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ABSTRACT 
 
The problem of encoding and transmitting a video sequence 
over a wireless channel is considered. Our objective is to 
minimize the end-to-end distortion while using a limited amount 
of transmission energy and delay. In our approach, we jointly 
adapt the source-coding parameters and transmission power per 
packet. We introduce the concept of “Variance-Aware 
Distortion Estimation”  (VADE), and present a framework for 
controlling both the expected value and the variance of the end-
to-end distortion. This framework is based on knowledge of how 
the video is compressed, the probability of packet loss, and the 
concealment strategy. To the best of our knowledge, this paper 
is the first to address the trade-off between the mean and 
variance of the end-to-end distortion. Experimental results 
demonstrate the potential of the proposed approach. 

 

1. INTRODUCTION 
 

Transmission energy is a critical resource in wireless video 
communications [1]. Since most users of a wireless network are 
mobile, they must rely on a battery with a limited energy supply. 
Efficiently utilizing transmission energy can extend the lifetime 
of this battery, decrease the level of interference between users, 
as well as increase the overall network capacity. This paper 
builds on our prior work, some of which can be found in [2]. 
Our goal is to achieve the best video quality using a limited 
amount of transmission energy and delay. To accomplish this we 
jointly consider error resilience and concealment techniques at 
the source-coding level, and transmission power management at 
the physical layer. In this way, the transmission power/energy is 
used as an unequal error protection (UEP) mechanism.  

In most video communication systems, the transmitter does 
not know exactly which packets are lost, but instead has an 
estimate of the probability of packet loss. Thus, from the point 
of view of the transmitter, the distortion at the receiver is a 
random variable. Recent work on resilient video coding for 
packet loss networks has primarily focused on minimizing the 
expected value of the end-to-end distortion [2,3,4,5,6]. A 
common feature among these works is that they all measure 
video quality by the expected distortion, where the expectation 
is computed with respect to all the possible packet loss patterns.  

Several methods have been proposed for calculating the 
expected distortion. These methods can be divided into two 
general categories. The first is optimal per-pixel estimation 
methods, such as [3,4,2], that can be used to accurately calculate 
the expected value of the distortion under certain conditions. 

       
(a)                             (b)                              (c) 

 

Fig. 1. (a) Expected frame, (b and c) two loss realizations. 
 

The second category consists of methods that use models to 
estimate the expected distortion [5,6]. Model based methods are 
useful when either computation power is limited or closed form 
expressions for the expected distortion are not known. The 
above is only a small sample of the work in this area.   

At the receiver, the end user sees only one of the many 
possible reconstructed sequences, depending on which packets 
are lost. Therefore, the actual distortion at the receiver is not 
equal to the expected distortion. To illustrate this point, consider 
the images shown in Fig. 1. While the expected reconstructed 
frame (averaged over all possible loss realizations) may be 
reasonable, the quality at the receiver may vary greatly based on 
which packets are lost. Therefore, in this paper we argue that the 
variance of the end-to-end distortion should also be considered 
when characterizing video quality in lossy packet networks. We 
introduce the concept of “variance-aware distortion estimation”  
(VADE), and present a framework for controlling both the 
expected value and the variance of the end-to-end distortion.  

 

2. SYSTEM MODEL 
 

Consider a video communication system where the video is 
encoded using a block-based motion-compensated technique 
(e.g., H.263, MPEG-4). Each frame is divided into slices that 
are comprised of consecutive Macro-Blocks (MBs). Each slice 
is independently decodable, i.e., the decoding of one slice is not 
affected by the loss of other slices in the same frame. Losses in 
other frames may cause temporal error propagation due to inter- 
frame prediction. After a slice is encoded, it is transmitted 
across a wireless channel as a separate packet. In the following, 
slice and packet will be used interchangeably. Let M be the 
number of packets in a given frame and k be the packet index.  

For each packet, source-coding parameters, such as the 
coding mode (intra/inter/skip) and quantization step-size for 
each MB are specified. We use µk to denote the source-coding 
parameters for the kth packet, and µµµµ = { µ1…µM}  to denote the 
coding parameters for all the packets in a frame. The number of 
bits used to encode the kth packet, Bk, is a function of µk; we use 
Bk(µk) to explicitly indicate this dependency. 
 In addition to µk, we assume that the transmission power for 
each packet, Pk, can be adjusted. We use P = { P1…PM}  to 
denote the transmission power for all the packets in a frame. 
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Similarly, let ρk denote the probability of loss for the kth packet, 
and ρρρρ = { ρ1…ρM} . We assume that a function f, relating Pk to ρk 
is known at the transmitter, i.e., ρk = f(Pk). This function can be 
determined from empirical measurements or analytical models; 
we provide one example in Sect. 6. The work presented here is 
applicable to any system where the relationship between 
transmission power and the probability of loss can be found.  

