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Choice confidence represents the degree of belief that one's actions are likely to be correct or rewarding and plays
a critical role in optimizing our decisions. Despite progress in understanding the neurobiology of human percep-
tual decision-making, little is known about the representation of confidence. Importantly, it remains unclear
whether confidence forms an integral part of the decision process itself or represents a purely post-decisional sig-
nal. To address this issuewe employed a paradigmwhereby on some trials, prior to indicating their decision, par-
ticipants could opt-out of the task for a small but certain reward. This manipulation captured participants'
confidence on individual trials and allowed us to discriminate between electroencephalographic signals associat-
edwith certain-vs.-uncertain trials. Discrimination increased gradually and peaked well before participants indi-
cated their choice. These signals exhibited a temporal profile consistentwith a process of evidence accumulation,
culminating at time of peak discrimination.Moreover, trial-by-trial fluctuations in the accumulation rate of nom-
inally identical stimuli were predictive of participants' likelihood to opt-out of the task, suggesting that confi-
dence emerges from the decision process itself and is computed continuously as the process unfolds.
Correspondingly, source reconstruction placed these signals in regions previously implicated in decisionmaking,
within the prefrontal and parietal cortices. Crucially, control analyses ensured that these results could not be ex-
plained by stimulus difficulty, lapses in attention or decision accuracy.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Imagine running in the park on a rainy day, trying to discern wheth-
er the person across the lawn is an old friend. The decision to keep con-
centrating on your stride or change directions to go greet them depends
on your level of confidence that it is really them. Choice confidence is
crucial not only for such mundane tasks, but also for more biologically
and socially complex situations. It provides a probabilistic assessment
of expected outcome and can play a key role in how we adjust in
ever-changing environments, learn from trial and error, make better
predictions, and plan future actions.

In recent years, systems and cognitive neuroscience started to exam-
ine the neural correlates underlying perceptual decision making. As a
result, many monkey neurophysiology (Gold and Shadlen, 2007; Kim
and Shadlen, 1999; Mazurek et al., 2003; Newsome et al., 1989;
Shadlen et al., 1996; Shadlen and Newsome, 2001), human neuroimag-
ing (Cheadle et al., 2014; Heekeren et al., 2004, 2006, 2008; Ho et al.,
2009; Ploran et al., 2007; Tosoni et al., 2008), and human electrophysi-
ology (de Lange et al., 2010; Donner et al., 2007, 2009; O'Connell et al.,
2012; Philiastides et al., 2006; Philiastides and Sajda, 2006; Ratcliff
, G12 8QB, UK.
.G. Philiastides).
et al., 2009; Wyart et al., 2012) experiments provided converging sup-
port that perceptual decisions are characterized by a noisy temporal ac-
cumulation of sensory evidence which culminates when an observer
commits to a choice. Despite this progress, however, it remains unclear
how confidence is represented in the human brain and what its rela-
tionship is with the decision process itself.

Current theoretical and experimental accounts have regarded confi-
dence as ameta-cognitive event (i.e. an epiphenomenon of the decision
process) that relies on new information arriving beyond the decision
point (Fleming et al., 2012; Pleskac and Busemeyer, 2010; Yeung and
Summerfield, 2012). Conversely, little has been done in the way of ex-
ploring whether confidence might emerge earlier in the decision pro-
cess and before one commits to a choice. Evidence for the latter has
recently emerged from a limited number of animal studies (Kepecs
et al., 2008; Kiani and Shadlen, 2009; Shadlen and Kiani, 2013), propos-
ing that choice confidence in perceptual judgments might be an inher-
ent property of the decision process itself and that the same neural
generators involved in evidence accumulation also encode choice confi-
dence. To date, it remains unclear whether confidence forms an integral
part of the decision process itself andwhether it emerges from the same
neural generators involved in accumulating evidence for the decision.
Similarly, it is unknown whether confidence is reflected in the rate of
evidence accumulation itself.
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To address these open questions, we collected electroencephalogra-
phy (EEG) data during a binary, delayed-response, task inwhich correct
responses were rewarded with monetary incentives. Importantly, on a
random half of trials and after forming a decision, participants were
given the option to opt out of the task for a smaller but sure reward (a
form of post-decision wager (Kiani and Shadlen, 2009)). We expected
participants to waive the sure reward when they were certain of their
choice, and select it otherwise. This in turn allowed us to use amultivar-
iate single-trial classifier to discriminate between certain-vs.-uncertain
trials to identify the temporal characteristics of the neural correlates of
choice confidence. Importantly, additional control analyseswere carried
out to ensure that confidence-related effects could not be explained by
stimulus difficulty or trial-by-trial changes in attention.

Materials and methods

Participants

Nineteen subjects (7 males) aged between 18 and 36 years
(mean =23.4 years) participated in the experiment. All had normal or
corrected-to-normal vision and reported no history of neurological
problems. Written informed consent was obtained in accordance
with the School of Psychology Ethics Committee at the University of
Nottingham.

