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Abstract—AIMD is a widely-used network congestion control 
scheme. Despite its discontinuous control behavior, the majority 
of contemporary literature employed a statistically-averaged 
continuous model to approximate AIMD without considering its 
discontinuity. The design of a discontinuous control system must 
be based on rules that are entirely different from that of 
continuous control systems. Ignoring discontinuity issues results 
in great discrepancy between analytical models and the practice. 
In this paper we use the sliding mode control (SMC) theory to 
investigate congestion control without ignoring its discontinuity. 
Based on the SMC theory, the design of discontinuous 
(congestion) control systems must consider the relative degree 
and zero dynamics of the system, in order to guarantee 
asymptotic stability. This framework can precisely reflect the 
behavior of the control rules and the controlled objective of a 
congestion control system.  

We show that the relative degree of the control system of 
rate-based, AIMD flow-control algorithms is two. That is, to 
apply sound control principles to the design of AIMD algorithms, 
one should use both the queue length error and its first order 
time derivative to construct the switching function of the control 
model of an active queue management scheme. Based on the 
SMC model, one can quantify the tradeoffs among the 
convergence speed, the amount of throttling adjustments, and the 
degree of oscillations. We show quantitatively that one can 
guarantee stability conditions, drastically reduce oscillation of 
AIMD without significant loss of fairness and stability, and 
quantitative understanding of the tradeoffs among oscillation, 
delay and fairness. 

Keywords— congestion control; AIMD; discontinuous control; 
relative degree; asymptotical stability1 

I. INTRODUCTION 
Congestion control of persistent transport sessions is 

critical to the overall Internet performance. In this paper, we 
study the system dynamics of the rate-based additive-
increase-multiplicative-decrease (AIMD) scheme. From the 
analysis we generated a design space to make a performance 
tradeoff without compromising the system stability. Although 
our study focuses on the rate-based congestion control 
systems, our method is applicable to other congestion control 
schemes that satisfy the basic assumptions of the 
discontinuous control models. Using well-established control 
theories, our analysis makes quantitative design tradeoffs 
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between complex system factors based on the dynamics of the 
network resources and control algorithms. Our results show 
that the proposed approach makes substantial improvement of 
the system performance. 

A key issue in AIMD congestion control systems is the 
discontinuity of control. The control switches with some 
measured performance indicator. For instance, when the 
congestion bit (e.g., ECN) is set, AIMD halves the sending 
rate; otherwise, it increases the sending rate linearly. When the 
ECN bit is used in active queue management (AQM) schemes 
to mark the traffic conditions, i.e., congestion or not, packet 
loss or not, etc., such decisions are discrete and discontinuous. 
When an error function (also called the switching function in 
the rest of the paper) based on some measured performance 
indicator, is negative (positive), then a positive (negative) 
control action is engaged. 

Three critical issues related to the system dynamics of 
congestion control schemes are (1) timing of setting the ECN 
bit, (2) construction of the switching functions, and (3) the 
amount of control adjustments, i.e., the increase or decrease of 
the transmission rate. Many AQM schemes investigated the 
issue of when and how to set the ECN bit, especially on how 
to optimize the congestion window sizes of TCP sessions. For 
instance, RED [1][6], BLUE [4], proportional-integral (PI) 
controller [5], proportional-differential (PD) controller [34] 
[35], AVQ [10], R-SMVS (a sliding mode variable structure 
control scheme proposed by Ren et al. in [13]), several 
versions of RED [14]-[18], and the “binary feedback” scheme 
proposed by Ramakrishnan and Jain (called RJBF in 
remaining discussion) [19]. They are designed to work with 
the AIMD scheme [20] of TCP Tahoe/Reno. 

The second of the three issues, construction of switching 
functions, is the focus of congestion avoidance schemes, such 
as AIMD and binomial control [12]. Existing literatures just 
simply define the switching function as one measurement 
minus its desired value. Based on the SMC theory, 
construction of switching functions must consider the relative 
degree and zero dynamics of the system, in order to guarantee 
asymptotic stability. Zhang and Shin [26] proposed an α -
control scheme with the goal of controlling the maximum 
queue length to a chosen range without buffer overflow, by 
adjustments to the increase rate of AIMD. Lee et al. proposed 
AIMD/H (AIMD with history) [27], which updates the 
decrease ratio of AIMD according to history information to 



 

smooth rate/window variation. Our study shows that designing 
algorithms without considering the relative degree of the 
control system would only have limited effects.  