The total energy used to transmit all the packets in a frame is 
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where Rk is the transmission rate for the kth packet in encoded 
video bits per second. Notice that Etot is a function of µk and Pk. 
This is one reason why we consider jointly adapting these 
parameters.   
 

3. END-TO-END DISTORTION 
 

In this section we develop a framework for characterizing the 
fidelity of the reconstructed sequence at the receiver to the 
original video at the transmitter. This framework is based on 
knowledge of how the original sequence is encoded, the 
probability of packet loss, and the decoder concealment strategy. 
Since a pixel is the smallest information symbol in a digital 
video sequence, we use per-pixel accurate calculations to 
characterize the end-to-end distortion. 
 Consider a single pixel in the video sequence whose original 
value is x. For the system described in Sect. 2, we assume the 
encoded information for each pixel is contained in only one 
packet and that each packet is either received correctly or lost, 
as shown in Fig. 2. In this case, the reconstructed pixel value at 
the receiver is a random variable that can be expressed as  
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where ρ is the probability that the packet containing the coding 
parameters for this pixel is lost, YR is the reconstructed pixel 
value if the packet is received correctly, and YL is the 
reconstructed value if the packet is lost. If the pixel is 
predictively encoded, then YR is a random variable. On the other 
hand, if the pixel is independently encoded (Intra coded), then 
YR is deterministic. YL depends on the concealment strategy. If 
prediction is used in the concealment strategy, e.g., temporal 
concealment, then YL is also a random variable. 
 We assume that a known distortion metric D(x,Y) is used to 
evaluate the distortion in the reconstructed pixel. For example, 
in Sect. 6 we use the squared error metric, i.e., D(x,Y) = (x-Y)2. 
It is important to note that any distortion metric that maps the 
pair (x,Y) to a distortion value D can be used in this framework. 
The distortion between x and Y can be expressed as  
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where DR(x,YR) and DL(x,YL) are the distortion if the source-
coding parameters are received and lost respectively. In order to 
simplify notation, we abbreviate D(x,Y) as D, DR(x,YR) as DR, 
and DL(x,YL) as DL. The probability mass function (pmf) of D 
and the relevant quantities discussed below are shown in Fig. 3.  
 

3.1. Expected end-to-end distortion 
 

The expected value of the end-to-end distortion for a given pixel 
is by definition 

( ) ( )[ ] 1- [ ] [ ]R LE D E D E Dρ ρ= + ,              (4) 

 
Fig. 2. System model 

 

 
 Fig. 3. pmf of D, DR, and DL and their relationship 

 

where E[•] indicates the expected value. Different channel loss 
realizations can cause different distortion at the receiver. E[D] is 
a measure of the average distortion for a given pixel, where the 
average is taken with respect to all the possible loss realizations. 
One way to reduce E[D] is by allocating more source-coding 
resources to this pixel in order to decrease E[DR]. Alternatively, 
allocating more communication resources, e.g., transmission 
power, can lower ρ, thus decreasing E[D] (Here we assume that 
E[DR] < E[DL]). The average expected distortion for the kth 
packet, E[Dk], is obtained by simply taking the average E[D] for 
all the pixels in the kth packet. 
 

3.2. Variance of the end-to-end distortion 
 

The variance of the end-to-end distortion is also important when 
evaluating video quality in communication systems. The 
variance in distortion indicates the likelihood that the actual 
distortion in the reconstructed sequence (i.e., for a single loss 
realization) is close to E[D]. Therefore, the variance of the end-
to-end distortion is a measure of how reliable E[D] is as an 
estimate of the distortion at the receiver. 
 The variance of the end-to-end distortion for a given pixel is 
by definition Var[D] = E[D2] - E[D]2. By substituting (3) into 
the previous equation and rearranging terms, we can express 
Var[D] as   
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where Var[DR] and Var[DL] are the variance in distortion if the 
packet is received and lost, respectively. As expected, Var[D] 
increases when Var[DR] or Var[DL] increase. Therefore, Intra 
coding, which has Var[DR] = 0, enables the transmitter to 
decrease Var[D]. Inter coding on the other hand has Var[DR] ≥ 
0. From (5) we see that Var[D] increases as { E[DR]-E[DL]}

2 
increases. This means that if a pixel is difficult to conceal, i.e, 
E[DL]>> E[DR], its distortion may vary greatly depending on 
whether the packet is received or lost.  

