme must be taken into account.
Recall from Section 3.3 that a BE flit is the smallest unit at
which flow control is performed. In other words, the BE
scheduling can only react to GT blocks at flit granularity.
To avoid alignment problems, the block size (B words)
is a multiple of the flit size (F words, B ¼ ‘F) with
‘ being constant. We prefer a small ‘ to decrease the

store-and-forward delay and reduce the buffer size for
guaranteed traffic, and a small F for fine-grained switching
and better statistical multiplexing.

The router architecture contains a data path and a control
path, Fig. 7b. The data path maximises throughput for high
link utilisation, and the control path maximises the rate of
scheduling and switching. They can be designed and
optimised independently. Given any combination of their
operating frequencies, the router has both maximum
throughput and switching rate by using the appropriate flit
size Fopt: For F > Fopt; the control path is ready while data
is still being transported, lowering the switching rate. For
F < Fopt; flits have been transported before the control path
finishes, wasting bandwidth. This optimal flit size is defined
as fdata=fctrl; where fdata is the clock frequency of the data
path and fctrl is the scheduling frequency. Long wires can be
pipelined, but due to the scheduler’s dependency on flow
control this results in a lower scheduling frequency, and thus
larger flits.

The combination of GT and BE traffic must be addressed
by the matrix scheduling. It does not use priorities, as
suggested in [19], because this significantly increases the
cost of an iteration. Instead, for every block from input i
to output o, we remove all edges incident from i and incident
to o before doing the matrix scheduling. The advantage of
this scheme is that the best-effort scheduling adapts to the
presence of GT data. The overall scheduling thus effectively
adds a single stage to the first iteration of the best-effort
scheduling algorithm and, therefore, is a low-cost and
effective arbitration scheme.

4.3.2 Programming model: In this Section we
show how GT connections are set up and torn down by
means of special BE packets, called system packets, to avoid
introducing an additional communication infrastructure
only to program the network. To ensure scalability,
programming must not require a global view or centralised
resources. Section 4.1.2 explains why our contention-free
routing uses slot tables; we now see that they are distributed
over routers for scalability.

The programming functionality of the router is provided
by the reconfiguration unit. Because multiple system
packets may arrive simultaneously for the reconfiguration
unit (i.e. contention), they must be scheduled. This is
achieved by viewing the reconfiguration unit as just another
router, complete with flow control, which is placed in
between the last output and input port of the router, see
Fig. 8. In this way contention on the reconfiguration unit is
moved to contention on the output port, which is resolved by
the matrix scheduling algorithm described before. After

Fig. 7 Two views of the combined GT–BE router

a Conceptual view
b Hardware view
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programming, the system packets re-enter the router and are
routed for the next router for program.

The remainder of this Section explains how system
packets program the network. Initially the slot table of every
router is empty. There are three system packets; SetUp,
TearDown and AckSetUp. They are used to program the slot
table in every router on their path. The SetUp packet creates
a connection from a source to a destination, and travels in
the direction of the data (‘downstream’). When a SetUp
packet arrives at the destination, it is successful and is
acknowledged by returning an AckSetUp. TearDown
packets destroy (partial) connections and can travel in
either direction. SetUp packets contain the source of the
data, the destination or a path to it and a slot number. Every
router along the path of the SetUp packet checks if the
output to the next router in the path is free in the slot
indicated by the packet. If it is free, the output is reserved in
that slot and the SetUp packet is forwarded with an
incremented (modulo S) slot. Otherwise, the SetUp packet is
discarded and a TearDown packet returns along the same
path. Thus, every path must be reversible; this is the only
assumption we make about the network topology. The
upstream TearDown packet frees the slot and continues with
a decremented slot. Downstream TearDown packets work

similarly and remove existing connections. A connection is
successfully opened when an AckSetUp is received, else a
TearDown is received. With minor additions, system
packets can also be used to program multicast connections.