Most AQM and congestion avoidance schemes are closely 
related to each other. Those AQM schemes not designed to 
work with AIMD, e.g. REM [3] and GKVQ (Gibbens-Kelly 
virtual queue) [8][9], are to provide users link pricing 
information based on marking probability [22][23].  They are 
not a BDC system and not within the scope of this paper. 

AIMD can be modeled as a binary decision control (BDC) 
system. Analysis and optimization of the asymptotic stability 
and transient behavior of a BDC control system is generally 
considered a very difficult issue. Due to discontinuity of the 
control actions, the state trajectory of the control system 
makes instantaneous changes when the control action switches 
according to the + and - sign of the switching function. When, 
and how much, to make the changes need to be carefully 
designed, so that a transmission session can effectively adapt 
to current conditions.  

Despite its profound importance, the discontinuity in a 
BDC system is largely overlooked in contemporary AQM 
schemes that adopted the AIMD for congestion control 
[1][5][6][10][13]-[18][34][35]. Instead, most of them adopted 
a nonlinear, continuous fluid dynamics model, such as that of 
window-based AIMD scheme [7] in the TCP Tahoe/Reno  
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or a slightly changed version of (1) (e.g. in [34]), where ρ is 
the packet drop/mark probability, W is the congestion window 
size and R is the round trip time (RTT). Then they linearized 
(1) within a small neighbor of the desired equilibrium point. 
Based on the linear model, they used frequency domain (e.g. 
[1], [5], [6] and [10]) or time domain (e.g. [13] and [34]) 
method to design AQM controllers. 

The control mechanism of a congestion control system 
based on (1) can be depicted in Fig. 1 (a). Given a control 
objective qd, a control scheme such as RED or PI uses qd and a 

measured performance indicator q(t) as its inputs to determine 
the necessary the packet drop/mark probability ρ(t). This takes 
into account the effects of the dynamics of the congestion 
control mechanisms (such as AIMD) and the queuing 
dynamics of the target buffer. In this model, only the 
statistically-averaged behavior of the system dynamics is 
considered, and the discontinuity of AIMD is omitted from the 
design of the control algorithms. Control algorithms that are 
based on (1), e.g. P (proportional), PI, PD or even PID 
(proportional-integral-differential) control schemes, etc.,  are 
optimized for the statistical average of the controlled 
objective, with little or no consideration of the short term 
behavior of AIMD. As a result, one cannot guarantee the 
asymptotic system stability. Parameter settings would be 
subject to recurrent traffic oscillations, and significant packet 
delays or packet losses in short time windows, even when only 
a small number of connections share a common path.  

In this paper, we propose a modeling approach that 
incorporates the discontinuity of control actions and the queue 
dynamics of the congested link without using statistical 
approximation of the congestion control system. This simpler 
model is depicted in Fig. 1 (b) which gives accurate account of 
the transient system behavior. 

To illustrate our method’s application in the design of 
congestion control algorithms, we use it to model a rate-based, 
AIMD congestion control scheme as follows. Letting the 
control objective be the queue length of the congested link, 
one can use the output y to represent the difference between 
the actual queue length and its desired value, the control 
variable u to represent the changing rate of the source sending 
rate, and the state variable vector x to represent the queue 
length and the data sending rate, where x will be defined 
shortly. Many congestion control algorithms used only a 
single bit to indicate the sign of the switching function for 
congestion control. As a result, we will focus on the stability 
analysis of a single-bit AIMD congestion control scheme.  We 
will then show the applicability of our model to the cases that 
use more indication bits for congestion control. The modeling 
technique is also applicable to window-based schemes. 
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Fig. 1.   Structural models of congestion control schemes. ρ(t) is the mark/drop probability, q(t) is the actual queue length and qd is the desired queue length,  u(t) 
is variant rate of data sending rate or congestion window size.



 

The rest of this paper is organized as follows. Section II 
first discusses the conditions under which the design principle 
of the congestion control schemes can be formalized, based on 
the sliding mode control rules. Section III presents our main 
results on rate-based congestion control. Section IV provides a 
theoretical proof of our results. We discuss the transient 
behavior and delay effects in section V. Conclusions are made 
in Section VI. 

II. PROBLEM FORMULATION 
In the design of a rate-based AIMD scheme, our objective 

is to guarantee asymptotic stability, and to optimize the 
transient dynamics of network traffic flow. In addition to the 
issue of discontinuity that departs our work from the existing 
approaches [1][5][6][10][13]-[18][34], our model directly 
takes into account the non-linearity of the queuing dynamics 
without linearization approximation.  