Stimuli and task

Stimuli consisted of 20 face (face database, Max Planck Institute for
Biological Cybernetics, Tuebingen, Germany) (Troje and Bulthoff,
1996) and 20 car greyscale images obtained from the Web (size
500 × 500 pixels, 8-bits/pixel). Spatial frequency, contrast, and lumi-
nance were equalized across all images, and the magnitude spectrum
of each image was adjusted to the average magnitude spectrum of all
images. We manipulated the phase spectrum of the images to obtain
noisy stimuli of varying levels of sensory evidence (i.e. we manipulated
the percentage phase coherence of our images) (Dakin et al., 2002).
Stimuli were presented centrally on a plain grey background on a com-
puter screen using PsychoPy software (Peirce, 2007). The display was
situated 1 m away from the subject, with each stimulus subtending ap-
proximately 8 × 8 degrees of visual angle.

We used a training session prior to themain task to identify subject-
specific phase coherence values for the stimuli used in the main task.
Specifically, during training subjects were required to perform a simple
speeded face vs. car categorizations over a total of 600 trials, using im-
ages with 7 different phase coherence values (27.5–42.5%, in incre-
ments of 2.5%). Each image was presented for 0.1 s, and subjects were
allowed a maximum of 1.25 s to make a response. The response was
followed by an inter-trial interval, randomized between .75 and 1.5 s.
Therewere an equal number of face and car stimuli, and thesewere pre-
sented in random order. Based on performance during this session, we
selected three subject-specific phase coherence levels for the main
task (henceforth referred to as low, medium, and high), which spanned
psychophysical threshold (in the range 60–80% accuracy).

For themain experiment, subjects performed face vs. car categoriza-
tions during a delayed-response, post-decision wagering paradigm de-
signed to discriminate between certain and uncertain trials (Fig. 1A).
Importantly, on a randomhalf of the trials, subjectswere offered the op-
tion to opt-out of the task for a smaller (relative to a correct response)
but sure reward (SR). This manipulation encouraged subjects to select
the SR option on low confidence trials (Kiani and Shadlen, 2009). Re-
sponses were rewarded with points (correct = 10 points, incorrect =
0 points, SR choice = 8 points). The total number of points collected
was translated into a monetary payment at the end of the experiment.
Each trial began with a face or car stimulus presented for 0.1 s at one
of the three possible sensory evidence levels. Stimulus presentation
was followed by a forced delay (i.e., the decision time) randomized
between 0.9 and 1.4 s. This delay was introduced prior to revealing
whether participants could opt-out of the task, to ensure they formed
a decision on every trial. Next, a visual response cue (1 s) informed par-
ticipants whether or not the SR option would be available—this was in-
dicated by a green or red fixation cross, respectively. In addition, the
letters “F” (for face) and “C” (for car) where positioned randomly to
the left and right of the centralfixation cross to indicate themappingbe-
tween stimulus and motor effectors (right index and ring fingers, re-
spectively). The latter manipulation aimed at separating the decision
process from motor planning and execution. Subjects indicated their
choice by pressing one of three buttons on a response box (LEFT/
RIGHT for a stimulus choice, MIDDLE for the SR). They were instructed
to respond after the response cue was removed from the screen. A re-
sponse was followed by an inter-trial interval randomized in the
range 1–1.5 s. Overall subjects performed 480 trials, divided into two
blocks of 240 trials each.

EEG data acquisition

We recorded EEG data during performance of the main task, in
an electrostatically shielded room, using a DBPA-1 digital amplifier
(Sensorium Inc., VT, USA), at a sampling rate of 1000Hz. We used
117 Ag/AgCl scalp electrodes and three periocular electrodes placed
below the left eye and at the left and right outer canthi. Additionally, a
chin electrode was used as ground. All channels were referenced to
the left mastoid. Input impedance was adjusted to b50 kOhm. To obtain
accurate event onset times we placed a photodiode on the monitor to
detect the onset of the stimuli. An external response device was used
to collect response times. Both signals were collected on two external
channels on the EEG amplifiers to ensure synchronization with the
EEG data.

EEG data pre-processing

We applied a 0.5–100 Hz band-pass filter to the data to remove slow
DC drifts and high frequency noise. These filters were applied non-
causally (usingMATLAB “filtfilt”) to avoid phase related distortions. Ad-
ditionally, we re-referenced our data to the average of all electrodes. To
remove eye movement artifacts, participants performed an eye move-
ment calibration task prior to the main experiment, during which they
were instructed to blink repeatedly several times while a central fixa-
tion cross was displayed in the center of the computer screen, and to
make lateral and vertical saccades according to the position of the fixa-
tion cross. We recorded the timing of these visual cues and used princi-
pal component analysis to identify linear components associated with
blinks and saccades, which were then removed from the EEG data
(Parra et al., 2005). Finally, we baseline corrected our EEG data, with
the baseline interval defined as the 100 ms prior to stimulus onset.

Single trial EEG analysis

To identify confidence-related activity in the neural data, we used a
single-trial multivariate discriminant analysis (Parra et al., 2002, 2005)
to estimate linear spatial weightings of the EEG sensors, which discrim-
inated between certain (SR waived) and uncertain (SR selected) trials.
We applied our technique to discriminate between the two groups of
trials at various time points, in the time range between 100 ms prior
to, and 1000 ms following the presentation of the visual stimulus (i.e.
during the decision phase of the trial). For each participant we estimat-
ed, within short pre-defined time windows of interest, a projection in
themultidimensional EEG space (i.e. a spatial filter) that maximally dis-
criminated between the two conditions on stimulus-locked data
(Eq. (1)). Unlike conventional, univariate, trial-average event-related
potential analysis, our multivariate approach is designed to spatially in-
tegrate information across the multidimensional sensor space, rather
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than across trials, to increase signal-to-noise ratio while preserving
single-trial information.

