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Abstract 

Developing the “right” new products is critical to firm success and is often cited as a key competitive 

dimension.  This paper addresses the link between new product development (NPD) portfolio strategy and 

firm performance.  To do so, we first characterize resource allocation and NPD portfolio strategy in a 

general theoretical framework.  We then proceed to use our framework to analyze a popular practice in 

NPD portfolio management: the use of strategic buckets for managing the NPD portfolio.  Strategic 

buckets encourage the division of the overall NPD resource budget into smaller, more focused budgets.  

Our results indicate that the “optimal” strategic bucket size depends on environmental complexity 

(defined as the number of unknown interdependencies among technology and market parameters that 

determine product performance).  As complexity increases, portfolios that include a greater number of 

revolutionary programs perform better.  We also explore conditions that create a need to balance the NPD 

portfolio: competition intensity (the probability of firm extinction) and environmental instability (the 

probability of changes to the underlying performance functions) prompt for a balanced portfolio.  We 

conclude by presenting specific methods that can aid strategic level decision-making in NPD portfolio 

management. 
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1.  INTRODUCTION 

Developing the “right” new products is critical to medium and long-term success of firms (Roussel et al. 

1991, Cooper and Kleinschmidt 1996, Miller and Morris 1999).  Companies that make poor choices with 

respect to their new product development (NPD) portfolio run the risk of losing their competitive 

advantage.  Examples abound in practice: DuPont experienced trouble because the company diverted the 

majority of its estimated $2 billion yearly R&D budget to improving established business lines (Barrett 

2003).  Drug maker AstraZeneca revealed the decision to restructure its portfolio to include more 

incremental projects (Pilling 2000).  Kodak is investing resources in revolutionary new technologies to 

catch up in the digital photography market, despite the fact that the company was synonymous with 

photography for the better part of the twentieth century (Schoenberger 2003).  These cases underscore the 

reality that effective resource allocation and NPD portfolio strategy profoundly impact firm success.   

Managing the NPD portfolio is a challenge because of scarce resources, market and technical 

uncertainties, product/project complexities and interactions, and the desire to achieve strategic alignment, 

among other difficulties (Kavadias and Loch 2003).  The Product Development Management Association 

(PDMA) recently issued a report that paints a bleak picture with respect to this challenge (Adams and 

Boike 2004).  According to the report, the majority of firms emphasize incremental innovation efforts in 

their NPD portfolio.  Such emphasis appears to be negatively correlated with firm performance.  Indeed, 

the PDMA study goes on to indicate that success is strongly linked to a mix of efforts that devote 

resources to “fundamentally new” or “new to the world” products and services in addition to incremental 

improvements.   

Practitioners have developed several methods that aim to increase effectiveness when allocating 

resources across NPD initiatives of varying degrees of innovativeness.  A number of case based 

frameworks cite the trade-offs between product and process innovation, risk and reward, and market and 

technology risk among others (Roussel et al. 1991, Wheelwright and Clark 1992, Cooper et al. 1998).  

These tools summarize best practices for dividing resources and achieving “balance” across R&D 

endeavors.  Though the tools may have different names, all of these practices encourage the division of 
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the overall R&D resource budget into smaller, more focused budgets.  The result is a set of strategic 

buckets for managing the R&D portfolio (Cooper and Edgett 2003, Cooper et al. 2004).2  A strategic 

bucket is money set aside for R&D projects aligned with a particular strategy (Roussel et al. 1991, 

Wheelwright and Clark 1992, Cooper et al. 1998).  The strategies addressed by different strategic buckets 

may involve process improvements and cost reductions, minor product modifications, revolutionary next 

generation technological research, or groundbreaking R&D initiatives, among others.3  Figure 1 depicts a 

NPD portfolio strategy with four strategic buckets. 

                                                      
2  Depending on the study such buckets are named process or product innovation buckets, or high-risk versus low-

risk buckets, etc.  All of these terms are centered on the degree of innovation pursued by the programs in the 
strategic bucket. 

3 Strategic buckets may also address specific market segments (e.g., industrial, retail, consumer) or specific 
geographic focus (e.g., North America, Latin America, Asia).  The framework presented in this paper subsumes 
all of these possibilities. 

Figure 1:  An example of a strategic buckets strategy comprised of four buckets: 

cost reductions, improvements and modifications, new products, and 

advanced technologies (adapted from Cooper et al. 2001). 

Advanced 
Technologies

Cost
Reductions

Improvements and 
Modifications

New Products

89 1 1267-F 

85 2 98-DD 

65 5 0919-K 

77 4 97-D 

81 3 150-C 

Score Rank Project 

92 1 X-Tra 

75 4 Mini 

79 3 GamX 

85 2 NaCl 

Score Rank Project 

92 1 Walden 

75 4 Sanaco 

79 3 Gamma 

85 2 Proteus 

Score Rank Project 

89 1 Midget 

85 2 Kool-K 

65 5 Tri-123 

77 4 Pop-Up 

81 3 Essy 

Score Rank Project 
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The primary goal of strategic buckets is to create non-permeable partitions between R&D 

programs to ensure access to resources for projects that are seemingly unattractive to commonly used 

project valuation methods.  Net present value (NPV) or real options analyses tend to disfavor advanced 

technology and new-to-the-world projects due to the increased risk (high likelihood of failure) and the 

long-term payoffs associated with these revolutionary projects.  In addition, these tools are difficult to use 

when it comes to cutting-edge projects because data may be unreliable or highly biased (Kavadias et al. 

2005).  In summary, the goal of a strategic bucket is to “protect” resources for revolutionary R&D 

projects.  As an alternative to protecting resources, managers can sway the result of a NPV analysis in 

favor of a more revolutionary project by increasing the value of the project (the infamous $10 billion 

market opportunity).  However, the results can just as easily be swayed in the opposite direction by 

lowering the probability of success for a revolutionary project.  Such lack of transparency in decision-

making creates problems for managers (Loch et al. 2001).  Strategic buckets avoid these problems by 

earmarking resources for revolutionary R&D projects from the beginning. 

The main idea underlying the strategic buckets methodology is relatively straightforward.  

However, in practice, the decision is ad-hoc with minimal theoretical foundation.  Resource allocation 

according to a strategic buckets rule suffers limitations because it is difficult to operationalize and obtain 

robust NPD data at the strategic level.  Thus, the suggested balance in resource allocation remains merely 

a guideline.  Despite the widespread use of strategic buckets in practice, we lack rigorous theoretical 

understanding about the drivers of resource allocation strategy in NPD and the need for strategic buckets. 

The difficulty inherent in the use of strategic buckets stems from underlying decision problem 

characteristics.  The resource allocation decision at the strategic level exhibits complexity and is 

influenced by decision maker’s bounded rationality (Simon 1982, Hagel 1988).  Complexity may exist 

due to a variety of reasons including market and technological uncertainty, and the existence of multiple 

technology and market variables that define overall product performance (Leonard-Barton 1995, Pich et 

al. 2002).  In addition, these factors may interact to some degree, as exemplified by market 

cannibalization phenomena or technical design dependencies (Moorthy 1988, Smith and Eppinger 1997, 
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Brown and Eisenhardt 1998, Kavadias and Loch 2003).  Along similar lines, lack of available 

information, data processing limitations, and knowledge limitations restrict decision-maker’s ability to 

optimize resource allocation decisions (Simon 1955).  The inability to optimize results in bounded 

rationality – the fact that decision-makers have inadequate information regarding the precise structure of 

product performance functions, e.g., how the relevant performance drivers interact to determine 

performance (Simon 1982, Kahneman 2003).  Despite the complexity of the problem and their bounded 

rationality, managers must still make decisions with respect to R&D resource allocation. 

Academic research stresses the importance of establishing “the right balance” between resource 

funding for incremental and revolutionary NPD efforts.  Classic studies use mathematical programming 

techniques that focus on individual projects as the unit of analysis and model the interplay between 

capacity availability and project value (knapsack problems).  This research stream seldom accounts for 

strategic variables due to their intangible nature, and managers rarely adopt the resulting suggestions 

(Loch et al. 2001, Shane and Ulrich 2004).  In addition, mathematical programming efforts do not 

disentangle the drivers of project performance and they subsume all knowledge into a single parameter: 

the project value.  This practice ignores the fact that project value is a result of decisions made during the 

design and development of a new product (Fleming 2001, Ulrich and Eppinger 2004).  Several case 

studies and field research efforts have addressed strategic issues, but unfortunately these efforts do not 

offer theoretical background regarding the existence of strategic buckets, or their proposed size (Roussel 

et al. 1991, Wheelwright and Clark 1992, Cooper et al. 1998). 

The goal of this manuscript is twofold.  First, we develop a theoretical framework that addresses 

resource allocation and NPD portfolio strategy.  Second, we use our framework to provide a rigorous 

theoretical foundation for the strategic bucket methodology.  Our theory highlights the subtle, yet 

fundamental role of interactions between technology and market performance drivers.  We show that 

complex business environments with numerous interactions call for more resources allocated to 

revolutionary innovation efforts while environments with little or no interactions favor incremental 

projects.  In addition, our framework emphasizes the central role of time in evaluating the efficiency of a 
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strategic bucket.  Revolutionary efforts require a window of time in order to realize positive outcomes.  