A major advantage of using BDC to model AIMD 
congestion control schemes is that it provides a well-defined 
region of stable operations under different parameter settings 
while treating the controlled object, i.e., the queuing dynamics 
of the congested path, as a black box [31]. Therefore, it places 
little restrictions on the types of AQM management schemes 
that can employ this modeling technique for performance 
analysis, even in the presence of uncontrolled routers.  

In the control theory literature, BDC can be considered a 
variable structure control (VSC) system, because its control 
rule switches with the (+ and -) sign of the error (switching) 
function, i.e., y(t) in Fig. 1. The objective of a BDC system is 
to drive the error function to zero, i.e., the control objective is 
at its optimal value, via switching of the control rules. By 
using the output-based sliding mode control (SMC) [23] 
theory as the basis of the congestion control rules, we can 
cope with parameter and model uncertainties, which are called 
structured and unstructured uncertainties, respectively, in 
control theory literature. The robustness analysis is simple, 
and accurate characterization of the discontinuity property has 
led to significant improvement on the performance of the rate-
based congestion control schemes in our study. 

The basic idea of the SMC theory is to drive the system 
state to a subset of the state space, i.e., the manifold (called 
switching manifold or sliding mode) defined by S = 0, where S 
is the switching function, in finite time. The system’s state 
trajectory then “slides” along the dynamics defined by the 
switching mode to the desired equilibrium state, provided that 
the sliding mode dynamics is asymptotically stable.  

It is known that within the switching manifold, the control 
system dynamics is reduced to the sliding mode dynamics 
[24].  The SMC theory allows one to simplify the control 
system design into a “zero-keeping” problem of the switching 
function [25]. (That is, trying to move the value of the 
switching function to zero.) We will take advantage of this 
property to analyze the rate-based AIMD algorithm. 

The necessary and sufficient condition [25] for stability of 
SMC is that the sliding mode is asymptotically stable, and  

 SSS η−≤& , (2) 

where η>0, and S is the switching function.  

Eq. (2) is called the sliding condition [25] and guarantees 
existence of the sliding mode. The physical meaning of (2) is 
that when 02 <S

dt
d , the distance to the switching manifold 

monotonically decreases, in order to bring the control 
objective closer to its target value. Furthermore, the state 
trajectory will reach the switching manifold within finite time 

η
0S , where S0 is the initial value of S. η determines the 

convergence rate to the switching manifold [25]. 

Given these two conditions, a dynamic system defined by 
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can be stabilized by a properly-designed BDC controller [30], 
where t is the time variable, ,R,,R ∈∈ yux n  f and h are some 
unknown smooth function. Referring to Fig. 1 (b), x stands for 
the state variable of the queuing dynamics, y the difference 
between q(t) and qd.  

The overall control rules of the BDC controller are 
summarized as follows, 
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u– (x, t) and u+ (x, t) are the control rules of the BDC controller 
when the sign of S is – and +, respectively.  To guarantee 
overall system asymptotical stability, i.e., the controlled object 
(3) together with the controller (4), we must meet the 
following conditions [30]:  

I) The system’s relative degree with respect to y is r; 
II) The zero dynamics of the system defined by (3) with 

output y is asymptotically stable, i.e., it is minimum 
phase when the  output is y; 

III) cr-1pr-1 + cr-2pr-2 + ... + c1p + 1 is a Hurwitz polynomial. 

Informally, the relative degree of the system can be 
derived by taking derivatives of y until the control variable u 
appears in the right-hand side of the equation, without being 
encapsulated in any other function.2 For a nonlinear system 
like ours, its zero dynamics is equivalent to the role of zeros 
for a linear system.  