Var[D] is a negative quadratic function of ρ, as shown in 
(5). Thus, Var[D] has a maximum at ρ = 1/2 – { Var[DL]-
Var[DR]} /2{ E[DR]-E[DL]}

2, and decreases as ρ increases or 
decreases from this value. This is intuitively satisfying since 
there is less variability in D when ρ is either very small or very 
large. For example, when ρ = 0 or 1 for all the packets in the 
sequence, Var[D] = 0. The average variance in distortion for the 
kth packet, Var[Dk], is obtained by simply taking the average of 



Var[D] for all the pixels in the kth packet. Similarly, the average 
standard deviation in distortion for the kth packet, Std[Dk], is 

equal to the average of Std[D] = [ ]Var D . It is important to 

note that the average of the variance in distortion per pixel is not 
equal to the variance of the average distortion for a frame. The 
latter is more difficult to calculate and does not capture local 
variation in quality well.   

Consider the case where D = (x-Y)2 (squared error distortion 
metric). In this case, we need the first two moments of Y, i.e., 
E[Y] and E[Y2], in order to accurately calculate E[D]. Similarly, 
the first four moments of Y are needed to accurately calculate 
Var[D]. In certain cases, recursively optimal distortion 
estimation methods, such as ROPE [4] and [3] can be used to 
efficiently calculate the necessary reconstructed pixel moments. 
 

4. VARIANCE-AWARE FORMULATION 
 

In the previous sections we demonstrated the need to account 
for both the mean and the variance of the distortion when 
evaluating video quality in packet loss environments. One way 
to do this is by defining the distortion for a given frame, Dtot, as 
the average weighted sum of { (1-α)E[Dk] + (α)Std[Dk]}  for all 
k. We use Std[Dk] instead of Var[Dk] so that the units of Dtot are 
consistent. Other expressions for Dtot that incorporate both the 
mean and variance of the distortion can also be used.    

Our goal is to control both the source-coding and 
transmission power in order to minimize the end-to-end 
distortion while using a limited amount of transmission energy 
and delay. We can formally write this optimization as 

{ },  1

1
min (1 ) [ ( , )] ( ) [ ( , )]
k k

M
k k

tot
P k k

D E D Std D
Mµ

α α
∀ =

= − +� µ ρ µ ρµ ρ µ ρµ ρ µ ρµ ρ µ ρ (6.a) 

0
1

s.t.:     E ( ) E
kM

k k
tot k

k

P
B

R
µ

=

= ≤�                                           (6.b) 

0
1

( )k kM

tot k
k

B
T T

R

µ
=

= ≤� ,                                              (6.c) 

where Etot is the total transmission energy, Eo is the transmission 
energy constraint, Ttot is the total transmission delay, and To is 
the transmission delay constraint for the frame. In this work we 
assume that the transmission rate is fixed, i.e., Rk = R for all k. 
The formulation can easily be extended to allow variable Rk per 
packet. We refer to the formulation in (6) as a “Variance-Aware 
per-Pixel Optimal Resource-allocation”  (VAPOR) technique. 
We assume that a higher-level controller assigns energy and 
delay constraints per frame based on the application. The design 
of this controller is an area of future research.   
  In (6.a), α is used to control the relative importance of the 
variance in the end-to-end distortion. Increasing α results in a 
smaller variance in distortion. To the best of our knowledge, the 
formulation in (6) is the first to account for both the mean and 
the variance of the end-to-end distortion. When α = 0, we obtain 
a special case of the general formulation in which the objective 
is to minimize the average expected distortion, as in [3-6]. 
When Pk = P ∀k, each packet is transmitted with a fixed power, 
and thus the same level of protection. We refer to this special 
case as the “Fixed Power”  (FP) approach. When Pk is chosen 
from a set, we have the “Variable Power”  (VP) approach in 
which the probability of loss can be adjusted per packet by 
adapting the transmission power. In [2], optimal source-coding 
and transmission power management for energy efficient 

wireless video communications is considered in detail.  
 

5. SOLUTION APPROACH 
 

In order to solve (6) we use Lagrangian relaxation and dynamic 
programming (DP). First we introduce two Lagrange 
multipliers, λ1 ≥ 0 and λ2 ≥ 0, and solve the relaxed problem 
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By appropriately choosing λ1 and λ2, the solution to (6) can be 
obtained within a convex-hull approximation by solving (7).  
Various methods, such as cutting-plane or sub-gradient 
methods, can be used to search for λ1 and λ2 [7]. In our 
experimental results, we use an efficient method developed in 
[8] that exploits the structure of the problem presented in (6).  
 For each choice of λ1 and λ2 we can solve (7) using dynamic 
programming. The concealment strategy used at the receiver 
may introduce dependencies between packets. For example, 
temporal concealment based on the motion vectors of 
neighboring packets causes the distortion for a given packet to 
depend on how its neighboring packet(s) are encoded as well as 
their probability of loss. In (6.a), we represent these 
dependencies by indicating that E[Dk] and Std[Dk] may depend 
on µµµµ and ρρρρ. Dynamic programming can be used to efficiently 
find the optimal µk and Pk for each packet in the frame when the 
dependencies between packets are limited, e.g., to a small 
neighborhood. For more details please see [2, 9, 10]. 
 

