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ABSTRACT

Recent successes in training large, deep neural networks have prompted active
investigation into the representations learned on their intermediate layers. Such
research is difficult because it requires making sense of non-linear computations
performed by millions of learned parameters, but valuable because it increases
our ability to understand current models and training algorithms and thus create
improved versions of them. In this paper we investigate the extent to which neural
networks exhibit what we call convergent learning, which is when the representa-
tions learned by multiple nets converge to a set of features which are either indi-
vidually similar between networks or where subsets of features span similar low-
dimensional spaces. We propose a specific method of probing representations:
training multiple networks and then comparing and contrasting their individual,
learned representations at the level of neurons or groups of neurons. We begin
research into this question by introducing three techniques to approximately align
different neural networks on a feature or subspace level: a bipartite matching ap-
proach that makes one-to-one assignments between neurons, a sparse prediction
and clustering approach that finds one-to-many mappings, and a spectral cluster-
ing approach that finds many-to-many mappings. This initial investigation reveals
a few interesting, previously unknown properties of neural networks, and we argue
that future research into the question of convergent learning will yield many more.
The insights described here include (1) that some features are learned reliably in
multiple networks, yet other features are not consistently learned; (2) that units
learn to span low-dimensional subspaces and, while these subspaces are common
to multiple networks, the specific basis vectors learned are not; (3) that the repre-
sentation codes are a mix between a local (single unit) code and slightly, but not
fully, distributed codes across multiple units; (4) that the average activation val-
ues of neurons vary considerably within a network, yet the mean activation values
across different networks converge to an almost identical distribution. 1

1 INTRODUCTION

Many recent studies have focused on understanding deep neural networks from both a theoreti-
cal perspective (Arora et al., 2014; Neyshabur & Panigrahy, 2013; Montavon et al., 2011; Paul
& Venkatasubramanian, 2014; Goodfellow et al., 2014) and from an empirical perspective (Eigen
et al., 2013; Szegedy et al., 2013; Simonyan et al., 2013; Zeiler & Fergus, 2014; Nguyen et al.,
2014; Yosinski et al., 2014; Mahendran & Vedaldi, 2014; Yosinski et al., 2015). In this paper we
continue this trajectory toward attaining a deeper understanding of neural net training by proposing
a new approach. We begin by noting that modern deep neural networks (DNNs) exhibit an interest-
ing phenomenon: networks trained starting at different random initializations frequently converge
to solutions with similar performance (see Dauphin et al. (2014) and Section 2 below). Such similar
performance by different networks raises the question of to what extent the learned internal repre-
sentations differ: Do the networks learn radically different sets of features that happen to perform
∗Authors contributed equally.
1A preliminary version of this work will be presented at the NIPS 2015 Feature Extraction workshop.
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similarly, or do they exhibit convergent learning, meaning that their learned feature representations
are largely the same? This paper makes a first attempt at asking and answering these questions. Any
improved understanding of what neural networks learn should improve our ability to design better
architectures, learning algorithms, and hyperparameters, ultimately enabling more capable models.
Specifically, we investigate the similarities and differences between the representations learned by
neural networks with the same architecture trained from different random initializations. We employ
an architecture derived from AlexNet (Krizhevsky et al., 2012) and train multiple networks on the
ImageNet dataset (Deng et al., 2009) (details in Section 2). We then compare the representations
learned across different networks. We demonstrate the effectiveness of this method by both visually
and quantitatively showing that the features learned by some neuron clusters in one network can be
quite similar to those learned by neuron clusters in an independently trained neural network. Our
specific contributions are asking and shedding light on the following questions:

1. By defining a measure of similarity between units2 in different neural networks, can we
come up with a permutation for the units of one network to bring it into a one-to-one
alignment with the units of another network trained on the same task? Is this matching
or alignment close, because features learned by one network are learned nearly identically
somewhere on the same layer of the second network, or is the approach ill-fated, because
the representations of each network are unique? (Answer: a core representation is shared,
but some rare features are learned in one network but not another; see Section 3).

2. Are the above one-to-one alignment results robust with respect to different measures of
neuron similarity? (Answer: yes, under both linear correlation and estimated mutual infor-
mation metrics; see Section 3.2).

3. To the extent that an accurate one-to-one neuron alignment is not possible, is it simply
because one network’s representation space is a rotated version3 of another’s? If so, can
we find and characterize these rotations? (Answers: by learning a sparse weight LASSO
model to predict one representation from only a few units of the other, we can see that the
transform from one space to the other can be possibly decoupled into transforms between
small subspaces; see Section 4).

4. Can we further cluster groups of neurons from one network with a similar group from
another network? (Answer: yes. To approximately match clusters, we adopt a spectral
clustering algorithm that enables many-to-many mappings to be found between networks.
See Section S.3).

5. For two neurons detecting similar patterns, are the activation statistics similar as well?
(Answer: mostly, but with some differences; see Section S.4).

2 EXPERIMENTAL SETUP

All networks in this study follow the basic architecture laid out by Krizhevsky et al. (2012), with
parameters learned in five convolutional layers (conv1 – conv5) followed by three fully connected
layers (fc6 – fc8). The structure is modified slightly in two ways. First, Krizhevsky et al. (2012)
employed limited connectivity between certain pairs of layers to enable splitting the model across
two GPUs.4 Here we remove this artificial group structure and allow all channels on each layer to
connect to all channels on the preceding layer, as we wish to study only the group structure, if any,
that arises naturally, not that which is created by architectural choices. Second, we place the local
response normalization layers after the pooling layers following the defaults released with the Caffe
framework, which does not significantly impact performance (Jia et al., 2014). Networks are trained
using Caffe on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 dataset
(Deng et al., 2009).