                                                           
2 The reader is referred to contemporary nonlinear control 
literature for its formal mathematical definition. 



 

Condition I) is equivalent to the condition that the relative 
degree of the system defined in (3) is one, with respect to S 
defined in (5). When condition III) holds, condition II) is 
equivalent to the condition that the zero dynamics with output 
S defined in (5) is asymptotically stable, or, it is minimum 
phase with output S. In fact, the zero dynamics with output S 
defined in (5), which is exactly the dynamics of the sliding 
mode, is the combination of two elements [24][30]: the zero 
dynamics with output y, and   
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Condition III) guarantees the differential equation (6) is 
asymptotically stable. We further note that cn, cn-1, … c1 are 
manually determined. u– (x, t) and u+ (x, t) determine the range 
of the attractive zone of the sliding mode, so that within the 
attractive zone, the control rules can bring the state trajectory 
back to the switching manifold. Their values are proportional 
to the speed of state trajectory changes. When the system has 
non-negligible delays, measurement errors, or finite control 
frequency, large control values will aggravate the degree of 
oscillation that are caused by these factors. In the worst case, 
the control stability may become divergent. The quantitative 
tradeoff between these factors is essential to the optimal 
design of the congestion control algorithms. 

III. MAIN RESULTS 
On the basis of the sliding-mode control theory, and a 

BDC based control behavior model, we have developed the 
analytical modeling of the rate-based AIMD scheme, and have 
verified the results via extensive ns-2 simulation. We 
summarize the main results in this section, and will discuss 
their analytical details in next section. 

A. Relative Degree of Rate-Based Congestion Control 
Our first assessment is that the relative degree of the rate-

based congestion control system is two (see Theorem 1 for 
details) when the control objective is queue length. Both 
theoretical and empirical results show that correct 
incorporation of the relative degree of the control model has 
predominant impact on the performance of AIMD. Other 
factors, such as increment and decrement values, and delay 
have relatively minor performance effects.   

The result in the relative degree issue is derived from the 
law of physics of the rate-based control systems, and thus, all 
rate-based AIMD congestion control algorithms should take 
into account this factor, regardless of details of their design. 
To single out the effects of relative degree on the system 
performance, we focus on the relationship between relative 
degree and the asymptotic stability, without considering the 
transient on-set behavior of a new session. In the experiments, 
we tested the effects of relative degree by using two different 
switching functions,  

SF1: yS = , (7) 

and 

SF2: ycyS &1+= , (8) 

where y = q–qd. q is the actual queue length and qd is the target 
queue length. Eqs. (7) and (8)  represent feedback control 
schemes that have relative degrees of one and zero, 
respectively. The sender keeps sending data at the current rate 
until it receives a single-bit ECN feedback from the router via 
an ACK packet. It corresponds to the + and - signs of its 
switching function, and the sender adjusts its sending rate 
according to the congestion bit value in the ACK packet. The 
source linearly increases its sending rate with rate α(>0) if the 
congestion bit is zero; otherwise, the sending rate is decreased 
exponentially with time constant β(>0). This particular AIMD 
setting satisfies the constraints of the controller defined by (4) 
and (5), and thus, their properties are applicable to the analysis 
of our system. In our simulation, the source does not 
retransmit lost packets, and it adjusts the transmission rates 
only according to the value of the ECN bit. Retransmission 
has no effects on the relative degree properties.  

In this ns-2 simulation, we assume that a single link of 
capacity 10Mbps is shared by fifteen connections with the 
roundtrip time ranging from 40 ms to 200 ms. The fifteen 
connections started randomly within the first 0.1 second.  We 
also assume that packets have an average size of 1000 bytes, 
the buffer size being 100 packets. We set qd =50 packets as 
our control goal. Because we are mainly interested in the 
recurrent behavior of AIMD, we simply initialized the sending 
rate of each sources as 650 Kbps and set α=10 pkt/sec2, β=8.3 
sec, without considering the on-set phase of a session. We 
always set c1=1 unless stated otherwise explicitly. This 
configuration satisfies the condition that αβ=C/N, where C is 
the link capacity. This means that, around the equilibrium 
point, the increase rate is equal to the decrease rate [29].  

The queue lengths of the target buffer simulated by ns-2 by 
using SF1 and SF2 are plotted in Fig. 2. The degree of 
oscillation of the queue length for SF2 is much smaller than 
that of SF1, clearly indicating the significance of the relative 
degree. We note that statistical average of the queue lengths is 
a very poor performance indicator, because in these two 
examples, the average queue lengths of the two scenarios are 
very close to each other. Nevertheless, SF2 can provide much 
better delay quality than SF1. Repeated and consistent results 
from numerical and ns-2 simulations showed that oscillation 
was drastically reduced when the relative degree was taken 
into account. 

