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Analysis of Fundamentals of Two-Phase Flow
in Porous Media Using Dynamic Pore-Network

Models: A Review

V. JOEKAR-NIASAR and S. M. HASSANIZADEH
Earth Sciences Department, Utrecht University, Utrecht, the Netherlands

In this literature survey, different aspects of dynamics of two-phase
flow in porous media are discussed. This review is based on the
results of developed dynamic pore-network models and their ap-
plications. Thus, those concepts of dynamics of two-phase systems
are addressed that have been already discussed in previous studies.
Since it is not always possible to study different aspects of laboratory
experiments, dynamic pore-network models were developed to gain
new insights into the process. This characteristic is the major ad-
vantage of pore-network models, which give a better understanding
of the physics of a process at pore scale as well as at the scale of rep-
resentative elementary volume. Dynamic pore-network models are
reviewed under different classifications; structure, computational
algorithm, and local rules and applications.

KEY WORDS: dynamic pore-network model, ganglia, interfacial
area, nonequilibrium effects, pressure field, relative permeability

1. INTRODUCTION

1.1. Two-Phase Flow

Everybody has seen the flow of water into a piece of cloth when it comes
into contact with water or the flow of coffee into a sugar cube. All these
phenomena involve movement of two or more immiscible fluids in a porous
material, which is referred to as multiphase flow in porous media. We can also
find two-phase flow in porous media in many technical applications such
as fuel cells, paper pulp drying, food industry, oil recovery, textile industry,
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1896 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 1. Fluid drop in contact with a solid surface. The contact between surface and
fluids 1 and 2 is characterized by surface tensions σs1 and σs2 (Color figure available online).

and biomedical technology. These cover a wide range of applications, from
large-scale applications such as oil recovery (103–105m) to very small-scale
applications such as biological systems (10−5–10−3m).

In all of these systems, there is a moving interface between the fluids.
The force acting on the interface between two immiscible fluids is referred
to as the capillary force. The interfacial tension between two fluids relates
the surface tension of each fluid with the solid phase through the following
equation based on Figure 1.

σs2 − σs1 = σ nw cos θ (1)

From the contact angle, one can determine which fluid is the wetting
phase and which fluid is the nonwetting fluid (relative to the solid). In
Figure 1 since θ < π/2, fluid 1 is the wetting phase and fluid 2 is the
nonwetting one. Figure 2 shows definition of the fluids depending on the
contact angle.

If the nonwetting fluid displaces the wetting fluid, it is referred to as
drainage and the flow in opposite sequence is referred to as imbibition. It
has been found that dynamic properties of a system can control the macro-
scopic pattern of the moving interface between the fluids (Lenormand, 1990;
Lenormand et al., 1988). Dynamic properties of a system can be described
by two parameters, namely viscosity ratio (M ) and capillary number (Ca).

Viscosity ratio (M ) is defined as a ratio of viscosity of invading fluid to
the receding one. It is referred to as favorable if it is larger than 1 and as
unfavorable if it is smaller than 1. Capillary number (Ca) is a dimensionless
number, which illustrates the ratio of viscous forces to capillary forces:

Ca = µinv.qinv.

σ nw
(2)

Here, µinv. [ML−1T −1] is viscosity of the invading phase, qinv.[LT−1] is
total Darcy velocity (volume flowing per unit area per unit time) of the
invading phase, and σ nw is the interfacial tension [MT−2]. If Ca is zero or
very small, capillary forces dominate.
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Fundamentals of Two-Phase Flow in Porous Media 1897

FIGURE 2. Definition of the wettability based on the contact angle.

Capillary number is a macroscopic parameter, which cannot be applied
at pore scale. These pore-scale interface velocities depend on the global
capillary pressure, interfacial tension, pore size, and viscosity ratio. For ex-
ample, Lu et al. (1995) found that for ethanol-air system with a viscosity of
0.0119 Pa.s, in a pore with radius of 0.05 cm, the velocity of capillary rise
can reach 20 cm/s at the moment of invasion into a pore. So, these velocities
are not really representative of macroscopic phase velocity and pore-scale
capillary number will be very different from macroscopic capillary number.
Furthermore, it should be noted that Equation 2 is applied for a two-phase
system. In a three-phase system (oil-water-gas), this definition can be ap-
plied to any pair of the fluids. But, since it is based on the velocity of a
fluid, this definition by itself cannot give any information about the stagnant
disconnected fluids.

Viscosity ratio is essential in development of the flow pattern and trap-
ping of fluids. Lenormand et al. (1988) presented a phase diagram, which
shows flow pattern under different capillary numbers and viscosity ratios,
as shown in Figure 3. For favorable viscosity ratios, two flow patterns are
possible depending on capillary number. If capillary number is very small
(Figure 3a), capillary fingering is observed; if capillary number is large
enough (Figure 3c), a stable displacement front occurs. Generally, if the cap-
illary number is less than 10−6, the viscous pressure drop in a phase is negli-
gible and fluids movement is controlled by capillary forces. It means that, for
this regime, intrinsic properties of the medium (pore size distribution) control
the invasion. However, for unfavorable viscosity ratios, independent of how
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1898 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 3. Schematic presentation of flow pattern under different capillary numbers (Ca)
and viscosity ratios (M ) based on Lenormand (1990) and Lenormand et al. (1988), courtesy
of Sinha and Wang (2007) (Color figure available online).

large the viscous forces are, viscous fingering (Figure 3b) occurs and larger
pressure gradient cannot stabilize the invasion front (Vizika et al., 1994).

1.2. Numerical Models for Two-Phase Flow

The two-phase processes have been investigated using various theoreti-
cal, computational, and experimental methodologies. Despite the enormous
value of experimental work, often it cannot be used to its full potential due
to several limitations such as complexity of processes, difficulty of measuring
certain quantities, or uncertainty in results of measurements. Moreover, ex-
periments are commonly expensive and time-consuming. Thus, theoretical
and computational approaches can be used as complementary, and some-
times as a substitute tool to gain a more detailed understanding of processes.
They can also be used to aid with a more effective design of experiments
(see Joekar-Niasar et al., 2009).

In general, computational methods applied for studying two-phase flow
systems can be classified into conventional continuum-scale numerical mod-
els and pore-scale models.

Continuum-scale models cannot explain the physical processes at pore
scale, and its consequence at macroscale. For instance, classical macroscopic
two-phase flow simulators cannot physically represent viscous fingering very
well, since pore space geometry and topology as well as fluid properties are
both important that create such invasion mechanism. To understand the
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Fundamentals of Two-Phase Flow in Porous Media 1899

physics of multiphase flow under effect of capillary, viscous, and gravity
forces, pore-scale simulators are of great importance.

In pore-scale simulators, one attempts to represent pore-scale geometry
and topology of the medium and to solve the pore-scale equations within
the given domain. Conventional pore-scale models may be subdivided into
five different groups: Lattice-Boltzmann (LB), models (e.g., Knutson et al.,
2001; Martys and Hagedorn, 2002), smoothed particle hydrodynamics ap-
proach (e.g., Liu et al., 2006; Tartakovsky and Meakin, 2005), level-set mod-
els (e.g., Prodanović and Bryant, 2006), percolation models (e.g., Wilkinson,
1984), and pore-network models (e.g., Blunt et al., 2002; Fatt, 1956; Held
and Celia, 2001; Joekar-Niasar et al., 2008, 2009; Payatakes, 1982; Payatakes
et al., 1980; Reeves and Celia, 1996). Among these methods, percolation
models cannot provide any information about the transient processes. Other
methods, compared to pore-network modeling, are more expensive due to
differences in discretization of physical domain as well as the governing
equations.

Pore-network models can be divided into two major classes: quasistatic
pore-network models (see reviews by Blunt, 2001; Celia et al., 1995; Dullien,
1992) and dynamic pore-network models. Similar to invasion-percolation
models, quasistatic pore-network models can be used for simulating equi-
librium states of the capillary-dominated systems, where the dynamic effects
in fluid distribution in absent. These models are based on the fact that the
displacement of fluids is controlled by entry capillary pressure of individ-
ual pores. Quasistatic pore-network models can simulate equilibrium states
of drainage and imbibition processes only. Flow conditions between equi-
librium states are not modeled. For these models to be applicable, it is
essential to remain close to equilibrium. Therefore, incremental changes in
global pressure differences should be applied to go from one equilibrium to
another equilibrium state. The comparison between quasistatic pore-network
models and experiments show that these models can be used successfully
for predictive purposes for capillary pressure-saturation, relative permeabil-
ity curves (e.g., Blunt et al., 2002; Lerdahl et al., 2000; Øren et al., 1998), as
well as interfacial area-saturation curves (e.g., Joekar-Niasar et al., 2009).

Under dynamic conditions, both viscous and capillary forces have to be
included at the pore scale. Invasion at the pore scale is determined by the
entry capillary pressure of network elements (e.g. pore throats) and time-
rate of invasion is determined by local viscous and capillary forces. Thus,
transient behavior of multi phase flow systems can be studied using dynamic
pore-network models. Clearly, these models require much more complicated
coding, robust solution methods, and efficient algorithms. Problems of nu-
merical convergence and instabilities may cause major difficulties. Also, due
to the highly non linear nature of the coupling between viscous forces and
capillary forces, simulations are much more time-consuming and memory-
demanding (Al-Gharbi and Blunt, 2005).
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1900 V. Joekar-Niasar and S. M. Hassanizadeh

Among the dynamic pore-scale simulators, dynamic pore-network mod-
els are computationally less demanding. They have been used extensively,
mostly for two-phase flow, but also for drying process (see Figus et al., 1999;
Prat, 2007), gas nucleation and heavy oil depressurization (e.g., Bondino
et al., 2009; Du and Yortsos, 1999), and three-phase flow (e.g., Pereira et al.,
1996) in porous media. In contrast, LB method, which solves Navier-Stokes–
type equation on a full voxel-based void domain, is computationally too ex-
pensive and memory demanding. Furthermore, in contrast to pore-network
modeling, it requires postprocessing of the simulations. For instance, Porter
et al. (2009) recently used LB method to simulate air-water flow in glass beads
with physical domain size of less than 500 pores, which was discretized into
207 × 207 × 166 voxels. At a flux of 0.00008 muts−1 (mass unit per time
step), approximately 50,000 ts were required to obtain only a 5% change
in saturation, which took about 1.25 days to run on four amd64 CPU (2.8
GHz) machines in parallel. Roughly speaking, for their given specifications
of domain and fluids, a full drainage simulation would take more than 100
days with a single processor. In another study, Pan et al. (2004) stated that
computational limitations are of great concern when applying LB simula-
tions for multiphase porous medium systems, even using large-scale parallel
computing. They could not afford to simulate domains with sizes close to
a reprensentative elementary volume (REV). The advantage of LB method,
however, is that it can solve equations in an arbitrary pore space geometry
and topology without simplification. In contrast, in pore-network modeling,
the porous medium should be idealized to some simple geometries, such
that essential features are adequately represented (Celia et al., 1995). This
idealization can lead to loss of geometrical and topological information. Also,
information on temporal changes within a single pore in pore-network mod-
els is not as detailed as in LB simulations, since every single pore is usually
assumed as only one computational node. Nevertheless, simplifications in
pore-network modeling allow us to simulate much larger domains and with
much less computational effort; this is a major advantage.

1.3. Overview

This review is restricted to the computational aspects of dynamic pore-
network modeling for two-phase systems and their application in investiga-
tion of dynamics of two-phase flow. We review geometrical and topological
properties of the networks (section 2) as well as the computational algo-
rithms employed in solving a two-phase system (section 3). Advantages and
disadvantages of these algorithms as well as the numerical complexities are
discussed in detail.

Furthermore, various applications of these models, which give new
insights into the physics of two-phase flow, are discussed. Understanding
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Fundamentals of Two-Phase Flow in Porous Media 1901

the dependencies of residual saturation (trapping) is important especially
in reservoir engineering applications. Effect of geometrical and dynamic
parameters on residual saturation in two-phase systems is discussed in detail
in section 4. Section 5 covers the pressure field evolution under different
viscosity ratios as well as nonequilibrium capillarity effects. Pore-network
modeling has been employed to analyze the dependencies of nonequi-
librium capillarity coefficient, which was proposed in the nonequilibrium
capillarity theory (section 5.2).

Dynamic pore-network models have been extensively used to investi-
gate topological property of the invasion front. The scaling of the interface
as a fractal object under unfavourable viscosity ratios as well as the crossing
over from invasion-percolation system to diffusion-limited aggregation and
compact flow invasion are discussed in section 6. Furthermore, nonequilib-
rium effects on interfacial area are illustrated.

Section 7 discusses the disconnected flow (ganglia flow) regimes under
effect of dynamic parameters. The discussion covers the use of pore-scale
information to obtain a probability kernel to include the effect of ganglia
flow regime in macroscopic simulators. Finally, it has been observed in the
experiments that under ganglia flow regime, such as gas-liquid flow, there
are nonequilibrium effects on relative permeability curves. These effects are
discussed in section 8.

2. NETWORK STRUCTURE

Interstitial spaces in granular porous media are typically very irregular in
shape and size. At the pore scale, there are larger void spaces as well as
bottlenecks. To mimic the geometrical features of these interstitial spaces,
pore-network models typically consist of pore bodies (larger voids) con-
nected to each other by pore throats (narrow voids). However, the geometry
of void spaces is not the only important factor to be considered in a repre-
senting a porous medium. Vogel and Roth (2001) showed that connectivity
of the pore space, in addition to the pore geometry, plays an important role
in soil hydraulic properties. The topological and geometrical properties of
the dynamic pore-network models are discussed subsequently.

2.1. Network Topology

Mathematically network topology is based on the spatial properties of a
network that are preserved under continuous deformations of network ele-
ments, without creating or deleting connections. Two porous media with the
same topology can have very different hydraulic properties if the geometries
are different (Joekar-Niasar et al., 2010b). The main topological character-
istics of a network are (a) the spatial location of pore bodies and (b) the
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1902 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 4. Classifications of pore networks: (a) structured regular, (b) structured irregular
(red color illustrates isolated pores), (c) unstructured regular, and (d) unstructured irregular
(Color figure available online).

connectivity of pore elements. The first property illustrates that the network
is a structured or unstructured lattice. The second property is defined by
coordination number, which is the number of pore throats connected to a
pore body.

The simplest network structures are two-dimensional or three-
dimensional regular lattices with square or cubic unit cells, respectively. We
refer to each of these structures as a regular structured network. In such a
network, pore bodies are located at the lattice nodes, which are all equally
spaced, and pore throats are lined up along the lattice coordinates. In a
regular structured network, the coordination number is equal to four for a
two-dimensional network and six for a three-dimensional network. In a real
porous medium, the centers of large pore spaces are not located on lattice
points. Also, the number of pore throats connected to large pores is not the
same for all pores. Therefore, unstructured pore-network models have been
developed to mimic this feature of a real porous medium.