We trained four networks in the above manner using four different random initializations. We refer
to these as Net1, Net2, Net3, and Net4. The four networks perform very similarly on the validation
set, achieving top-1 accuracies of 58.65%, 58.73%, 58.79%, and 58.84%, which are similar to the
top-1 performance of 59.3% reported in the original study (Krizhevsky et al., 2012).

2Note that we use the words “filters”, “channels”, “neurons”, and “units” interchangeably to mean channels
for a convolutional layer or individual units in a fully connected layer.

3Or, more generally, a space that is an affine transformation of the first network’s representation space.
4In Krizhevsky et al. (2012) the conv2, conv4, and conv5 layers were only connected to half of the preceding

layer’s channels.
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Figure 1: Correlation matrices for the conv1 layer, displayed as images with minimum value at black
and maximum at white. (a,b) Within-net correlation matrices for Net1 and Net2, respectively. (c)
Between-net correlation for Net1 vs. Net2. (d) Between-net correlation for Net1 vs. a version of
Net2 that has been permuted to approximate Net1’s feature order. The partially white diagonal of
this final matrix shows the extent to which the alignment is successful; see Figure 3 for a plot of the
values along this diagonal and further discussion.

We then aggregate certain statistics of the activations within the networks. Given a net-
work Netn trained in this manner, the scalar random variable X

(n)
l,i denotes the series of ac-

tivation values produced over the entire ILSVRC validation dataset by unit i on layer l ∈
{conv1, conv2, conv3, conv4, conv5, fc6, fc7}.5 We collect the following statistics by aggregating
over the validation set (and in the case of convolutional layers also over spatial positions):

Mean: µ
(n)
l,i = E[X(n)

l,i ]

Standard deviation: σ
(n)
l,i =

√
(E[(X(n)

l,i − µ
(n)
l,i )

2])

Within-net correlation: c
(n)
l,i,j = E[(X(n)

l,i − µ
(n)
l,i )(X

(n)
l,j − µ

(n)
l,j )]/σ

(n)
l,i σ

(n)
l,j

Between-net correlation: c
(n,m)
l,i,j = E[(X(n)

l,i − µ
(n)
l,i )(X

(m)
l,j − µ

(m)
l,j )]/σ

(n)
l,i σ

(m)
l,j

Intuitively, we compute the mean and standard deviation of the activation of each unit in the network
over the validation set. For convolutional layers, we compute the mean and standard deviation of
each channel. The mean and standard deviation for a given network and layer is a vector with length
equal to the number of channels (for convolutional layers) or units (for fully connected layers).6
The within-net correlation values for each layer can be considered as a symmetric square matrix
with side length equal to the number of units in that layer (e.g. a 96 × 96 matrix for conv1 as in
Figure 1a,b). For a pair of networks, the between-net correlation values also form a square matrix,
which in this case is not symmetric (Figure 1c,d).

We use these correlation values as a way of measuring how related the activations of one unit are
to another unit, either within the network or between networks. We use correlation to measure
similarity because it is independent of the scale of the activations of units. Within-net correlation
quantifies the similarity between two neurons in the same network; whereas the between-net cor-
relation matrix quantifies the similarity of two neurons from different neural networks. Note that
the units compared are always on the same layer on the network; we do not compare units between
different layers. In the Supplementary Information (see Figure 8), we plot the activation values for
several example high correlation and low correlation pairs of units from conv1 and conv2 layers;
the simplicity of the distribution of values suggests that the correlation measurement is an adequate
indicator of the similarity between two neurons. To further confirm this suspicion, we also tested

5 For the fully connected layers, the random variable X
(n)
l,i has one specific value for each input image; for

the convolutional layers, the value of X(n)
l,i takes on different values at each spatial position. In other words, to

sample an X
(n)
l,i for an FC layer, we pick a random image from the validation set; to sample X

(n)
l,i for a conv

layer, we sample a random image and a random position within the conv layer.
6 For reference, the number of channels for conv1 to fc8 is given by: S =

{96, 256, 384, 384, 256, 4096, 4096, 1000}. The corresponding size of the correlation matrix in each
layer is: {s2 | ∀s ∈ S}. Furthermore, the spatial extents of each channel in each convolutional layer is given
by: {conv1 : 55× 55, conv2 : 27× 27, conv3 : 13× 13, conv4 : 13× 13, conv5 : 13× 13}
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with a full estimate of the mutual information between units and found it to yield similar results to
correlation (see Section 3.2).

3 IS THERE A ONE-TO-ONE ALIGNMENT BETWEEN FEATURES LEARNED
BY DIFFERENT NEURAL NETWORKS?

We would like to investigate the similarities and differences between multiple training runs of same
network architecture. Due to symmetries in the architecture and weight initialization procedures,
for any given parameter vector that is found, one could create many equivalent solutions simply by
permuting the unit orders within a layer (and permuting the outgoing weights accordingly). Thus, as
a first step toward analyzing the similarities and differences between different networks, we ask the
following question: if we allow ourselves to permute the units of one network, to what extent can
we bring it into alignment with another? To do so requires finding equivalent or nearly-equivalent
units across networks, and for this task we adopt the magnitude independent measures of correlation
and mutual information. We primarily give results with the simpler, computationally faster correla-
tion measure (Section 3.1), but then confirm the mutual information measure provides qualitatively
similar results (Section 3.2).

