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Abstract— In this paper, we aim to study and classify gait
patterns among flat walking, descending stairs, and ascending
stairs using inertial measurement unit (IMU) including triaxial
accelerometers and gyroscopes. Six subjects were invited to
gather gait data of flat walking, descending stairs, and ascend-
ing stairs wearing the shoe-integrated system with free speeds.
The design of the classifier for identifying gait patterns based
on continuous kinematic signals is composed of three steps.
In the first step, we separate gait signals of the six sensors
in the same period into gait segments which are further used
as the units for pattern feature analysis. Secondly, based on
discrete wavelet transform (DWT), the average sum of squares
of wavelet coefficients of each segment for anteroposterior
acceleration, vertical acceleration, and sagittal plane angular
rate are demonstrated and selected as the common features
for gait pattern classification. At the last step, the fuzzy logic
based classifier is proposed according to the distribution of
the common features of different gait patterns. Experimental
results demonstrate the proposed methodology is efficient for
classifying gait patterns during humans’ daily activity.

I. INTRODUCTION

As one of the most common daily activities, walking
attracts most of the researchers’ attentions. Studying and
monitoring ambulatory patterns is of significance, especially
for children and elders. Some adolescents are with the prob-
lem of inappropriate walking habits, resulting in skelecton
deformities. Most elders face the risk of falling which has be-
come the potential killer for them in recent years. Assessment
of different gait patterns of daily living could provides useful
information in studying one individual’s stability and mobil-
ity during locomotion. As the foundation of better assess-
ment for different gait patterns, the ability to automatically
identity different patterns and walking surroundings provides
valuable information for further understanding the relations
between gait pattern and energy consumption. Classification
of gait patterns in daily activity is also helpful for evaluating
the amount of daily exercise especially for elders. Besides,
the ankle-foot orthotic device, which is designed for the
patients of foot problems, can work better with the ability
to understand the gait pattern with which the individual is
walking.

In our daily activities, most of the gait patterns are
related to flat walking, descending stairs, and ascending
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stairs. Therefore, classification of gait patterns including
flat walking, descending stairs, and ascending stairs is the
primal ability for the gait pattern classification system we
proposed. Several studies have been proposed for gait pattern
classification. Wervey et al. studied the plantar pressure
characteristics of level walking, stair climbing, and stair de-
scent using force sensing resistors [1]. Considering kinematic
signals provide useful information for estimating energy
expenditure, the kinematic sensors were selected by most
researches to monitor different gait patterns. Mäntyjärvi et
al. used acceleration sensors to investigate the use of princi-
pal component analysis (PCA) and independent component
analysis (ICA) with wavelet transform for feature generation
in the problem of human activity recognition [2]. Sekine et
al. studied the walking patterns by using the wavelet-based
fractal analysis method based on a triaxial accelerometer unit
attached on the subject’s back [3]. M.N. Nyan et al. classified
gait patterns in the time-frequency domain by installing the
vertical and anteroposterior accelerometers on the shoulder
position of a garment [4].

In this paper, we propose an intelligent shoe-integrated
system for classifying different gait patterns involving flat
walking, descending stairs, and ascending stairs. Different
from the previous works, the kinematic sensors are fixed
on the surface of a shoe which provides the method for
studying the kinematic characteristics of foot with different
gait patterns. Besides, the shoe-integrated system realizes
the non-intrusive monitoring without attaching any hardware
onto the body. Discrete wavelet transform (DWT) is applied
for generating and extracting the useful features for our
application. Based on the generated features, fuzzy logic
based classifier is designed with the membership functions
and rules associated with the distribution of selected features.

This paper is organized as follows. In section II and III,
the architecture of the shoe-integrated system and the exper-
imental design for gait pattern classification are introduced.
We describe the proposed method of how to extract gait
segments, apply DWT for feature generation and reduction,
as well as design fuzzy logic based classifier in section IV.
Experimental results are discussed in section V. We draw the
conclusion and proposed future improvements in the final
section.

II. MEASUREMENT SYSTEM

Fig. 1 shows the system architecture, including the three
major components: inertial measurement unit (IMU) board,
microprocessor-based data gathering module, and wireless
communication subsystem. The whole system is compact and
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lightweight so that it is easily integrated with the individual’s
own shoe.