Based on these two characteristics of topology, pore-network models
can be classified into four groups: structured regular, structured irregular,
unstructured regular, and unstructured irregular networks (Figure 4). Up to
now almost all dynamic pore-network models, except those developed by
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Fundamentals of Two-Phase Flow in Porous Media 1903

King (1987), Blunt and King (1991), and Koplik and Lasseter (1985), have
been structured. King (1987) and Blunt and King (1991) developed un-
structured regular networks, and only in models developed by Koplik and
Lasseter (1985) and Mogensen and Stenby (1998) was coordination number
variable. Mogensen and Stenby (1998) developed a model with a variable
coordination number up to a maximum of 26. To our knowledge, no un-
structured irregular dynamic pore-network model has been developed untill
now. Although up to now few irregular dynamic pore-network models have
been developed, variation of coordination number in all of them has been
selected arbitrarily and is not related to the pore geometry. To relate the
network topology to pore geometry, Vogel and Roth (2001) adopted the
so-called Euler characteristic, χv.

In case the structure is partitioned into convex volume elements each
defined by a number of vertices, edges and faces, the Euler number may be
calculated according to the classical Euler formula of graph theory as follows:

χv = ν − E + F − V (3)

in which, ν, E , F , and V denote number of vertices, number of edges,
number of faces, and number of volumes, respectively. This equation can be
used for any pore size larger than a threshold size of i. As a result for each
category of pore size larger or equal than i, χ i

v can be calculated, which
shows the contribution of topology to the geometry for a given medium.
However, network topology has not been considered as a design parameter
in constructing dynamic pore-network models, since most of them have
been developed for a generic and not specific porous medium.

2.2. Network Geometry

Network geometry is related to the geometrical shape and size of pore
bodies and pore throats. Commonly, pore bodies are assumed to be cubic
(e.g., Joekar-Niasar et al., 2010a) or spherical (Koplik and Lasseter, 1985) in
shape. An exception is the work of Joekar-Niasar and Hassanizadeh (2011),
who considered the pore bodies to be truncated octahedrons. For pore
throats, however, a variety of geometrical shapes for the cross sections have
been considered, as shown in Figure 5.

FIGURE 5. Various cross-sectional shapes used for pore throats in pore-network models
(Color figure available online).
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1904 V. Joekar-Niasar and S. M. Hassanizadeh

Angular cross sections allow for the existence of corner flow along the
edges. This feature can allow simulating simultaneous flow of two phases
within a pore throat. In a real porous medium, the wetting phase usually
fills the corners and grooves, and the corner flow has a significant effect
on flow mechanism at pore scale especially during imbibition. Therefore,
researchers who have developed a pore-network model for simulating
experiments generally assign angular cross sections to pore throats; see
for example Van der Marck et al. (1997), who simulated micro-model
experiments. Another example can be the quasi static model developed by
Joekar-Niasar et al. (2010b), who considered hyperbolic polygonal cross
sections for pore throats to simulated air-water Pc-Sw curves in glass beads.
Existence of corner flow will allow phase continuity for the two fluids in
a pore throat. Thus, the governing equation for the pressure field will be
different from that for circular cross sections.

Many of dynamic pore-network models have pore throats with circular
cross sections (e.g., Dias and Payatakes, 1986a, 1986b; Koplik and Lasseter,
1985), but there are few models with angular cross sections such as Al-Gharbi
and Blunt (2005), who assumed triangular cross sections. Also, Hughes and
Blunt (2000); Joekar-Niasar et al. (2010a); Mogensen and Stenby (1998); Singh
and Mohanty (2003) used cubic pore bodies, and parallelepiped pore throats.

There are some other pore-network models, which do not explicitly
consider pore bodies and pore throats. In these models, it is assumed that
pore elements have varying cross sections; the narrowest part is located in
the middle and it diverges toward both ends, which may be considered to
play the role of a pore body (e.g., Aker et al., 1998a, 1998b; Al-Gharbi and
Blunt, 2005; Knudsen et al., 2002; Knudsen and Hansen, 2002; Valvanides
et al., 1998). But, no specific geometry or configuration has been assumed
at the connection point of these pore elements. In this article, these pore
elements are referred to as composite pores.

Another important geometrical parameter is the ratio of pore body di-
ameter to pore throat diameter, referred to as aspect ratio. This parameter
plays an important role in snap-off, which can influence trapping during
imbibition. For example, Joekar-Niasar et al. (2009) did not find any trapped
nonwetting phase at the end of imbibition in a high-porosity domain with
small aspect ratio. Effect of aspect ratio on residual saturation is discussed in
detail in section 4.3.

3. COMPUTATIONAL ALGORITHMS

Continuum-scale equations of two-phase flow in porous media are usu-
ally solved for the pressure and the saturation of wetting or nonwetting
phases. Ignoring gravity effect, the following system of equations for a rigid
porous medium and incompressible immiscible nonreactive fluids should be
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Fundamentals of Two-Phase Flow in Porous Media 1905

solved:

φ
∂Sα

∂t
= −∇ · uα, α = n, w

uα = − 1

µα
kαK∇ Pα, α = n, w

Sw + Sn = 1

Pc = Pn − Pw = f (Sw) (4)

where φ is the porosity, µα is the viscosity of phase α, Sα is saturation of
phase α, uα is the velocity of phase α, K is the intrinsic permeability tensor, kα

is the relative permeability of phase α, Pα is the pressure of phase α, Pc is the
capillary pressure, and w and n refer to the wetting and nonwetting phases,
respectively. Obviously, these equations do not apply at the pore scale. A
different, but somewhat similar, set of equations needs to be formulated
at the pore scale. The form of these equations depends on how the fluid
pressure fields are handled. Two general approaches exist: single-pressure
and two-pressure algorithms, which are described in detail subsequently.
These approaches are based on the following general assumptions:

� Fluids are assumed immiscible and incompressible, and the solid matrix
is assumed to be rigid.

� Flow in the pore throats is assumed to have low Reynolds number such
that inertial effects can be neglected. This allows us to use Washburn
equation for fluid fluxes through pores. However, inertial term can be
added as employed by Sorbie et al. (1995) in a single tube, and by Ridgway
et al. (2002) in a network model with cylindrical pore throats. Ridgway
et al. (2002) employed Bosanquet equation (Bosanquet, 1923), which
includes inertial effects. According to Sorbie et al. (1995), under capillary
forces flow in narrow pore throats could be faster than in large pore
throats at shorter times, which disagrees with the Washburn equation.

3.1. Single-Pressure Algorithm

In this algorithm, regardless of the fluid occupancy of pore bodies, a single
pressure is assigned to each pore body. This single-pressure algorithm is
generally based on one of following three assumptions:

1. It is assumed that each pore body or pore throat can be occupied by
only one fluid at any given time. This is generally applied to networks
with circular cross sections (e.g., Aker et al., 1998a, 1998b, Van der Marck
et al., 1997).
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1906 V. Joekar-Niasar and S. M. Hassanizadeh

2. It is assumed that both fluids can be present within a pore body but not
within a pore throat. Also, a major assumption is made that the local
capillary pressure in pore bodies is negligible. Therefore, to each pore
a single pressure is assigned (e.g., Blunt and King, 1990; Gielen et al.,
2005).

3. It is assumed that pore bodies and pore throats may be occupied by both
fluids. But then, an equivalent fluid is defined (averaged conductivities
using the electric resistors concept); with an equivalent single pressure
assigned to each pore body and an equivalent conductivity assigned to
each pore throat (e.g., Al-Gharbi and Blunt, 2005; Mogensen and Stenby,
1998).

In all three cases, the volumetric fluxes through pore throats is calcu-
lated using an analog of Washburn equation. The complete system of the
equations using single-pressure algorithm may be written as follows for a
pore body i connected to a neighboring pore body j by a pore throat ij:

Vi
∂Sw

i

∂t
+

Ni∑
j=1

QijS
w
ij = 0

Qij = Kij	ij

Sw
i + Sn

i = 1

	ij = f
(
Pn

i , Pn
j , Sw

i , Sw
j , Pc

ij

)
Pc

ij = f (rij) (5)

where Qij is the total volumetric flux from pore body i to pore body j, Ni is
the number of pore throats connected to the pore body i, Pc

ij [M L −1T −2] is
the entry capillary pressure of pore throat ij, Pα

i [M L −1T −2] is the pressure
of the phase α in the pore body i that can be wetting or nonwetting, Sw

i
is the saturation in pore body i, rij is the radius of pore throat ij, and Kij

[M−1L 4T ] is the equivalent hydraulic conductivity as a function of the pore
throat radius, pore throat length and fluid viscosities. Please note that in
every pore, only nonwetting or wetting phase pressure can be defined and
superscript n and w does not mean that both pressures have been defined
at the same time in a pore.

An important issue in single-pressure algorithm is how the equivalent
pressure drop, 	ij, is related to the capillary forces in pore throat ij and
it is related to fluid pressures at neighboring pore bodies. Two different
formulations, proposed by Koplik and Lasseter (1985) and Van der Marck
et al. (1997), are discussed here.

Based on fluids configurations in Figure 6, Koplik and Lasseter (1985)
considered eight combinations of fluid occupancies in pore bodies i and j ,
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Fundamentals of Two-Phase Flow in Porous Media 1907

TABLE 1. Defining 	ij (Equation 5) based on fluid configurations in two neighboring pore
bodies and a pore throat (Koplik and Lasseter, 1985), Pα

i is the pressure of α phase in pore
body i, superscripts w and n denote wetting and nonwetting fluids, respectively.

Fluid occupancy Fluid occupancy in
Case in pore body i pore body j 	ij

1 nonwetting nonwetting Pn
i − Pn

j

2 wetting wetting Pw
i − Pw

j = Pn
i − Pn

j − Pc
i + Pc

j

3 nonwetting wetting Pn
i − Pw

j − Pc
ij = Pn

i − Pn
j + Pc

j − Pc
ij

4 wetting nonwetting Pw
i − Pn

j + Pc
ij = Pn

i − Pn
j − Pc

i + Pc
ij

5 meniscus at pore,
nonwetting

nonwetting Pn
i − Pn

j

6 meniscus at pore,
wetting

nonwetting Pw
i − Pn

j + Pc
i = Pn

i − Pn
j

7 wetting meniscus at pore,
nonwetting

Pw
i − Pn

j + Pc
j = Pn

i − Pn
j − Pc

i + Pc
j

8 wetting meniscus at pore, wetting Pw
i − Pw

j = Pn
i − Pn

j − Pc
i + Pc

j

General form 	ij = Pn
i − Pn

j + Sw
i (Pc

ij − Pc
i ) − Sw

j (Pc
ij − Pc

j )

as shown in Table 1. They assumed that up to two interfaces may exist in a
pore throat ij. Based on these eight possibilities Koplik and Lasseter (1985)
proposed following general form for 	ij, which covers all the options using
saturations at pore bodies (Table 1).

	ij = Pn
i − Pn

j + Sw
i

(
Pc

ij − Pc
i

)− Sw
j

(
Pc

ij − Pc
j

)
, (6)

in which Sw
i and Sw

j are the wetting saturations in pore bodies i and j.
Van der Marck et al. (1997) modeled a system similar to what Koplik and

Lasseter (1985) used. Van der Marck et al. (1997) simulated drainage process
and Koplik and Lasseter (1985) simulated imbibition process in circular cross
sections, where corner flow is absent. They assumed pore throats to have a
negligible volume compared with pore bodies. Therefore, the interface was

FIGURE 6. Schematic presentation of pore bodies i and j and pore throat ij and corre-
sponding capillary pressures and saturations. Based on the occupancy of the pore bodies and
interface location, pressure drop rules have been defined in Table 1.
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1908 V. Joekar-Niasar and S. M. Hassanizadeh

TABLE 2. Defining 	ij based on fluid configurations in two neighboring pore bodies and a
pore throat (Van der Marck et al., 1997)

Fluid occupancy Fluid occupancy
in pore body i in pore body j 	ij

nonwetting nonwetting χij

wetting wetting χij

nonwetting wetting θ [χij − Pc
eij

](χij − Pc
eij

) + θ [χij]χij

wetting nonwetting θ [χ j i − Pc
eij

](χij + Pc
eij

) + θ [χij]χij

meniscus at pore, meniscus at pore θ [χij − Pc
eij

](χij − Pc
eij

) + θ [χ j i − Pc
eij

](χij + Pc
eij

)
nonwetting nonwetting

not tracked within the pore throat (i.e., spontaneous filling of a pore throat
at the moment of invasion was assumed). Van der Marck et al. (1997) also
assumed that up to two interfaces can exist in a single pore throat, one at
each end. They included the gravity effects in the pore-network model. For
a pore throat connecting pore body i to pore body j, and filled with a fluid
with density ρij [ML−3], a variable χij was defined as follows:

χij = Pi − Pj − ρijg(xi − x j ) (7)

Assuming a dummy variable x, Van der Marck et al. (1997) also defined
a step-wise function, θ [x], as follows.

θ [x] =
{

1 if x > 0

0 otherwise
(8)

Considering definitions of χij and θ [x], 	ij in Equation 5 was defined for
different cases as shown in Table 2. The entry capillary pressure for pore
throat ij was denoted by Pc

eij
.

A similar formulation was also used by Dias and Payatakes (1986a,
1986b), Vizika et al. (1994), and Knudsen et al. (2002) with some modifi-
cations. Application of 	ij formulations in Equation 5 results in a nonlinear
system of equations that has been solved with a combination of overrelax-
ation and dampened Newton-Raphson methods.

Obviously, corner flow is not included in the original Washburn
equation (single-pressure approach). Nevertheless, this equation has been
modified and used for angular cross sections, using the concept of equivalent
phase described in situation 3 previously. The equivalent conductivity of a
pore throat K eq

ij is defined as the average of conductivities of phases using
the rule of equivalent resistor for electrical resistor circuits. Thus, instead of
solving for two pressure fields, one can solve for a single pressure field (see
Al-Gharbi and Blunt, 2005; Bravo et al., 2007; Mogensen and Stenby, 1998).

The advantage of single-pressure approach is that it simplifies the prob-
lem significantly, and it can reduce computational effort. But, it has the
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Fundamentals of Two-Phase Flow in Porous Media 1909

limitation that it cannot be used for angular cross sections properly. Al-Gharbi
and Blunt (2005) have shown that single-pressure approach in angular cross
sections can lead to inconsistent results in fluids occupancy in the network. If
we use the same contact angle in static and dynamic simulations, one would
expect that during drainage the same equilibrium fluid occupancy to be ob-
tained from a quasistatic pore-network model and a dynamic pore-network
model for the same boundary conditions. However, Al-Gharbi and Blunt
(2005) showed that when employing the concept of equivalent phase pres-
sure, snapshots of fluid occupancy obtained from quasistatic and dynamic
pore-network models with the same boundary conditions are not the same.