3.1 ALIGNMENT VIA CORRELATION

As discussed in Section 2, we compute within-net and between-net unit correlations. Figure 1
shows the within-net correlation values computed between units on a network and other units on the
same network (panels a,b) as well as the between-net correlations between two different networks
(panel c). We find matching units between a pair of networks — here Net1 and Net2 — in two ways.
In the first approach, for each unit in Net1, we find the unit in Net2 with maximum correlation to
it, which is the max along each row of Figure 1c. This type of assignment is known as a bipartite
semi-matching in graph theory (Lawler, 1976), and we adopt the same nomenclature here. This
procedure can result in multiple units of Net1 being paired with the same unit in Net2. Figure 2
shows the eight highest correlation matched features and eight lowest correlation matched features
using the semi-matching approach (corresponding to the leftmost eight and rightmost eight points
in Figure 3). To visualize the functionality each unit, we plot the image patch from the validation
set that causes the highest activation for that unit. For all the layers shown, the most correlated
filters (on the left) reveal that there are nearly perfect counterparts in each network, whereas the
low-correlation filters (on the right) reveal that there are many features learned by one network that
are unique and thus have no corollary in the other network.

An alternative approach is to find the one-to-one assignment between units in Net1 and Net2 without
replacement, such that every unit in each network is paired with a unique unit in the other network.
This more common approach is known as bipartite matching.7 A matching that maximizes the
sum of the chosen correlation values may be found efficiently via the Hopcroft-Karp algorithm
(Hopcroft & Karp, 1973) after turning the between-net correlation matrix into a weighted bipartite
graph. Figure 1c shows an example between-net correlation matrix; the max weighted matching
can be thought of as a path through the matrix such that each row and each column are selected
exactly once, and the sum of elements along the path is maximized. Once such a path is found,
we can permute the units of Net2 to bring it into the best possible alignment with Net1, so that
the first channel of Net2 approximately matches (has high correlation with) the first channel of
Net1, the second channels of each also approximately match, and so on. The correlation matrix of
Net1 with the permuted version of Net2 is shown in Figure 1d. Whereas the diagonal of the self
correlation matrices are exactly one, the diagonal of the permuted between-net correlation matrix
contains values that are generally less than one. Note that the diagonal of the permuted between-net
correlation matrix is bright (close to white) in many places, which shows that for many units in Net1
it is possible to find a unique, highly correlated unit in Net2.

Figure 3 shows a comparison of assignments produced by the semi-matching and matching methods
for the conv1 layer (Figure 10 shows results for other layers). Insights into the differing represen-
tations learned can be gained from both assignment methods. The first conclusion is that for most
units, particularly those with the higher semi-matching and matching correlations (Figure 3, left),
the semi-matching and matching assignments coincide, revealing that for many units a one-to-one

7Note that the semi-matching is “row-wise greedy” and will always have equal or better sum of correlation
than the matching, which maximizes the same objective but must also satisfy global constraints.
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Figure 2: With assignments chosen by semi-matching, the eight best (highest correlation, left) and
eight worst (lowest correlation, right) matched features between Net1 and Net2 for the conv1 –
conv3 layers. For all layers visualized, (1) the most correlated filters are near perfect matches,
showing that many similar features are learned by independently trained neural networks, and (2)
the least correlated features show that many features are learned by one network and are not learned
by the other network, at least not by a single neuron in the other network. The results for the conv4
and conv5 layers can be found in the Supplementary Material (see Figure 9).

assignment is possible. Both methods reveal that the average correlation for one-to-one alignments
varies from layer to layer (Figure 4), with the highest matches in the conv1 and conv5 layers, but
worse matches in between. This pattern implies that the path from (perfectly matchable) three-
channel pixel inputs and a relatively matchable conv1 representation to the relatively matchable
conv5 representation passes through an intermediate middle region where matching is more diffi-
cult, suggesting that what is learned by different networks on conv1 and conv5 is more convergent
than conv3 and conv4. This result may be related to previously observed greater complexity in the
intermediate layers as measured through the lens of optimization difficulty (Yosinski et al., 2014).

Next, we can see that where the semi-matching and matching differ, the matching is often much
worse.One hypothesis for why this occurs is that the two networks learn different numbers of units
to span certain subspaces. For example, Net1 might learn a representation that uses six filters to
span a subspace of human faces, but Net2 learns to span the same subspace with five filters. With
unique matching, five out of the six filters from Net1 may be matched to their nearest counterpart in
Net2, but the sixth Net1 unit will be left without a counterpart and will end up paired with an almost
unrelated filter.

Finally, with reference to Figure 3 (but similarly observable in Figure 10 for other layers), another
salient observation is that the correlation of the semi-matching falls significantly from the best-
matched unit (correlations near 1) to the lowest-matched (correlations near 0.3). This indicates that
some filters in Net1 can be paired up with filters in Net2 with high correlation, but other filters in
Net1 and Net2 are network-specific and have no high-correlation pairing in the alternate network,
implying that those filters are rare and not always learned. This holds across the conv1 – conv5
layers.