 

Fig. 1. Experimental set-up

Kinematic data are important parameters for gait analysis,
therefore, we design the IMU board (dimensions: 51×25×7
mm) as one of the most essential parts of the system for gait
pattern classification. Thanks to the development of MEMS
technology, safe, mini-sized, and low-cost sensors are avail-
able. The 3-axis acceleration sensor MMA7260Q (Freescale
Semiconductor) is selected due to its low power, high sen-
sitivity with low noise, and small package. The dimension,
weight, and selectable sensitivity range of MMA7260Q are
6×6×1.45 mm, 2 grams, and ±1.5g/2g/4g/6g. Each uniaxial
signal is calibrated by measuring the outputs of +1g and
-1g (g = 9.81m/s2) under the control of positioning its
sensitive axis orthogonal to the earth’s surface and 180◦

rotation. Two types of angular rate sensors are utilized for our
application. They are Analog Devices ADXRS150 gyroscope
(size: 7×7×3 mm, weight: < 0.5 gram, range: ±150◦/s)
and the Murata ENC-03M gyroscope (size: 12.2×7.0×2.6
mm, weight: 0.4 gram, range: ±300◦/s). The ADXRS150
is a yaw gyroscope which measures the rotation about the
axis perpendicular to the plane of the sensor. In contrast,
the rotating axis of ENC-03M is parallel to the long side
of the sensor. In order to measure three-axis rotation on
one plane of circuit board, two ENC-03M (ENC-03MA and
ENC-03MB) gyroscopes are placed perpendicularly to each
other, with the ADXRS150 placed in the same plane.

The IMU is connected to the microprocessor-based data
gathering module which includes a low-power and high-
performance 8-bit AVR microprocessor-ATmega16L, periph-
eral components (resisters, capacitors, etc.), and one battery.
In the IMU board, the analog-to-digital converter (ADS7844,
Texas Instruments) is used for transforming analog voltage
generated from IMU into digital data. Furthermore, these
digital data are packaged via microprocessor-based data gath-
ering module which effectively decreases the transmission
error and increases the sampling frequency.

In our system, the small amount of digital data makes it
possible to use wireless communication at a high sampling
rate of 100 Hz. Thus, a low-power radio frequency (RF)
communication module, GW100B (56×28×7 mm in size),
is selected for realizing wirelessly transmission in realtime.

The RF transmitter and receiver are connected with the
microprocessor and a laptop respectively. The forward error
correction (FEC) processing of GW100B achieving a low
error rate makes the whole system reliable.

III. EXPERIMENTAL DESIGN

The experiments were performed on 6 subjects (4 females
and 2 males) with age between 24 and 31 years. Their
heights and weights are ranged between 1.62 and 1.74 m,
and 50 and 65 kg. The IMU is securely attached to the
side of the (right) shoe with glue in order to ensure the
fastness and consistency of the sensors’ sensitive axes during
the experiments. The IMU location and reference axes &
planes for the acceleration sensor & gyroscopes are shown
as Fig. 2. According to the sensor placement, the x-axis
of the accelerometer records acceleration signals regarding
the anteroposterior movement; the y-axis records the vertical
movement; and the z-axis records the lateral movement. The
ADXRS150 is applied to measure the angular rate of the foot
in the sagittal plane. The sensitive axes of ENC-03MA and
ENC-03MB gyroscopes are perpendicularly to the transverse
and coronal planes respectively.

 

Fig. 2. IMU location and reference axes & planes for accelerometers &
gyroscopes

Gait pattern data were recorded for each subject wearing
the integrated shoe in three steps. In the first step, they were
asked to walk continuously under outside environment on
the flat ground at their own selected walking speeds. In the
second step, the subjects walked down the staircases at a
slope of 34◦ continuously. In the last step, they walked up
the same staircases as the second step.

IV. METHOD

A. Gait Segments Separation

In order to detect which gait pattern the coming signal
belonged to, firstly, we separate gait signals into gait seg-
ments which are further used as the units for gait pattern
classification. Based on the knowledge of gait, in order to
provide basic functions and minimize required energy, all
locomotion of horizontal walking, stair ascending, and stair
descending involves the gait event called foot flat. During the
foot-flat period, the foot is with its entire length in contact
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with the ground, which results in the moment of all the
kinematic sensors keeping the faint change. Therefore, we
define the gait signal between the consecutive two foot-flat
periods as the gait segment. The problem of separating gait
segments is transformed into how to well define “foot-flat
period”.