The programming of the network is illustrated in Fig. 9,
where we attempt to set up three connections, shown as light
gray arrows. The Figure shows four snapshots of the same
network at successive times. Two SetUp packets a and b
enter the network in Fig. 9a. The number alongside the
packet is the slot that is to be programmed in the next router.
This is reflected in the slot tables in Fig. 9b, where only
the column for output port out3 is shown. A dark line
shows the progress of a connection setup over time. Every
snapshot the SetUp packets are routed to their next link and
the slot to be programmed is incremented by one. In Fig. 9b,
packet a cannot reserve slot 2 for output port out3 of the
bottom router because it has been reserved for connection c,
and the setup of connection a fails. The packet a is changed
from SetUp to TearDown and routed back along its path to
remove the reservations made so far, Fig. 9c. Note that the
slot of packet a is decremented by one at every router.
In Fig. 9d, packet a has removed the reservation of slot 1
that it made in Fig. 9b. For clarity AckSetUp packets of
connections b and c are not shown in the Figure.

The programming model is pipelined and concurrent
(multiple system packets can be active in the network
simultaneously, also from the same source) and distributed
(active in multiple routers). Given the distributed nature of
the programming model, ensuring consistency and deter-
minism is crucial. The outcome of programming may
depend on the execution order of system packets, but is
always consistent. The next Section shows how to use this
programming model.

4.3.3 Compile- and run-time slot alloca-
tion: This Section explains how to determine the slots
specified in SetUp packets. A slot allocation for a single
connection requires that, at every router along the path, the
required output is free (not reserved by another connection)
in the appropriate slot. Computing an optimal slot allocation
for all connections requires a global network view and may
be expensive. To reduce computational cost, heuristics can
be used, possibly leading to nonoptimal solutions.

SetUp packets of different connections do not fail if
connections are set up with conflict-free slots or paths.

Fig. 8 Architecture view of the combined GT–BE router

Fig. 9 Setup of connections
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All execution orders of SetUp packets then give the same
result, so that compile-time slot allocations can be recreated
deterministically at run time.

Optimal run-time slot allocation is hard without a global
(and central) slot table view, which is nonscalable and slows
down programming. Distributed run-time slot allocation is
scalable, but lacks a global view and may, therefore, be
suboptimal. Moreover, SetUp packets may interfere,
making programming more involved and perhaps
adaptive (in the sense of depending on the programming
actions of other NoC users). However, dynamic connection
management at high rates will require distributed slot
allocation. In a simple distributed greedy algorithm, all
sources repeatedly generate random slot numbers for each
setup until their connection succeeds. We conclude that
our programming model allows both compile-time and
run-time slot allocation. Computational complexity,
deterministic results and scalability can be balanced
according to system requirements.

5 Current results and future work

The previous Section shows a prototype combined GT–BE
architecture. We have synthesised an input-queued router
using wormhole routing with arity 5, a queue depth of 8 flits
of 3 words of 32 bits and 256 slots in a 0.13mm technology.
The layout is shown in Fig. 10, where the router and
reconfiguration unit are shown separately (cf. Fig. 8). It has
an aggregate bandwidth of 5 � 500MHz � 32 bit ¼ 80
Gbit=s: The area of the router is 0:26mm2.

The area of 0:26mm2 depends on the use of dedicated
hardware fifos, labelled GQ and BQ in Fig. 10. The router
would have been at least three times larger with register-
based or RAM-based fifos. The RAMs required for input
queuing and VOQ in an on-chip router have few addresses,
so that their overhead makes them as large as (area-
inefficient) register files. Decreasing the queue depths
reduces the buffering area (with registers at least), but also
degrades the router performance.

Dedicated hardware fifos enable both input and virtual
output queuing strategies using wormhole routing because
of the reasonable buffering cost. For example, VOQ with
two-flit deep fifos is only moderately larger than the input
queuing with fifos of depth 8 of Fig. 10. Virtual cut-through
routing in combination with input queuing is also affordable
now, because for packets of at most 8 flits, it has the same
cost as the prototype.

The slot table (labelled STU in Fig. 10) occupies a
significant part of the router, for two reasons. Logically the
slot table is very large (256 slots). It is not worthwhile to
reduce the number of slots because the RAM is very area-
inefficient. We are investigating more advanced slot table
schemes and new memory architectures to reduce the size
and area of the slot table. The cost of offering time-related
guaranteed services is then lower.

We separately synthesised the data and control paths
(cf. Fig. 7) with arities in the range 3–13 to verify their
speeds. With increasing arity, the speed of the data path
reduces little. The speed of the control path decreases by a
factor of two, corresponding to the complexity increase of
the scheduling. For each arity, we balance the performance
of the data and control paths by adjusting the flit size
as needed, as shown in Section 4.3.1. The data and
scheduling frequencies of the prototype router are
500 MHz and 166 MHz, respectively, with a flit size of 3
(Fopt ¼ 500=166; cf. Section 4.3.1).