3.2. Two-Pressure Algorithm

In this algorithm, when a pore body is filled with two fluids, each fluid is
assumed to have its own pressure. Therefore, a local capillary pressure exists
in a pore body. The complete system of the equations for the two-pressure
algorithm may be written as follows:

Vi
∂Sα

i

∂t
+

Ni∑
j=1

Qα
ij = 0, α = n, w

Qα
ij = K α

ij

(
Pα

i − Pα
j

)
Sw

i + Sn
i = 1

Pc
i = Pn

i − Pw
i = f

(
Sw

i

)
K α

ij = f
(
Pc

ij

)
, α = n, w (9)

where K α
ij is the hydraulic conductivity for phase α, and Vi is the volume

of pore body i. This formulation was used initially by Thompson (2002)
to investigate the imbibition process in fibrous materials for water-air
system (favorable viscosity ratio). He solved pressure fields for each phase
separately, including local capillary pressure. The local capillary pressure
in each pore body was defined through the local interface curvature,
corresponding to a given local saturation. This formulation provides the
possibility to include mechanisms related to the variations of local capillary
pressure (e.g., snap-off, counter-current flow) in simulations. In addition,
numerical formulation of this approach is easier to implement compared
with the single-pressure approach. However, similar to Equation 5, in
capillary-dominated regimes, this equation shows a highly nonlinear
behavior that should be treated carefully. Thompson (2002) stated that
he could not find a good agreement between results of a slow dynamic
simulation and a quasistatic simulation. Also, the model could not be used
for very small capillary numbers. Later on, Joekar-Niasar et al. (2010a) and
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1910 V. Joekar-Niasar and S. M. Hassanizadeh

Joekar-Niasar and Hassanizadeh (2011) used two-pressure algorithm with
some numerical improvements in the pressure solver. They investigated
nonequilibrium effects in capillary pressure and fluid-fluid interfacial area.

3.3. Numerical Difficulties

When capillary forces are comparable with viscous forces, there is a
competition between them that creates high nonlinearities in pressure field
at pore scale. Handling these nonlinearities in simulations is not trivial and
equations should be treated carefully, especially in capillary-dominated flow.

The numerical problem in dynamic pore-network modeling was
reported for the first time by Koplik and Lasseter (1985), who observed that
saturations in two neighboring pore bodies were oscillating between 1 and 0
continuously. They referred to this as capillary pinning problem. This is due
to the employment of decoupled scheme for calculation of pressure field
and saturation. The decoupled scheme does not lead to a serious problem
for viscous-dominated flow (i.e., large capillary numbers), since the pressure
gradient in fluids (viscous forces) are much larger than the local capillary
pressure imposed by pore geometry. Consequently, the nonlinearity of the
problem at pore scale decreases. At low flow rates, local capillary forces
are comparable with viscous forces. Thus, the fluid occupancy in pore
throats will change in an on and off fashion in consecutive time steps and
oscillation of saturations between two neighboring pores will be resulted
(capillary pinning).

To overcome this problem, Koplik and Lasseter (1985) linearized the
system using a constrained set of equations. For linearization, they defined
a criterion to check whether local saturation in a pore body oscillated from
1 to 0 in three successive iterations. If this condition occurred, a no-flow
condition was assigned to that pore body (dead-end pore body). Then, the
pressure field was solved again. At each time step, validity of the local no-
flow pore body (and pore throat) was also checked. However, this algorithm
was extremely time-consuming.

The capillary pinning problem was also observed in other pore-network
models, where no geometry was assigned to the connections of pore throats
(i.e., no pore bodies were defined) as in Dias and Payatakes (1986a),
Aker et al. (1998 1998b,a), and Knudsen et al. (2002). When an interface
moving in a pore throat reaches a connection point (a node), new interfaces
should be created in the connecting pore throats (see Figure 7). So, when
a meniscus reaches the end of a pore throat (position 1), it is removed and
three new menisci are created at position (δ) in the neighboring pore throats
(position 2). When a new interface is created, a capillary pressure is assigned
to it. If capillary forces are comparable with viscous forces, they can cause
the interface to move back and forth within a pore throat in successive time
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Fundamentals of Two-Phase Flow in Porous Media 1911

FIGURE 7. The motion of the menisci at a node. The nonwetting fluid (shaded) reaches the
end of the tube (position 1) and moves a distance δ into the neighboring tubes (position 2).
A proper time is recorded due to the small movement (Aker et al., 1998a).

steps. To overcome this problem, a part of all pore throat (denoted by δ

in Figure 7) is defined as the pore body region. They forced the capillary
pressure in a pore throat to change from Pc

ij to zero in the connection points
of pore throat. This change of capillary pressure occurs in the range shown
by δ. This region prevents immediate disappearing of menisci at position
2 and moving back to the initial position 1 in tubes (Figure 7). Dias and
Payatakes (1986a, 1986b) assumed to have a δij equal to 15% of the total
length of pore throat ij. Aker et al. (1998 1998b,a) and Løvoll et al. (2005)
assumed that δij has a length equal to 1–5% of the length of pore throat ij.

In the two-pressure algorithm, Joekar-Niasar et al. (2010a) and
Joekar-Niasar and Hassanizadeh (2011) proposed a semi-implicit saturation
update, instead of explicit saturation update. Based on their approach, the
discretized form of Equation 9 results in

Vi

(
Sw

i

)k+1 − (
Sw

i

)k
	t

−
Ni∑

j=1

(
K n

ij

K tot
ij

Qtot
ij + K w

ij K n
ij

K tot
ij

∂ Pc
ij

∂Sw
ij

((
Sw

i

)k+1 − (
Sw

j

)k+1
))

= 0 (10)

in which local capillary pressure Pc
i is a function of radius of curvature

of interface in the pore body. However, for simplicity, they related the
radius of curvature of the interface to the local saturation. As a result,
they approximated the local capillary pressure as a smoothed function of
local saturation. This formulation includes a term related to viscous forces
and another term related to capillary forces. They showed that it worked
successfully for both unfavorable and favorable viscosity ratios for very
small and large capillary numbers. Based on this formulation, they could
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1912 V. Joekar-Niasar and S. M. Hassanizadeh

model very small capillary numbers for drainage and they found a precise
agreement between quasistatic and dynamic simulations.

3.4. Boundary Conditions

Boundary conditions commonly considered in dynamic pore-network mod-
els are either constant pressure (Dirichlet) or constant flux. Implementing
constant pressures at boundaries is numerically quite straight forward. How-
ever, since pore-network models have been mostly used to study two-phase
flow for prescribed capillary numbers, constant flux boundary conditions
have been applied more frequently. Applying constant flow rate in pore-
network modeling is not trivial. At pore scale, the pressure field is sensitive
to the local capillary pressure and this causes small fluctuations in flow rate
in successive time steps. The constant flux boundary conditions have been
implemented in various ways. A common approach is what Al-Gharbi and
Blunt (2005) used. They specified a constant injection rate at the upstream
boundary and a constant pressure at the downstream boundary. Although
at each time step, fluid configuration and consequently pressure field might
change, they assumed that the change in pressure drop required to main-
tain a constant injection rate between two consecutive time steps was small.
But, it seems that this assumption was not valid for their network where
the lattice size was only 9 × 9 pores. They selected a small time step to
calculate the next pressure step and finally the discharge rate. Vizika et al.
(1994) considered very narrow (high-resistivity) pore throats at the down-
stream boundary, and applied a constant flux at the upstream boundary.
Applying narrow pore throats at downstream boundary can regulate the flux
only during drainage. During imbibition, applying very fine pore throats at
downstream can increase probability of the snap-off at the boundary that
will result in large amount of trapped nonwetting fluid.

Aker et al. (1998 1998b) implemented the constant flux boundary
conditions differently. Considering the Washburn equation, they suggested
that for two-phase flow, total flux (Q) over the whole domain may be
written in terms of the global pressure difference and capillary pressure:

Q = f1(	P ) + f2(Pc) (11)

where 	P is the difference between the pressures at upstream and
downstream boundaries. Assuming a linear relationship, Aker et al. (1998
1998b) suggested the following equation:

Q(Sw) = A(Sw)	P + B(Sw, Pc) (12)

Clearly, A(Sw) and B(Sw, Pc) depend on two-phase fluid configura-
tions. Thus, to calculate A(Sw) and B(Sw, Pc) for a given fluid saturation
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Fundamentals of Two-Phase Flow in Porous Media 1913

(Sw), two equations are required. For a given fluid configuration, two dif-
ferent pressure drops can be imposed at the boundaries. Thus, two dif-
ferent flux rates can be calculated, which both should be consistent with
Equation 12. So, two equations are resulted. By solving these two equa-
tions, A(Sw) and B(Sw, Pc) can be calculated. Knowing parameters A(Sw)
and B(Sw, Pc), and knowing the desired injection rate (Q), proper pressure
drop can be estimated. Since, A(Sw) and B(Sw, Pc) are dependent on the
fluid configuration, they should be calculated at each time step, with the
change of fluid configuration. This makes the problem computationally too
expensive.

To investigate steady-state flow conditions, Constantinides and Pay-
atakes (1996) and later Knudsen et al. (2002); Knudsen and Hansen (2002)
defined periodic boundary conditions for saturation at inlet and outlet. Side
boundaries were assumed to be periodic. In this approach, the amount
of α−phase that exits the domain is introduced from the corresponding
pore throat at inlet. Thus, saturation of the whole domain does not change
with time, and it is possible to simulate the steady-state conditions. How-
ever, to prevent simulation results being biased by initial conditions, simu-
lations should be continued until the average values of pressure becomes
constant.

3.5. Geometry and Conductivity Assumptions

Assumptions on the pore-network structure have a major influence on the
complexity of computations and computational time. Major assumptions re-
gard the volume as well as the resistance of pore elements. In many models
(see Blunt and King, 1991; Blunt et al., 1992; Bravo et al., 2007; Gielen
et al., 2004, 2005; Koplik and Lasseter, 1985; Touboul et al., 1987; Van der
Marck et al., 1997), it is assumed that the volume of pore throats is negli-
gible compared to the volume of pore bodies. At the same time, resistance
of pore bodies has been considered to be negligible compared to that of
pore throats. In some models, since no specific geometry was assigned to
the connections (no pore body), volume and resistance were both assigned
to the pore throats (e.g., Aker et al., 1998 1998b,a; Dahle and Celia, 1999;
Knudsen et al., 2002; Knudsen and Hansen, 2002; Løvoll et al., 2005). The
only case, where volume and resistance were assigned to both pore bodies
and pore throats, is the work of Mogensen and Stenby (1998). Using the
harmonic averaging, they calculated the effective resistance of a pore unit,
composed of a pore throat and connected pore bodies. If a pore (body or
throat) is considered to have resistance and volume at the same time, the
fluid-fluid interfaces should be tracked inside that pore (body or throat),
which is computationally expensive. However, the practical advantages of
this model compared to the other ones have not been discussed.
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1914 V. Joekar-Niasar and S. M. Hassanizadeh

3.6. Local Rules

In addition to the general equations required for simulating dynamics of
two-phase flow in a pore-network model (Equations 5 or 9), some local
rules should be defined as well. The local rules are applied to each and
every single pore and they should be updated in every time step during
simulations. General local rules, usually needed for the development of a
dynamic pore-network model, are as follows:

� Entry capillary pressure: Nowetting phase can invade a pore-throat only
when the local capillary pressure is larger than the entry capillary pres-
sure of that pore throat. Entry capillary pressure can be calculated by
writing balance of forces for a specific cross section (geometry) and based
on contact angle and interfacial tension. The most common approach
for calculating entry capillary pressure is the Mayer-Stowe-Princen (MS-P)
method suggested by Ma et al. (1996); Mayer and Stowe (1965); Princen
(1969a, 1969b, 1970), which is based on balance of forces for contact lines
at the moment of invasion. Using this method, entry capillary pressures
for different cross sections such as irregular triangular (Mason and Mor-
row, 1991), square (Fenwick and Blunt, 1998; Joekar-Niasar et al., 2010a),
rectangular (Joekar-Niasar et al., 2009), star-shape (van Dijke and Sorbie,
2006), irregular hyperbolic triangular (Joekar-Niasar et al., 2010b), and
regular hyperbolic polygonal (Joekar-Niasar et al., 2010b) have been cal-
culated. The suggested relationships for the entry capillary pressure have
been employed for both quasistatic and dynamic pore-network models.
Furthermore, since the entry capillary pressure depends on the contact
angle, one may include change of contact angle due to flow rate to use
the same relationships.

� Local conductivities: Assuming Poiseuille equation to be valid in a pore
element, its conductivity can be determined in terms of its geometry (cross
section, length) and fluid property (viscosity, contact angle). In the case
of pores with angular cross section, the conductivity for each phase will
be a function of local saturation and thus local capillary pressure. Solving
Navier-Stokes equation in pore throats with triangular and square cross
sections, some algebraic equations for conductivities have been suggested
(Patzek and Silin, 2001; Ransohoff and Radke, 1988; Zhou et al., 1997).
Since in a dynamic process, the radius of curvature of interface is variable,
local fluid conductivities should be calculated in every single time step to
account for change of phase permeability with time.

� Snap-off : Generally, there are two mechanisms that regulate fluids dis-
placement at pore scale: snap-off and piston-like displacement. The phe-
nomenon in which wetting phase in the corners pinches off the nonwet-
ting phase in the middle of pore throat (Figures 8 and 9) is referred to as
snap-off. Snap-off can occur under both drainage and imbibition, but only
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Fundamentals of Two-Phase Flow in Porous Media 1915

FIGURE 8. Schematic presentation of snap-off sequence during drainage (Color figure avail-
able online).

in a pore throat with wetting corner flow. Moreover, since under drainage
nonwetting fluid is the invading phase, fluid interfaces are sandwiched to
the corners and capillary pressure within pore throats builds up gradually.
Thus, the possibility of snap-off decreases compared imbibition.

Under drainage, when the nonwetting phase saturation in a pore body
increases, the local capillary pressure in that pore body builds up. It con-
tinues until it can invade a pore throat (Figure 8a). When the invasion
occurs, if the nonwetting phase cannot fill the next pore body rapidly
(Figure 8b) and cannot keep the capillary pressure in the pore throat high
enough, it will be snappedoff by the wetting phase, which remains in
the pore throat. After snap-off, there will be a disconnected blob of non-
wetting phase in the second pore body (Figure 8c). Then, after capillary
pressure builds up further in the first pore body, the nonwetting phase will
invade the pore throat again. If the nonwetting phase does not fill up the
second pore body, it will get disconnected again. This process continues
intermittently until the second pore body is filled up and the nonwetting
phase in both pore bodies can stay connected without snap-off.

Under imbibition, the wetting phase will first fill small pores, crevices,
and grooves. If the wetting fluid is already present in the porous medium,
it tends to flow through the films already present in the corners. Thus,
a swelling of the wetting film during imbibition will happen (Figure 9b).
As the injection of the wetting fluid continues, the filling grows so that
eventually the wetting fluid is able to fill the pore throat (Figure 9c). This
snap-off or choke-off mechanism was proposed for the first time by Roof
(1970).