As mentioned in section III, each subject used free speed
to finish the gait patterns of flat walking, stair ascending, and
stair descending. Besides, even for the same gait pattern,
they were not required keeping the regular speed. On this
condition, it is unreasonable to define the uniform length of
the foot-flat period based on the experience. To solve this
problem, firstly, the data of x-axis acceleration are low-pass
filtered, with 10-order Butterworth coefficients and 10Hz
cutoff frequency. We extract the symbol points (e.g. the
peaks) of each gait cycle (shown as Fig. 3). The distance
between each two consecutive symbol points is defined as
the factor of length (FOL) changing along with different
subjects, different patterns, or different speeds.
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Fig. 3. Symbol points extraction

During the period of each two consecutive symbol points,
the successive gait sampling points of which the amplitudes
vary in a small range and the data length is more than 1/5 of
FOL are selected. The center of the above selected segment
is regarded as the center of the foot-flat segment. The start
point of the foot-flat segment is 1/6 length of FOL ahead
of the center, and the end point is 1/6 length of FOL after
the center point. The start and end points of each foot-flat
segment are applied as the reference points of gait segment
separation for each of the six sensor signals. Fig. 4 shows
the results of separating gait segments for one subject’s flat
walking pattern. All of the six sensor signals are low-pass
filtered with 30 Hz cutoff frequency.

B. Discrete Wavelet Transform Based Feature Extraction

1) Discrete Wavelet Transform Theory: Wavelet decom-
position in the application of signal feature reduction and ex-
traction has been proved as an useful tool in the field of gait

 

Fig. 4. Results of separating gait segments for one subject’s flat walking.
Red points denote the foot-flat periods. The blue curves between each two
consecutive foot-flat periods are gait segments

analysis [5] [6]. Compared with frequency-based approaches,
such as Fourier transform, wavelet transform shows main
advantage of illuminating both frequency and time domain
information simultaneously. Using wavelet decomposition, it
is possible to describe and extract localized signal features
as well as the global characteristics.

Discrete wavelet transform (DWT) decomposes the origi-
nal signal s(t) into the approximations aj(k) and the details
dj(k) which relies on scaling function ϕj,k(t) and wavelet
function ψj,k(t), respectively:

ϕj,k(t) = 2−j/2ϕ(2−jt− k) (1)

ψj,k(t) = 2−j/2ψ(2−jt− k) (2)

Here, j represents the scaling factor which controls the
compression or dilation for both scaling function ϕ and
wavelet function ψ. The shifting parameter k denotes the
position shifting along the time axis.

The approximations and details of DWT are then defined
as follows:

aj(k) =
∫
s(t)ϕj,k(t)dt (3)

dj(k) =
∫
s(t)ψ∗

j,k(t)dt (4)

where the operator (∗) indicates the complex conjugate.
Therefore, the original signal s(t) can be reconstructed by

the sum of the approximation at the depth of decomposition
level J and the details from level 1 to level J :

s(t) =
∑
k∈Z

aJ (k)ϕJ,k(t) +
∑
k∈Z

J∑
j=1

dj(k)ψj,k(t) (5)

Since the wavelet function ψ and scaling function ϕ are
determined by the high-pass and low-pass filters respectively,
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TABLE I

KINEMATIC PARAMETER DEFINITION

i Kinematic Parameter

1 Anteroposterior Acceleration

2 Vertical Acceleration

3 Lateral Acceleration

4 Sagittal Plane Angular Rate

5 Transverse Plane Angular Rate

6 Coronal Plane Angular Rate

the DWT can be efficiently implemented by iteratively con-
volving the signals with a pair of high-pass and low-pass
finite impulse response filters denoted as g(n) and h(n). The
outputs of the filters are then downsampled by 2.

aj(n) =
∑
k∈Z

aj−1(k)h(k − 2n) (6)

dj(n) =
∑
k∈Z

aj−1(k)g(k − 2n) (7)

2) Feature Extraction: For each gait pattern, every ex-
tracted gait segment for each kinematic parameter at the same
period is decomposed into six scales by haar mother wavelet.
The average sum of squares of approximation coefficients at
level 6 (Ei

a6
) and the detail coefficients from level 1 to level 6

(Ei
dj
j = 1, 2, 3, ..., 6) are composed as the candidate feature

vector T i for the parameter i (listed as Table I):

T i = [ Ei
a6
, Ei

d6
, Ei

d5
, Ei

d4
, Ei

d3
, Ei

d2
, Ei

d1
]
(8)

Ei
a6

=

n0∑
k=1

[
ai
6(k)

]2
n0

(9)

Ei
dj

=

nj∑
k=1

[
di

j(k)
]2

nj
, j = 1, 2, 3, ..., 6 (10)

where n0 represents the number of the approximation
coefficients at level 6, nj denotes the number of the detail
coefficients at level j.