Specifically, our method aimed to identify a one-dimensional ‘dis-
criminating component’, y(t), by integrating information across all D
electrodes, which maximally discriminated between the two trial
groups. We use the term ‘component’ instead of ‘source’ to make it
clear that this is a projection of all the activity correlatedwith the under-
lying source. We did this by applying a weighting vectorw (i.e. a spatial
filter) to our multidimensional EEG data (x(t)), as summarized in the
equation below:

y tð Þ ¼ wTx tð Þ ¼
XD

i¼1
wixi tð Þ ð1Þ

We used logistic regression and a reweighted least squares algo-
rithm to learn the optimal discriminating spatial weighting vector w
(Jordan and Jacobs, 1994). We used this approach to identify a w for
several short pre-defined training windows centered at various laten-
cies across our epoch of interest. Specifically, we used a 60 ms training
window and stimulus-locked onset times varying from 100 ms before
until 1000 ms after the stimulus, in increments of 10 ms. The spatial fil-
ters (w) obtained this way applied to an individual trial produce a
measurement of the component amplitude for that trial. In separating
the two groups of trials the discriminator was designed to map the
component amplitudes for one condition to positive values and those
of the other condition to negative values; note that this mapping was
arbitrary. Here, we mapped the high confidence (SR waived) trials to
positive values and the low confidence (SR selected) trials to negative
values.

We quantified the performance of the discriminator for each time
window using the area under a receiver operating characteristic (ROC)
curve, referred to as an Az-value, using a leave-one-out procedure
(Duda et al., 2001). To assess the significance of the discriminator we
used a bootstrapping techniquewherewe used a leave-one-out trial ap-
proach after randomizing the trial labels. We repeated this randomiza-
tion procedure 1000 times to produce a probability distribution for Az,
and estimated the Az leading to a significance level of p b 0.01.

To visualize the profile of the discriminating component, y, across in-
dividual trials, we also constructed discriminant component maps (see
Fig. 2C for an example). To do sowe applied the spatialweighting vector
w of the window that resulted in the highest discrimination perfor-
mance between SR waived vs. SR selected trials, across an extended
time range (100 ms before until 1000 ms after the stimulus). Each
row of one such discriminant component map represents a single trial

image of Fig.�1
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across time.We also sorted trials (i.e., the rows of thesemaps) based on
the amplitude of the discriminating component in the time window of
maximum discrimination. We also used this approach to compute the
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single-trial slopes of this accumulating activity. Slopes were computed
using linear regression between the onset- and peak times of the accu-
mulating activity extracted from individual participants. Specifically, we
extracted subject-specific accumulation onset-times by selecting
(through visual inspection) the time point at which the discriminating
component activity began to rise in a systematic fashion after an initial
dip in the data following any early (non-discriminative) evoked re-
sponses present in the data (as seen in Fig. 3A). Peak accumulation
Fig. 2. Neural representation of choice confidence. A. Classifier performance (Az) during high-v
trial data, for a representative subject. The dotted line represents the subject-specific Az value le
raphy is associated with the discriminating component estimated at time of maximum discrim
fidence discrimination (i.e. SR waived vs. SR chosen) (dark grey). For comparison, mean class
trials is also shown (light grey). Shaded areas represent standard errors across subjects. C. Sing
the subject-specific spatial projections estimated at the time of maximum discrimination (blac
trials (including SR absent trials that were independent of those used to train the classifier). E
trial across time.Within each trial group (top to bottompanel: SRwaived, SR absent, SR selected
Red represents positive and blue negative component amplitudes, respectively. D. Mean comp
confidence groups (SR waived and SR selected). This is consistent with a mixture of “certain”
mixture of red and blue component amplitudes). Error bars are standard errors across subjects.
fidence discriminationwere positively correlatedwith the probability of waiving the SR. To visu
on thedeviations in component amplitude. Importantly, the curve is afit of Eq. (3) to individual t
(light to dark grey represents high to low sensory evidence. F. Mean classifier performance and
phase coherence; results looked very similar for the other two levels). Note that the patterns are
all trials. Shaded area represents standard errors across subjects. G.Mean component amplitude
confident) trials (light grey), split by level of sensory evidence. Error bars are standard errors a
times were selected as the time points of maximum discrimination
across individual participants. To justify our choice for a linear model
in estimating accumulation slopes, we fit three additional models (ex-
ponential, logarithmic and power-law) to the individual subject accu-
mulation patterns, using the same onset and peak accumulation times.
We compared the goodness of fit to the data (mean square error) and
found that the linearmodel provided the best fit to the accumulating ac-
tivity, across all levels of sensory evidence.
s.-low confidence discrimination (i.e. SR waived vs. SR chosen) of stimulus-locked single-
ading to a significance level of p= 0.01, estimated using a bootstrap test. The scalp topog-
ination. B. Mean classifier performance and scalp topography across subjects during con-
ifier performance during accuracy discrimination (i.e. correct vs. incorrect) for SR absent
le-trial discriminant component maps, for a representative subject, obtained by applying
k window) to an extended time range relative to the onset of the stimulus and across all
ach row in these maps represents discriminant component amplitudes, y(t), for a single
), trials are sorted bymean component amplitude (y) at time ofmaximumdiscrimination.
onent amplitude for the SR absent group was situated between those of the high and low
and “uncertain” trials in the SR absent group as can be seen in C for one participant (i.e. a
E. Trial-by-trial deviations from themean component amplitude at time ofmaximum con-
alize this association the data points were computed by grouping trials into five bins based
rials. Grey curves arefits of Eq. (3) to eachof the three levels of sensory evidence separately
scalp topography across subjects within an individual level of sensory evidence (medium
qualitatively very similar to those shown in B for which classificationwas performed over
for correct SRwaived (confident) trials (dark grey) and correct SR absent (on average, less
cross subjects.
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Given the linearity of ourmodel we also computed scalp projections
of the discriminating components resulting from Eq. (1) by estimating a
forward model for each component:

a ¼ X y
yTy

ð2Þ

where the EEGdata (X) anddiscriminating components (y) are now in a
matrix and vector notation, respectively, for convenience (i.e., both X
and y now contain a time dimension). Eq. (2) describes the electrical
coupling of the discriminating component y that explains most of the
activity in X. Strong coupling indicates low attenuation of the compo-
nent y and can be visualized as the intensity of vector a. We used
these scalp projections as ameans of localizing the underlying neuronal
sources (see next section).

Distributed source reconstruction

To spatially localize the resultant discriminating component activity
related to choice confidence we used a distributed source reconstruc-
tion approach based on empirical Bayes (Friston et al., 2008) as imple-
mented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The method
allows for an automatic selection of multiple cortical sources with com-
pact spatial support that are specified in terms of empirical priors, while
the inversion scheme allows for a sparse solution for distributed sources
(refer to (Friston et al., 2008) for details). We used a three-sphere head
model, which comprised of three concentric meshes corresponding to
the scalp, the skull and the cortex. The electrode locations were co-
registered to the meshes using fiducials in both spaces and the head
shape of the average MNI brain.

To compute the electrode activity to be projected onto these loca-
tions, we applied Eq. (2) to extract, at each time point, the scalp activity
thatwas correlatedwith the confidence discriminating component y es-
timated during peak discriminator performance (i.e. we computed a
forward model indexed by time,a(t)). We estimated a(t) in 1 ms data
increments in the time range between 300 and 880 ms after stimulus
onset (i.e. around the peak discrimination time).

Analysis of neural data

We used different logistic regressions to examine how neural activity
correlatedwith participants' behavioral performance. To factor out the ef-
fect of task difficulty in our analyses,we first z-scored, at each level of sen-
sory evidence separately, both the single-trial confidence component
amplitudes (i.e., y at the end of the accumulation process) and the
single-trial slopes of the accumulating activity itself (Acc. slopes). Subse-
quently, we proceeded to perform different regression analyses on these
trial-to-trial residual fluctuations (i.e. deviations from mean y and Acc.
slopes). Regression analyses were performed separately for each subject.

To assess how the fluctuations in discriminant component amplitude
y (estimated from discriminating certain vs. uncertain trials) influenced
participants' likelihood of waiving the sure reward (SR), on trials where
this optionwas available,weperformed the following regression analysis:

PSR Waived ¼ 1þ e− β0 þ β1yð Þh i−1 ð3Þ

We expected a positive correlation between the two quantities (as
larger fluctuations in y amplitudes are expected to reflect more confi-
dent trials), and thus we tested whether the regression coefficients
resulting across subjects (β1s in Eq. (3)) came from a distribution with
mean larger than zero (using a one-tailed t-test). We also repeated
this analysis for each level of sensory evidence separately and tested
whether y remained a significant predictor of participants' likelihood
to waive the SR in each of the three levels. Moreover, we tested for
differences in explanatory power across the three levels by comparing
the resulting regression coefficients (using one-tailed paired t-test).

To assess how the slope of the accumulating activity influenced
behavioral performance, we used the same rationale as with the previ-
ous analysis. Specifically, we used the accumulation slopes as a predic-
tor for the probability of waiving the SR, on trials where this option
was available:

PSR Waived ¼ 1þ e− β0 þ β1 Acc: Slopesð Þh i−1 ð4Þ

We hypothesized that, if confidence is an inherent property of the
accumulation process itself, then accumulation slopes would be posi-
tively correlated with the probability of waiving the SR (i.e., β1 N 0),
andwe performed a one-tailed t-test to formally test for this hypothesis.

Next, we investigated whether accumulation slopes provided addi-
tional explanatory power for the probability of waiving the SR than
what was already conferred by the discriminant component amplitude
y (i.e. whether a significant positive correlation with accumulation
slopes would still be present if the discriminant component amplitude
y was included as an additional predictor in the regression):

PSR Waived ¼ 1þ e− β0 þ β1 y þ β2 Acc: Slopesð Þh i−1 ð5Þ

As before, we performed a one-tailed t-test to assess whether
regression coefficients for accumulation slopes (β2s in Eq. (5)) came
from a distribution with mean larger than zero.