3.2 ALIGNMENT VIA MUTUAL INFORMATION

Because correlation is a relatively simple mathematical metric that may miss some forms of sta-
tistical dependence, we also performed one-to-one alignments of neurons by measuring the mutual
information between them. Mutual information measures how much knowledge one gains about
one variable by knowing the value of another. Formally, the mutual information of the two random
variables X(n)

l,i and X(m)
l,j representing the activation of the i-th neuron in Netn and the j-th neuron

5
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Figure 3: Correlations between paired conv1 units in
Net1 and Net2. Pairings are made via semi-matching
(light green), which allows the same unit in Net2 to
be matched with multiple units in Net1, or matching
(dark green), which forces a unique Net2 neuron to
be paired with each Net1 neuron. Units are sorted by
their semi-matching values. See text for discussion.
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Figure 4: Average correlations between
paired conv1 units in Net1 and Net2.
Both semi-matching (light green) and
matching (dark green) methods suggest
that features learned in different net-
works are most convergent on conv1 and
least convergent on conv4.

in Netm, is defined as:

I
(
X

(n)
l,i ;X

(m)
l,j

)
=

∑
a∈X(n)

l,i

∑
b∈X(m)

l,j

p(a, b) log
( p(a, b)

p(a)p(b)

)
,

where p(a, b) is the joint probability distribution of X(n)
l,i and X(m)

l,j , and p(a) and p(b) are their
marginal probability distributions, respectively. The within-net mutual information matrix and
between-net mutual information matrix have the same shapes as their equivalent correlation ma-
trices.

We apply the same matching technique described in Section 3.1 to the between-net mutual informa-
tion matrix,8 and compare the highest and lowest mutual information matches (Figure 11) to those
obtained via correlation (Figure 2). The results are qualitatively the same. For example, seven out
of eight best matched pairs in the conv1 layer stay the same. These results suggest that correlation
is an adequate measurement of the similarity between two neurons, and that switching to a mu-
tual information metric would not qualitatively change the correlation-based conclusions presented
above.

4 RELAXING THE ONE-TO-ONE CONSTRAINT TO FIND SPARSE,
FEW-TO-ONE MAPPINGS

The preceding section showed that, while some neurons have a one-to-one match in another net-
work, for other neurons no one-to-one match exists (with correlation above some modest threshold).
For example, 17% of conv1 neurons in Net1 have no match in Net2 with a correlation above 0.5
(Figure 3); this number rises to 37% for conv2, 63% for conv3, and 92% for conv4, before dropping
to 75% for conv5 (see Figure 10).

These numbers indicate that, particularly for intermediate layers, a simple one-to-one mapping is not
a sufficient model to predict the activations of some neurons in one network given the activations
of neurons in another network (even with the same architecture trained on the same task). That
result could either be because the representations are unique (i.e. not convergent), or because the
best possible one-to-one mapping is insufficient to tell the complete story of how one representation
is related to another. We can think of a one-to-one mapping as a model that predicts activations in
the second network by multiplying the activations of the first by a permutation matrix — a square
matrix constrained such that each row and each column contain a single one and the rest zeros. Can
we do better if we learn a model without this constraint?

We can relax this one-to-one constraint to various degrees by learning a mapping layer with an L1
penalty (known as a LASSO model, (Tibshirani, 1996)), where stronger penalties will lead to sparser

8The mutual information between each pair of neurons is estimated using 1D and 2D histograms of paired
activation values over 60,000 random activation samples. We discretize the activation value distribution into
percentile bins along each dimension, each of which captures 5% of the marginal distribution mass. We also
add a special bin with range (− inf, 10−6] in order to capture the significant mass around 0.
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Sparse Prediction Loss (after 4,500 iterations)
decay 0 decay 10−5 decay 10−4 decay 10−3 decay 10−2 decay 10−1

conv1 0.170 0.169 0.162 0.172 0.484 0.517
conv2 0.372 0.368 0.337 0.392 0.518 0.514
conv3 0.434 0.427 0.383 0.462 0.497 0.496
conv4 0.478 0.470 0.423 0.477 0.489 0.488
conv5 0.484 0.478 0.439 0.436 0.478 0.477

Table 1: Average prediction error for mapping layers with varying L1 penalties (i.e. decay terms).
Larger decay parameters enforce stronger sparsity in the learned weight matrix. Notably, on conv1
and conv2, the prediction errors do not rise much compared to the dense (decay = 0) case with
the imposition of a sparsity penalty until after an L1 penalty weight of over 10−3 is used. This
region of roughly constant performance despite increasing sparsity pressure is shown in bold. That
such extreme sparsity does not hurt performance implies that each neuron in one network can be
predicted by only one or a few neurons in another network. For the conv3, conv4, and conv5 layers,
the overall error is higher, so it is difficult to draw any strong conclusions regarding those layers. The
high errors could be because of the uniqueness of the learned representations, or the optimization
could be learning a suboptimal mapping layer for other reasons.

(more few-to-one or one-to-one) mappings. This sparsity pressure can be varied from quite strong
(encouraging a mostly one-to-one mapping) all the way to zero, which encourages the learned linear
model to be dense. More specifically, to predict one layer’s representation from another, we learn
a single mapping layer from one to the other (similar to the “stitching layer” in Lenc & Vedaldi
(2015)). In the case of convolutional layers, this mapping layer is a convolutional layer with 1 × 1
kernel size and number of output channels equal to the number of input channels. The mapping
layer’s parameters can be considered as a square weight matrix with side length equal to the number
of units in the layer; the layer learns to predict any unit in one network via a linear weighted sum
of any number of units in the other. The model and resulting square weight matrices are shown in
Figure 5. This layer is then trained to minimize the sum of squared prediction errors plus an L1
penalty, the strength of which is varied.9

Mapping layers are trained for layers conv1 – conv5. The average squared prediction errors for each
are shown in Table 1 for a variety of L1 penalty weights (i.e. different decay values). For the conv1
and conv2 layers, the prediction errors do not rise with the imposition of a sparsity penalty until a
penalty greater than 10−3. A sparsity penalty as high as 10−3 results in mapping layer models that
are nearly as accurate as their dense counterparts, but that contain mostly zero weights. Additional
experiments for conv1 revealed that a penalty multiplier of 10−2.6 provides a good trade-off between
sparsity and accuracy, resulting in a model with sparse prediction loss 0.235, and an average of 4.7
units used to predict each unit in the target network (i.e. an average of 4.7 significantly non-zero
weights). For conv2 the 10−3 multiplier worked well, producing a model with an average of 2.5 non-
zero connections per predicted unit. The mapping layers for higher layers (conv3 – conv5) showed
poor performance even without regularization, for reasons we do not yet fully understand, so further
results on those layers are not included here. Future investigation with different hyperparameters or
different architectures (e.g. multiple hidden layers) could train more powerful predictive models for
these layers.