Similar to entry capillary pressure, capillary pressure at which snap-
off occurs is a function of pore geometry, contact angle, and interfacial
tension, as well as fluid occupancy in the neighboring pores (e.g., Vidales
et al., 1998). The snap-off capillary pressure should be checked in the
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1916 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 9. Schematic presentation of snap-off sequence during imbibition. With the decrease
of local capillary pressure, the wetting phase in the corners of a pore throat swell until snap-off
occurs (Color figure available online).

pores occupied by the nonwetting fluid, at each time step, to reconsider
the fluid occupancy in them. Since this criterion depends on the fluid
occupancy of the neighboring pores, dynamics of the system can influence
significantly the snap-off occurrence. More detailed explanations about the
dynamic effects on snap-off rate are given in the next section.

� Piston-like movement: If the invading fluid can completely sweep the
receding fluid in a pore element, the displacement is referred to as piston-
like movement. In absence of corner flow, only piston-like movement
can occur. In general, piston-like movement and snap-off are mutually
exclusive mechanisms. As Blunt et al. (1992) stated, snap-off can happen
only when a piston-like movement is topologically impossible.

If the capillary number is very small, snap-off is dominant and with
the increase of capillary number, the possibility of snap-off decreases.
Using a pore-network model, Mogensen and Stenby (1998) found that for
capillary numbers between 10−8 and 10−7, there was a transition from
snap-off movement to piston-like movement. In general, the longer the
pores aspect ratio (i.e., for relatively small pore throats), the higher the
possibility of snap-off is, and vice versa. For instance, Joekar-Niasar et al.
(2009) did not observe any snap-off in a micromodel experiment even
for very small capillary numbers due to small aspect ratio (relatively large
pore throats) and high porosity of the domain.

� Trapping: If the receding phase forms clusters that are disconnected
from the moving part (which is commonly connected to its boundary
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Fundamentals of Two-Phase Flow in Porous Media 1917

reservoir), it is considered to be trapped. In a water-wet porous medium,
trapping of the nonwetting phase during imbibition is more probable than
during drainage, since the wetting phase can be connected to its boundary
reservoir through the corners. Since phase trapping (residual saturation)
depends significantly on dynamic parameters, the degree of trapping are
very different in dynamic and quasistatic simulations. In order to iden-
tify whether local disconnection causes larger groups of pores to get
disconnected from their boundary reservoir, a search algorithm (such as
depth-first search) in a tree structure is required (Cormen et al., 2009).

Search algorithm for checking the trapping of phases in pore-network
models has been employed by Al-Futaisi and Patzek (2003), which can be
applied either in quasistatic or dynamic pore-network models.

4. MACROSCOPIC RESIDUAL SATURATION

4.1. Factors Affecting Residual Saturation

When the receding fluid has fully disconnected from its corresponding
boundary reservoir and cannot be expelled out of the domain, the corre-
sponding saturation is referred to as residual saturation. In oil recovery, a
major concern is to reduce the residual saturation of the oil (nonwetting
fluid). There are many factors such as capillary number, viscosity ratio, as-
pect ratio, interfacial tension, and contact angle that influence the residual
saturation significantly. The residual saturation can be reduced in two dif-
ferent ways: suppressing snap-off and mobilizing disconnected blobs. These
are described subsequently.

� Suppressing the snap-off at pore scale, which results in reducing resid-
ual macroscale saturation. As explained before, under imbibition, snap-off
causes the entrapment of the nonwetting fluid. However, the rate of snap-
off is highly dependent on fluid properties as well as dynamic conditions.
Snap-off mechanism can be suppressed by decreasing the capillary forces
in comparison with viscous forces. Thus, by increasing the capillary num-
ber, decreasing the interfacial tension, and decreasing wettability, snap-off
probability can be decreased and consequently the residual saturation will
be reduced (Dias and Payatakes, 1986a, 1986b; Hughes and Blunt, 2000;
Mogensen and Stenby, 1998; Vizika et al., 1994).

� Mobilization of the disconnected phase, even when it has been discon-
nected from the reservoir. Ng and Payatakes (1980) calculated at which
capillary number the main terminal interfaces of a trapped ganglion might
move. Main terminal interfaces are shown in Figure 10 by thick curves sep-
arating the blank pore space and the hatched pore space. When ganglia
are trapped in a porous medium, under no-flow conditions, i.e. ∇ P = 0,
neglecting gravity effects, the curvatures of the menisci should all be equal.
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1918 V. Joekar-Niasar and S. M. Hassanizadeh

Imposing pressure gradient on the wetting phase, the pressure within the
ganglion (Po), the pressure in the water decreases along the ganglion in
the flow direction. Thus, assuming that the pressure inside the ganglion
is uniform, capillary pressure at downstream interface will be larger than
that of the upstream interface.

Under this condition, there are backward forces on the ganglion due to
capillary pressure and forward forces due to external pressure difference.
The two forces may cancel each other so that the ganglion remains immo-
bile. However, with the increase of the wetting phase pressure gradient to
a critical value, menisci can move if at least one of its main terminal inter-
faces can cause drainage and back menisci allows imbibition (Figure 10).
Once, this criterion is met, the ganglion cannot resist mobilization any
longer. This displacement is referred to as a rheon (Ng and Payatakes,
1980). During the rheon, oil invades one of the downstream chambers
and this displacement is referred to as xeron. Furthermore, the aqueous
phase invades one of the upstream chambers that used to be occupied
by the oil. This displacement is referred to as hygron. In porous media
with very irregular geometry, it is possible that if the xeron occurs in an
unusually large chamber, two (or more) hygrons may be necessary to
supply enough oil for the xeron. The reverse may also occur. Finally, if
proper conditions for a hygron develop at a site (where the ganglion is
one chamber long), the ganglion may fission into two daughter ganglia.

Thus, to develop displacement criterion for the mobilization of oil gan-
glia in quasistatic pore-network models, menisci locations should be iden-
tified in calculations. Based on the schematic presentation shown in Fig-
ure 11, Ng and Payatakes (1980) assumed that all interfaces were locked
in their unit cells, except for two; one downstream with index I and one
upstream with index K. For this particular pair of menisci locations, there is
a critical pressure gradient that may cause mobilization. By repeating this
calculation for all possible pairs, one can identify the particular pair (i =
I, k = K) for which the required pressure gradient is minimum. If the mo-
bilization is to occur, it will proceed through the I th and Kth menisci. This
analysis is equivalent to determining the maximum mobility factor (βKI),
namely

βKI = 	L KI cos θKI/
[
J dr,I

(
θo

r

)− J im,K

(
θo

a

)]
(13)

in which, 	L KI is the distance between menisci K and I, θKI is the angle
between the line connecting throats K and I and the macroscopic flow
direction, J dr,I is the drainage curvature in the downstream meniscus I,
J im,K is imbibition curvature in the upstream meniscus K, estimated as
J j,i = 4 cos θ j

di
, in which di is diameter of pore i with circular cross section.

Finally, Ng and Payatakes (1980) defined the following mobilization and
stranding criterion:
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Fundamentals of Two-Phase Flow in Porous Media 1919

FIGURE 10. Schematic presentation of a ganglia movement showing drainage menisci and
imbibition menisci. Flow direction is from left to right (Payatakes, 1982) (Color figure available
online).

If βKI|∇ P |/γow ≥ 1, mobilization occurs.
If βKI|∇ P |/γow < 1, stranding occurs.

Obviously, parameters influencing the snap-off rate can influence mobi-
lization process as well. In the following section, effects of different param-
eters on residual saturation are discussed in detail. One should note that the
mobilization of ganglia have been included only in dynamic network models
developed by Payatakes and coworkers and Al-Gharbi and Blunt (2005).

4.2. Effect of Contact Angle

Contact angle can influence the possibility of snap-off especially during imbi-
bition. Hughes and Blunt (2000) simulated the effect of flow rate and contact
angle on snap-off and piston-like movement using a pore-network model.
They showed that with the decrease of contact angle, possibility of snap-off
increases. Thus, more disconnection of the nonwetting phase would happen,
leading to more trapping of the phase. This is evident from Figure 12 where
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1920 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 11. Concepts involved in the quasistatic criterion for mobilization (Payatakes, 1982)

residual oil saturation is shown to increase with the decrease in contact an-
gle. They found that more than 50% of pore throats in their simulation were
affected by snap-off when the flow rate was very low and contact angle was
zero.

Constantinides and Payatakes (2000) modeled the effect of wetting films
on snap-off during imbibition using a pore-network model. Their simulations
showed that the wetting film could cause significant disconnection and en-
trapment of nonwetting phase during imbibition. This was specially so when
contact angle as well as capillary number were small for unfavorable viscosity
ratios.

FIGURE 12. Effect of capillary number and contact angle on residual nonwetting saturation.
Mobilization has not been included (Hughes and Blunt, 2000).
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Fundamentals of Two-Phase Flow in Porous Media 1921

4.3. Effect of Aspect Ratio and Coordination Number

As explained earlier, capillary number and viscosity ratio are the main pa-
rameters that control the invasion mechanism and trapping. However, under
some conditions, porous media topology and geometry can be so important
that could suppress effect of dynamic parameters. For instance, in micro-
model experiments, Joekar-Niasar et al. (2009) observed zero snap-off and
consequently zero residual nonwetting phase saturation during imbibition.
They simulated two-phase flow experiments with nitrogen and decane in a
two-dimensional micro-model with 68-72% porosity and very small aspect
ratio.

As explained in Section 2.2, the main geometrical and topological
characteristics of pore networks are aspect ratio and coordination num-
ber, respectively. Some researchers have looked into the effect of struc-
tural simplification of porous media on qualitative results from pore-network
models. Mogensen and Stenby (1998) investigated the effect of coordina-
tion number and aspect ratio on the residual nonwetting saturation (im-
bibition), using a pore-network model, which had variable coordination
numbers up to 26. They found that, for high capillary numbers, the ef-
fect of coordination number on residual nonwetting phase saturation was
minor compared to the aspect ratio, contact angle, and capillary number.
However, for small capillary numbers, where snap-off movement may be
more dominant than piston-like movement, effect of coordination num-
ber is significant. For example, for Ca = 10−6, with the decrease of co-
ordination number from 4 to 3 in a 40 × 40 two-dimensional network,
residual nonwetting phase saturation increased from 13.3% to 29.4%. How-
ever, in general, effects of contact angle, aspect ratio and capillary number
on residual saturation are more significant than the effect of coordination
number.

Aspect ratio, which is a measure of the contrast between pore body
and pore throat size distributions, can magnify the response of the system
to the dynamic parameters under different conditions. For instance, there is
a transition zone between snap-off-dominated and piston-dominated flow,
as shown in Figure 13. For large aspect ratios, the transition is more abrupt
than for small aspect ratios.

In another study, Chaouche et al. (1994) studied the effect of hetero-
geneity (by increasing the variance of pore sizes) on saturation distribution
during drainage. They compared results of a continuum model and a pore-
network model with their experiments. They did not find a good agreement
between continuum and pore-network model results, which might be due to
the small size of their pore-network model. Their model was based on the
algorithm by Blunt and King (1991) for a two-dimensional network. Cap-
illary number in the pore-network model varied between 1.5 × 10−6 and
1.5 × 10−3, and three viscosity ratios were selected equal to 0.1, 1, and 10.
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1922 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 13. Effect of aspect ratio, contact angle, and capillary number on the amount of
wetting fluid accumulating in the corners, Z = 6 (Mogensen and Stenby, 1998) (Color figure
available online).

The nonwetting phase saturation rose as the low permeable region was ap-
proached, but then it decreased substantially as it entered the low permeable
region.

Under favorable viscosity ratios during drainage, homogeneous dis-
placement was compact in all regions (low and high permeability). Thus,
high saturation values and high sweeping efficiency were resulted. Variation
of saturation in a highly permeable region (with small capillarity effect) was
insignificant. In contrast, for an unfavorable viscosity ratio, displacement
was much less efficient and heterogeneity effects were quite pronounced in
the saturation profile.

4.4. Effect of Ca and Viscosity Ratio

Many researchers have focused on the effect of dynamic parameters—
capillary number and viscosity ratio—on residual oil saturation during im-
bibition. Koplik and Lasseter (1985) simulated the imbibition process with
a viscosity ratio of unity. They showed that capillary number significantly
influences the fluids distribution under imbibition. They studied the distribu-
tion of blob sizes remained in the pore network at the end of the imbibition
experiment for different capillary numbers. They found that with the increase
of capillary number, the size of trapped blobs decreased, but the number
of trapped blobs increased. This is because viscous forces tend to fragment
residual oil into small parts. Under low capillary number conditions, the
size of trapped blobs got larger, but number of trapped blobs decreased
compared to high capillary number conditions.
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Fundamentals of Two-Phase Flow in Porous Media 1923

FIGURE 14. Number of pore throats filled with the nonwetting fluid versus the radii of pore
throats for M = 0.1. Crosses Ca = 0; triangles Ca = 0.5, squares Ca = ∞ (zero entry capillary
pressure). Notice that for Ca = 0, none of the pore throats with entry capillary pressure larger
than the percolation threshold are filled (Blunt and King, 1991).

Blunt and King (1991) studied distribution of nonwetting phase–filled
pores at breakthrough during drainage for different viscosity ratios. They
showed that when capillary number was high, a uniform distribution of
filled pores was resulted. But at low capillary numbers, only large pores
were invaded. This effect has been illustrated in Figure 14 by showing
number of pore throats filled with the nonwetting fluid versus radius of
pore throats. The horizonal curve with square symbol shows that at very
large capillary number (where only viscous forces are important), pore
throat occupancy for different pore throat radii is constant. But, if capil-
lary forces are dominant (Ca ≈ 0), mostly large pore throats are filled (curve
with cross symbols). For an intermediate capillary number (triangle sym-
bols), large pore throats are more probable to be filled by the nonwetting
fluid and this probability decreases with decrease of pore throat radii. This
is similar to the conclusion by Koplik and Lasseter (1985); at low capil-
lary number, there is more possibility for trapping and larger blobs are
expected.

Dias and Payatakes (1986a), Vizika et al. (1994), Blunt and Scher (1995),
Mogensen and Stenby (1998), Hughes and Blunt (2000), DiCarlo (2006), and
Nguyen et al. (2006) also showed that during imbibition, with the increase of
capillary number and viscosity ratio, less trapping of the nonwetting phase
(oil) during imbibition would happen. This is due to the suppression of
snap-off at high flow rates. Dias and Payatakes (1986a) showed the effect
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1924 V. Joekar-Niasar and S. M. Hassanizadeh

of capillary number on residual oil saturation for different viscosity ratios
(Figure 15). It should be noted that κ in Figure 15 is the inverse of M . Thus,
with increase of κ , M will decrease. As it can be seen, during imbibition,
residual oil saturation remains virtually constant (around 50%) for smaller
capillary numbers. From Ca ≈ 10−5, it starts to decrease drastically with
increasing Ca. For viscosity ratios smaller than 1 (unfavorable conditions),
residual oil saturation remains constant up to Ca ≤ 10−7 and in range of
10−7 ≤ Ca ≤ 5 × 10−5, it increases slightly. Then, it decreases rapidly for
Ca ≥ 10−4. This figure shows that the effect of capillary number on residual
saturation decreases with decrease of viscosity ratio (M ). Hashemi et al.
(1999) and Hughes and Blunt (2000) presented a curve qualitatively similar
to Figure 15.