By observation, from all the candidate features, the obvi-
ous features are selected as the common ones for representing
the characteristics of the gait patterns that we study. They
are E1

a6
(the average sum of squares of approximation

coefficients at level 6 for the Anteroposterior Acceleration),
E1

d6
(the average sum of squares of detail coefficients at level

6 for the Anteroposterior Acceleration), E2
d6

(the average
sum of squares of detail coefficients at level 6 for the
Vertical Acceleration), E4

a6
(the average sum of squares of

approximation coefficients at level 6 for the Sagittal Plane
Angular Rate), E4

d5
(the average sum of squares of detail

coefficients at level 5 for the Sagittal Plane Angular Rate),
and E4

d2
(the average sum of squares of detail coefficients at

level 2 for the Sagittal Plane Angular Rate). Fig. 5 to Fig. 10
display the normalized distribution of each selected feature
for the gait patterns of flat walking, descending stairs, and
ascending stairs.

 

Fig. 5. Normalized E1
a6

for flat walking, descending stairs, and ascending
stairs from the 6 subjects and their relationship in classification

 

Fig. 6. Normalized E1
d6

for flat walking, descending stairs, and ascending
stairs from the 6 subjects and their relationship in classification

 

Fig. 7. Normalized E2
d6

for flat walking, descending stairs, and ascending
stairs from the 6 subjects and their relationship in classification
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Fig. 8. Normalized E4
a6

for flat walking, descending stairs, and ascending
stairs from the 6 subjects and their relationship in classification

 

Fig. 9. Normalized E4
d5

for flat walking, descending stairs, and ascending
stairs from the 6 subjects and their relationship in classification

 

Fig. 10. Normalized E4
d2

for flat walking, descending stairs, and ascending
stairs from the 6 subjects and their relationship in classification

C. Fuzzy Logic Classifier

Based on the selected features, a simple approach for
gait pattern classification is the threshold-based method.
However, considering the number of selected features and the
overlap of distribution region happening for some features,
fuzzy logic provides a suitable method for feature fusion and
generates the classifier for our propose.

For designing the fuzzy logic classifier, two major prob-
lems are considered: 1) how to determine the degree of which
input features belong to each of the predefined linguistic
variables (“low” and “high”) and 2) how the classification
rules are defined and interpreted in programmable logic.

1) Membership Function: Solving the first question is
equivalent to design the membership functions (MFs) for
each input. For our problem, each input has two MFs dis-
played as Fig. 11. Table II lists the types of membership func-
tions applying for each input. Based on the understanding of
the feature distributions in Fig. 5 to Fig. 10, two kinds of
membership functions are applied i.e. Z-shaped membership
function (z−shaped) and two-sided Gaussian curve member-
ship function (Gaussian2). Z-shaped membership function
describes the asymmetrical polynomial curve expressed as
(11):

fzmf (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x ≤ a

1 − 2(x−a
a−b )2, a < x ≤ a+b

2

2( b−x
a−b )2, a+b

2 < x ≤ b

0, x ≥ b

(11)

where the parameter a is the threshold value smaller than
which the degree of membership is equal to 1 and larger than
which the degree begins to decline. The parameter b locates
the position from where the degree reaches the minimum
zero.

Two-sided Gaussian membership function depends on two
Gaussian functions which are denoted as (12) and (13):

fgmf
1 (x) = e

−(x−c1)2

2σ2
1 (12)

fgmf
2 (x) = e

−(x−c2)2

2σ2
2 (13)

The first function specified by the parameters c1 and σ1

decides the left-most shape of the two-sided Gaussian mem-
bership function. The second one specified by c2 and σ2

determines the right-most shape. If c1 is smaller than c2, the
degree of the membership function is at unity (1.0) in case
the interval is between c1 and c2. Otherwise, the membership
value is the product of the two Gaussian functions.

2) Rule: If-then rules are established to formulate the
conditional statements of fuzzy logic classifier. The “if” part
of rules describes the inputs’ situations. The corresponding
“then” part describes the fuzzy system’s output in these
situations. A set of rules for classifying gait patterns are listed
in Table III. For example, If E1

a6
is in the range of ’high’,

E1
d6

is ’low’, E2
d6

is ’low’, E4
a6

is ’low’, E4
d5

is ’high’, and
E4

d2
is ’high’; then the human is with the locomotion of ’flat

walking’.
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Fig. 11. Input membership functions

TABLE II

MEMBERSHIP FUNCTIONS FOR INPUTS

Input No. MF 1 (low) MF 2 (high)

1 Gaussian2 Gaussian2

2 z − shaped Gaussian2

3 z − shaped Gaussian2

4 Gaussian2 Gaussian2

5 z − shaped z − shaped

6 z − shaped Gaussian2

TABLE III

IF-THEN RULES

IF THEN
E1

a6 E1
d6

E2
d6

E4
a6 E4

d5
E4

d2
Gait Pattern

high low low low high high Flat Walking
high high low high low high Descending
low low high high low low Ascending