We show that the number of interactions directly impacts this window of time and we illustrate how 

different strategic bucket strategies pay off more or less during the window of time.  The time element of 

an innovation outcome sheds light on two additional factors: competition intensity (likelihood of firm 

extinction) and environmental instability (likelihood of major technological or market disruptions).  

Higher levels for either of these two factors favors smaller allocation to revolutionary efforts.  These 

results stem from the direct impact of competition and environmental instability on the time window 

required for revolutionary efforts to pay off. 

The remainder of this paper is organized as follows: in section 2 we review the relevant literature, 

and in section 3 we introduce our model of R&D resource allocation.  The results are presented in section 

4 beginning with the base result that shows why strategic buckets are a necessity in the presence of 

complexity, and continuing with the analysis of additional resource allocation drivers.  In section 5, we 

synthesize our findings into a framework that describes the effectiveness of strategic buckets of different 

sizes in various industrial environments. 

 

2.  LITERATURE REVIEW 

In this section we briefly review the relevant literature.  Two research streams relate to our study: 

i) research on resource allocation and NPD portfolio management and ii) research on complexity and 

bounded rationality in strategic decision-making. 

2.1  Resource Allocation and NPD Portfolio Management 

There is an abundance of literature that analyzes the resource allocation problem at the operational level 

(Beged-Dov 1965, Souder 1973 and 1978, Fox & Baker 1984, Czajikowski & Jones 1986, Schmidt & 

Freeland 1992, Benson et al. 1993, Dickinson et al. 2001).  Analysis at the operational level often consists 

of mixed integer programming techniques due to the “in” or “out” nature of projects at this level of 

decision-making.  This methodology is highly sensitive to parameter changes and practitioners often 
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ignore the results because they lack robustness and transparency (Loch et al. 2001, Kavadias and Loch 

2003).  These limitations were recently discussed in a review paper for the technological innovation and 

product development area of Management Science.  According to the department editors, “A substantial 

body of research has been focused on the question of which innovation projects to pursue... Surveys have 

shown that these models have found very little use in practice… If 50 years of research in an area has 

generated very little managerial impact, perhaps it is time for new approaches.” (Shane and Ulrich 2004, 

p. 136).  In light of these limitations, practitioners often prefer multi-dimensional decision making tools 

(Liberatore 1987, Saaty 1994, Hammonds et al. 1998) or ranking methods (Brenner 1994, Loch 2000).  

The popularity of these methods stems from the ability to explicitly include metrics for market risk, 

technical risk, strategic alignment, and customer preferences.  Still, these methods rarely exhibit rigorous 

theoretical foundations (Calantone et al. 1996, Kavadias and Loch 2003) and they cannot avoid the 

limitations associated with mixed integer programming.4  As a result, decision-makers often manipulate 

the methods to generate desired outcomes rather than using them as true decision support tools. 

 A number of theoretic models have addressed the choice of R&D projects at the strategic level.  

Ali et al. (1993) consider a competitive setting where firms decide whether to invest in a single 

incremental or revolutionary product.  They identify return on investment as a primary decision driver but 

they do not address a portfolio decision.  Furthermore, we consider a dynamic search setting and 

managerial bounded rationality (both of which are more consistent with NPD in practice).  Loch and 

Kavadias (2002) focus on the single firm optimal investment in NPD programs.  They do not explicitly 

account for the nature of the R&D investment (incremental or revolutionary) and they assume perfect 

knowledge of the program payoff functions and the existing interactions between programs.  This 

assumption excludes truly innovative efforts, since the managers cannot realistically have perfect 

knowledge regarding such efforts.  Adner and Levinthal (2001) consider the balance between product 

innovation and process innovation in technology development.  They focus on demand side effects (e.g. 

                                                      
4  Ranking methods apply simplifying heuristics similar in nature to those used in mixed integer programs. 
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customer adoption), and they assume that the payoff structure contains a unique optimum.  We allow for a 

payoff structure that exhibits multiple local optima and changes dynamically. 

 There exists significant research that specifically addresses the practice of strategic buckets as a 

resource allocation tool (Roussel et al. 1991, Wheelwright and Clark 1992, Cooper et al. 1997, Cooper et 

al. 2004).  These papers provide descriptive evidence of the use of strategic buckets and the resulting 

benefits.  They often take the form of survey questionnaires that ask practitioners to name the tools used 

in R&D portfolio management (e.g. benchmarking best practices).  These studies clearly point to the 

importance of strategic buckets and they are our starting point.  We aim to enhance our understanding of 

the need for strategic buckets and provide rigorous theoretical foundation for their use in practice. 

2.2  Complexity, Bounded Rationality, and Firm Strategy 

Academic research recognizes the fact that many decision problems found in practice exhibit complex 

structure (Nelson and Winter 1982) and decision makers often exhibit bounded rationality (Simon 1982 

and references therein, Kahneman 2003).  To model these problem characteristics, researchers treat 

decision-makers as myopic (i.e. they exhibit limited cognition regarding future outcomes when faced with 

a performance function).  A simple yet rigorous methodology that addresses the analysis of such decision-

making situations is the NK model of complex performance landscapes.  This methodology builds upon 

the seminal work of Stuart Kauffman (Kauffman and Levin 1987, Kauffman 1993) and employs fitness 

(correlation) landscapes to model performance functions.  In doing so, the NK model considers a set of 

agents that “move” around a landscape from point to point based on a predetermined strategy.5 

A number of researchers have adopted complex performance landscapes to model various 

managerial problems such as organizational design and evolution (Levinthal 1997, Rivkin and Siggelkow 

2003, Siggelkow and Levinthal 2003, Ethiraj and Levinthal 2004, Siggelkow and Rivkin 2005), problem 

                                                      
5  Along similar lines, researchers in the geological sciences have developed a method called RSM (Response 

Surface Methodology; see Kushner 1964, Betro 1991, Jones 2001).  The goal of RSM is to establish efficient 
search techniques for complex functionals; yet this stream focuses more on deriving heuristic rules of search and 
with respect to our problem it does not provide additional insights compared to the simpler and straightforward 
NK methodology. 
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solving (Gavetti and Levinthal 2000, Rivkin 2000, Sommer and Loch 2004, Mihm et al. 2003), and 

technological innovation (Kauffman et al. 2000, Fleming and Sorenson 2001, Sorenson 2002, Fleming 

and Sorenson 2004).  Kauffman et al. (2000) is the work most closely related to our study.  They analyze 

the degree of search effort (more or less revolutionary) as a function of the firm’s current performance; 

however, they do not account for the resource allocation decision across multiple innovation efforts.  We 

build upon their work since we explicitly account for the resource allocation decision in the NPD 

portfolio.  In addition, our search strategies are not simply random draws from a distance related payoff 

distribution.  Rather, we assume that managers have myopic decision-making capabilities with respect to 

product development choices. 

Although the above researchers have contributed to our understanding of organizational design 

and evolution, problem solving, and technological innovation, none have addressed the important issue of 

effective resource allocation in the NPD portfolio.  We differ from the extant literature in that we develop 

a general model of resource allocation decisions taking into account the notions of complexity among 

performance drivers and bounded rationality – two critical elements that define this problem at the 

strategic level of decision-making.  We use the NK methodology to analyze our model and obtain results.  

However, our fundamental contributions are to provide a theoretical framework that operationalizes NPD 

portfolio strategy and to provide a theoretical foundation for the use of strategic buckets in managing the 

NPD portfolio. 

 

3.  A MODEL OF THE NPD PORTFOLIO 

In this section we introduce a general model of the NPD portfolio and the strategic resource allocation 

decisions that managers must make.  At the strategic level, decision makers do not know exactly how 

product specific market or technology attributes impact performance (Pich et al. 2002), yet they are still 

forced to make decisions regarding investment in NPD projects and they are subject to the performance 

outcomes (e.g. product revenue).  Anecdotal evidence from practice (Cooper et al. 2004) and the relevant 

practitioner literature both highlight the fact that managers create strategic buckets to address the 
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challenges associated with resource allocation strategy.  Our goal is to offer a theoretically sound 

foundation for the existence of strategic buckets, and explore how different factors determine the size and 

nature of the buckets. 

3.1  Individual Products, the Portfolio, and Performance  

Borrowing from the engineering design and marketing literature (Urban and Hauser 1993, Ulrich 1995, 

Srinivasan et al. 1996, 1997, Maier and Rechtin 2000), we model each of the firm’s M products, ωi , as a 

bundle of technology and market attributes, (x1,x2,...,xN ) .  The technology and market attributes 

combine to deliver economic benefit to the firm (Krishnan and Ulrich 2001).  The attributes represent 

parameters such as the core product architecture, component technologies, design choices, manufacturing 

process specifications, customer preferences, and customer demographic information, among others.  We 

assume that each technology or market attribute takes one of S discrete values so that x j ∈ {1,2,...,S} .   