Vizika et al. (1994) investigated the effect of viscosity ratio in more
detail for different capillary numbers using three-dimensional pore-network
models and also micromodel experiments. They concluded that the viscosity
ratio affects the residual oil saturation during imbibition even at low Ca. But
when the capillary forces decrease (for example with increase of contact
angle), effect of viscosity ratio on residual oil saturation is less pronounced.
Their interpretation is that local pressure gradients, which are created by the
advance of a single meniscus or a wetting film, may be sufficiently large to
make viscous stresses locally important, even if the local overall flow rate

FIGURE 15. Residual oil saturation (Sor) versus the capillary number, Ca, for imbibition
simulation on a 15 × 30 network for various values of inverse viscosity ratio (κ = 1/M ; Dias
and Payatakes, 1986a).
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Fundamentals of Two-Phase Flow in Porous Media 1925

FIGURE 16. Capillary desaturation curves for different viscosity ratios, due to Singh and
Mohanty (2003). Each data point represents an average value over three realizations. Data from
Lefebvre du Prey (1973) are also plotted for comparison. It should be noted that κ = µreceding

µinvading
.

is very small. The gradual accumulation of local viscous effects may lead to
substantial macroscopic effects.

Although due to the industrial applications in reservoir engineering
residual nonwetting phase saturation is generally of more interest, some re-
searchers have also investigated the trapped wetting phase during drainage.
Singh and Mohanty (2003), and Al-Gharbi and Blunt (2005) have studied
residual water saturation during drainage for constant flow rates. Singh
and Mohanty (2003) showed that in almost all cases of drainage (includ-
ing high and low capillary numbers, favorable and unfavorable viscosity
ratios), an increase of viscous forces (large Ca) can lead to a decrease of
residual water saturation. However, as it can be observed in Figure 16, for
unfavorable viscosity ratio it does not monotonically decrease. They con-
jecture that the peak values are related to the change of behavior from
viscosity fingering to capillary fingering. Once again, it should be noted
that κ is defined as the ratio of receding phase viscosity to invading phase
viscosity.

5. FLUIDS PRESSURE FIELDS DEVELOPMENT

To understand complexities in multiphase flow, it is essential to investi-
gate pressure field evolution as well as capillarity effects under nonequi-
librium conditions. Such information will be needed for investigating the
validity of the extended Darcy’s law for multiphase flow. Van der Marck
et al. (1997), Aker et al. (1998 1998b,a), Gielen et al. (2004, 2005), and
Joekar-Niasar et al. (2010a) studied temporal evolution of fluids pressure
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1926 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 17. An experimental pressure curve for drainage experiment showing pressure drop
after breakthrough. (a) High-conductivity network, M = 12. (b) Low-conductivity network
M = 1 (Van der Marck et al., 1997)

fields using pore-network models in order to gain a better insight into
macroscopic pressure field behavior. They investigated pressure field evo-
lution under the effect of viscosity ratio and capillary number in drainage
simulations.

5.1. Boundary Pressure Difference Versus Capillary Pressure

Van der Marck et al. (1997) compared pore-network model results with
micro-model experimental data. The experiments, performed in one-, two-,
and three-layer micromodels, were designed to investigate the effect of
gravity for two different viscosity ratios: equal to 1 and larger than 1. They
measured pressures at the inlet and outlet during drainage experiments
under constant flow rate. Agreement between their model results and
experimental results decreased for viscosity ratios larger than one and at
high capillary numbers. Obviously, with the invasion of nonwetting phase,
for M > 1, the pressure difference between inlet and outlet increased due
to increasing viscous energy dissipation, as shown in Figure 17. At first, the
nonwetting phase pressure had to increase to reach the entry pressure of
the model. After nonwetting phase invaded the model, its pressure built
up slowly as more and more nonwetting fluid (with higher viscosity) was
injected at a constant flow rate. Capillary blockage of channels and the
resulting decrease in the flow conductance of the micromodel were the
main reasons for the pressure buildup. However, after breakthrough of the
nonwetting fluid, its pressure dropped significantly under the influence of
the outlet chamber (see Figure 17). This pressure drop was also simulated in
gas migration problem by Impey et al. (1997) using a pore-network model.
They showed that at the moment of breakthrough of gas, its pressure drops
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Fundamentals of Two-Phase Flow in Porous Media 1927

down and at a blockage, there is a build-up in gas pressure. Van der Marck
et al. (1997) had chosen a large outlet chamber for their micromodel, which
had a negligible influence on flow conductance and capillary pressures.
This had the disadvantage that the nonwetting phase that entered the outlet
chamber could remain connected or snapped off, under the influence of
processes occurring outside the microflow model and were hard to control.
They did not include these effects in their pore-network model. Thus,
their simulations’ results after breakthrough deviated from the experimental
measurements.

Aker et al. (1998a) investigated the effect of capillary forces for different
viscosity ratios and capillary numbers using a two-dimensional pore-network
model. They related the macroscopic flux in two-phase flow to two sepa-
rate terms related to viscous forces and capillary forces. This formulation
was selected in analogy to pore-scale Washburn equation (Equation 5, and
Table 1). In single-phase flow and ignoring the gravity effect, there is a linear
relationship between the flux and global pressure drop (between the two
boundaries 	P = Pent − Pex), written as Q = A0	P , where A0 is a constant.
But, in two-phase flow, we have: Q = A	P + B, where A and B are func-
tions of saturation. The term B is due to capillary pressure acting across the
fluid-fluid interfaces. This linear relationship can be written as

	P = Q

A
− B

A
(14)

Under drainage conditions, new interfaces will be created as the non-
wetting phase invades a domain. Aker et al. (1998a) divided interfaces into
two groups: cluster menisci, surrounding the trapped clusters of receding
fluid, and the front menisci located at the front between the invading and re-
ceding fluids. Variation of capillary pressure associated with theses interfaces
can be different. So, Aker et al. (1998a) introduced two different capillary
pressures: global capillary pressure: (Pc

g ), which contributes to all menisci,
and front capillary pressure (Pc

f ), which is the average capillary pressure
associated with the front menisci. Based on the analogy between global
pressure drop and pore-scale pressure drop, the second term in Equation 14
was assumed to be equal to the global capillary pressure (Pc

g ).

Pc
g = − B

A
(15)

Using simple arithmetic averaging, the front capillary pressure was given
as

Pc
f = 1

N

N∑
i=1

∣∣Pc
i

∣∣ (16)
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1928 V. Joekar-Niasar and S. M. Hassanizadeh

Based on several drainage simulation they investigated trends of 	P , A,
and B under different capillary numbers, and viscosity ratios, as described
subsequently.

Unfavorable viscosity ratio: First, Aker et al. (1998a) performed drainage
simulations with unfavorable viscosity ratio (M = 0.001) for different cap-
illary numbers (3.5 × 10−4 to 1.1 × 10−2) and different sizes of network.
Thus, they could observe capillary fingering as well as viscous fingering.
The largest network had 60 × 80 nodes. They studied the trends of 	P ,
global capillary pressure (Pc

g ), and average front capillary pressure (Pc
f ).

According to the results for M = 0.001, 	P decreased with the invasion
of nonwetting fluid. They observed some fluctuations of 	P , which were
due to fluctuations in Pc

g , as menisci invaded into or retreated from tubes.
Their simulation results showed that for small capillary numbers (less than
3.5 ×10−4), there is no significant difference between global capillary
pressure (Pc

g ) and average front capillary pressure (Pc
f ). Under slow flow

conditions, the viscous pressure gradient vanishes and fluids pressure dif-
ference would be equal to the global capillary pressure Pc

g . In fact, the
global capillary pressure becomes equal to the front capillary pressure:
Pc

f ≈ Pc
g . Therefore, for M � 1 or at low injection rates, the effect of the

clusters became negligible, and Pc
g reduces to the local capillary of the

invading menisci along the front.
Favorable viscosity ratio: When viscosity ratio is larger than 1, the pressure

drop, 	P , increases with the invasion of high viscosity fluid. This pressure
drop increases linearly at high flow rates but the linearity of the trend
decreases if unstable displacement develops. Aker et al. (1998a) performed
a series of pore-network model simulations and determined variations
of the ratio A0/A, 	P , and Pc

g with time, for four different capillary
numbers and M = 100. According to their results with the increase of
nonwetting phase saturation, A0/A increased (starting from zero). For
small flow rates, where capillary forces are dominant, the effect of viscous
forces disappeared and small values for A were obtained. Thus, the ratio
A0/A was to be found smaller in fast flow than in slow flow. Initially,
Pc

g should be negligible, since the domain is filled by one fluid. With the
invasion of the nonwetting phase, the share of global capillary pressure in
the total pressure drop (	P ) increases.

Although Aker et al. (1998a) showed that nonlinearities created by
viscous forces and capillary forces are highly dependent on capillary
number and viscosity ratio, they did not define sound theoretical back-
ground for their conjecture. Finally they did not propose a formulation
to relate the nonequilibrium effects to the dynamic conditions of the
system. Hassanizadeh and Gray (1990) proposed a relationship, which
relates viscous forces and capillary forces to the dynamic conditions of
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Fundamentals of Two-Phase Flow in Porous Media 1929

a system. These conjecture and the relevant studies discussed in detail in
the following section.

5.2. Nonequilibrium Capillarity Effects

A central equation in theories of two-phase flow in porous media is the so-
called capillary pressure-saturation relationship, which is commonly written
as

Pn − Pw = Pc(Sw) (17)

In fact, there are two major assumptions in this equation: capillary pressure
is a function of wetting phase saturation, and fluids pressure difference is
equal to capillary pressure (at all times and under all conditions).

Regarding the second assumption underlying Equation 17, it is now an
established fact that Pn − Pw is equal to capillary pressure but only under
equilibrium conditions (see Hassanizadeh et al., 2002, for an extended review
of experimental evidences). According to Entov (1980), capillary pressure-
saturation relationship is not unique and, even though it is obtained under
equilibrium conditions, it is a function of the history of fluids movements.
In fact, it depends not only on the volume fraction of each phase, but
also on their microscale distribution and change of saturation with time.
Nonequilibrium effects in capillary pressure can be of significant importance
whenever, gradients of fluids pressure and fluids velocities are large (Lewalle
et al., 1994). For nonequilibrium conditions, the following equation for the
difference in fluids pressure has been suggested (Hassanizadeh and Gray,
1990; Kalaydjian and Marle, 1987; Stauffer, 1978):

Pn − Pw = Pc − τ
∂Sw

∂t
(18)

where τ (ML−1T −1) is a material property that may still be a function of
saturation.

Equation 18 has been the subject of many studies in recent years, com-
putationally using Darcy-scale models (see Das et al., 2006; Manthey et al.,
2005), and pore-scale models (see Dahle et al., 2005; Gielen et al., 2005;
Joekar-Niasar et al., 2010a; Joekar-Niasar and Hassanizadeh, 2011) as well as
experimentally (see Berentsen and Hassanizadeh, 2006; Bottero, 2009; Bot-
tero and Hassanizadeh, 2006; Camps-Roach et al., 2010; Hassanizadeh et al.,
2004; O’Carroll et al., 2005; Oung et al., 2005). Hassanizadeh et al. (2002) re-
viewed extensively the experimental works in which non-equilibrium effects
have been observed.

Dahle et al. (2005) developed a bundle-of-tube model to investigate the
variation of τ with variance of radii distribution and with saturation under
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1930 V. Joekar-Niasar and S. M. Hassanizadeh

drainage process. They found that τ increases with decrease of wetting fluid
saturation and with increase of variance.

Gielen et al. (2004, 2005), and Gielen (2007) developed a dynamic pore-
network model based on the model developed by Blunt and King (1991).
They assumed that the capillary pressure in pore bodies was negligible. They
implemented simulations for viscosity ratios of 1 and 10; therefore a stable
front was dominant in their simulations. They found that τ value increased
with decrease of wetting phase saturation. Since the employed pore-network
model had a simplified geometry (circular cross sections), many physical
processes such as snap-off, capillary diffusion, and local countercurrent flow
could not be observed in simulations. In addition, all simulations were for
the case of M = 1 and 10, where stable front invasion occurred.

Joekar-Niasar et al. (2010a) and Joekar-Niasar and Hassanizadeh (2011)
investigated functionality of nonequilibrium capillarity coefficient using a
dynamic pore-network model with angular cross sections for three different
viscosity ratios M = 10, 1, 0.1. However, Joekar-Niasar and Hassanizadeh
(2011) investigated uniqueness of this coefficients under primary and main
drainage and main imbibition as well. Figure 18 shows the relationship be-
tween τ and saturation for a 35 × 35 × 35 network for different viscosity
ratios (Joekar-Niasar et al., 2010a). Two different aspects of these data are im-
portant: (a) order of magnitude of the non-equilibrium capillarity coefficient
τ and (b) its variation with saturation for different viscosity ratios.

Values of τ found by Joekar-Niasar et al. (2010a) ranged from 100
to 1000 Pa.s for M = 1.0. These values are in agreement with results
obtained in other pore-network modeling studies, mentioned previously.

FIGURE 18. τ as a function of saturation and viscosity ratio for a 35 × 35 × 35 network
(Joekar-Niasar et al., 2010a).
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The dimensions of their network corresponded to a porous medium sample
size of 1.9 × 1.9 × 1.9 mm3, which is very small. The intrinsic permeability
was 1.43×10−12 m2, which corresponds to permeability of a fine sand. The
general understanding is that the magnitude of τ increases with the size
of the observation or averaging window and is inversely correlated with
permeability. Dahle et al. (2005), using a bundle-of-tube model, concluded
that τ value can be proportional to L 2, where L is the length of averaging
window. A similar result was found by Manthey et al. (2005) based on
simulations at continuum scale.

In laboratory experiments by Hassanizadeh et al. (2004), the value of τ

for a fine sand sample of 3 cm in height was found to be 5 × 105Pa.s. The
pressure measurements were actually done by transducers with a diameter
of around 1 cm. Using similar transducers in experiments with the same fine
sand, Bottero and Hassanizadeh (2006) found a τ -value of around 105 Pa.s.
But, when Bottero (2009) upscaled the results to the column scale (18 cm),
the average τvalue was found to be around 106 Pa.s. Table 3 presents a
summary of experimental and computational works for determining τ in
different porous media.