To rule out thepossibility that confidence effects are drivenby changes
in attention across trials we included two additional predictors in the pre-
vious regression model, corresponding to two well-known neural signa-
tures of attention; 1) pre-stimulus EEG power in the α band (αprestim),
which was linked to top-down control of attention (Wyart and Tallon-
Baudry, 2009) andwas shown to correlatewith visual discrimination per-
formance (Thut et al., 2006; van Dijk et al., 2008), resulting from the anal-
ysis described in the next section and 2) an evoked component appearing
220 ms post-stimulus (y220), which was shown (in the same task used
here) to index allocation of attentional resources required for the decision
(Philiastides et al., 2006), and was localized in areas of the frontoparietal
attention network (Philiastides and Sajda, 2007).

PSR Waived ¼ 1þ e− β0 þ β1y þ β2 Acc: Slopes þ β3αprestim þ β4 y220ð Þh i−1 ð6Þ
We expected the fluctuations associated with confidence in

both discriminant component amplitude y and accumulation slopes to
remain significant positive predictors of the likelihood of waiving the
SR, and thus we tested whether the resulting regression coefficients
across subjects (β1s and β2s in Eq. (6)) came from a distribution with
mean larger than zero (using a one-tailed t-test).

Single-trial power analysis
Pre-stimulus alpha power was obtained using a wavelet transform as

in (Mazaheri and Jensen, 2006; Tallon-Baudry et al., 1996). In short, single
trials were convolved by a complex Morlet wavelet w(t,f0)= Aexp(−t2/
2σt)exp(2iπf0t), where σt = m/2πf0, and i is the imaginary unit. A = (σt

√π)−1/2 is a normalization term, whereas the constant m defines the
time-frequency resolution tradeoff andwas set to 7. Thewavelet transfor-
mation produces a complex time series for the frequencies f0 of interest
(here 8-12 Hz). Single-trial power was calculated by averaging the
squared absolute values of the convolutions in the 500 ms preceding the
onset of the stimulus at the subject-specific peak alpha frequency and
occipitoparietal sensor with the highest overall alpha power.

Results

Our participants' behavioral performance indicated that our para-
digm was successful in capturing choice confidence. Specifically,

http://www.fil.ion.ucl.ac.uk/spm/


Fig. 4. Spatial representation of choice confidence. A distributed source reconstruction
technique (Friston et al., 2008) revealed neural generators associated with choice confi-
dence in dorsolateral prefrontal cortex (with a left bias) and in distinct clusters in parietal
cortex, bilaterally (along the intraparietal sulcus). Slice coordinates are given in mm's in
MNI space.
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our participants selected the SR more frequently in more difficult trials
(F (2, 36)= 55.87, p b .001, post hoc paired t-tests, all p b .001, Fig. 1B),
consistent with previous reports showing that confidence scales with
the amount of sensory evidence (Vickers and Packer, 1982). Important-
ly, there was no difference in the frequency of choosing the SR across
face and car trials (t (18) = 1.7, p = 0.11) ensuring this effect was not
driven by one of the two stimulus categories.

More interestingly, accuracy on trials in which participants were of-
fered the SR and rejected it was significantly higher compared to the tri-
als in which the SR was not available (F (1, 18) = 100.26, p b .001,
Fig. 1C). This effect was present for all levels of sensory evidence sug-
gesting that participants waived the SR based on a sense of confidence
on each trial rather than on the level of stimulus difficulty. Overall
there was no significant difference in accuracy between face and car tri-
als indicating that there was no category-specific choice bias (t (18) =
0.76, p = 0.46). As expected (Blank et al., 2013; Philiastides et al.,
2006; Philiastides and Sajda, 2006), there was also a main effect of
stimulus difficulty (F (2, 36) = 28.99, p b .001, post hoc paired t-
tests, all p b .001, Fig. 1C), with accuracy increasing with the amount
of sensory evidence. Finally, we note, that due to the delayed-response
paradigm employed here, there were no significant differences in re-
sponse time between certain (SR waived) and uncertain (SR selected)
trials (420 ms and 406 ms respectively, t (18) = 0.99, p = .33).

To identify confidence-related activity in the neural data, we used
a single-trial multivariate approach to discriminate between certain
(SR waived) and uncertain (SR selected) trials. We observed that the
discriminator's performance increased gradually after 300 ms (i.e.
after early encoding of the stimulus) and peaked around 600 ms post-
stimulus, on average. This pattern of discriminator performance was
visible in individual data (Fig. 2A) as well as in the group average
(Fig. 2B), consistent with the idea that confidence develops gradually
as the decision process unfolds and culminates before one commits to
a choice (Ding and Gold, 2013; Kiani and Shadlen, 2009). To visualize
the temporal profile of this discriminating component activity across
trials, we also constructed single-trial component maps by applying
our subject-specific spatial projections estimated in the time window
yielding maximum confidence discrimination (using Eq. (1)) to an ex-
tended time window. These maps clearly highlight the overall differ-
ence in component amplitude y between SR waived and SR selected
trials and the temporally broad response profile of the discriminating
component, both of which contributed to the discriminator's perfor-
mance. The maps also highlight the trial-by-trial variability in the
amplitude and temporal spread of this component, providing qualita-
tive support that decision confidencemight represent a graded quantity
(Fig. 2C).