 The economic benefit (performance) of a product is a function of the technology and market 

attributes.  Each attribute j contributes individually to product performance.  The performance 

contribution of attribute x j  may depend on K ∈ {0,1,...,N −1}  other attributes through a function 

f j (x j ,x j1, x j 2,...,x jK ) .  This modeling convention captures potential design or market interactions (Smith 

and Eppinger 1997, Loch and Kavadias 2002, Mihm et al. 2003).  For example, in the automotive 

industry, the contribution of vehicle design characteristics (shape, aerodynamics, aesthetics) to product 

sales may depend on customer technology awareness in the target market segment (Thomke and Nimgade 

1998, Eppinger et al. 1994).  The number of interactions per attribute need not be the same for each 

product.  However, the average number of interactions, K, offers a surrogate metric for the underlying 

complexity of the technology-market setting in which the firm operates.  Interaction complexity is a result 

of “a large number of parts that interact in non-simple ways… [such that] given the properties of the 

parts and the laws of their interactions, it is not a trivial matter to infer the properties of the whole.” 

(Simon 1969, p. 195).  Note, that there is a distinct conceptual difference between an unknown yet robust 

underlying structure that determines the interactions among the technology and market attributes, and the 
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likelihood that this underlying structure is subjected to fundamental changes that alter the interactions and 

consequently change the performance functions (Tushman and Anderson 1986).  We define product 

performance as a general function of the performance contributions from each technology and market 

attribute: F(ωi) = G( f1, f2,..., fN )  for  i =1,2,...,M , and firm (portfolio) performance as the sum over the 

M products in the portfolio: Π = F(ω i )i=1
M

� . 

3.2  Strategic Buckets: Incremental and Revolutionary Innovation 

A strategic bucket rule consists of allocating resources to a subset of R&D programs with a common 

purpose (strategy-driven scope).  Similar to Loch and Kavadias (2002) we define an R&D program as an 

initiative whose goal is to improve an existing product line or develop a new product line.  R&D 

programs entail innovative efforts that strive to alter the product attributes in order to enhance existing 

product performance or create a new product all together.  An individual R&D program may target any 

number ∆ ∈ {1,2,...,N} product attributes.  A set of programs may attempt to improve performance 

through small changes to product or process design.  For these R&D programs, we let ∆ ∈ {1,2,...,d}  

with Nd <<  and we define the innovation effort as incremental.  Other programs may pursue long-term 

development entailing greater risk but higher potential reward.  For these programs, we let 

∆ ∈ {d +1,d + 2,...,N} and the innovation is defined as revolutionary.  Thus, d determines the degree of 

innovation for each R&D program.  According to our formal definition, R&D programs may be “more” 

or “less” incremental or revolutionary depending on the number of attributes that are actually altered.  

Furthermore, our definition of innovative effort extends beyond the standard notion of technological 

change.  Since a product is defined as a collection of technology and market attributes, and R&D 

programs alter ∆  attributes, innovation takes on a spatial quality similar to the Schumpeterian definition 

of innovation (“To produce means to combine forces and materials within our reach… to produce other 

things… means to combine these materials and forces differently.”  Schumpeter 1934, page 65).  Figure 2 

is a schematic representation of incremental and revolutionary R&D programs. 
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 Decision-makers are faced with the problem of allocating resources into R&D programs.  

Prompted by significant empirical and anecdotal evidence, we focus on resource allocation according to a 

strategic buckets rule (Roussel et al. 1991, Wheelwright and Clark 1992, Cooper et al. 1998).  A strategic 

buckets rule allocates the R&D resources into broad categories such as cost reductions, minor product 

modifications, and major R&D initiatives.  The categories discriminate between types of innovative 

search, such as incremental (relatively low risk, easy to complete projects with lower payoffs) or 

revolutionary (higher risk projects that are more difficult to complete but may provide greater payoff 

potential).  Let p be the proportion of revolutionary R&D programs in the portfolio – thus p determines 

the size of the revolutionary strategic bucket.  The remaining R&D programs in the portfolio are assumed 

to be incremental.6 

                                                      
6 Our model can be extended to include multiple strategic buckets with varying degrees of incremental or 

revolutionary search (in which case d is a function of the bucket type).  Our fundamental insights are not altered 
by this extension, hence we have chosen to keep the analysis straightforward and we focus on one incremental 
and one revolutionary strategic bucket. 
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Figure 2:  Schematic representation of incremental and revolutionary 

innovation efforts (adapted from Cooper et al. 2001). 
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Once the strategic bucket decision is made, R&D programs are funded and they progress over 

time.  A time period in our model corresponds to a portfolio review period in practice (e.g. quarterly or 

semi-annually).  Between every portfolio review period incremental and revolutionary R&D programs 

modify technology and market attributes to potentially improve product performance.  Since innovation 

activities require time to realize significant progress, we assume that the strategic bucket allocation does 

not change from period to period; rather each bucket reflects a strategic vision that pertains to future 

products.7  A good example is the development of alternative fuel engines in the auto industry.  

Companies have funded R&D programs in this specific technological area for several years, if not 

decades, resulting in hybrid forms that offer distinct competitive advantages (Scientific American 1998).  

Taking this practice into account, we assume that firms make long-term commitments to the incremental 

and revolutionary R&D programs in each strategic bucket.  Our model is aligned with the common notion 

that an R&D program may consist of several projects that are reviewed in each portfolio review meeting. 

Incremental projects improve product performance through changes to a small number of product 

attributes, leading to new products that are closely related to the existing products (e.g. product extensions 

or derivative products).  Due to the configuration proximity, and the fact that R&D engineers have some 

basic decision-making ability, we assume they can test a large number of product configurations within a 

distance  d  and adopt the product configuration with the highest performance. 

Revolutionary innovation entails higher risk and potentially higher reward.  Programs funded by 

the revolutionary strategic bucket lead to products that are entirely different (in terms of their attribute 

configuration) to the firm’s existing products.  We consider that revolutionary R&D programs are not as 

systematic as incremental R&D programs.  Thus, in each period, R&D staff are able to conceive a few 

new (random) configurations of technology and market attributes beyond a distance d.  The new product 

configurations are tested and the best option is adopted only if it results in higher performance compared 

to the existing product configuration. 

                                                      
7  In fact, the possibility of quick re-allocation of resources is cited in the literature as the fundamental reason for the 

use of strategic buckets (Cooper et al. 1997).  As mentioned previously, the purpose of a strategic bucket is to 
protect resources from short-term based re-allocation. 
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Thus, incremental innovation allows managers to explore a large number of potential product 

configurations in a single period while revolutionary innovation constrains managers to explore only a 

few potential product configurations.  Since the M programs exist in the same technology-market 

environment, they may share common technology and market attributes, and are subject to potential 

interactions.  Still, each R&D program evolves independently.  Figure 3 provides schematic 

representations of the stochastic paths of performance over time for incremental and revolutionary 

programs.  Note that our model captures the stochastic advancement of R&D programs in a manner that is 

consistent with practice: incremental programs improve performance easily in every period (although the 

performance improves in relatively small increments) while revolutionary programs may advance several 

periods without success, but the payoff potential in any given period is greater.  Revolutionary innovation 

is also more risky than incremental innovation because revolutionary programs randomly search for new 

product solutions while incremental programs systematically alter product attributes.  Thus, the 

probability of finding a successful new product solution is smaller for revolutionary projects compared to 

incremental projects. 

Figure 3:  Schematic representation of the stochastic paths for 

incremental and revolutionary innovation. 

Incremental R&D Program

Time

Revolutionary R&D Program

Time
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 The choice of a strategic bucket size translates into costs as follows: assume that the firm’s 

budget in each portfolio review period is Nc for each R&D program.8  The cost difference between 

incremental and revolutionary innovation is captured at the implementation level.  An incremental 

program searches a large subset of the 
N
k
� 
� 
� � 
� 
� 

k=1

d

�
 
different product solutions within d (and the best option 

is chosen).  A revolutionary project results in only a few new product solutions (and the best option is 

chosen only if performance is better than the existing product solution).  Thus, incremental innovation is 

less expensive than revolutionary innovation on a per solution basis.  These assumptions are consistent 

with R&D portfolio practice as evidenced by the following statement: “Money invested in R&D can be 

spent either in incremental projects or revolutionary projects – it’s just a matter of what we tell our 

scientists to look for.  Of course, in terms of implementation they are not equivalent.  Over an equal 

period of time, incremental projects generate more [easy] feasible solutions and are less risky than 

revolutionary projects.” (Kloeber 2005).  A similar distinction between types of innovative activity is 

evidenced in Sosa (2005), where a firm that specializes in developing cosmetics faces a challenging 

portfolio decision.  In that context, chemists perform “search iterations” in the same amount of time 

independently of the type of innovation that is pursued.  However, the likelihood that each search is 

successful differs significantly depending on whether the search is incremental or revolutionary. 