Figure 18 shows that the dynamic effect is stronger for larger viscos-
ity ratios when wetting phase viscosity is constant (τ (M = 10) > τ (M =
1) > τ (M = 0.1)). This trend is in agreement with the explanation given
by Barenblatt et al. (2003), who stated that dynamic effect in capillary pres-
sure is related to the finite time required for the fluids in the pore structure to
rearrange themselves. Indeed, for larger effective viscosity values, more time
is required for fluids to reach the equilibrium condition, which corresponds
to a larger τ value. Entov (1980) reported that τ ∝ µl2

k	Pc , in which k is the
permeability, µ is the (effective) viscosity, l is the length of the averaging
domain, and 	Pc is the deviation from the equilibrium capillary pressure
for a given saturation. Joekar-Niasar and Hassanizadeh (2011) only investi-
gated effect of fluid property on nonequilibrium capillarity coefficient. They
showed that by dividing τ by effective viscosity over the domain, the curves
for different viscosity ratios would collapse on each other. Effective viscosity
is defined simply as µeff = µnSn + µwSw.

Figure 18 shows that for M ≥ 1, nonequilibrium capillarity coefficient in-
creases with the decrease of wetting fluid saturation, which is similar to most
findings as reported in the literature. For M < 1, an slightly reverse trend is
observed: namely, τ decreases with the decrease of wetting fluid saturation.
An empirical formula relating τ to medium and fluid properties was proposed
by Stauffer (1978). In that formula, however, no dependence on saturation
was included. We propose to modify the Stauffer formula as follows:

τ = αεµeff

λk

(
Pc

d

ρg

)2

(19)
1931
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Fundamentals of Two-Phase Flow in Porous Media 1933

where α is a constant, ε is porosity, λ and Pc
d are the coefficients in Brooks-

Corey formula (Brooks and Corey, 1964), k is the saturated permeability, ρ

is the water mass density, and g is the gravity. Compared to the original
Stauffer formula, we have replaced µ by µeff.

Equation 19 suggests that the change of τ with saturation is proportional
to the change of µeff with saturation. Recalling the simple linear algebraic
equation for µeff, we can write

∂µeff

∂Sw
= µw − µn (20)

which means that ∂τ
∂Sw (∝ ∂µeff

∂Sw ) should be negative for M > 1 and positive
for M < 1:

∂τ

∂Sw
∝
{

µw − µn ≤ 0, M ≥ 1

µw − µn > 0, M < 1

One should note that the effective viscosity defined previously is assum-
ing that the fluids are behaving similar to resistors in series. Thus, it does not
include nonlinearities related to viscous and capillary fingering in the inva-
sion process. However, the general trend in variation of τ with saturation is
in full agreement with the observations reported in the literature. This was
found in Mirzaei and Das (2007) in column-scale drainage simulations, in
Joekar-Niasar et al. (2010a) in pore-network model simulations, and in Bot-
tero and Hassanizadeh (2006) in PCE-water experiments (M ≈ 0.9), where
τ increased with the decrease of wetting fluid saturation. For M = 0.1, an
opposite trend of τ as a function of saturation has been reported in air-water
experiments by Camps-Roach et al. (2010), and as shown in Figure 18.

6. MACROSCOPIC INTERFACE DYNAMICS

As shown in Figure 3, depending on M and Ca, the invasion front can be
classified into three different classes: capillary fingering, viscous fingering,
and stable displacement. In these invasion regimes, macroscopic front
topology is one of the major features that is related to the system dynamic
parameters. Due to the versatility and rather inexpensive computational
cost of dynamic pore-network models, they have been used extensively to
investigate scaling of capillary fingering and viscous fingering regimes for
different viscosity ratios. Furthermore, velocity of macroscopic interfaces
and dynamics of interfacial area have been analyzed. Understanding the
dynamics of interfacial area can be useful in interface-related topics such as
mass exchange over the interfaces.

Chen and Wilkinson (1985) investigated the effect of randomness
of the porous medium structure on viscous fingering using experimental
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1934 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 19. Viscous fingering invasion pattern for different randomness in porous media
structure. Left column shows modeling results for different randomness factor (λ) and right
column shows the experimental results in a two-dimensional micromodel with injection point
in the center. These two columns should not be compared with each other quantitatively
(Chen and Wilkinson, 1985).

and modeling approaches. In the experiments oil was injected into a
two-dimensional micro-model initially filled by glycerin (M = 1

1200 ). As seen
in the imaged from the experiments, shown in the right column of Figure 19,
fingers developed. The size and pattern of fingers were found to depend
on pore size distribution. This was also shown using a two-dimensional
pore-network model with a single-pressure algorithm. Radii of the pores
were generated in the interval [1 − λ, 1 + λ]r , where r is the mean radius
and λ is a randomness factor changing from 0 to 1. In both experiments
and modeling results, they observed that for a narrow size distribution of
the tubes (small λ), fingers formed almost ordered patterns and grew along
the injection direction (Figure 19a). But, for a wider range of distribution,
fingers formed in a chaotic fashion (Figure 19c).
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Fundamentals of Two-Phase Flow in Porous Media 1935

FIGURE 20. Near breakthrough flow patterns for three different unfavorable viscosity ratios.
With increase of viscosity ratio the flow pattern crosses over from DLA-type (M = 0.0001) to
compact flow (M = 0.1; Ferer and Smith, 1994).

Although there was no quantitative agreement between experiments
and model results, the effect of pore size randomness was visible in their
results.

Although randomness of the medium is an important intrinsic property
in finger formation, dimension and topology of the fingers can also change
based on capillary number and viscosity contrast. The behavior of the fin-
gers has been investigated using empirical scaling of the results of dynamic
network models. Under unfavorable conditions, there is crossover from dif-
fusion limited aggregation–type (DLA) flow to compact flow with increasing
viscosity ratio, as shown in Figure 20. The effect of viscosity ratio has been
investigated using pore-network models (e.g., Ferer et al., 1993; King, 1987).

Fractal dimension (D f ) is the major parameter that has been used to
characterize the fingers resulted from pore-network models. It is a statistical
quantity that gives an indication of how completely a fractal fills the space,
as one zooms down to finer and finer scales. The fractal dimension is:

D f = log N (l)

log l
(21)
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1936 V. Joekar-Niasar and S. M. Hassanizadeh

in which l is the grid size (length of pore unit) and N (l) is the number
of grids (pore units) filled with the front. A cubic grid with the minimum
grid size of network spacing distance can be mapped onto the network and
the number of grid cells can be counted consequently. For instance, Chen
and Wilkinson (1985) found that fractal dimension in their random two-
dimensional simulations (Figure 19c) was about 1.72. Later, King (1987) also
used a pore-network model to investigate the fractal behavior of fingering
in different finite viscosity ratios in a two-phase system. He investigated the
surface fractal dimension (Ds ), which was assigned to the fingers at the
front of the compact flow. He showed that surface of finger follows a fractal
phenomenon and the fractal dimension does not depend on the disorder
of porous medium structure. Instead, it is highly dependent on the viscosity
ratio: fractal dimension decreases with the increase of viscosity ratio (limited
to unity). They found the following formula by fitting to their simulations
results:

Ds = 1 + 2

3

(
1 − M

1 + M

)2

M = µinv

µrec
(22)

For equal viscosities, the surface fractal dimension will reach 1.
Ferer et al. (1993) investigated crossover from DLA-type flow (for

M = 0) to compact flow (for M = 0.1) using a pore-network model without
capillary forces to suppress the capillary pinning. The simulation results il-
lustrate that for all viscosity ratios, the initial flows had an unstable, fractal
behavior that crossed over to compact flow on a time scale. The time scale
increases with decrease of viscosity ratio. Furthermore, fitting of results al-
lows an empirical relation for crossover length scale and crossover time scale
defined as

� = Mφl φl = 0.24 ± 0.06 (23)

τ = Mφt φt = 0.17 ± 0.03 (24)

More detailed pore-network simulations have been performed by Aker
et al. (1998a); Blunt and King (1991); Vizika et al. (1994), and Singh and
Mohanty (2003). Blunt and King (1990) also studied fractal behavior of an
invading phase in relation to the structure spacing. Fractal dimension in
their network increased from 1.82 in a two-dimensional network to 2.44 in
a three-dimensional network.

Furthermore, with increasing the capillary number for constant
viscosities, there is a crossover from capillary fingering system (invasion-
percolation) to viscous fingering system or even to compact flow regime.
Wilkinson (1986) investigated the crossover of fractal flow described by
invasion-percolation with trapping (IPWT) to the compact linear flow
given by Buckley-Levrett flow using fractal analysis. He found out that the
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Fundamentals of Two-Phase Flow in Porous Media 1937

crossover from fractal to compact flow occurs on a length scale (�) given by

� = Ca−α (25)

and in a two-dimensional domain α is given equal to 0.38. Generality of
this relation for all capillary numbers suggests scaling functions for average
position and width of the macroscopic interface. Ferer et al. (2005) simulated
drainage process in a two-dimensional lattice pore network with circular
cross sections. They analyzed their results and show that there are scaling
functions, which provide closed form expressions for the dependence of
average position and interfacial width upon capillary number and time.

In another study Fernández et al. (1991) showed that crossover from
capillary fingering given by IPWT to the viscous fingering given by DLA
flow occurs on a length scale (�) given by

� = Ca−2/(2+Ds ) = Ca−0.6 (26)

where Ds is a the surface fractal dimension of the capillary fingers (Ds =
1.33). Ferer et al. (2004) analyzed this scaling using two-dimensional air-
water flow cell experiments. They found that the volume of the injected air
initially scales with its average position (as given by IPWT) and then crosses
over to DLA-type flow at the characteristic length, which decreases with
increase of capillary number.

Results of a pore-network model by Dias and Payatakes (1986a) showed
that although the effect of capillary number on displacement is essential, but
at high and moderate Ca, the effect of viscosity ratio is more important,
acting as a pivotal factor. This was also shown by Touboul et al. (1987).
They showed that at large capillary numbers (when viscous forces dominate
the flow), depending on the viscosity ratio, either viscous fingering or stable
displacement would occur (Figure 3). If the viscosity ratio is larger than 1,
stable displacement will occur, as also shown by Singh and Mohanty (2003)
and DiCarlo (2006). Using a two-dimensional pore-network model, Aker
et al. (1998 1998b) showed that at Ca = 4.6 × 10−3 for M = 1.0 × 10−3 and
1.0 × 102, two different displacements can be observed. If M < 1, at high
capillary number, viscous fingering was observed, while for M > 1 stable
displacement was reported. With decreasing the flow rate, front moved from
viscous fingering to capillary fingering. For instance, for M = 0.1 at high
flow rate, nonwetting front was stable and compact. For very low flow
rates, capillary fingering was observed. Thus, one would expect to have less
flooding efficiency for M < 1 compared with the favorable conditions. Dias
and Payatakes (1986a) showed that for unfavorable viscosity ratio (M < 1),
flooding efficiency begins to improve only for capillary numbers larger than
5 × 10−4, and it is substantially inferior to the achieved values with M > 1
with the same Ca.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 0

8:
41

 3
0 

D
ec

em
be

r 
20

15
 



1938 V. Joekar-Niasar and S. M. Hassanizadeh

Vizika et al. (1994) showed that at any flow rate, under unfavorable
conditions, microfingering can happen and cause macrofingering. In addi-
tion, they found that for favorable displacements (M > 1), the extent of mi-
crofingering decreased with increasing Ca and for unfavorable displacements
(M < 1), the extent of microfingering increased slightly with increasing Ca
for 10−6 ≤ Ca ≤ 10−5.

Investigation of width of the invasion front under different conditions is
another aspect of macroscopic interface dynamics, which has been studied
by Aker et al. (1998a) for applications in reservoir engineering and by Lam
and Horváth (2000) for application of paper wetting process. Aker et al.
(1998a), Lam and Horváth (2000) and Løvoll et al. (2005) have studied de-
velopment of the front width with time using a pore-network model with
circular cross sections for pore throats. Aker et al. (1998a) used different
terminologies:

� Front width: During the invasion of nonwetting phase, there will be some
pores on the invasion front, referred to as front pores. Front width (w) is
defined as the standard deviation of the distance between all front pores
and the centroid of the front.

� Saturation width: Denoted by ws , it is defined as the standard deviation
of the distance between all pores filled with the invading phase and the
centroid of part of the domain saturated with the invading phase.

� Saturation time: Denoted by ts , it is defined as the time in which saturation
width (ws ) is equal to the front width.

Aker et al. (1998a) calculated front width for different capillary numbers,
including 2.3 × (10−3, 10−4), 4.6 × (10−4, 10−5) and 9.2 × (10−4, 10−5), as
shown in Figure 21.

FIGURE 21. The front width (w) as a function of time for Ca = 9.2 × 10−5. The horizontal
dashed line indicates the saturations width (ws ) and the vertical dashed line indicates the
saturation time, ts (Aker et al., 1998a).
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Fundamentals of Two-Phase Flow in Porous Media 1939

FIGURE 22. Data collapse for the front width. β is given by the slope when t/ts < 1 and
was estimated to β = 1.0 ± 0.1 (Aker et al., 1998a).

They used the simulation results to show scaling of the front width for
t < ts . They found that data points collapsed onto a more or less single
curve when log w/ws was plotted against t/ts (Figure 22). For this curve,
they assumed the following relationship for t � ts :

w

ws
=
(

t

ts

)β

(27)

They found a good agreement between their results and experimen-
tal data of Frette et al. (1997), who found β = 0.8 ± 0.3. Furthermore, they
found that saturation front width (ws ), and saturation time (ts ) are only func-
tions of capillary number. The results of Aker et al. (1998a) related to the
drainage process only. Lam and Horváth (2000) showed temporal and spatial
correlation for fronts during imbibition process. In a series of experiments by
Horváth and Stanley (1995), a paper sheet was moved continuously down-
ward into a water container at constant speed v. Imbibition front evolution
was investigated for various different dynamic conditions (different values of
v) and a stationary experiment (v = 0). Lam and Horváth (2000) simulated
imbibition experiments using a pore-network model with circular cross sec-
tions. They found β = 0.29 ± 0.01. Due to the large viscosity ratio (M ∼ 100),
they solved the pressure field only in the wetting phase (water), and ignored
the pressure drop in air phase.

In another study by Løvoll et al. (2005), the effect of gravity and viscous
forces on front width evolution with time was studied. They performed
drainage experiments in a two-dimensional micro-mode of 35 × 35 cm2.
The nonwetting phase was air and the wetting phase was a mix of glycerol
and water. Planar porosity was about 0.63 and permeability was 0.0189 ×
10−3cm2. The nonwetting phase viscosity was much smaller than the viscosity
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1940 V. Joekar-Niasar and S. M. Hassanizadeh

of wetting phase. Specifications of their pore network model are presented
in Table 4. To include gravity forces in the simulations, Bond number (Bo),
was considered. Bond number is defined as the ratio of gravity forces to
capillary forces:

Bo = 	ρga2

σ nw
(28)

in which, ρ is the density and a is the length scale (lattice spacing of a pore
network). According to Løvoll et al. (2005), percolation theory can predict a
scaling law for this displacement as follows:

w = (Bo − Ca)−a = (Bo − Ca)−v/1+v (29)

To have a stable width evolution, (Bo − Ca) should be positive. It means
that width will increase with time until reaching a steady state. They showed
that the width evolution with time reaches a steady state condition with
(Bo − Ca) > 0. They found that their simulation results were in qualitative
agreement with experiments. Front width increased with time, and when
(Bo − Ca) > 0 a steady-state condition was reached. With increasing (Bo −
Ca) values, the required time to reach the steady-state front width decreased.