V. EXPERIMENTAL RESULTS

We classify gait patterns into flat walking, descending
stairs, and ascending stairs based on the fuzzy logic classifier
we propose. The detailed classification results for all the six
subjects are listed in Table IV. The classifier’s performance is
evaluated using the common measures: sensitivity (Se) and
specificity (Sp):

Se =
TP

TP + FN
(14)

Sp =
TN

TN + FP
(15)

In the above equations, TP , FN , TN , and FP denotes
the number of true positives, false negatives, true negatives,
and false positives, respectively. Take the sensitivity and
specificity of “Flat Walking” for example, TP is equivalence
to the number of segments for flat walking that are correctly
classified as flat walking. Whereas, FN is the number of
segments for flat walking which are wrongly assigned as the
other two classes (descending or ascending stairs). TN is
equal to the number of segments for the other two classes that
are correctly identify as the corresponding class. Whereas,
FP represents the number of segments for the other two
classes which are incorrectly assigned as flat walking.

As listed in Table IV, for the six subjects, the overall gait
segments of flat walking, descending stairs, and ascending
stairs are 1563, 749, 644, respectively. It is found that the
average sensitivity is 93.91% for flat walking segments,
91.52% for descending segments, and 93.36% for ascending
segments. While the values of specificity are 95.38% for
flat walking segments, 94.30% for descending segments, and
99.45% for ascending segments. Except for the six subjects
whose gait data were analyzed for designing the fuzzy logic
classifier, another four subjects were invited to evaluate the
performance of the system. Table V lists the classification
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TABLE IV

CLASSIFICATION RESULTS

Flat Walking Descending Stairs Ascending Stairs
Subject No. Segment Se (%) Sp (%) Segment Se (%) Sp (%) Segment Se (%) Sp (%)

1 271 90.04 98.03 123 96.75 93.27 135 96.30 98.91

2 275 98.18 97.64 143 96.50 97.98 71 97.18 100

3 207 92.75 97.48 126 94.44 92.42 123 91.87 99.68

4 195 88.21 94.53 111 85.59 92.07 95 100 98.16

5 345 96.52 94.06 119 91.60 94.09 115 84.35 100

6 270 97.78 90.58 127 84.25 95.99 105 90.48 100

Total 1563 - - 749 - - 644 - -

Avg. 260 93.91 95.38 124 91.52 94.30 107 93.36 99.45

TABLE V

CLASSIFICATION RESULTS FOR THE TEST SUBJECTS

Flat Walking Descending Stairs Ascending Stairs
Subject No. Segment Se (%) Sp (%) Segment Se (%) Sp (%) Segment Se (%) Sp (%)

1 183 91.80 96.88 115 93.91 94.22 112 97.32 99.64

2 245 90.61 92.83 140 86.43 91.12 93 92.47 99.13

3 257 94.16 97.07 144 93.75 95.88 134 97.01 98.95

4 229 91.70 98.16 123 96.75 92.40 101 93.07 99.70

Total 914 - - 522 - - 440 - -

Avg. 228 92.06 96.23 130 92.71 93.40 110 94.96 99.35

results of the four test subjects.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we present a shoe-integrated system for
classifying different gait patterns among flat walking, de-
scending stairs, and ascending stairs. First, the prototype of
the intelligent system is designed which mainly includes
a suite of sensors for acquiring kinematic parameters of
foot. Secondly, since the goal of this study is to investigate
the approach for detecting gait patterns, we apply discrete
wavelet transform (DWT) for feature generation and fuzzy
logic based approach for designing the multi-class classi-
fier. Anteroposterior acceleration, vertical acceleration, and
sagittal plane angular rate are demonstrated to provide useful
information for classifying the gait patterns on which we
focus, and the other kinematic parameters are almost useless.
Experimental results of the six training and four testing
subjects demonstrate that the selected features of the average
sum of squares of wavelet coefficients efficiently represent
the characteristics of the gait patterns we study. Also fuzzy
logic based classifier well describes the distribution of the
features. The compact, wireless, and wearable system has
the promising application for assisting to evaluate walking
energy expenditure.

In the future work, we will do more experiments for
investigate the device’s long-term effect. More individuals
especially elders will be invited for the trial to show if the

features used in this paper are still consistent and obvi-
ous. Based on the same selected features, other intelligent
learning algorithms, such as neural networks, support vector
machines (SVM) will also be introduced for comparing the
classification results with the fuzzy logic classifier we pro-
pose in this paper. The scalable and programmable platform
can be further used for other exciting research directions,
such as gait pattern based human control interface.
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