3.3  Model Analysis  

We have developed a general model of the R&D portfolio and the strategic decisions facing managers.  In 

order to specify our model and allow for analysis, we borrow from Kauffman and Levin’s (1987) and 

Kauffman’s (1993) NK model of tunable fitness landscapes.  The NK model is appropriate in situations 

where decision-makers exhibit bounded rationality and the performance functions are complex. 

We assume without loss of generality that G(⋅)  is a simple average so the performance of each 

product is: F(ωi ) = N −1 f j
j=1

N

�   for  i =1,2,...,M .  Note that each individual attribute contribution, f j , is 

                                                      
8  The parameter c proxies the cost of innovation in terms of the “average cost to explore an attribute change”. 
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weighed equally in F(ω i) .  Still, that does not imply equal contribution from each attribute to product 

performance.  On the contrary, through f j  and the interdependencies between product attributes, different 

attributes will result in different impact on product performance.  We let N =15 so that each product is 

defined by 15 key technology or market attributes.  Without loss of generality, let S = 2 and assume that 

each attribute can take a value of 0 or 1, leading to a total of 2N  potential configurations for each 

product.9  Each individual performance contribution f j  is a random U(0,1) number that corresponds to a 

particular substring (x j ,x j1,x j 2,..., x jK ) .10  We assume that each f j  value is randomly generated to 

account for the fact that managers have limited knowledge (i.e. bounded rationality) regarding the payoff 

structure.  We assume that each firm has M = 20 programs in the NPD portfolio and we let d =1 so that 

each incremental program alters ∆ = 1 product attribute in each period.  We assume that each incremental 

program can search all 15 potential product configurations within d, and each revolutionary program can 

generate one potential solution.  We have chosen to focus on the extreme case defined by d =1 in order to 

stress the importance of resource protection.  In addition, any d >1 poses issues concerning the ability to 

fully optimize over all incremental product configurations. 

 

4.  RESULTS AND DISCUSSION 

In this section we provide theoretical foundation for the use of strategic buckets and we outline necessary 

conditions for the effectiveness of strategic buckets as a tool for managing the NPD portfolio.  We then 

proceed to discuss various factors that influence how strategic buckets should be used.   

                                                      
9  Neither the structural properties of our problem, nor the qualitative nature of our results are altered by the binary 

value assumption (Kaufmann 1993). 
10 Without loss of generality, we assume that the performance contribution of each attribute depends on the K 

successive attributes.  For example, if  K = 3 then x1 contributes f1(x1,x2,x3,x4 ) .  If j + K > N , the interaction 
substring is treated as circular without loss of generality (Levinthal 1997).   
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4.1  The Theoretical Foundation for Strategic Buckets 

Initially, we consider firms that operate in an environment with minimal interactions between technology 

and market parameters.  Figure 4 depicts average firm performance (for 500 sample paths) when there is 

no interaction complexity (K = 0).  Each firm is defined by the size of its revolutionary strategic bucket, 

which may range from p = 0% to p =100%.  The figure depicts 10%, 50%, and 90% strategies, although 

our analysis includes the full range of revolutionary strategic bucket sizes.  We choose to focus on small, 

medium, and large revolutionary bucket sizes to facilitate exposition.  The nature of our results is 

consistent across the continuous range of  p. 

The amount of time required for a firm to reach the maximum performance is increasing in the 

size of the revolutionary strategic bucket.11  This intuitive result highlights the advantage of incremental 

innovation strategies (small size revolutionary bucket) in environments with no complexity.  When 

K = 0, every point (global optimum excluded) has at least one adjacent point with higher performance.  

                                                      
11  To ease exposition we have terminated the simulation after 200 periods.  In a K = 0 environment all firms will 

eventually reach the global optimum if given enough time.  The notion of time plays an important role in 
subsequent result, thus we have chosen to remain consistent in our presentation for K = 0.  

Figure 4:  Average firm performance as a function of time for different size 

revolutionary buckets in an environment with no complexity (K = 0).   
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NPD programs that focus effort on incremental improvements advance quickly towards the maximum 

performance.  In contrast, firms with medium to large size revolutionary buckets suffer a time 

disadvantage because of unsuccessful revolutionary programs.  Thus, for K = 0, incremental innovation 

strategies dominate and revolutionary innovation strategies under-perform due to the risk that they bear.   

The effectiveness of the revolutionary bucket increases as the technology-market interaction 

complexity increases.  Figures 5(a) and 5(b) illustrate the impact of complexity (for K = 6 and K =10 

respectively).  Higher levels of complexity render resource allocation towards revolutionary NPD 

programs more effective in the long-term.  The fact that incremental NPD programs increase short-term 

performance while revolutionary NPD programs achieve long-term performance gives rise to a crossing 

time.  We define a crossing time as the period in which a strategy with larger size revolutionary bucket 

(greater number of revolutionary programs) begins to outperform a strategy with a smaller size 

revolutionary bucket (lesser number of revolutionary programs).  The crossing time defines a window of 

time during which revolutionary innovation efforts under perform on average, and potentially hamper 

firm performance. 

Figure 5: Average firm performance as a function of time for different size revolutionary buckets. 
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The existence of a crossing time is a direct outcome of the “rugged” nature of the performance 

functions in environments with significant interaction complexity (Kauffman 1993).  In complex 

technology-market environments, incremental NPD programs offer an initial advantage because they 

quickly develop solutions that allow them to obtain higher performance relative to revolutionary NPD 

programs.  Unfortunately, the advantage is short-lived because incremental efforts are not able to benefit 

from a holistic approach (Ulrich and Ellison 1998) and they become “trapped” in local performance 

optima.  Revolutionary NPD efforts improve performance slower on average.  The time inefficiency of 

revolutionary programs is due to the fact that they entail risky solutions resulting from drastic product 

alterations.  However, the holistic approach and perspective of revolutionary programs (expressed through 

the extended distance of search) allows them to escape local optima.  Thus, firms with larger 

revolutionary buckets benefit from exploring distant parts of the environment. 

Figures 4 and 5 show that interaction complexity creates the need to protect resources for 

revolutionary NPD programs.  In the absence of complexity, there is no need for a strategic bucket.12  

Thus, our theoretical framework identifies complexity as the underlying structural feature that drives the 

need for strategic buckets when managing the NPD portfolio.  The following Proposition formalizes the 

result: 

PROPOSITION:  For any K > 0, there exists a time, t(K), at which a strategy with larger size revolutionary 

strategic bucket outperforms any strategy with smaller size revolutionary strategic bucket.  Furthermore, 

t(K) is a decreasing function of the interaction complexity K. 

PROOF:  provided in the appendix. 

Note that despite the generality of our assumptions, the average return curves depicted in Figures 4 and 5 

exhibit properties first assumed by Loch and Kavadias (2002).  Our framework highlights the theoretical 

reasons for the emergence of these curves and how the curves are interrelated. 

                                                      
12  Note that an environment with K = 0 demands a strategy of 0% revolutionary programs.  Although a firm with a 

strategy of p > 0% will eventually reach the same performance as a firm with a strategy of p = 0%, the efficiency 
in terms of time is far greater for the p = 0% strategy. 
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The base-case results presented thus far highlight the benefit of revolutionary innovation 

strategies in complex environments.  Furthermore, we see that these benefits increase (relative to 

incremental innovation) as complexity increases.  Although average performance is an important metric, 

it is also insightful to consider the issue of firm risk (proxied through variance) and the strategic bucket.  

Research in economics and finance has highlighted the important role of risk-aversion in managerial 

decision-making (Pratt 1964, Arrow 1965, Kimball 1993, Holt and Laury 2002).  Figure 6(a) and 6(b) 

show the variance of firm performance as a function of time for environments with no complexity and 

high complexity ( K = 0  and K = 8  respectively).  In the absence of complexity, firms with an incremental 

strategic bucket strategy reduce risk immediately as all products converge to the globally optimal 

configuration.  However, in a complex environment, incremental NPD programs converge to multiple 

local optima and thus do not reduce variance as quickly as revolutionary NPD programs.  The 

revolutionary programs continue to reduce variance over time, as they are able to escape locally optimal 

product configurations and further improve performance.  Thus, when risk is taken into account, a 

revolutionary strategic bucket delivers a secondary benefit in the presence of complexity – it reduces 

portfolio risk.  The observation is of significant managerial value because it illustrates an “environmental” 

Figure 6: Variance of firm performance as a function of time for different size revolutionary 

buckets.   % Revolutionary Projects: 10% 50% 90%
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aspect of portfolio risk in addition to typical considerations of risk.  Previous research stresses that 

managers should be aware of individual program risk (due to the nature of search of an individual 

program).  We extend the consideration of risk and recognize the effect of interaction complexity on the 

overall portfolio risk.  Thus, our theoretical framework is able to distinguish between individual program 

risk and overall firm risk in a straightforward manner.  Of course, a strategy of larger size revolutionary 

bucket reduces portfolio risk in the long-term if and only if we assume that the firm will continue to 

operate under the same environmental conditions in the future. 