Another aspect of the macroscopic interface dynamics is related to the
average interfacial velocity, which was studied by Nordhaug et al. (2003),
and Joekar-Niasar and Hassanizadeh (2011), and Joekar-Niasar et al. (2010a).
Nordhaug et al. (2003) studied interface movement in a three-dimensional lat-
tice pore-network model with circular cross sections using a single-pressure
algorithm. To save computational time and memory, they did not track the
menisci within pore throats (i.e., spontaneous pore throat filling was as-
sumed). They simulated stable and unstable displacement mechanisms dur-
ing drainage under Dirichlet boundary conditions (during simulation cap-
illary number varied between 10−3 and 10−2) for three different viscosity
ratios (M = 0.1, 1, 10). They estimated interface velocity for stable displace-
ment as well as viscous fingering regime. Since it was assumed that the pore
throats are filled spontaneously, they could not calculate menisci velocity in
the pore throats. However, they calculated the magnitude of a local velocity
in pore bodies based on time-rate change of local saturation, as follows:

‖vnw
i ‖ = lij

	Sn
i

	t
, i j : pore throat including the traveling interface (30)

in which ‖vnw
i ‖ is the menisci velocity in pore body i, and lij denotes the

length of pore throat ij through which the entering interface travels plus
the diameter of the pore body i. To define the direction of the velocity,
they averaged the directions of total inflow and total outflow in pore body i.
Equation 30 has a shortcoming in definition; in Equation 30 it is assumed that
velocity is calculated only based on one pore throat including the travelling
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Fundamentals of Two-Phase Flow in Porous Media 1941

interface. If simultaneously more that one interface is moving toward the
pore body i with different velocities, it is not clear how the menisci interface
in a pore body should be calculated.

To upscale the velocity from pore body to REV scale, they averaged
local velocities weighted with local interfacial area:

vnw =
∑#pb

i=1 anw
i vnw

i∑#pb
i=1 anw

i

(31)

This definition has also a drawback; the term anw
i vnw

i does not repre-
sent a physical quantity and is not additive. They averaged fluid velocities
weighted with local saturation. Since it was not possible to compare their
simulation results with experiments, they compared the results with a simpli-
fied equation derived from thermodynamic theory developed for multiphase
flow in porous media by Hassanizadeh and Gray (1990, 1993). They found
that when the trapped interfaces were included in the calculation of total in-
terfacial area, results of the simulation will underestimate the menisci velocity
compared with the thermodynamic-based equations. As expected, their re-
sults were in better agreement with theory for stable displacement (M = 10)
compared with viscous fingering regime (M = 0.1) as shown in Figure 23.
Nordhaug et al. (2003) found that regardless of displacement regime, under
constant pressure boundaries, interface velocity decreased nonlinearly with
decrease of wetting fluid saturation during drainage; with the major drop in
velocity happening in the saturation range from 1.0 to 0.8. Qualitatively a
similar behavior for average interface velocity versus saturation was found
by Lam and Horváth (2000) in pore-network modeling of primary imbibition.
Velocity of interfaces in the case of unfavorable viscosity ratio were higher
than the case of favorable viscosity ratio. In their model, there were some
simplifications that might affect results significantly. For instance, capillary

FIGURE 23. Comparison between velocity of interface resulted from model and theory for
(a) M = 10 and (b) M = 0.1 (Nordhaug et al., 2003).
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1942 V. Joekar-Niasar and S. M. Hassanizadeh

diffusion through corner flow, local capillary pressures at pore bodies, and
tracking of interface in pore throats were not included in the model.

In a recent study, Joekar-Niasar et al. (2010a) studied variation of specific
interfacial area (as the ratio of total fluid-fluid capillary interfaces to the total
volume of the sample) with saturation under different boundary pressures.
They simulated the drainage process under five different global pressure
differences and three different viscosity ratios (M =0.1,1, 10). Viscosity of
the wetting fluid was kept constant in all simulations. They calculated the
specific interfacial area under dynamic conditions and compared it with
the quasistatic simulations. It was shown that with the decrease of invading
fingers, the area associated with the main fluid-fluid interfaces will decrease
as shown in Figure 24. Furthermore, they showed that the production rate

FIGURE 24. (a) Qualitative comparison of macroscopic interface topology for M = 0.1, 1
and 10 in a 2D (70 × 70) network at three different saturations, (b) Quantitative comparison
between quasistatic and dynamic specific interfacial area-saturation curves for the same fluid-
solid properties as (a) and boundary conditions mentioned (Color figure available online).
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Fundamentals of Two-Phase Flow in Porous Media 1943

of specific interfacial area has a linear function with ∂Sw

∂t and production rate
of interfacial area decreases with decrease of sw during drainage.

7. GANGLIA FLOW DYNAMICS

As mentioned in Section 4, during both drainage and imbibition processes,
the receding phase can be entrapped in the domain. However, the trapping
mechanisms are more significant during imbibition than drainage. In
reservoir engineering, at the end of a secondary flooding, a large ratio of
oil remains entrapped in the reservoir. The residual oil exists in the form
of discrete oil ganglia that can occupy 25 to 50% of the pore space. The
size of an individual ganglion is typically ranging from one to fifteen
pore volumes (Payatakes et al., 1980). A picture of trapped ganglia in a
micromodel is shown in Figure 25 (from Avraam and Payatakes, 1995a).

Based on visual observations and flow rate measurements, Avraam et al.
(1994), and Avraam and Payatakes (1995) found that the disconnected oil
movement contributed substantially to the flow of oil during imbibition.
(Avraam et al., 1994; Avraam and Payatakes, 1995) stated that over a large
range of system parameters (in the range of practical interest) the flow of oil
takes place solely through the movement of ganglia and/or droplets. Based
on their experiments, two-phase flow behavior can be roughly classified
into four flow regimes: large ganglion dynamics (Figure 26a), small ganglion
dynamics (Figure 26b), drop traffic flow (Figure 26c), and connected-path
flow (Figure 26d). In the first three classes, oil flow is due to the motion of
disconnected bodies of oil. This is the case even in the connected-path flow

FIGURE 25. Snap-shot of ganglia trapped in a micromodel under steady-state flow conditions
(Avraam and Payatakes, 1995a).
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1944 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 26. Ganglia flow regimes (a) Large ganglia dynamics (b) Small ganglia dynamics
(c) Droplet traffic flow (d) Connected-path flow (Avraam and Payatakes, 1995a) (Color figure
available online).

regime (high values), where many droplets and ganglia move at the fringes
of connected pathways. Nonlinearity in the relative permeability depends on
the pressure gradient, which is related to the creation, motion, fission, and
coalescence of ganglia/droplets or menisci/interfaces. Observations showed
that, for a wide range of variables (10−8 ≤ Ca ≤ 10−6;0.6 ≤ M ≤ 3.4; 0.2 ≤
Sw ≤ 0.8), oil is disconnected in the form of ganglia or droplet.

One of interesting issues—investigated extensively—is the fate of
trapped ganglia under different dynamic conditions.

Most pore-network models assume that at any flow rate, disconnected
ganglia are immobile. In addition, it has been assumed that the intertwined
pathways of the two fluids are nearly independent of the flow rate within a
wide range of flow rates. This assumption leads to the result that the phase
velocity is a linear function of macroscopic pressure gradient. However, in
experiments the phase velocity is nonlinearly dependent on macroscopic
pressure gradient. A number of pore-network models have been developed
by Payatakes and coworkers for ganglia movement. They have investigated
different aspects of ganglia movement and its contribution to the nonlinearity
observed in relative permeabilities in several publications. The use of pore
network modeling for studying ganglia movement has been reported in
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Fundamentals of Two-Phase Flow in Porous Media 1945

Ng and Payatakes (1980), Payatakes (1982); Payatakes et al. (1980), Dias
and Payatakes (1986a, 1986b), Hinkley et al. (1987), Constantinides and
Payatakes (1991, 1996), Avraam et al. (1994), Avraam and Payatakes (1995);
Avraam and Payatakes (1995a), Vizika et al. (1994), Valvanides et al. (1998);
Valvanides and Payatakes (2001), Dahle and Celia (1999), Al-Gharbi and
Blunt (2005), and Bravo et al. (2007).

At pore scale, various mechanisms can act on ganglia, such as breakup
(of a ganglion into two smaller ganglia), mobilization (of an entrapped gan-
glion within the pore space), stranding, and coalescence (if two or more
ganglia join to form a new bigger ganglion). To investigate the effect of
these pore-scale phenomena at macroscale, Payatakes and his coauthors
adopted the following steps, implemented in several publications from 1980
to 2001 (see the previous list):

� Defining system parameters for a single pore, such as geometry, conduc-
tivity, and entry capillary pressure.

� Simulating ganglia dynamics in a pore-network model at meso-scale (∼
103 pores) to calculate system factors; such as the mean time-averaged
ganglion velocity, the stranding and breakup coefficients, the mode of
ganglion breakup, the probability of stranding of a newly formed ganglion,
and the mean and maximum length of a ganglion for a given volume
(Valvanides et al., 1998).

� Development of population-dynamic equations and using the system fac-
tors acquired in the previous step to investigate the effect of ganglia
dynamics at macroscale for steady-state conditions.

The main findings are described below in section 7.1.

7.1. Microscale Phenomenology of Ganglia Dynamics

Ng and Payatakes (1980) have developed an approach for determining the
fate of an immiscible ganglion in a granular porous medium under quasistatic
displacement. In other words, ganglia flow stage was not simulated in their
model. Since they studied quasistatic displacement of a ganglion, no pres-
sure field was computed. They considered three mechanisms for a solitary
ganglion in porous medium, namely, breakup, mobilization and stranding
(but not coalescence).

To summarize their approach, a ganglion with an arbitrary volume
was considered in the network model and the exact geometry of the
ganglion was captured. Then, mobilization-breakup criterion was applied
to all interfaces to determine advancing/receding interfaces at that capillary
number. Simulations were terminated when stranding or breakup occurred.
To understand the mechanisms more clearly, several realizations in each
class of capillary number and ganglion volume were implemented. Finally,
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1946 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 27. Probability of mobilization (M), breakup (B) and stranding (S) per rheon for a
ganglion versus. capillary number (Ng and Payatakes, 1980).

probability functions were produced for the fate of a solitary ganglion based
on quasistatic conditions as shown in Figure 27. This figure shows variations
of occurrence probability in a capillary number range of 10−4 to 10−2. Ng and
Payatakes (1980) showed that the threshold capillary number for moving the
stranded ganglia is 10−4. It decreases form 10−4 to 10−3 from probability of
1 to zero. But probability of two other phenomena, namely breaking up and
mobilization, increases. However, mobilization increases to the probability
of 0.85 and breakup probability increases to almost 0.15. When stranding of
ganglia begins to decrease, probability of mobilization begins to increase.

These three mechanisms are functions of ganglion volume and capil-
lary number; larger ganglia have higher probability for breakup and less
probability for stranding as shown in Figure 28. Ng and Payatakes (1980)
introduced the concept of Conceptual Element Void Space (CEVS), which is
the volume assigned to the pore elements surrounded by circles in Figure
11. In the simulations, they observed that in the absence of coalescence,
the ganglia would be immobile. Thus it was necessary to study the role of
coalescence in producing large ganglia.

All results shown previously were obtained from a quasistatic pore-
network model. However, dynamics of ganglia is more complex. It has been
observed in experiments that in viscous-dominated flows, ganglia can move
through several pores simultaneously. Due to the lack of this feature in qua-
sistatic models, there were two major shortcomings in such simulations. First,
it was observed that tendency for alignment and elongation in experiments
was less, compared with simulations. Second, if downstream part of a gan-
glion encounters small pores, it cannot advance into them quickly. Thus, the
ganglion may grow a new branch at some appropriate site along its body
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Fundamentals of Two-Phase Flow in Porous Media 1947

FIGURE 28. Probability of stranding (S) per rheon for a ganglion volume of ganglion for
different capillary number (CEVS; Ng and Payatakes, 1980).

to bypass the elongation (Payatakes, 1982). Since Payatakes and coworkers
were interested in using the microscale results for macroscale simulations
based on population-dynamics formulation, they had to define coefficients
representing microscale mechanisms, such as stranding (λ), breakup (φ), and
coalescence (Co). The first two ones were defined as follows:

λ = −1

n

∂n

∂z
|due to stranding (32)

φ = −1

n

∂n

∂z
|due to break-up (33)

in which n is the total number of ganglia and ∂n
∂z is the variation of n in z direc-

tion. But, the coalescence factor was not as straight-forward as breakup and
stranding factors. Coalescence factor of ganglia was investigated by Constan-
tinides and Payatakes (1991). Coalescence at pore scale depends on many
factors including pore geometry, physical properties of fluids, interfacial ten-
sion, interface velocity, double ionic layer interactions, initial positions of
interfaces, and pressure difference between oil bodies. Constantinides and
Payatakes (1991) tried to quantify the coalescence parameter using their
porenetwork model. The model consisted of two components, simulating
bulk motion of ganglia in a porenetwork, and simulating drainage of a water
film trapped between two colliding menisci at each pore (Figure 29).

Both parts were coupled together at different time scales. The time
scale of the inner component (water film simulator) was much smaller than
the outer one. They simulated the film flow using a criterion for critical
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1948 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 29. Schematic presentation of two-component model for simulating coalescence
(Constantinides and Payatakes, 1991).

thickness of film. When the thickness of the film is larger than the critical
value, the interfaces are non-interacting. However, in very small thickness (in
this work ∼< 100Å), London-van der Waals forces are considered using the
Hamaker constant (Sheludko, 1967). Constantinides and Payatakes (1991)
defined a probability rate for coalescence for two ganglia with different sizes
and found a range of 0.03−0.15. Coalescence probability would increase
gradually with the increase of capillary number, but it increased significantly
with the decrease of contact angle.

Figure 30 shows plots of stranding and breakup coefficients against
the ganglia volumes for different wetting-phase saturations resulted from
dynamic pore-network modeling, while coalescence probability (Co) was
set equal to 0.15 (Valvanides et al., 1998). According to Figure 30, with
the increase of ganglia volume, breakup coefficient increases while strand-
ing coefficient decreases nonlinearly. Furthermore, with the increase of

FIGURE 30. Dependency of (a) stranding coefficient, λ and (b); break-up coefficient φ on the
ganglion volume, v, and the water saturation, Sw, for Ca = 10−4, κ = µn

µw
= 3.35, Co = 0.15,

θa = 45, θr = 35 (Valvanides et al., 1998).
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Fundamentals of Two-Phase Flow in Porous Media 1949

FIGURE 31. Length of ganglia (normalized by mean lattice spacing length) for different
ganglia volume and two viscosity ratios (κ = 1/M ; Constantinides and Payatakes, 1996).

wetting phase saturation, stranding coefficient increases and breakup co-
efficient decreases.