To provide further support linking this discriminating component to
choice confidence, we considered trials in which the SR was not avail-
able (i.e. SR absent), and participants were forced to make a face/car
response. Importantly, these trials can be considered as “unseen” data
(they are independent of those used to train the classifier), and can be
subjected through the same neural generators (i.e. spatial projections)
estimated during discrimination of SR waived vs. SR selected trials.
We expected that these trials would contain a mixture of confidence
levels and therefore the resulting mean component amplitude at the
time of peak discrimination would be situated between those of
the certain and uncertain trial groups (i.e. SR waived N SR absent N SR
selected). Indeed, this was the case and the mean SR absent activity
was significantly different from both the SR selected (t (18) =7.53,
p b .001) and SR waived (t (18) =−7.71, p b .001) (Fig. 2D). The mix-
ture of both high and low confidence trials within the SR absent group
can be further appreciated by inspecting the resulting single-trial com-
ponent amplitudes (Fig. 2C; middle panel).

A potential concern is that subjects' choice to waive or select the SR
(and consequently our discriminator's performance) is driven primarily
by the physical properties of the stimulus (i.e. stimulus difficulty). This
is unlikely, as changes in early stimulus encoding would have produced
significant discrimination performance earlier in the trial (i.e. around
170–200 ms post-stimulus, driven by EEG components known to be
affected by stimulus evidence—N170/P200 (Jeffreys, 1996; Liu et al.,
2000; Philiastides et al., 2006)), which was absent in our data (see dis-
criminator performance at the relevant time windows in Fig. 2A, B).
Nonetheless, we performed additional analyses to ensure that stimulus
difficulty could not explain the observed effects.

We first removed the overall influence of stimulus difficulty by com-
puting the trial-to-trial deviations around the mean discriminating
component activity, separately for each level of sensory evidence, and
used these residual fluctuations as predictors of participants' choices
to waive the SR in a single-trial logistic regression analysis (Eq. (3)).
We found a significant positive correlation (t (18)=15.19, p b .001) be-
tween component amplitudes and the probability of waiving the SR (i.e.
bigger amplitudes, higher probability of SR waived; Fig. 2E). Crucially,
we also repeated this regression analysis separately for each level of
sensory evidence and found that our component amplitudes remained
a significant predictor of subjects' opt-out behavior within each level
of stimulus difficulty (all p b .001), without significant differences in ex-
planatory power across the three levels (all p≥ .2; Fig. 2E). Similarly,we
repeated the discrimination between certain-vs.-uncertain trials using
observations from individual levels of sensory evidence and demon-
strated that our discriminator performance remained virtually un-
changed compared to our main analysis (compare Fig. 2B with 2 F for
a single level of difficulty).

To identify the spatial extent of our confidence component, we first
computed a forward model of the discriminating activity (Eq. (2)),
which can be visualized in the form of a scalp map (Fig. 2A, B). Im-
portantly, we used these forward models as a means of localizing the
underlying neural generators using a Bayesian distributed source recon-
struction technique (Friston et al., 2008). The source analysis revealed
sources in areas in the dorsolateral prefrontal cortexwith a pronounced
left bias and in regions of the posterior parietal cortex, bilaterally (Fig. 4;
explained variance N97%), areaswhich have previously been implicated

image of Fig.�4
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in perceptual decision making and evidence accumulation, both in the
human (Heekeren et al., 2006; Ploran et al., 2007; Tosoni et al., 2008)
and primate (Kiani and Shadlen, 2009; Kim and Shadlen, 1999;
Shadlen and Newsome, 2001) brains. These results, coupled with
the gradual build-up of confidence-related discriminating activity
(Figs. 2A, B), suggest that choice confidence might be encoded in the
same brain areas supporting evidence accumulation and decision for-
mation. Moreover, they raise the intriguing possibility that confidence
is computed continuously as the decision process unfolds, thus being
reflected in the slope of the process of evidence accumulation itself
(Ding and Gold, 2013).

To formally test these predictions, we subjected the data through the
same neural generators (i.e. spatial projections) estimated for the confi-
dence discrimination but stratified our trials along the sensory evidence
dimension instead. In doing so, we observed ramp-like activity starting,
on average, at 300 ms post-stimulus, which built up gradually to the
time of peak confidence discrimination (Fig. 3A), and whose slope
was parametrically modulated by the amount of sensory evidence
(F (2,36) = 10.6, p b 0.001, Fig. 3B), consistent with a process of evi-
dence accumulation (Kelly and O'Connell, 2013; Philiastides et al., in
press). Importantly, this finding suggests that choice confidence and ev-
idence accumulation share common neural generators. To investigate
whether confidence emerges from the decision process itself, we tested
whether the trial-by-trial build-up rates of the accumulating activity
were predictive of participants' opt-out behavior. Specifically, we used
single-trial slope estimates of the accumulating activity to predict par-
ticipants' decisions to waive the SR in a new logistic regression model
(Eq. (4)). As in the previous analysis, overall stimulus difficulty effects
were removed from individual trials. We found a significant positive
correlation (t (18) = 11.94, p b .001) between the slope of accumula-
tion and the probability of waiving the SR (i.e. steeper slopes, higher
probability of SR waived, Fig. 3C).