Our base-case results reveal the critical role of time when evaluating the effectiveness of a 

strategic bucket strategy.  The use of strategic buckets creates a mix of incremental and revolutionary 

innovation.  The combination of innovation efforts in turn creates tension with respect to the amount of 

time that it takes to fully realize the benefits of a particular NPD program.  The fact that revolutionary 

NPD programs take longer to deliver results poses an additional challenge to managers who must ensure 

that the firm remains financially viable during this critical time window.  From a practical standpoint, our 

question echoes managerial concerns such as, “what size bucket ensures that the company survives long 

enough to seize the benefits of revolutionary innovation efforts?”  Theoretically the question translates 

into, “what size revolutionary bucket guarantees survival during the interval [0,t(K)]?”  In that light, the 

bang-bang nature of our base case result should not concern the reader.13  Thus far we have addressed 

only the effects of complexity on the strategic bucket.  In reality, there are a number of factors that create 

the need for “balanced” resource allocation in the NPD portfolio (Wheelwright and Clark 1992).  We 

address the issue of firm survival and “balance” in the NPD portfolio in the section that follows. 

4.2  How to Use Strategic Buckets: Factors That Influence Balance in the NPD Portfolio 

The preceding section demonstrated that complexity is an underlying phenomenon that drives the 

existence of strategic buckets.  Furthermore, our results highlight the importance of time in evaluating the 

effectiveness of strategic buckets: as the technological and market complexity increases, revolutionary 

                                                      
13  The most effective strategy in the long-run is p = 0% for K = 0 and p = 100% for K > 0. 
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NPD programs pay dividends earlier in time.  However, managers must ensure that the firm survives until 

the crossing time to increase the probability that revolutionary NPD programs deliver beneficial results.  

There has been substantial research that deals with firm evolution and survival and the reasons for firm 

failure (Hannan and Freeman 1977, Nelson and Winter 1982).  Many of these reasons can be attributed to 

the level of competition faced by the firm (Porter 1985). 

 In this section we focus on the effect of firm survival (or conversely the probability that the firm 

becomes extinct) on the strategic bucket size.  We enrich our basic model setup by explicitly considering 

the relative performance of the firm with respect to other firms within the same environment.  Because of 

competition, the firm may become extinct if performance is extremely low.  Our experimental structure 

proceeds as follows: we consider a population of 500 firms in which the size of the revolutionary bucket 

is evenly distributed throughout the population (i.e. equal number of firms with 10%, 50%, and 90% 

revolutionary buckets).  In each period, the lowest δ firms in terms of performance become extinct.  

When a firm becomes extinct it is replaced by a new firm with randomly placed products and the same 

revolutionary bucket size.  Our assumption that the overall population of firms remains unchanged is 

consistent with research in evolutionary economics and population dynamics (Levinthal 1997, Rivkin 

2000).  Note that we allow for the entire range of firm extinction possibilities through δ .  For example, a 

large number of firms may become extinct in every period (high levels of incessant competition) or a 

small number of firms may become extinct in every period (negligible competition levels). 

Figure 7(a) depicts average firm performance over time in an environment with no complexity 

( K = 0) and enough competition to render 10% of the firms extinct in each period (δ = 50).  Firms with 

small revolutionary buckets are the most resilient in technology-market environments that do not exhibit 

complexity.  As explained previously, firms with small revolutionary buckets progress directly towards 

the global optimum very quickly in an environment with K = 0.  Conversely, firms with larger 

revolutionary buckets do not improve performance quickly and become extinct.  Thus, in settings with 

negligible complexity, even in the presence of competition, the basic result of §4.1 holds.   
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The effect of competition is more intricate in the presence of complexity.  Figure 7(b) shows 

average firm performance over time in a complex environment ( K = 8) in the presence of competition.  

There is a significant interval of time during which a “balanced” portfolio strategy (i.e. 50% revolutionary 

projects) outperforms the 10% or 90% revolutionary bucket strategy.  Firms with a balanced portfolio 

(medium size revolutionary bucket) are able to exploit a mix of innovation efforts that delivers long-term 

performance while ensuring that the firm survives until the crossing time t(K).  The result is of managerial 

importance because it enforces the need for “balanced” portfolio strategies, a realistic consideration that is 

confirmed by anecdotal evidence in past studies (Cooper et al. 1997, Cooper et al. 2004).  Furthermore, 

the presence of competition together with complexity gives rise to multiple crossing times rather than a 

single crossing time.  The existence of multiple crossing times leads us to another critical question that 

impacts the use of strategic buckets: how long will the technology and market interactions that determine 

performance remain stable?  The answer to this question determines the degree of balance in the NPD 

portfolio necessary to achieve effectiveness in the long run. 

Figure 7: Average firm performance as a function of time for different size 

revolutionary buckets in the presence of competition. 
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Based on the above observations, environmental stability emerges as an important consideration 

for determining the most effective allocation across strategic buckets.  Environmental stability represents 

the likelihood of structural changes in the underlying program performance functions.  Low (high) 

stability implies that the probability that the firm faces the same performance functions in subsequent 

review meetings is low (high).  In practice, several exogenous factors may reshape the performance 

functions.  The technology management literature highlights the effects of competence destroying 

changes (Tushman and Anderson 1986), i.e. breakthrough inventions that redefine an industry.  Note that 

our framework does not discount such a case.  It could very well be that an environmental disruption is 

created by the adoption of a new product configuration by a firm.  Another possibility is the periodic shift 

in market preferences, a phenomenon that Christensen observed in the hard-disk industry (Christensen 

1997, Christensen and Raynor 2003).  The landscape may also change as a dominant design emerges in 

an industry and the competitive dimensions are altered (Henderson and Clark 1990, Abernathy 1994), or 

because governmental regulation resets the rules of competition. An example of the latter is the Bayh-

Dole Act passed in 1980, which allowed the commercialization of federally funded university research.  

This legislation increased the creation of R&D consortia and immediately redefined the rules of 

competition (Thursby and Thursby 2002). 

To gain insight into the effects of environmental stability, we extend our model setup.  We define 

the likelihood s, which determines the payoff for the firm’s products in period t +1 conditioned on the 

performance functions in period  t  as follows: 

 
�

F(ω i | �f ) =
G( f1, f2,..., fN )  w.p.  s    

G( �f1, �f2 ,..., �fN )  w.p.  1-s
�
	



 for  i =1,2,...,M  [1] 

where ��f  is the vector of attribute contribution functions.14  Thus, we model environmental disruptions by 

changing the performance functions that firms face.  A disruption in our setting does not alter the firm’s 

product configuration; rather the performance contribution of each attribute, f j , is randomly redefined by 

                                                      
14  Our model of environmental stability can be equivalently stated by a probabilistic change from 

�
G(⋅) to �G(⋅) . 



24 

a new U(0,1) random number.  However, we maintain the same level of complexity in order to isolate the 

effect of portfolio strategy on firm performance.15  The simulation proceeds according to the same 

mechanics as the base-case with the exception that a disruption occurs in every period with probability (1 

– s).  Thus, we allow the time of disruption to be a random variable. 

Figure 8(a) shows the average firm performance over time when K = 12 and s = 0.975 (high 

complexity and low stability). The figure highlights the significance of environmental stability.  Despite 

the presence of complexity, low stability emphasizes the need for an incremental portfolio strategy.  The 

result stems from the inability of revolutionary NPD programs to reap benefits between environmental 

disruptions.  Figure 8(b) depicts the average performance for K = 12 and s = 0.995 (high complexity and 

high stability).  In this case, firms with larger size revolutionary buckets dominate in the long run, 

although the steady-state performance is dampened due to the lack of stability. 

                                                      
15  The modeling setup described here assumes uncorrelated landscapes in order to capture the extreme phenomena.  

We also conducted disruption experiments in which the landscapes were correlated.  As expected, correlated 
landscapes mute the effects of disruptions since product configurations with high performance in one landscape 
will also achieve high performance on the other landscape (details are available from the authors). 

Figure 8: Average firm performance as a function of time for different size 

revolutionary buckets in the presence of environmental instabilty. 
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The result bears managerial significance since it alludes to the notion of “turbulence” in an 

environment (Ansoff 1979, Mintzberg 1979 and 1993, Eisenhardt 1989, Brown and Eisenhardt 1998, 

Rivkin and Siggelkow 2005).  Utterback (1994) characterizes different phases of industrial evolution 

(fluid, transitional, and specific) and he emphasizes that the rate of technological change is high during 

the pre dominant design phase (the “fluid” phase).  Cristensen et al. (2002) also address the fact that 

different strategies are successful early versus later in the industry lifecycle – the former being defined by 

high complexity while the latter is defined by low complexity.  Our analysis of stability adds to these 

insights and highlights the fact that managers must assess the level of instability when making portfolio 

decisions.  Moreover, the need for resource protection (strategic buckets) depends on the level of 

instability.  Our results highlight that the critical issue is whether revolutionary NPD programs can return 

significant benefits within the crossing times that determine overall portfolio performance.  