Our results show that the cost and performance of the
combined GT–BE router can make it the basis of a router-
based network on chip. It further shows that dedicated
hardware fifos significantly reduce the buffering area and so
enable both input queuing and VOQ, with wormhole and
virtual cut-through routing.

6 Conclusions

In this paper we show that guaranteed services are essential
to provide predictable interconnects that enable compo-
sitional system design and integration. However, guarantees
typically utilise resources inefficiently. Best-effort services
overcome this problem, but provide no guarantees. So,
integrating guaranteed and best-effort services allows
efficient resource utilisation, while still providing guaran-
tees for critical traffic.

Time-related guarantees, such as throughput and latency,
can only be constructed on a NoC that intrinsically has these
properties. We therefore define a router-based NoC
architecture that combines guaranteed and best-effort
services. The router architecture has conceptually two
parts; the guaranteed-throughput (GT) and best-effort (BE)
routers. Both offer data integrity, lossless data delivery and
in-order data delivery. Additionally, the GT router offers
guaranteed throughput and latency services using pipelined
circuit switching with time division multiplexing. The
BE router uses packet switching, virtual cut-through or
wormhole routing, and input queuing or virtual-output
queuing.

We combine the GT and BE router architectures
efficiently by sharing router resources. The guarantees are
never affected by the BE traffic, and links are efficiently
utilised because BE traffic uses all bandwidth left over by
GT traffic. Connections are programmed using BE packets.
The programming model is robust, concurrent and dis-
tributed. It enables run-time and compile-time, determinis-
tic and adaptive connection management.

For all our architecture choices, we show the trade-
offs between hardware complexity and efficiency. Our
choices are motivated by a prototype router which has an area
of 0:26mm2 in a 0.13 micron technology and offers
80 Gbit/s aggregate throughput. We use dedicated hardware
fifos to significantly reduce the area of the data queues.
With RAM-based or register-based queues, the router area
would have been at least three times larger.

Dedicated hardware fifos enable

(a) input queuing using both wormhole and virtual cut-
through routing,
(b) virtual-output queuing using wormhole routing.

The buffer costs are too high, however, for virtual-output
queuing with virtual cut-through routing.

The cost of offering time-related guaranteed services is
still high for our router. We are investigating how to reduce
this cost.

Fig. 10 Layout

a Combined GT–BE router
b Reconfiguration unit (RCU)
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An attractive feature of our router architecture is the
ability to combine separately optimised data and control
paths by adjusting the flit size.

In conclusion, we describe and motivate a choice of
architectures for routers, which are an essential component
in a NoC. They fulfil our NoC requirements by providing
guaranteed services and satisfy the efficiency constraint by
offering best-effort services.
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Rădulescu, A., Rijpkema, E., Waterlander, E., and Wielage, P.:
‘Guaranteeing the quality of services in networks on chip’ in
Jantsch, A., and Tenhunen, H. (Eds.): ‘Networks on chip’ (Kluwer,
Dordrecht, 2003), pp. 61–82

14 Zhang, H.: ‘Service disciplines for guaranteed performance service
in packet-switching networks’, Proc. IEEE, 1995, 83, (10),
pp. 1374–1396

15 Rexford, J.: ‘Tailoring router architectures to performance requirements
in cut-through networks’. PhD thesis, University of Michigan,
Department of Computer Science and Engineering, 1999

16 DeHon, A.: ‘Robust, high-speed network design for large-scale
multiprocessing’. A.I. Technical report 1445, Massachusetts Institute
of Technology, Artificial Intelligence Laboratory, September 1993

17 Karol, M.J., Hluchyj, M.G., and Morgan, S.P.: ‘Input versus output
queueing on a space-division packet switch’, IEEE Trans. Commun.,
1987, 35, (12), pp. 1347–1356

18 Ali, M.K.M., and Youssefi, M.: ‘The performance analysis of an input
access scheme in a high-speed packet switch’. Proc. Joint Conf. IEEE
Computer and Communications Societies. Networking in the 90s.,
(INFOCOM), Bal Harbour, FL, April 1991, vol. 2, pp. 454–461

19 Mckeown, W.N.: ‘Scheduling algorithms for input-queued cell
switches’. PhD thesis, University of California, Berkeley, CA, USA,
1995

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003302