The one-to-one results of Section 3 considered in combination with these results on sparse prediction
shed light on the open, long-standing debate about the extent to which learned representations are
local vs. distributed : The units that match well one-to-one suggest the presence of a local code,
where each of these dimensions is important enough, independent enough, or privileged enough in

9Both representations (input and target) are taken after the relu is applied. Before training, each channel
is normalized to have mean zero and standard deviation 1/

√
N , where N is the number of dimensions of

the representation at that layer (e.g. N = 55 · 55 · 96 = 290400 for conv1). This normalization has two
effects. First, the channels in a layer are all given equal importance, without which the channels with large
activation values (see Figure 17) dominate the cost and are predicted well at the expense of less active channels,
a solution which provides little information about the less active channels. Second, the representation at any
layer for a single image becomes approximately unit length, making the initial cost about the same on all layers
and allowing the same learning rate and SGD momentum hyperparameters to be used for all layers. It also
makes the effect of specific L1 multipliers approximately commensurate and allows for rough comparison of
prediction performance between layers, because the scale is constant.
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Figure 5: A visualization of the network-to-network sparse “mapping layers” (green squares). The
layers are trained independently of each other and with an L1 weight penalty to encourage sparse
weights.

some other way to be relearned by different networks. Units that do not match well one-to-one,
but are predicted well by a sparse model, suggest the presence, along those dimensions, of slightly
distributed codes.

The results could have been otherwise: if all units could accurately be matched one-to-one, we
would suspect a local code across the whole layer. On the other hand, if making predictions from
one network to another required a dense affine transformation, then we would interpret the code
as fully distributed, with each unit serving only as a basis vector used to span a large dimensional
subspace, whose only requirement was to have large projection onto the subspace (to be useful) and
small projection onto other basis vectors (to be orthogonal). The story that actually emerges is that
the first two layers use a mix of a local and a slightly distributed code.

Figure 6 shows a visualization of the learned weight matrix for conv1, along with a permuted weight
matrix that aligns units from Net2 with the Net1 units that most predict them. We also show two
example units in Net2 and, for each, the only three units in Net1 that are needed to predict their
activation values.

These sparse prediction results suggest that small groups of units in each network span similar
subspaces, but we have not yet identified or visualized the particular subspaces that are spanned.
Below we present one approach to do so by using the sparse prediction matrix directly, and in the
Supplementary Section S.3 we discuss a related approach using spectral clustering.

For a layer with s channels we begin by creating a 2s × 2s block matrix B by concatenating the
blocks [I, W ; WT , I] where I is the s×s identity matrix andW is the learned weight matrix. Then
we use Hierarchical Agglomerative Clustering (HAC), as implemented in Scikit-learn (Pedregosa
et al., 2011) to recursively cluster individual units into clusters, and those clusters into larger clusters,
until all have been joined into one cluster. The HAC algorithm as adapted to this application works
in the following way: (1) For all pairs of units, we find the biggest off-diagonal value in B, i.e.
the largest prediction weight; (2) We pair those two units together into a cluster and consider it as
a single entity for the remainder of the algorithm; (3) We start again from step 2 using the same
process (still looking for the biggest value), but whenever we need to compare unit ↔ cluster or
cluster↔ cluster, we use the average unit↔ unit weight over all cross-cluster pairs;(4) Eventually
the process terminates when there is a single cluster.10

The resulting clustering can be interpreted as a tree with units as leaves, clusters as intermediate
nodes, and the single final cluster as the root node. In Figure 7 we plot the B matrix with rows
and columns permuted together in the order leaves are encountered when traversing the tree, and
intermediate nodes are overlaid as lines joining their subordinate units or clusters. For clarity, we
color the diagonal pixels (which all have value one) with green or red if the associated unit came
from Net1 or Net2, respectively.

10For example, in the conv1 layer with 96 channels, this happens after 96 · 2− 1 = 191 steps.
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Figure 6: The learned mapping layer for conv1 (left) and a permuted version of it that aligns units
from Net2 with the Net1 units that most predict them (center). Right: two example units (bottom
row) in Net2–which correspond to the same colored rows in the left weight matrix–together with, for
each, the only three units in Net1 that are needed to predict their activation (right). To fully visualize
the functionality each unit, we plot the top 9 image patches from the validation set that causes
the highest activation for that unit (“maxim”), as well as its corresponding “deconv” visualization
introduced by Zeiler & Fergus (2014). We also show the actual weight associated with each unit in
Net1 in the sparse prediction matrix.

Plotted in this way, structure is readily visible: Most parents of leaf clusters (the smallest merges
shown as two blue lines of length two covering a 2× 2 region) contain one unit from Net1 and one
from Net2. These units can be considered most predictive of each other.11 Slightly higher level
clusters show small subspaces, comprised of multiple units from each network, where multiple units
from one network are useful for predicting activations from the other network (see the example
zoomed regions on the right side of Figure 7).