To gain insight into why SF2 performs much better than SF1, 
we take a closer look at their system state trajectories. As 
mentioned earlier, a robust switching function should be able 
to bring the state trajectory as close to the switching manifold 
as possible. Referring to Fig. 3, the switching manifold is the 
straight dotted line connecting coordinates (0, 50) and (50, 0). 
The state trajectory of SF2 did chatter around the switching 
manifold, but stayed at its close proximity. Chattering was 
caused by delay, non-zero control period and measurement 
error, etc. because these aspects result in that control 
switching does not precisely occur on the switching manifold. 



 

 
Fig. 2.   Instant queue length traces based on switching functions SF1 and 
SF2. 

For SF1, as depicted in Fig. 4, where the switching 
manifold of SF1 is the vertical dotted line passing the 
coordinate (50, 0), the state trajectory is a relatively much 
large circle that is not even close to the switching manifold, 
making SF1 vulnerable to oscillations.  From the design 
viewpoint, the results suggest that without taking into account 
the relative degree, it will be very difficult to contain the 
control behavior of the system to a certain range of the target 
utility function, not to mention any notion of performance 
guarantee. 

 
Fig. 3.   State trajectory for SF2 with c1=1. 

 
Fig. 4.   State trajectory for SF1  

Next, we compared the performance results of using 
different α and β values, with and without incorporating the 
relative degree in the switching function. The round trip 
transmission time is set to be less than 10-6 sec to rule out the 
effects of delays. Simulation results with different α and β 
values in SF1 are plotted in Fig. 5.  It is clear that for SF1 the 
degree of oscillation in using different parameter 
configurations is very close to each other, despite the 
significant differences in their phases.  

 
Fig. 5.   Traces of queue lengths for SF1 with different α and β values. 

We must caution that in addition to correct consideration 
of the relative degree in the switching function, both α and β 
values need to be properly assigned to prevent oscillation. For 
the SF2 example in Fig. 6, one can see that if α is too large 
and β too small, the system will still be subject to oscillation.  

 

 
Fig. 6.   Traces of queue lengths for SF2 with different α and β values. 

B. Minimum Phase of the Queuing Dynamics  
 An output-based SMC system is asymptotically stable 

only if the original system’s zero dynamics is asymptotically 
stable, i.e., the original system is minimum-phase.  The 
following simulation results give a simple and quick checking 
of the minimum phase property. Let S denote the system 
output, referring to (8)  the output becomes unstable when c1 
is negative, implying that the system becomes non-minimum 



 

phase.  The outputs remain stable when the value of c1 remains 
positive.  

AIMD is an asymmetric controller, because the amounts 
of control (linear rate) for the + value of the switching 
function is smaller than that (exponential rate) of the - value of 
the switching function. This average behavior is clearly 
depicted in an asymptotically stable system. Referring to Fig. 
7, one can see that even when we set the target value at 50, 
and when the system was stable, the queue length could never 
reach the target value.  

On the other hand, when we changed the AIMD rule to 
additive increase and additive decrease (AIAD), with 
identical increase/decrease amplitudes, the system reached the 
target value, see Fig. 8.  The steady-state errors caused by 
asymmetry of the increment and decrement amounts only 
occur to the cases with non-ideal control switching. Here by 
non-ideal we mean the control switching takes place not 
exactly on the switching manifold. This may be caused by 
delay, measurement error, etc.  

 

Fig. 7.   Instant queue length traces for SF2 with different c1.  

 
Fig. 8.   The steady state of the AIAD controller 

IV. DYNAMICS ANANYSIS 
In this section, we analyze the AIMD systems based on the 

SMC control theory, to prove their asymptotic stability 
conditions, and other related issues.  

A. Network Model 
We assume that the bottleneck link is shared by N sources. 

Let q denote the queue length of the link, C link capacity, λi 
the sending rate of source i, ζ the total input rate to the link, 

∑=
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N

i Fii tt
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)()( τλζ , τFi the (outbound) delay from source i to 

the link. We get 

 )(ˆ)())(),(()( tCtttqCGtq ++−= ζζ& , (9) 

where )(ˆ tC  represents non-responsive traffic, and ),( ⋅⋅G  the 
instantaneous link utilization. In a general sense, we assume 
that ),( ⋅⋅G  is a functional of q and ζ , so that it can represent 
any bandwidth allocation schemes on the router that make 
adaptive allocation decisions based on current queue length 
and input rate.  