A potential confound of the previous analysis is that the slope of the
accumulating activity simply echoes the confidence effects we identi-
fied earlier on the amplitude of our discriminating component, as the
latter were extracted, on average, near the end of the accumulating ac-
tivity. Crucially, we found that the two quantities were only partially
correlated (r = .39, p b .001), due to the high degree of inter-trial vari-
ability in internal components of decision processing as has been de-
scribed previously by accumulation-to-bound models (Bogacz et al.,
2006; Mulder et al., 2014; Ratcliff et al., 2009; van Maanen et al.,
2011). As such we found that each exerted a separate influence on our
participants' opt-out behavior (Eq. (5), t (18) = 2.96, p = .008),
which suggests that traces of confidence begin to develop as early as
the decision process itself and continue to be reflected in the process
of evidence accumulation, becoming progressively more robust as the
decision unfolds.

Importantly, to rule out that our confidence effects are driven by
changes in attention across individual trials we exploited two well-
known neural signatures of attention (pre-stimulus alpha (Wyart and
Tallon-Baudry, 2009) and a post-stimulus evoked response indexing al-
location of attentional resources (Philiastides et al., 2006)), which we
used as additional predictors of our participants' opt-out behavior in a
different logistic regression model (Eq. (6)). Crucially, we found that
our original confidence component amplitudes and accumulation
slopes remained significant predictors of the likelihood of waiving the
SR (component amplitudes: t (18) = 14.51, p b .001, one-tailed t-test;
slopes: t (18)=2.15, p b .05). Furthermore, to test whether local fluctu-
ations in attention could further explain our findings, we used a serial
autocorrelation regression analysis to predict our discriminator compo-
nent amplitudes (y) on the current trial using those on the immediately
preceding five trials and found no significant effects (all p N 0.1). Taken
together, these results provide compelling evidence that our observed
effects could not be explained purely by changes in attention.

To ensure that accuracy, which was previously shown to correlate
partially with decision confidence (Vickers and Packer, 1982; Vickers
et al., 1985), is not responsible for the reported effects, we performed
two additional control analyses. First, we used SR absent trials, which
contained trial-to-trial accuracy information and trained a separate
classifier to discriminate between correct and incorrect trials. If our con-
fidence effects were a mere manifestation of differences between
correct and incorrect trials then classification performance would
have been comparable to that obtained along the confidence dimension.
Instead, classifier performance was significantly reduced relative to our
SRwaived-vs.-SR selected discrimination (Fig. 2B, t (18)= 5.1, p b .001,
paired t-test). In addition, we correlated the resulting trial-by-trial
component amplitudes with those estimated for the same set of trials
(SR absent) using the spatial projections from the original confidence
discrimination and found only a partial correlation (r = 0.21, p b .001).

Finally, we performed an analysis in which we subjected the data
through the same neural generators (i.e. spatial projections) estimated
for the confidence discrimination and partitioned our trials in two
groups in a way that ensured accuracy remained constant while confi-
dence was altered across the groups. Specifically, we compared compo-
nent activity between correct SR waived trials (confident trials) and
correct SR absent trials (which, were on average, less confident as
they contained a mixture of confident and non-confident choices). We
found that the component amplitudes for the more confident group of
trials were significantly higher with persistent effects across all levels
of sensory evidence (Fig. 2G, paired t-tests, all pb. 001). Corresponding-
ly, the temporal profile of this component activity revealed that accu-
mulation slopes for more confident trials were significantly higher
across all levels of sensory evidence (Fig. 3D, paired t-tests, all p b .01),
providing further support that confidence is reflected in the rate of evi-
dence accumulation itself. Taken together, these results endorse the no-
tion that our reported confidence effects could not be explained purely
by differences in decision accuracy.

Discussion

Here,we used amultivariate single-trial EEG approach, coupledwith
a distributed source reconstruction technique, to provide a mechanistic
account on how decision confidence is represented in the human brain.
We showed that a neural representation of confidence arises as early as
the decision process itself and becomes progressively more robust as
the decision unfolds, culminating shortly before one commits to a
choice. Importantly, we demonstrated that this representation is
reflected in the rate of evidence accumulation, thereby linking the de-
velopment of choice confidence to the same neural mechanism used
to form the decision itself. Consistentwith this interpretation, source re-
construction placed confidence-related activity in regions previously
implicated in evidence accumulation and decision making in human
prefrontal and parietal cortices (Filimon et al., 2013; Heekeren et al.,
2006; Ploran et al., 2007; Tosoni et al., 2008).

Together, these findings lend support to the idea that there exists a
general-purpose decision making network involved in accumulating
evidence for a decision while simultaneously encoding the confidence
in that decision. Overall, our findings are in line with a recent report
showing that neurons in lateral intraparietal cortex of the primate
brain represent the formation of the decision as well as the degree of
confidence underlying that decision (Kiani and Shadlen, 2009). Similar-
ly, a growing body of evidence from animal neurophysiology suggests
that when the brain forms a decision it does so in a way that resembles
a Bayesian inference, in the sense that even for binary choices, a decision
is formed by sampling and gradually accruing information from proba-
bility distributions rather than single estimates representing each of the
alternatives (Ma et al., 2006; Zemel et al., 1998). In this framework, a
measure of confidence arising directly from the decision process itself
can therefore be thought of as a graded quantity, representing degree
of belief that an impending choice will be correct.