The HAC method employs greedy merges, which could in some cases be suboptimal. In the Sup-
plementary Section S.3 we explore a related method that is less greedy, but operates on the denser
correlation matrix instead. Future work investigating or developing other methods for analyzing the
structure of the sparse prediction matrices may shed further light on the shared, learned subspaces
of independently trained networks.

5 CONCLUSIONS

We have demonstrated a method for quantifying the feature similarity between different, indepen-
dently trained deep neural networks. We show how insights may be gain by approximately aligning
different neural networks on a feature or subspace level by blending three approaches: a bipartite
matching that makes one-to-one assignments between neurons, a sparse prediction and clustering
approach that finds one-to-many mappings, and a spectral clustering approach that finds many-to-
many mappings. Our main findings include:

1. Some features are learned reliably in multiple networks, yet other features are not consis-
tently learned.

2. Units learn to span low-dimensional subspaces and, while these subspaces are common to
multiple networks, the specific basis vectors learned are not.

3. The representation codes are a mix between a local (single unit) code and slightly, but not
fully, distributed codes across multiple units.

4. The average activation values of neurons vary considerably within a network, yet the mean
activation values across different networks converge to an almost identical distribution.

These findings open up new future research directions, for example: (1) Model compression. How
would removing low-correlation, rare filters affect performance? (2) Optimizing ensemble forma-
tion. The results show some features (and subspaces) are shared between independently trained
DNNs, and some are not. This suggests testing how feature correlation among different DNNs in
an ensemble affects ensemble performance. For example, the “shared cores” of multiple networks
could be deduplicated, but the unique features in the tails of their feature sets could be kept. (3)
Similarly, one could (a) post-hoc assemble ensembles with greater diversity, or even (b) directly

11Note that the upper right corner of B is W = W1→2, the matrix predicting Net1→ Net2, and the lower
left is just the transpose WT

1→2. The corners could instead be W1→2 and W2→1, respectively.
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Figure 7: The results of the Hierarchical Agglomerative Clustering (HAC) algorithm described in
Section 4 on the conv1 layer. Left: The B matrix permuted by the tree-traversal order of leaf nodes.
Pixels on the diagonal are leaf nodes and represent original units of either network (green for Net1
and red for Net2). The brighter the gray pixel is, the larger the weight is in the matrix. See text
for a complete interpretation. Right: Two zoomed in regions of the diagonal, showing two different
four-dimensional subspaces spanned by four units in each network. The top 9 and bottom 9 images
correspond to the maxim and deconv visualizations, respectively.

encourage ensemble feature diversity during training. (4) Certain visualization techniques, e.g., de-
conv (Zeiler & Fergus, 2014), DeepVis (Yosinski et al., 2015), have revealed neurons with multiple
functions (e.g. detectors that fire for wheels and faces). The proposed matching methods could
reveal more about why these arise. Are these units consistently learned because they are helpful or
are they just noisy, imperfect features found in local optima? (5) Model combination: can multi-
ple models be combined by concatenating their features, deleting those with high overlap, and then
fine-tuning?
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SUPPLEMENTARY INFORMATION

S.1 ACTIVATION VALUES: HIGH CORRELATION VS. LOW CORRELATION

(a) conv1, high correlation c
(1,2)
1,34,48: 0.995 (b) conv1, low correlation c

(1,2)
1,2,74: 0.178

(c) conv2, high correlation c
(1,2)
2,122,236: 0.92 (d) conv2, low correlation c

(1,2)
2,30,26: 0.24

Figure 8: Activation values are computed across 5,000 randomly sampled images and all spatial
positions (55× 55 and 27× 27 for layers conv1 and conv2, respectively). The joint distributions ap-
pear simple enough to suggest that a correlation measureis sufficient to find matching units between
networks.

S.2 ADDITIONAL MATCHING RESULTS

Figure 10 shows additional results of comparison of assignments produced by semi-matching and
matching methods in conv2 – conv5. For each unit, both the semi-matching and matching are found,
then the units are sorted in order of decreasing semi-matching value and both correlation values are
plotted.
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Figure 9: With assignments chosen by semi-matching, the eight best (highest correlation, left)
and eight worst (lowest correlation, right) matched features between Net1 and Net2 for the conv1
through conv5 layers. To visualize the functionality each unit, we plot the nine image patches (in
a three by three block) from the validation set that causes the highest activation for that unit and
directly beneath that block show the “deconv” visualization of each of the nine images. Best view
with siginicant zoom in.
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(b) conv3
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Figure 10: Correlations between units in conv2 - conv5 layers of Net1 and their paired units in Net2,
where pairings are made via semi-matching (large light green circles) or matching (small dark green
dots).
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Figure 11: The eight best (highest mutual information, left) and eight worst (lowest mutual informa-
tion, right) features in the semi-matching between Net1 and Net2 for the conv1 and conv2 layers.
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S.3 DOES RELAXING THE ONE-TO-ONE CONSTRAINT TO FIND
MANY-TO-MANY GROUPINGS REVEAL MORE SIMILARITIES BETWEEN
WHAT DIFFERENT NETWORKS LEARN?

Since the preceding sections have shown that neurons may not necessarily correspond via a globally
consistent one-to-one matching between networks, we now seek to find many-to-many matchings
between networks using a spectral clustering approach.

S.3.1 NEURON SIMILARITY GRAPHS

We define three types of similarity graphs based on the correlation matrices obtained above.