Analysis of firm risk (variance in performance) under environmental instability offers a different 

insight compared to the results presented in the §4.1.  Figure 9 shows the variance of firm performance as 

a function of time in an environment with high complexity (K = 12) and high stability ( s = 0.995).  In the 

Figure 9: Variance of firm performance as a function of time for different size 

revolutionary buckets in the presence of environmental instabilty. 
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presence of complexity, even the slightest probability of technological and market disruption creates 

additional risk for firms with large revolutionary strategic buckets, and this portfolio risk is increasing 

over time.16  Thus, high levels of instability prompt for incremental innovation strategies (smaller size 

revolutionary bucket) both from the perspective of average firm performance and variance of firm 

performance.  Although variance reduction is often cited as an appropriate goal, it should be noted that 

variance also creates opportunities.  Higher instability identifies a subset of firms with large revolutionary 

buckets that may be the most successful (since we have a high mean low variance set compared to a set 

with lower mean but much higher variance).  The presence of instability defines a clear trade-off between 

how much risk the firm willing to accept and the relative average payoff, particularly in terms of long-run 

performance.    

 

5.  CONCLUSIONS AND MANAGERIAL IMPACT 

We have introduced a theoretical framework that makes two contributions to existing knowledge.  First, 

we operationalize incremental innovation (systematic search for similar product configurations), 

revolutionary innovation (random search for entirely different configurations), environmental complexity 

(interactions between product performance drivers), bounded rationality (lack of knowledge regarding 

performance functions and the inability to fully optimize), and environmental instability (the probability 

that performance functions change).  To date, NPD portfolio considerations at the strategic level are for 

the most part qualitative.  The need for a solid theoretical framework is imperative because NPD portfolio 

decisions operationalize firm strategy.  Second, we offer a rigorous treatment of the long proposed 

method of dividing resources into innovation-focused strategic buckets.  The practitioner literature 

describes multiple cases of successful implementation, yet no specifics are offered aside from a 

consistently repeated suggestion to “balance” the NPD portfolio. 

                                                      
16  We measured variance of firm performance over time for various levels of complexity and stability.  The results 

were consistent with those presented here (details are available from the authors). 
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5.1  Managerial Insights: When and How to Use Strategic Buckets 

Our theoretical framework highlights the fact that the underlying interaction complexity among attributes 

that determine product (and subsequently overall portfolio) performance is a necessary condition for the 

employment of strategic buckets.  This is particularly true given the fact that managers exhibit bounded 

rationality.  The size of incremental and revolutionary strategic buckets depends not only on complexity, 

but also on competition and stability of the technology-market environment. 

Our results show that firms that find themselves in low complexity environments should always 

pursue incremental innovation strategies (i.e., there is no need for a revolutionary strategic bucket).  

Conversely, firms that find themselves in complex environments must consider additional issues.  If the 

likelihood of a technological or market disruption is high, an incremental strategy is once again 

advocated.  However, if the probability of technological or market disruptions is relatively low, firms 

benefit from “protecting” resources through the use of revolutionary strategic buckets.  Low probability 

of environmental disruption coupled with high levels of competition prompt for a balanced strategic 

bucket strategy.  On the other hand, low probability of environmental disruption coupled with relatively 

low levels of competition prompt for significant investment in the revolutionary strategic bucket.  These 

findings are summarized in Figure 10. 

5.2  Unraveling Complexity and Coping with Bounded Rationality 

The proposed framework and subsequent results have important implications for managers.  First, the 

framework allows managers to operationalize incremental and revolutionary innovation, and apply the 

results to their NPD portfolio strategy.  Management can benefit form clearly identifying a set of key 

design, technology, and market variables that affect the overall NPD program performance function (even 

if their exact performance contribution is not easily uncovered).  Second, managers must decipher the 

nature of the technological and market environment and assess whether the program performance 

functions are governed by low or high interaction complexity. 
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One of the primary challenges with understanding complexity and its effects on the NPD 

portfolio is the lack of available tools/methods in practice.  A reason for the lack of methods is that 

strategic NPD portfolio decisions are qualitative and difficult to operationalize.  In order to grasp the 

complexity of the technological and market environment, decision-makers must unravel dependencies 

between the attributes that determine product performance.  The Design Structure Matrix (DSM) 

proposed by Eppinger and extended by other researchers (Eppinger et al. 1994, Smith and Eppinger 1997, 

Sosa et al. 2004 among many others) is a tool that can help managers map dependencies between 

attributes.  Although the DSM was originally conceived strictly to highlight technical dependencies 

between product components and modules, the same thinking can be applied to performance 

dependencies between technological and market attributes of a product.  It has already been shown that 

the DSM can be used in various contexts.  Sosa et al. (2004) offer a good example of the DSM applied to 

organizational dependencies and Siggelkow (2002) uses a longitudinal study to map attributes of 

organizational design and understand organizational complexity. 

Figure 10:  Complexity, competition, environmental instability, and the 

use of strategic buckets for the NPD portfolio. 
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Although the DSM can help managers decipher the complexity of their environment, questions 

still remain with respect to the performance functions for each of the technology and market attributes, 

and the extent to which these performance functions change over time.  Various market research 

techniques such as conjoint analysis or choice modeling can be used to uncover the evolution of 

performance functions (Ben-Akiva and Lerman 1985, McFadden 1986, Green and Srinivasan 1990, Train 

2003, Verma and Plaschka 2003).  Conjoint analysis and choice modeling are experimental 

methodologies that allow managers to predict the performance of new products by asking potential 

customers to make choices regarding specific configurations of technology and market variables that 

define the product.  In conjunction with traditional market research methods, the use of these tools on a 

periodic basis can help managers understand how the performance functions change over time – thus 

operationalizing the notion of technological-market stability. 

Our theoretical framework for strategic NPD portfolio decisions coupled with methods that shed 

light on complexity and stability can form the basis for more effective resource allocation.  We view our 

work as an important first step towards developing a better understanding of portfolio decisions at a 

strategic level.  Since our perspective is relatively high-level we make assumptions that capture the 

essence of NPD program behavior without delving into details that would lead to burdensome derivations 

without additional insights.  Still, future research can explore different structures of interaction between 

technology and market variables (Rivkin and Siggelkow 2006), as well as richer search strategies that can 

incorporate more complex optimization techniques for incremental innovation. 

 

APPENDIX 
 
To establish the existence of a crossing time and prove the proposition stated in the text, we first derive expressions 
for the expected performance of incremental and revolutionary NPD programs over time.  Define the index sets 
I inc = {i :ωi , t ∈ the incremental bucket}  and I rev = {i :ωi , t ∈ the revolutionary bucket} where ωi , t  is the product 
configuration (solution) adopted in period t. 
 
LEMMA 1: performance of incremental NPD programs.  Incremental NPD programs improve performance in each 
period through systemic changes to the product attributes.  For any random initial product configuration, ωi , o , let w  
be the number of attribute changes required to achieve a locally optimal configuration.  Note that for K = 0 , 
E[w] = N /2  since half of the product attributes will already be set to the optimal value, and the other half can be 
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altered in sequential periods until the (global) optimum configuration is achieved.  For any K > 0 , E[w] < N /2  
because the number of local optima is higher and thus, the probability that a random initial product configuration is 
close to a local optimum is higher.  Therefore, for K > 0  incremental NPD programs are able to quickly reach local 
optima.  For t > E[w] , E[F(ωi , t )]  is equal to the expected performance of a local optimum.  Let Flocal  be this value.  
For t < E[w] , E[F(ωi , t )] < Flocal  and Pr{F(ωi , t+1) > F(ωi , t )} =1. 
 
LEMMA 2: performance of revolutionary NPD programs.  Revolutionary NPD programs improve performance in 
each period by randomly selecting one random product configuration and adopting the new configuration only if 
performance is higher compared to the performance of the existing configuration.  For any period t, the performance 
of a revolutionary NPD program is given by the recursion F(ωi , t ) = max{F(ωi , t ),F(ωi , t−1)} with F(ωi , o)  defined as 
the performance of the initial product configuration.  For a revolutionary NPD program, each period is independent 
of previous periods and the recursion can be rewritten as F(ωi , t ) = max{F(ωi , t ),F(ωi , t−1),...,F(ωi , o)} .  Note that 
E[F(ωi , t )]  is concave increasing in t because the expectation of the maximum of t  i.i.d. random variables is 
concave increasing in  t  (Srinivasan et al. 1997, p. 162).  As t → ∞, E[F(ωi , t )]  is equal to the performance of the 
global optimum.  Let Fglobal  be this value.  For t < E[w] , Pr{F(ωi , t+1) > F(ωi , t )} <1. 

 
PROPOSITION: For any K > 0, there exists a time, t(K), at which a strategy with larger size revolutionary strategic 
bucket outperforms any strategy with smaller size revolutionary strategic bucket. Furthermore, t(K) is a decreasing 
function of the interaction complexity K. 
 