Obviously, )1,0(),( ∈ζqG  for q>0 and ζ>0. For 
mathematical correctness, we further assume that ),( ζqG  are 
twice differentiable with respect to q and ζ. In a real system, 
any change in ζ should lead to consistent changes in q& . That 

is, 0>
∂
∂
ζ
q& should hold for real systems. By plugging this 

condition into (9), it is easy to get: 
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The control system design aims to drive y = q–qd to zero 
through adjustment of λi. To reduce chattering of λi, we adjust 

iλ&  in the same way as the existing AIMD scheme. We 
introduce new control variables iiu λ&∆  and get 
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 On the basis of the network analytical model defined above, 
we present the proof of the system properties discussed so far 
in the following subsection. 

B. System Properties 
The first property that we want to address is the relative 

degree of rate-based congestion control schemes.  

Theorem 1: The relative degree of the system defined by Eqs. 
(9) and (11) is two, when the output is y and control variable is 

iu , respectively. 

Proof: It is easy to verify that 0=
∂
∂ y
ui

&  and 0>
∂
∂ y
ui

&& . 

This means that control input ui explicitly appears in y&&  but 
not in y& .  We just proved the theorem based on the definition 
of the relative degree.   

Recall that we have drawn the same conclusion in the 
simulation that the relative degree of rate-based AIMD is two. 
According to conditions I) and III) in Section II, we now 



 

choose ycyS &1+= , c1>0, as the switching function for the 
rate-based congestion control system.  

Next, we consider the stability of the sliding mode. The 
dynamics of the sliding mode is just the zero dynamics when 
the output is the switching function [24][30]. 

Theorem 2: The zero dynamics of the system defined by Eqs. 
(9) and (11) is asymptotically stable when the output is  

ycyS &1+= , c1>0. 

Proof: We define a transform 
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Its Jacobi matrix  
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is nonsingular because 
C

G 1
≠

∂
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 for arbitrary q and ζ. Thus, 

transform (12) is a global diffeomorphism. Applying (12) to 
(9) and (11), we get 
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Substituting z1=0 into (15), we conclude that, when the output 
is ycyS &1+= , the zero dynamics of the system defined by (9) 
and (11) is expressed as  
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Obviously (16) is asymptotically stable for c1>0.   

Theorem 2 is equivalent to the condition that, the zero 
dynamics of the system defined by (9) and (11) is 
asymptotically stable when the output is y.  

C. AIMD Parameter Setting 
There are three parameters to configure an AIMD 

controller with the switching function SF2: c1, α and β. First, 
we consider c1, which determines the dynamics of the sliding 
mode. Generally, we set c1=1 empirically. If this value is too 
large, there will be a significant damping effect on the sliding 
mode. If too small, it will be necessary to increase (decrease) 
sharply α (β), in order to guarantee stability, i.e., see (21) and 
(22). Both alternatives will run into implementation problems. 

Next, we discuss how to determine α and β values in 
AIMD. By definition, the AIMD adjustment rules can be 
expressed as   
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where τBi is the backward delay from the link to source i. In 
selecting the α and β values, one needs to ensure that the 
system (including the AIMD controller) reaches the 
asymptotical stability in the shortest time.  

For practicality, our goal is to derive a simple design rule 
for selection of α and β without overly complicating the 
analysis. First, we consider the case of homogeneous sources. 
That is, 

 iNλζ ≅ .  (18) 

It will become clear from simulation results that the impact of 
delay is relatively small, and thus we omit the delay terms in 
the subsequent discussion. To satisfy the sliding condition (2), 
we discuss the following cases: 

1) When 0<S , η>S& . From (14), (10), (17) and (18), we 
have 
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2) Similarly, when 0>S , η−<S& . We have 
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where η>0. (19) and (20) together guarantee the existence of 
the sliding mode. That is, the state trajectory will reach 

01 =+= ycyS &  within time 
η

0S , where 0S  is the initial value 

of S. This condition gives a clear guideline on how long one 
needs to wait before the system can reach its sliding mode, 
given the initial state. Based on Theorem 2, the asymptotical 
stability of the sliding mode is guaranteed. Given the above, 
we directly arrive at the following theorem. 

Theorem 3: Under the AIMD control law (17) with a 
switching function ,1 ycyS &+=  c1>0, the queuing dynamic 
system defined by (9) and (11) is asymptotical-ly stable if (19) 
and (20) holds. 