Single-net neuron similarity graphs. Given a fully trained DNN X and a specified layer l, we
first construct the single-net neuron similarity graph GX,l = (V,E). Each vertex vp in this graph
represents a unit p in layer l. Two vertices are connected by an edge of weight cpq if the correlation
value cpq in the self-correlation matrix corr(Xl, Xl) between unit p and unit q is greater than a
certain threshold τ .

Between-net neuron similarity graphs. Given a pair of fully trained DNNsX and Y , the between-
net neuron similarity graph GXY,l = (V,E) can be constructed in a similar manner. Note that
GXY,l is a bipartite graph and contains twice as many vertices as that in GX,l since it incorporates
units from both networks. Two vertices are connected by an edge of weight cpq if the correlation
value cpq in the between-net correlation matrix corr(Xl, Yl) between unit p in X and unit q in Y is
greater than a certain threshold τ .

Combined similarity graphs. The problem of matching neurons in different networks can now
be reformulated as finding a partition in the combined neuron similarity graphs GX+Y,l = GX,l +
GY,l + GXY,l, such that the edges between different groups have very low weights and the edges
within a group have relatively high weights.

S.3.2 SPECTRAL CLUSTERING AND METRICS FOR NEURON CLUSTERS

We define three types of similarity graphs based on the correlation matrices obtained above (see Sec-
tion S.3.1 for definition). Define Wl ∈ R2Sl×2Sl to be the combined correlation matrices between
two DNNs, X and Y in layer l, where wjk is the entry at jth row and kth column of that matrix. Sl
is the number of channels (units) in layer l. Wl is given by

Wl =

[
corr(Xl, Xl) corr(Xl, Yl)
corr(Xl, Yl)

> corr(Yl, Yl)

]
.

The unnormalized Laplacian matrix is defined as Ll = Dl − Wl, where the degree matrix Dl is
the diagonal matrix with the degrees dj =

∑2Sl
k=1 wjk. The unnormalized Laplacian matrix and

its eigenvalues and eigenvectors can be used to effectively embed points in a lower-dimension rep-
resentation without losing too information about spatial relationships. If neuron clusters can be
identified, then the Laplacian Ll is approximately block-diagonal, with each block corresponding a
cluster. Assuming there are k clusters in the graph, spectral clustering would then take the first k
eigenvectors12, U ∈ R2Sl×k, corresponding to the k smallest eigenvalues, and partition neurons in
the eigenspace with the k-means algorithm.

S.3.3 SPECTRAL CLUSTERING RESULTS

We use Net1 and Net2 as an example for showing the results of matching neurons between DNNs.
Figure 12 shows the permuted combined correlation matrix after apply the spectral clustering algo-
rithm for conv1 – conv5. Figure 13 displays 12 neuron clusters with high between-net similarity
measurement in conv1 layer, and Figure 14 displays the top 8 neuron clusters with highest between-
net similarity measurement in conv2 layer. The matching results imply that there exists many-to-
many correspondence of the feature maps between two fully trained networks with different random
initializations, and the number of neurons learning the same feature can be different between net-
works. For example, the four units of {89, 90, 134, 226} in Net1 and three units of {2, 39, 83} in
Net2 are learning the features about green objects.

12In practice, when the number of clusters is unknown, the best value of k to choose is where where the
eigenvalue shows a relatively abrupt change.
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Figure 12: The permuted combined correlation matrix after apply spectral clustering method (conv1
– conv5). The diagonal block structure represents the groups of neurons that are clustered together.
The value of k adopted for these five layers are: {40,100,100,100,100}, which is consistent with the
parameter setting for other experiments in this paper.
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Figure 13: The neuron matchings between two DNNs (Net1 and Net2) in conv1 layer. Here we
display the 12 neuron clusters with relatively high between-net similarity measurement. Each la-
beled half-row corresponds to one cluster, where the filter visualizations for neurons from Net1 and
Net2 are separated by white space slot. The matching results imply that there exists many-to-many
correspondence of the feature maps between two fully trained networks with different random ini-
tializations. For instance, in cluster #6, neurons from Net1 and Net2 are both learning 135◦ diagonal
edges; and neurons in cluster #10 and #12 are learning 45◦ diagonal edges.

Figure 14: The neuron matchings between two DNNs: Net1 and Net2. Each of the 3 × 3 block
displays the top 9 image patches that cause the highest activations to each neuron. Each labeled half-
row corresponds to one cluster, where the filter visualizations with dashed boxes represent neurons
from Net1 and those without are from Net2. For example, there are 7 neurons learning similar
features in cluster #3, where the left four neurons are in Net1 and the right three are from Net2. Best
viewed in electronic form with zoom.

We also computed and visualized the matching neurons in other layers as well. The results of conv1
are shown in Figure 13. As noted earlier, the conv1 layer tends to learn more general features like
Gabor filters (edge detectors) and blobs of color. Our approach finds many matching Gabor filters
(e.g., clusters #5, #6, #10, #11 and #12), and also some matching color blobs (e.g., clusters #1, #3
and #4).

S.3.4 HIERARCHICAL SPECTRAL CLUSTERING RESULTS

Due to the stochastic effects of randomly initializing centroids in k-means clustering, some of the
initial clusters contains more neurons than others. To get more fine-grained cluster structure, we
recurrently apply k-means clustering on any clusters with size > 2α · Sl, where α is a tunable pa-
rameter for adjusting the maximum size of the leaf clusters. Figure 15 shows the partial hierarchical
structure of neuron matchings in the conv2 layer. The cluster at the root of the tree is a first-level
cluster that contains many similar units from both DNNs. Here we adopt α = 0.025 for the conv2
layer, resulting in a hierarchical neuron cluster tree structure with leaf clusters containing less than
6 neurons from each network. The bold box of each subcluster contains neurons from Net1 and the
remaining neurons are from Net2. For example, in subcluster #3, which shows conv2 features, units
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{62, 137, 148} from Net1 learned similar features as units {33, 64, 230} from Net2, namely, red
and magenta objects.