6. EXPERIMENTAL RESULTS 
 

In our experiments, we use the “Foreman” sequence in QCIF 
format encoded at 30 frames per second using MPEG-4. A 
limited number of quantization step sizes are used for “ Intra”  
and “ Inter”  MBs. We consider the case where each packet 
contains a single MB, i.e., each MB is independently decodable. 
This packetization scheme has a low coding efficiency but helps 
illustrate the concepts introduced in this paper. Similarly, we 
consider a relatively simple concealment strategy in which the 
concealment motion vector (MV) for a lost MB is defined as the 
MV of the MB to the left of the lost MB. 

Consider the case where each packet is sent over a narrow-
band slowly fading channel with additive white Gaussian noise. 
We model ρk in the capacity versus outage framework 
introduced in [11], and assume that the channel fading is i.i.d. 
per packet. For this channel model 
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where NoW is the noise power, W is the bandwidth, and E[H] is 
the expected value of the channel fading level, H. In our 
experiments, NoW/E[H] = 6Watts, W = 5MHz, and R = 
150Kbps. These values are similar to the ones being proposed 
for next generation wireless standards [12]. We consider a real-
time application with an allowable transmission delay of one 
frame duration, i.e., T0 = 33 msec. 

In Fig. 4, we show how the expected value and the standard 
deviation of the distortion, averaged over the entire “Foreman” 
sequence, are affected by the value of α in (6). We consider the 
FP approach with several fixed packet loss probabilities. In Fig. 
4(a), we analyze the distortion between the original and the 
reconstructed sequence at the decoder. Notice that as α 
increases, the average Std[D] consistently decreases. 



 
(a)                                                    (b) 

Fig. 4. (a) Avg. E[D] vs. Std[D] between Original and Decoded  
            (b) Avg. E[D] vs. Std[D] between Encoded and Decoded 
 

       
(a)                                  (b)                                   (c) 

 

       
(d)                                   (e)                                   (f) 

Fig. 5. FP with α=0: (a) encoded frame, (b,c) loss realizations. 
     VAVP with α=1: (d) encoded frame, (e,f) loss realizations. 

 

Surprisingly, the average E[D] does not necessarily increase as 
α increases. For example, consider the curve with ρ = 0.01. In 
this case, setting α = 0.25 results in an average Std[D] that is 
32% lower than that achieved for α = 0, as well as an average 
E[D] that is 6% lower. This result is likely due to inter-frame 
dependencies. Reducing the variance in the current frame may 
lead to a more reliable prediction for the next frame. This in tern 
may reduce the overall distortion for the sequence. Thus, it may 
be possible to significantly reduce the average variance in 
distortion per pixel without sacrificing the expected distortion.  

In Fig. 4 (b), we examine the distortion between the 
reconstructed sequence at the encoder and the decoder. As α 
increases, the expected value and standard deviation both 
decrease, i.e, the reconstructed sequence at the decoder more 
closely resembles what was transmitted. Therefore, by 
controlling the variance we can reduce what is sometimes 
referred to as channel distortion. In Fig. 5, we compare a fixed 
power (FP) approach with a variance-aware variable power 
(VAVP) approach. For the FP approach, we optimally select the 
source coding parameters in order to minimize the expected 
distortion, assuming a fixed probability of loss, ρ = 0.20 (as in 
[3-6]). In the VAVP approach, we jointly adapt the source 
coding and the transmission power in order to minimize (6.a), 
with α = 0.5. Both approaches have the same energy and delay 
constraints, (6.b) and (6.c). For these settings, the VAVP 
approach achieves an average E[D] and average Std[D] that are 
21% and 39% smaller than those achieved by the FP approach. 
This suggests that by jointly adapting the coding parameters and 
transmission power, and by incorporating the variance into the 
distortion evaluation, we can significantly decrease both the 
mean and the variance of the end-to-end distortion.  

As shown in Fig. 5 (b,c) and (e,f), the reconstructed frames 
at the receiver, for two different loss realizations, more closely 
resemble the encoded frame in the VAVP approach. The 
tradeoff for lower channel distortion is a possible increase in 
source coding distortion, as shown in Fig. 5 (a,d). 
Understanding the complex spatio-temporal artifacts caused by 
source and channel distortion is an area that requires significant 
research. This understanding will help determine the perceptual 
importance of the mean and the variance of the distortion. 
 

7. CONCLUSIONS 
 

This paper identifies the variance in distortion as an 
important quantity when characterizing video quality in packet 
loss environments. A major contribution is the added flexibility 
and capability to control both the expected value and the 
variance of the end-to-end distortion. In addition, the concepts 
introduced in this paper can also be extended to other cost-
distortion optimization problems, such as video over 
differentiated services networks [8]. 
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