PROOF:  For any K > 0 existence of the crossing time t(K) follows directly from Lemmas 1 and 2.  Consider a 
portfolio strategy of p = 0% .  For such a strategy, I inc = {1,2,...,M}  and I rev = {∅}  and the expected firm (portfolio) 
performance for t > E[w]  is E[Π | p = 0%] = E[F(ωi , t )]i=1

M
� = MFlocal = (M −1)Flocal + Flocal .  Next, consider any 

strategy with a single revolutionary program indexed by m.  For such a strategy firm (portfolio) performance for 
t ≥ E[w]  is  E[Π | p > 0%] = (M −1)Flocal + E[F(ωm , t )] .  Since E[F(ωm , t=E[ w ])] < Flocal  and E[F(ωm , t→∞)] = Fglobal > Flocal , 

the existence of a crossing time follows since E[F(ωm , t )] is concave increasing in t.  The same argument can be 
repeated for comparing any strategy with higher p to a strategy with lower value p. 
 
To show that t(K) is decreasing in K,  we first characterize the performance distribution for all potential product 
configurations within a given landscape.  Recall that product performance is defined as F(ωi ) = N−1 f jj=1

N
�  where 

each f j  is drawn from a U(0,1)  distribution.  As highlighted in Skellett et al. (2005), for sufficiently large N, 
F(ωi ) ~ N(µ,σ 2)  where µ and σ 2  are the landscape mean and variance.  Without loss of generality, assume that the 
landscape is appropriately scaled so that µ = 0.5.  Note also that, due to our definition of F(ωi ) , σ 2 =1/(12N ) .  An 
important result is that σ 2 is independent of the interaction complexity, K.  Thus the underlying probability 
distribution that determines the performance of a revolutionary project over time is the same for all K.  This fact 
along with the basic result that the expected performance of a local optimum, Flocal , is decreasing in K (Kauffman 
1993) implies that t(K) is decreasing in K. 
 

REFERENCES 
Adams, M. and Boike, D. (2004), “The PDMA Foundation 2004 Comparative Performance Assessment Study”, 

Visions, Vol. 28, No. 3, p. 26-29. 

Adner, R. and Levinthal, D. (2001), “Demand Heterogeneity and Technology Evolution: Implications for Product 
and Process Innovation”, Management Science, Vol. 47, No. 5, p. 611-628. 

Ali, A., Kalwani, M. and Kovenock, D. (1993), “Selecting Product Development Projects: Pioneering Versus 
Incremental Innovation Strategies”, Management Science, Vol. 39, No. 3, p. 255-274. 

Arrow, K. (1965), Aspects of the Theory of Risk Bearing, Yrjo Jahnsson Lectures, Helsinki. 

Ben-Akiva, M. and Lerman, S. (1985), Discrete Choice Analysis, MIT Press, Cambridge, MA. 

Barrett, A. (2003), “DuPont Tries to Unclog a Pipeline”, Business Week, 27 January 2003, p. 103-104.  



31 

Betro, B. (1991), “Bayesian Methods in Global Optimization”, Journal of Global Optimization, Vol. 1, p. 1-14. 

Brenner, M.S. (1994), “Practical R&D Project Prioritization”, Research Technology Management, September-
October, p. 38-42. 

Brown, S. and Eisenhardt, K. (1998), Competing on the Edge: Strategy as Structured Chaos, Harvard Business 
School Press. 

Calantone, R., Schmidt, J and Song, X. (1996), “Controllable Factors of New Product Success: A Cross-National 
Comparison”, Marketing Science, Vol. 15, No. 4, p. 341-359. 

Cooper, R. and Edgett, S.J. (2003), “Overcoming the Crunch in Resources for New Product Development”, 
Research Technology Management, Vol. 46, No. 3, p. 48-58. 

Cooper, R., Edgett, S.J. and Kleinshmidt, E.J. (1997), “Portfolio Management in New Product Development: 
Lessons from the Leaders - II”, Research Technology Management, Vol. 40, No. 6, p. 43-52. 

Cooper, R., Edgett, S.J. and Kleinshmidt, E.J. (1998), Portfolio Management for New Products, Perseus Books, 
New York. 

Cooper, R., Edgett, S.J. and Kleinshmidt, E.J. (2004), “Benchmarking Best NPD Practices - II”, Research-
Technology Management, May/June, p. 50-59. 

Cooper, R. and Kleinshmidt, E.J. (1996), “Winning Businesses in Product Development: Critical Success Factors”, 
Research-Technology Management, July/August. 

Christensen, C. (1997), The Innovator’s Dilemma, Harper Collins Publishers, New York. 

Christensen, C., Raynor, M. (2003), The Innovator's Solution: Creating and Sustaining Successful Growth, Harvard 
Business School Publishing, Boston, MA. 

Christensen, C., Suarez, F., and Utterback, J. (1998), “Strategies for Survival in Fast-Changing Industries”, 
Management Science, Vol. 44, No. 12, p.207-221. 

Christensen, C., Verlinden, M., and Westerman, G. (2002), “Disruption, Disintegration and the Dissipation of 
Differentiability”, Industrial and Corporate Change, Vol. 11, No. 5, p. 955. 

Eppinger S., Whitney D., Smith, R., and Gebala, D. (1994), “A Model-Based Method for Organizing Tasks in 
Product Development”, Research in Engineering Design, Vol. 6, No. 1, p. 1-13. 

Ethiraj, S. and Levinthal, D. (2004), “Modularity and Innovation in Complex Systems”, Management Science, Vol. 
50, No. 2, p. 159-173. 

Fleming, L. (2001), “Recombinant Uncertainty in Technological Search”, Management Science, Vol. 47, No. 1, p. 
117-132. 

Fleming, L. and Sorenson, O. (2001), “Technology as a complex adaptive system: evidence from patent data”, 
Research Policy, Vol. 30, No. 7, p. 1019. 

Fleming, L. and Sorenson, O. (2004), “Science as a Map in Technological Search”, Strategic Management Journal, 
Vol. 25, No. 8/9, p. 909-929. 

Gavetti, G. and Levinthal, D. (2000), “Looking Forward and Looking Backward: Cognitive and Experiential 
Search”, Administrative Science Quarterly, Vol. 45, p. 113-137. 

Green, P. and Srinivasan, V. (1990), “Conjoint Analysis in Marlketing: New Developments With Implications for 
Research and Practice”, Journal of Marketing,  Vol. 54, No. 4, p. 3-19. 

Griffin, A. (1997), “PDMA Research on New Product Development Practices: Updating Trends and Benchmarking 
Best Practices”, Journal of Product Innovation Management, Vol. 14, p. 429-458. 

Hagel, J. (1988), “Managing Complexity”, The McKinsey Quarterly, Spring 1988, p. 2-23. 

Hammonds, J., Keeney, R., and Raiffa, H. (1998), “Even Swaps: A Rational Method for Making Tradeoffs”, 
Harvard Business Review, Vol. 76, No. 2, p. 137-149. 



32 

Hannan, M. and Freeman, J. (1977), “The Population Ecology of Organizations”, American Journal of Sociology, 
Vol. 82, No. 5, p. 929-964. 

Henderson, R. and Clark, K. (1990), “Architectural Innovation: The Reconfiguration of Existing Product 
Technologies and the Failure of Established Firms”, Administrative Science Quarterly, Vol. 35, No. 1, p. 9-31. 

Holt, C. and Laury, S. (2002), “Risk Aversion and Incentive Effects”, American Economic Review, Vol. 92, No. 5, 
p. 1644-1655. 

Jones, D. (2001), “A Taxonomy of Global Optimization Methods Based on Response Surfaces”, Journal of Global 
Optimization, Vol. 21, No. 4, p. 345-383. 

Kahneman, D. (2003), “A Perspective on Judgement and Choice: Mapping Bounded Rationality”, American 
Psychologist, Vol. 58, No. 9, p.697-720. 

Kauffman, S. and Levin, S.  (1987), “Toward a General Theory of Adaptive Walks on Rugged Landscapes”, Journal 
of Theoretical Biology, Vol. 128, No. 1, p. 11-45. 

Kauffman, S. (1993), The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, 
New York. 

Kauffman, S., Lobo, J., and Macready, W. (2000), “Optimal Search on a Technology Landscape”, Journal of 
Economic Behavior and Organization, Vol. 43, No. 2, p.141-167. 

Kavadias, S. and Loch, C. H. (2003), Project Selection Under Uncertainty: Dynamically Allocating Resources to 
Maximize Value, Kluwer Academic Press, Boston, MA. 

Kavadias S., Loch C. H., and Tapper U. A. S. (2004), “When to Use Marginal Benefits to Maximize Project 
Portfolio Value”, INSEAD Working Paper. 

Kavadias S., Loch C. H., and Tapper U. A. S. (2005), “Allocating the R&D Budget at GemStone”, INSEAD 
working paper. 