Figure 15: The hierarchical structure of neuron matchings between two DNNs: Net1 and Net2
(conv2 layer). The initial clusters are obtained using spectral clustering with the number of clusters
k = 100 and threshold τ = 0.2.

S.3.5 METRICS FOR NEURON CLUSTERS

Here we introduce two metrics for quantifying the similarity among neurons grouped together after
applying the clustering algorithm above.

Between-net similarity: SimXl→Yl
= (

Sl∑
p=1

Sl∑
q=1

corr(Xl, Yl)pq)/S2l

Within-net similarity: SimXl,Yl
= (SimXl→Xl

+ SimYl→Yl
)/2

We further performed experiments in quantifying the similarity among neurons that are clustered
together. Figure 16 shows the between-net and within-net similarity measurement for conv1 – conv5.
The value of k for initial clustering is set to be 40 for conv1 layer and 100 for all the other layers.
In our experiments, the number of final clusters obtained after further hierarchical branching is {43,
113, 130, 155, 131}. The tail in those curves with value 0 is due to the non-existence of between-net
similarity for the clusters containing neurons from only one of the two DNNs. To better capture the
distribution of non-zero similarity values, we leave out the tail after 100 in the plot for conv3 - conv5
layers.

(a) conv1 (b) conv2 (c) conv3

(d) conv4 (e) conv5

Figure 16: The distribution of between-net and within-net similarity measurement after clustering
neurons (conv1 – conv5). The x-axis represents obtained clusters, which is reshuffled according to
the sorted between-net similarity value.
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S.4 COMPARING AVERAGE NEURAL ACTIVATIONS WITHIN AND BETWEEN
NETWORKS

The first layer of networks trained on natural images (here the conv1 layer) tends to learn channels
matching patterns similar to Gabor filters (oriented edge filters) and blobs of color. As shown in
Figure 18, there are certain systematic biases in the relative magnitudes of the activations of the dif-
ferent channels of the first layer. Responses of the low frequency filters have much higher magnitude
than that of the high frequency filters. This phenomenon is likely a consequence of the 1/f power
spectrum of natural images in which, on average, low spatial frequencies tend to contain higher
energy (because they are more common) than high spatial frequencies.
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Figure 17: The average activation values of each unit on all layers of Net1 – Net4. A couple salient
effects are observable. First, in a given network, average activations vary widely within each layer.
While most activations fall within a relatively narrow band (the middle of each plot), a rare few
highly active units have one or two orders of magnitude higher average output than the least active.
Second, the overall distribution of activation values is similar across networks. However, also note
that the max single activation does vary across networks in some cases, e.g. on the conv2 layer by
a factor of two between networks. For clarity, on layers other than conv1 circle markers are shown
only at the line endpoints.

In Figure 17 we show the mean activations for each unit of four networks, plotted in sorted order
from highest to lowest. First and most saliently, we see a pattern of widely varying mean activation
values across units, with a gap between the most active and least active units of one or two orders
of magnitude (depending on the layer). Second, we observe a rough overall correspondence in the
spectrum of activations between the networks. However, the correspondence is not perfect: although
much of the spectrum matches well, the most active filters converged to solutions of somewhat
different magnitudes. For example, the average activation value of the filter on conv2 with the
highest average activation varies between 49 to 120 over the four networks; the range for conv1 was
98 to 130.13 This effect is more interesting considering that all filters were learned with constant
weight decay, which pushes all individual filter weights and biases (and thus subsequent activations)
toward zero with the same force.

Figure 18 shows the conv1 units with the highest and lowest activations for each of the four networks.
As mentioned earlier (and as expected), filters for lower spatial frequencies have higher average
activation, and vice versa. What is surprising is the relative lack of ordering between the four
networks. For example, the top two most active filters in Net1 respond to constant color regions of
black or light blue, whereas none of the top eight filters in Net2 or Net3 respond to such patterns.
One might have thought that whatever influence from the dataset caused the largest filters to be
black and blue in the first network would have caused similar constant color patches to dominate the
other networks, but we did not observe such consistency. Similar differences exist when observing
the learned edge filters: in Net1 and Net4 the most active edge filter is horizontal; in Net2 and
Net3 it is vertical. The right half of Figure 18 depicts the least active filters. The same lack of
alignment arises, but here the activation values are more tightly packed, so the exact ordering is less
meaningful. Figure 19 shows the even more widely varying activations from conv2.

13Recall that the units use rectified linear activation functions, so the activation magnitude is unbounded.
The max activation over all channels and all spatial positions of the first layer is often over 2000.
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Figure 18: The most active (left) to least active (right) conv1 filters from Net1 – Net4, with average
activation values printed above each filter. The most active filters generally respond to low spatial
frequencies, and the least active filtered to high spatial frequencies, but the lack of alignment is
interesting (see text).
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Figure 19: Most active (left) to least active (right) conv2 filters as in Figure 18. Compared to
the conv1 filters, here the separation and misalignment between the top filters is even larger. For
example, the top unit responding to horizontal lines in Net1 has average activation of 121.8, whereas
similar units in Net2 and Net4 average 27.2 and 26.9, respectively. The unit does not appear in the
top eight units of Net3 at all. The least active units seem to respond to rare specific concepts.
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