Key to establishing a quantitative association between decision
confidence and neural activity was our ability to exploit single-trial
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information within each class of nominally identical stimuli, thereby
controlling for confounding effects of stimulus difficulty and attention.
Specifically, we demonstrated that trial-by-trial fluctuations in
confidence-related neural activity remained predictive of opt-out be-
havior even after accounting for the overall amount of task difficulty
aswell aswhen extracted and tested separately for each level of sensory
evidence. Similarly, we addressed the possibility that our confidence ef-
fects merely reflected changes in participants' attentional state on each
trial, either prior to, or during the decision process.

In doing so, we considered two neural measures, which have previ-
ously been hypothesized to reflect top-down influences of attention on
the decision process during visual discriminations, and investigated the
extent towhich they predicted participants' choice confidence (i.e., opt-
out behavior). Importantly, we showed that neither of these measures
hindered the explanatory power of the confidence discriminating neu-
ral activity. Likewise, we also showed that local fluctuations in attention
across trials, as assessed via a serial autocorrelation regression analysis,
could not provide an adequate account of our findings. While we do not
dismiss the possibility that trial to trial variability in attentionmay exert
a top-down influence on the efficiency of stimulus encoding and/or de-
cision process, and ultimately on the level of confidence in one's choice,
our findings render a purely attentional account of the observed confi-
dence effects unlikely.

In another control analysis, we also tested the potential influence
of decision accuracy on the observed confidence-related effects. Specif-
ically,we demonstrated that discrimination performance alongour con-
fidence dimension was significantly higher than that of a separate
classifier trained to discriminate accuracy (correct-vs.-error SR absent
trials). Correspondingly, spatial discrimination projections estimated
from the two classifiers and applied independently to SR absent trials
produced single-trial component amplitudes that were only partially
correlated (Vickers and Packer, 1982; Vickers et al., 1985). Finally,
confidence effects persisted even after accuracy was accounted for (i.e.
comparing confident vs. less-confidence trials), confirming that accura-
cy alone could not explain our confidence effects during the decision
phase.

Although we designed our experiment to discourage explicit
updating of reward expectations (i.e. we did not provide feedback as
towhether a choicewas correct or not) it remains possible that our rep-
resentation of choice confidence can be explained by the expected value
of the chosen option in so far as the latter is correlated with one's belief
that their choice is correct. This alternative interpretation, however, is
unlikely, as expected value signals are thought to reflect the conse-
quence of the decision process, in the sense that value can only be
encoded once a decision has been formed (Glascher et al., 2009). Here,
we clearly demonstrated that confidence arises with the decision pro-
cess itself, and it develops gradually as the process unfolds. In addition,
the regions we found associated with choice confidence are outside the
human reward network,which is known to reflect expected reward and
value signals (Dreher et al., 2006; Kable and Glimcher, 2007; Knutson
et al., 2005; Philiastides et al., 2010; Rangel et al., 2008; Rolls et al.,
2008; Rushworth and Behrens, 2008).

Our findings that confidence signals appear as early as the process of
evidence accumulation itself constitute strong evidence against a purely
metacognitive (post-decisional) account of decision confidence, consis-
tent with a recent report of pre-decisional signals of self-reported confi-
denceduringperceptual choices (Graziano et al., 2014; Zizlsperger et al.,
2014). Importantly, however, our results do not exclude the possibility
that confidence representations persist beyond the decision point and
after a behavioral choice was made (Fleming et al., 2012; Pleskac and
Busemeyer, 2010). Nonetheless, these metacognitive representations
are captured using post-decisional subjective confidence reports,
which are likely to be subjected to additional influences arriving after
the decision point (e.g. internal noise, expected reward etc.). In addi-
tion, the extent to which these post-decisional signals influence
metacognitive assessment and subsequent choices remains unclear.
Future studies designed to investigate how pre- and post-decisional
confidence signals interact to shape behavior would be necessary. In
particular, understanding how confidence traces arising from the pro-
cess of decision formation are communicated to regions implicated in
metacognitive appraisal would be required (De Martino et al., 2013;
Fleming et al., 2012; Hebart et al., 2014).

In summary, choice confidence represents the degree of belief that
one's actions are likely to be correct and as such can play a critical role
in how we interact with the world around us. Here, we provided a
mechanistic account on how confidence is represented in the human
brain and provided strong evidence that linked the development of
choice confidence to the same mechanism and neural generators used
to form the decision itself. These results could provide the foundation
upon which future computational studies could continue to interrogate
the mechanistic details of the influence of confidence on decision mak-
ing (Zylberberg et al., 2012). Crucially, our findings coupled with our
ability to exploit the relevant neural signatures non-invasively and on
a trial-by-trial basis, may have direct implications for decision-making
problems that rely on inconclusive or partially ambiguous evidence.
Specifically, they can provide the platform for developing cognitive
interfaces that can help facilitate, and ultimately optimize decision
making (Sajda et al., 2007, 2009).
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