Note that the stability conditions (19) and (20) are 
inequalities. They define the attractive zone of the switching 
manifold 01 =+= ycyS & . Within the attractive zone, S  
monotonically decreases until reaching the switching 



 

manifold. Increasing α and 1/β values will increase the 
attractive zone, and also increase the rate of convergence to 
the sliding mode (see (14)). However, due to delay, 
measurement error, etc., the switching between increase and 
decrease cannot take place exactly on the switching manifold. 
The level of chattering is proportional to the values of α and 
1/β for the case with non-ideal increase-decrease switching.  

Theorem 4: Given that a desired attractive zone is ZA and 
disturbance Ĉ  is bound within D, we should choose the 
following α and 1/β values to guarantee that the switching 
manifold is attractive within ZA: 
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By (19) and (20), it is trivial to prove that these conditions 
hold. For heavily loaded cases, 1≅G , (21) and (22) can be 
simplified into 
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When the disturbance is slowly-changing ( 0ˆ ≅C& ), and the 
required attractive zone of the switching manifold is defined 
by ],[ 21 CkCk∈ζ , where 21 10 kk <<< , and ],0[ˆ

3CkC ∈ , 

10 3 << k , we could ignore C&̂  and simplify (23), and (24), 
into the following forms: 
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At the equilibrium point, when the system remains stable, 
it would be useful to keep the increase rate the same as the 
decrease rate [29]. In that case, we can set  

 
N
C

≅αβ . (27) 

If this constraint is adopted, then one of the two equations 
(25) and (26) can be omitted, yet the conditions guaranteed by 
the omitted term will become void. 

Given the theoretical bounds derived above, one still needs 
to exercise caution in physical design, to make sure that the 
degree of oscillation within the guaranteed zone is acceptable. 
For instance, the α and 1/β values used in the example of Fig. 
6 are smaller than the bounds defined in (23) and (24). Even 
though the system eventually converges, the level of 
chattering is quite visible. 

V. TRANSIENT BEHAVIOR AND DELAY EFFECTS 
η determines the rate of convergence toward the switching 

manifold. On the switching manifold, the system dynamics is 
dominated by 01 =+= ycyS & . To reduce the system response 
time, we prefer a larger η, or equivalently, larger α and β-1. On 
the other hand, in order to reduce the chattering caused by 
delay, we need to decrease the values of α and β-1. Clearly, 
one needs to choose values for α and β-1 to balance the two 
competing factors. A tradeoff technique is to use the boundary 
layer method [24][32][33]. It has been proven that this method 
can contain the chattering in a bounded range. The basic idea 
of the boundary layer method is to suppress chattering by 
smoothing the discontinuity of the control within a 
neighborhood of the switching manifold. It is based on an 
observation that the control variable should be reduced with S 
approaching to zero. As such, we adopt the following 
boundary layer control law as follows: 
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where σ(>0) is the boundary layer width. By experience, we 
choose σ to be equal to one quarter of the buffer size. If it is 
too small, the performance effect is not obvious. But if too 
large, it tends to reduce the sensitivity of the control. α and β 
are determined based on (25) and (26). To implement (28), it 
must use explicit feedback messages that carry the numerical 
values of S to the sources for execution. Although this method 
may improve the performance, its cost is significant. To 
reduce the implementation cost, one can reduce the amount of 
feedback information, but using more than one bit to indicate 
the congestion states. For example, if the system can use only 
two bits for signaling of congestion conditions, (28) can be 
simplified as: 
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An alternative solution to this problem is to make the two 
coefficients α and β adaptive to system states.  In an ideal 



 

system, (19) and (20) can be reduced to 
Nc

C

1

+−
>

ζηα  and 

ζ
ζη

β 1

1
c

C−+
> . Within these two bounds for them, one can 

create adaptive adjustments to α and β.  For instance, one can 
take the difference between the inbound traffic and outbound 
traffic to determine the amounts of adjustments to the two 
values, based on selected optimization criteria. 

VI. CONCLUSION 
In this paper, we proved that the relative degree of the rate-

based AIMD congestion control system is two and its zero 
dynamics is asymptotically stable. It is noted that without 
considering these two factors, heuristic attempts to optimize 
AIMD or similar rate-based congestion control schemes have 
only marginal effects.  

Using the sliding mode control theory, we developed a 
systematic design principle, in which the complex interplay 
between different system parameters can be governed by a 
few simple equations and conditions. Our method permits one 
to make tradeoffs between the amount of feedback 
information, delay, and the expected performance outcomes, 
under explicitly defined conditions. There is little restriction 
on the system model, making this framework broadly 
applicable to a wide range of congestion control algorithms.  
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