Kimball, M. (1993), “Standard Risk Aversion”, Econometrica, Vol. 61, No. 3, p. 589-611. 

Kloeber, J. (2005), Director of Portfolio Management, Johnson and Johnson Pharmaceutical, Inc., statements taken 
from discussion at INFORMS meeting, Denver, CO. 

Krishnan, V. and Ulrich, K. (2001), “Product Development Decisions: A Review of the Literature”, Management 
Science, Vol. 47, No. 1, p. 1-21. 

Kushner, H.J. (1964), “A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the 
Presence of Noise”, Journal of Basic Engineering, Vol. 86, p. 97-106. 

Leonard-Barton, D. (1995), Wellsprings of Knowledge, Harvard Business School Press, Boston, MA. 

Levinthal, D. (1997), “Adaptation on Rugged Landscapes”, Management Science, Vol. 43, No. 7, pp 934-951. 

Liberatore, M.J. (1987), “An Extension of the Analytical Hierarchy Process for Industrial R&D Project Selection”, 
IEEE Transactions on Engineering Management, Vol. 34, No. 1, p.12-18. 

Loch, C.H. (2000), “Tailoring Product Development to Strategy: The Case of a European Technology 
Manufacturer”, European Management Journal, Vol. 18, No. 3, p.246-258. 

Loch, C.H. and Kavadias, S. (2001), “GemStone Inc.: Measuring Research Performance”, INSEAD case study. 

Loch, C.H. and Kavadias, S. (2002), “Dynamic Portfolio Selection of NPD Programs Using Marginal Returns”, 
Management Science, Vol. 48, No. 10, p.1227-1242. 

Loch,  C., Pich, M., Urbschat, M. and Terwiesch, C. (2001), “Selecting R&D projects at BMW: a case study of 
adopting mathematical programming models”, IEEE Transactions on Engineering Management, Vol. 48, No. 1, 
p. 70-80. 

Maier, M. and Rechtin, E. (2000), The Art of Systems Architecting, CRC Press, Boca Raton, FL. 

McFadden, D. (1986), “The Choice Theory Approach to Market Research”, Marketing Science, Fall 1986, No. 4, p. 
275-297. 



33 

Mihm, J., Loch, C., and Huchzermeier, A. (2003), “Problem-Solving Oscillations in Complex Engineering 
Projects”, Management Science, Vol. 49, No. 6, p. 733-750. 

Miller, W.L. and Morris, L. (1999), Fourth Generation R&D – Managing Knowledge Technology and Innovation, 
John Wiley and Sons, New York. 

Moorthy, K. (1988), “Product and Price Competition in a Duopoly”, Marketing Science, Vol. 7, No. 2, p. 141-168. 

Nelson R. and Winter, S. (1982), An Evolutionary Theory of Economic Change, Belknap Press, Cambridge, MA. 

Pich, M., Loch, C. and DeMeyer, A. (2002), “On Uncertainty, Ambiguity and Complexity in Project Management”, 
Management Science, Vol. 48, No. 8, p.1008-1024. 

Pilling, D. (2000), “Success Gives AstraZeneca Indigestion”, Financial Times, 17 October 2000. 

Porter, M. (1985), “Technology and Competitive Advantage”, Journal of Business Strategy, Vol. 5, No. 3, p. 60-79 

Pratt, J. (1964), “Risk Aversion in the Small and the Large”, Econometrica, Vol. 32, No. 1-2, p. 122-136. 

Rivkin, J. (2000), “Imitation of Complex Strategies”, Management Science, Vol. 46, No. 6, p. 824-844. 

Rivkin, J. and Siggelkow, N. (2003), “Balancing Search and Stability: Interdependencies Among Elements of 
Organizational Design”, Management Science, Vol. 49, No. 3, p. 290-311. 

Rivkin, J. and Siggelkow, N. (2006), “Patterned Interactions in Complex Systems: Implications for Exploration”, 
working paper. 

Roussel, P., Saad, K.N. and Erickson, T.J. (1991), Third Generation R&D – Managing the Link to Corporate 
Strategy, Harvard Business School Press, Cambridge, MA. 

Saaty, T.L. (1994), “How to Make a Decision: The Analytical Hierarchy Process”, Interfaces, Vol. 24, No. 6, p.19-
43. 

Schoenberger, C. (2003), “Can Kodak Make Up For Lost Moments?”, Forbes, 6 October 2003. 

Schumpeter, J.A. (1934), The Theory of Economic Development, Harvard University Press, Cambridge, MA. 

Seidel, M., Loch, C.H., and Chahil, S. (2004), “Quo Vadis, Automotive Industry? A Vision of Possible Industry 
Transformations”, INSEAD Working Paper. 

Shane, S. and Ulrich, K. (2004), “Technological Innovation, Product Development, and Entrepreneurship in 
Management Science”, Management Science, Vol. 50, No. 2, p.133-144. 

Siggelkow, N. (2002), “Evolution Towards Fit”, Administrative Science Quarterly, Vol. 47, p. 125-159. 

Siggelkow, N. and Levinthal, D. (2003), “Temporarily divide to conquer: centralized, decentralized, and 
reintegrated organizational approaches to exploration and adaptation”, Organization Science, Vol. 14, No. 6, p. 
650-669. 

Siggelkow, N. and Rivkin, J. (2005), “Speed and Search: Designing Organizations for Turbulence and Complexity”, 
Organization Science, Vol. 16, No. 2, p. 101-122. 

Simon, H. (1955), “A Behavioral Model of Rational Choice”, Quarterly Journal of Economics, Vol. 69, p. 99-118. 

Simon, H. (1969), The Science of the Artificial, MIT Press, Boston, MA. 

Simon, H. (1982), Models of Bounded Rationality, MIT Press, Cambridge, MA. 

Skellett, B., Cairns, B., Tonkes, B., Geard, N., and Wiles, J. (2005), “Maximally Rugged NK Landscapes Contain 
the Highest Peaks”, In: Beyer et al. (Eds.), Proceedings of the 2005 Genetic and Evolutionary Computation 
Conference, ACM Press, New York, p. 579–584. 

Smith, R. and Eppinger, S (1997), “Identifying Controlling Features of Engineering Deisgn Iteration”, Management 
Science, Vol. 43, No. 3, p. 276. 

Sommer, S. and Loch, C.H. (2004), “Selectionism and Learning in Projects with Complexity and Unforeseeable 
Uncertainty”, Management Science, Vol 50, No.10, p. 1334-1347. 



34 

Sorenson, O. (2002), “Interorganizational Complexity and Computation”, in Companion to Organizations, J. Baum 
(ed.), Blackwell Publishers, Malden, MA. 

Sosa, M. (2005), “R&D Management at Universal Luxury Group”, INSEAD case study. 

Sosa, M., Eppinger, S., and Rowles, C. (2004), “The Misalignment of Product Architecture and Organizational 
Structure in Complex Product Development”, Management Science, Vol. 50, No. 12, p. 1674. 

Srinivasan, R., Wood, K., and McAdams, D. (1996), “Functional Tolerancing: A Design for Manufacturing 
Methodology”, Research in Engineering Design, Vol. 8, No. 2, p. 99-115. 

Srinivasan, R., Lovejoy, W., and Beach, D. (1997), “Integrated Product Design for Marketability and 
Manufacturing”, Jounral of Marketing Research, Vol. 34, No. 1, p. 154-163. 

Thomke, S. and Nimgade, A. (1998), “BMW AG: The Digital Auto Project”, Harvard Business School Case. 

Thursby, J. and Thursby, M. (2002), “Who Is Selling the Ivory Tower? Sources of Growth in University Licensing”, 
Management Science, Vol. 48, No. 1, p. 90-105. 

Train, K. (2003), Discrete Choice Methods With Simulation, Cambridge University Press, Cambridge, U.K. 

Tushman, M. and Anderson, P. (1986), “Technological Discontinuities and Organizational Environments”, 
Administrative Science Quarterly, Vol. 31, p.439-465. 

Ulrich, K. (1995), “The Role of Architecture in the Manufacturing Firm”, Research Policy, Vol. 24, p. 419-440. 

Ulrich, K. and Ellison, D. (1997), “Holistic Customer Requirements and the Design-Select Decision”, Management 
Science, Vol. 45, No. 5, p. 641-658. 

Ulrich, K. and Eppinger, S. (2004), Product Design and Development, McGraw-Hill/Irwin, New York, NY. 

Urban, G. and Hauser, J. (1993), Design and Marketing of New Products, Prentice Hall, Englewood Cliffs, N.J. 

Utterback, J. (1994), “Radical Innovation and Corporate Regeneration”, Research Technology Management, Vol. 
37, No. 4, p.10-18. 

Verma, R. and Plaschka, G. (2003), “The Art and Science of Customer Choice Modeling”, Cornell Hotel and 
Restaurant Administration Quarterly, Vol. 43, No. 6, p. 15-24. 

Wheelwright, S. and Clark, K. (1992), Revolutionizing New Product Development, The Free Press, New York. 
 