Length of ganglia under different dynamic conditions is another system
factor that should be determined for macroscale modeling of ganglia dynam-
ics. For M > 1 during imbibition, length of ganglia aligned to the direction of
macroscopic flow is relatively high (Figure 31). But, for M < 1 length of gan-
glia decreases in direction of flow (Figure 31), and it prefers to follow a path
composed of large pores. With the decrease of water saturation, interstitial
velocity and local pressure gradient increase, which increases dynamic gan-
glion displacement. Thus, with decrease of saturation, tendency of ganglia
to become long and aligned with the macroscopic flow direction increases.
Thus ganglia displace not only in the direction of the macroscopic flow, but
also in other directions due to the population density. As Valvanides et al.
(1998) have observed, stranding of ganglia decreases as Ca or ganglia size
increases and breakup increases. With the increase of viscosity ratio (de-
crease of κ) during imbibition, time rate of stranding decreases and breakup
rate decreases (Constantinides and Payatakes, 1996), although the first one
is stronger. In addition, with the decrease of M ganglia volume decreases.
Effect of viscosity ratio on the size of ganglia is significant at large wetting
phase saturations.

Another system factor required for macroscale modeling is the average
velocity of ganglia for different ganglia volumes. To understand the dynamics
of ganglia, Payatakes (1982) reviewed data from a micro-model experiment
done by Rapin (1980). Rapin (1980) investigated the velocity of ganglia using
visualization techniques in experiments. His results are shown in Figure 32,
where uz/Vf is the normalized velocity of a ganglion defined as the veloc-
ity of the centroid of a ganglion (uz) divided by the superficial velocity of

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 0

8:
41

 3
0 

D
ec

em
be

r 
20

15
 



1950 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 32. Average ganglion velocity (normalized by superficial fluid velocity) versus gan-
glion volume (normalized by volume of CEVS) for several typical capillary number values.
Here, the viscosity ratio is µn/µw= 7 (Payatakes, 1982). Data are from Rapin (1980).

the flooding (Vf ). According to Figure 32, for a given volume of ganglia,
the normalized velocity is a monotonically increasing function of capillary
number. Near a critical mobilization capillary number, the normalized veloc-
ity increases monotonically with volume, reaching an asymptotic value for
volume of ganglia. The asymptotic value of ganglia is about 15∼20 CEVS
volume. However, when the value of capillary number exceeds critical mobi-
lization value, velocity will have a minimum in range of 3∼5 CEVS volume.
Later, Dias, and Payatakes (1986a, 1986b) and Valvanides et al. (1998) devel-
oped a dynamic pore-network model to investigate velocity of ganglia and its
dependencies on system parameters. Simulation results shown in Figure 33
are qualitatively comparable with the experiments. Figure 33 shows velocity
of a ganglion versus its volume for different viscosity ratios. For viscosity ra-
tio smaller than 1 (M = 1/κ , κ > 1), the time-averaged ganglion velocity of
oil is smaller than the average velocity of the water. If viscosity ratio is larger
than 1 (κ < 1), this ratio will be larger than 1. Obviously, ganglia velocity
increases with the increase of Ca.

An interesting result from these simulations is that for a ganglion with
a given volume, with the increase of Ca, ganglia velocity can reach an
asymptotic value for M < 1. However, this is not found to hold for M > 1.
This means that when the wetting fluid is less viscous than the nonwetting
fluid, the blobs of the nonwetting phase can move faster and they are less
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Fundamentals of Two-Phase Flow in Porous Media 1951

FIGURE 33. Normalized time-averaged ganglion velocity, u∗ = uz/Vf , versus the normal-
ized ganglion volume v∗ (ganglia volume divided by the volume of a CEVS), in a 15 × 30
network for various Ca values, uz is the velocity of the centroid of a ganglion, and Vf is
the superficial velocity of the flooding. (a) κ = 7, θe = θa = θr = 0. (b) κ = 1, θe = θa = θr =
0. (c) κ = 0.6, θe = θa = θr = 0. (d) κ = 7, θe = θa = θr = 10. (e) κ = 7, θe = θa = θr = 30.

(f) κ = 7, θe = 10θa = 11.4θr = 0, κ = µn
µw

(Dias and Payatakes, 1986b).
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1952 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 34. Comparison between experimental and theoretical values of the normalized
time-averaged ganglion velocity, u∗ = uz/Vf , versus the ganglion volume (normalized by the
volume of a CEVS), v∗, for various capillary numbers and viscosity ratios. (a) κ =7.2. (b) κ =
0.56, κ = µn

µw
uz is the velocity of the centroid of a ganglion and Vf is the superficial velocity

of the flooding (Hinkley et al., 1987).

constrained by the invading phase. Based on these simulations, hysteresis
in contact angle cannot significantly affect the trend of time-average velocity
especially for large ganglia and large Ca values.

Hinkley et al. (1987) compared results of the pore-network modeling of
Dias and Payatakes (1986a) with the micro-model experiments. They per-
formed some two-dimensional micromodel experiments to investigate the
velocity of ganglia for different viscosity ratios and capillary numbers. The
model was made of one layer of grains sandwiched between two Plexiglass
sheets. Resulting pores were completely regular and uni-size. Comparison
between simulation and experimental results is shown in Figure 34. The
agreement is very good large capillary numbers, since nonlinearity of the
multiphase flow system is not significant. With the decrease of capillary
number and increase of viscosity ratio (decrease of κ), the agreement de-
creases significantly, due to the increase of nonlinearity of the system. The
difference can be due to the fact that ganglion motion depends on the ini-
tial shape and orientation of the ganglion, the local characteristics of the
porous medium, and the distribution of the two phases in the nearby region
(Valvanides et al., 1998). In any case, despite the quantitative difference, the
same behavior for ganglia dynamics observed by Rapin (1980) was captured
by the model.

7.2. Macroscale Ganglia Dynamics

Based on the system factors resulted from pore-network modeling and
proposing population dynamics balance equations developed for macro
scale ganglia dynamics, Payatakes et al. (1980), Constantinides and Payatakes
(1996) and Valvanides et al. (1998) studied macroscale dynamic motion of
the ganglia in porous media.
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Main assumptions of this model include (a) oil is totally disconnected
in the form of ganglia of various sizes (b) the macroscopic flow is one-
dimensional (c) the longitudinal dispersion of ganglia is neglected (d) gravity
is neglected (e) in the integration of the population balance equations, the
ganglia are considered as points coinciding with their mass centers; and
(f) specific assumptions are made for the calculation of the dimensionless
collision rate.

The resulted populations dynamics equations for moving and stranded
ganglia were integro-differential type of equations that were solved numeri-
cally. For sake of space the equations and their explanations have not been
mentioned in this review. Complete explanation can be found in Payatakes
et al. (1980) and Valvanides et al. (1998). Using the population dynam-
ics equation, Valvanides et al. (1998) investigated fate of stranded as well
as moving ganglia with space and time for two different types of regime:
steady-state fully developed (SSFD) and steady-state non-fully developed
(SSnFD). Under SSFD conditions, number concentrations of moving and
stranded ganglia are independent of time and space. However, under SSnFD
conditions, number concentrations of moving and stranded ganglia are only
independent of time.

8. RELATIVE PERMEABILITY

One of the major applications of pore-network models has been in the in-
vestigation of relative permeability curves especially for predictive purposes.
However, relative permeability curves have been mostly produced by qua-
sistatic pore-network models. To use quasistatic pore-network models for
relative permeability simulation, it is assumed that flow paths of both phases
are frozen at a given saturation (or a grain global capillary pressure). Thus,
dynamic effects on the flow path are ignored. But, Hughes and Blunt (2000)
showed that the contact angle, initial wetting saturation, and flow rate can
affect significantly the displacement pattern and consequently the relative
permeability curves. Extensive experimental and theoretical investigations
have shown that the relative permeabilities are strong functions of a large
number of parameters, including Sw, Ca, flow rates ratio r , viscosity ratio M ,
advancing and receding contact angles θa and θr , coalescence factor, Bond
number (Bo), and the flow history (Avraam et al., 1994; Avraam and Pay-
atakes, 1995; Constantinides and Payatakes, 1996; Valvanides et al., 1998).

kro = kro(Sw, Ca, r, M , cos
(
θ0

r

)
, cos

(
θ0

a

)
, Co, Bo, flow history) (34)

Payatakes and co-authors, carried out extensive experimental and numerical
studies, using micro-models and pore-network models, to investigate the
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effect of ganglia movement on relative permeability (Avraam et al., 1994;
Avraam and Payatakes, 1995).

Constantinides and Payatakes (1996) developed a dynamic pore-
network model, including dynamics of ganglia, to investigate relative per-
meability curves at steady-state flow for different saturations. To calculate
relative permeability, they used the following equation:

qα

A
= −krα

k

µα

	Pα

L
, α = w, n (35)

in which qα is the total flux for α phase, A is the cross section of pore-
network model normal to the flow direction, krα is the relative permeability
of α-phase, k is the intrinsic permeability of the pore-network, µα is the
viscosity of phase α, L is the length of the pore network in flow direction,
w and n denote wetting and nonwetting phases, respectively, and 	Pα is
the pressure drop of phase α. The approach for defining boundary condi-
tions in pore-network model developed by Constantinides and Payatakes
(1996) was explained in section 3.4. To prevent effect of initial condition on
simulation results, they continued the simulations so that the time-averaged
relative permeability became constant. Results for relative permeability of oil
are shown in Figure 35. The same behavior was found for relative perme-
ability of water, and macroscopic pressure drop for nonwetting and wetting
phase. Oscillations in relative permeability values of oil are small for large
ganglion dynamics. But, they are significant for connected-path flow regime.
The wetting phase relative permeability oscillations were minimal for small
ganglion dynamics.

Constantinides and Payatakes (1996) calculated relative permeability
curves for different viscosity ratios and capillary numbers, including gan-
glia dynamics effect. Figure 36a shows the effect of viscosity ratio on rel-
ative permeability curves. With the increase of viscosity ratio (decrease of
κ = µn

µw ), relative permeability decreases. It is clear that relative permeability
of nonwetting phase is more sensitive to the viscosity ratio. Constantinides
and Payatakes (1996) postulated that with the decrease of M (= µw

µn ), both
phases tend to segregate and create their own separate flow paths. Non-
wetting phase tends to flow through big pores, which causes an increase
of its permeability. This segregation reduces viscous dissipation in the sys-
tem. However, these results differ from the findings of Lefebvre du Prey
(1973) and Fulcher et al. (1985), who observed experimentally that with the
decrease of M , relative permeability of nonwetting phase increased but rela-
tive permeability of wetting phase decreased. Constantinides and Payatakes
(1996) conjectured that this contradiction may be due to the fact that in
those experiments, different fluids and porous media were used, which may
indeed affect contact angle and consequently relative permeabilities.
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FIGURE 35. Time series of the instantaneous relative permeability of oil, k′
ro for (a) Gan-

glia with 1 CEVS volume (b) Ganglia with 3 CEVS volume (c) Ganglia with 9 CEVS
volume (κ = 3.35, Ca = 10−4, C11 = 0.15, Sw = 0.5 pore-volume, θ0

a = 45◦, θ0
r = 35◦ Constan-

tinides and Payatakes, 1996).

Figure 36b shows the effect of capillary number on relative permeabil-
ity. With the increase of capillary number, relative permeability increases
as well. Constantinides and Payatakes (1996) found that at medium and
high Ca values, the two fluids tend to become more segregated compared

FIGURE 36. Dependency of steady; state relative permeability of both fluids (krw and kro)
on water saturation (a) for different κ = µn

µw
(κ = 0.67, 1.5, 3.35, Ca = 10−4, θadvancing = 45◦,

θreceding = 35◦) (b) for different capillary number values Ca (Ca = 10−4, 10−5, 10−6, θadvancing =
45◦, θreceding = 35◦ Constantinides and Payatakes, 1996).
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1956 V. Joekar-Niasar and S. M. Hassanizadeh

with small capillary number values. This causes an increase of both relative
permeabilities.

Avraam et al. (1994) observed the same behavior in two-dimensional
and quasi-three-dimensional (consisting of two layers of pores) micro-models
under steady-state conditions. They found that relative permeability of oil
correlates strongly with the flow regimes and dynamic parameters of the
system such as capillary number and viscosity ratio. Avraam and Payatakes
(1999) showed that the lubrication effect can be significant for strongly wet-
ting systems. They observed experimentally that for small capillary numbers
(Ca ≤ 10−6), flow of oil takes place through the motion of ganglia and/or
droplets. For larger capillary numbers (Ca > 10−6), connected pathways for
the flow of oil can form, but the disconnected flow can also lubricate the
flow of ganglia.

Avraam et al. (1994) and Avraam and Payatakes (1995) also investi-
gated relative permeability curves using micro-model experiments. Their
micro-model had a square lattice structure with node-to-node distance of
1221 µm. Macroscopic flow direction was parallel to one of the diagonals.
The network consisted of 11300 chambers and 22600 throats. Mean diame-
ters of chambers and pore throats were 560 µm and 112 µm, respectively.
Maximum depth of pores was almost uniform equal to 140 µm. Cross sec-
tion of pore throats was almost eye-shaped with a planer porosity of 0.25.
To study the effects of different physical parameters such as viscosity ratio
and interfacial tension, three different fluid sets were used. In each exper-
iment, simultaneous injection of the two fluids was continued (at a con-
stant rate) until steady-state conditions was reached. Avraam and Payatakes
(1995) observed that at the pore scale this mechanism is transient but at
mesoscale it is almost stationary, such that it can be identified as steady
state.

Based on the experimental data reported by Avraam and Payatakes
(1995), Avraam and Payatakes (1995a) implemented some optimization cal-
culations to study the behavior of viscous coupling coefficients (krαβ , krβα)
introduced in the following extended Darcy’s law.

vα = −kkrα

µα

	Pα

L
− kkrαβ

µβ

	Pβ

L

vβ = −kkrβ

µβ

	Pβ

L
− kkrβα

µα

	Pα

L
(36)

The cross-coupling terms are needed to describe the macroscopic
flow when a disconnected fluids is present. Avraam and Payatakes (1995a)
used their pore-network model to study changes of the coefficients with
Sw, Ca, and M . Conventional and generalized relative permeabilities
were determined based on B-spline functions combined with standard
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constrained optimization techniques. They found that the cross coefficients
were not equal (krαβ/µβ �= krβα/µα). These coefficients as well as conven-
tional coefficients were found to depend on the flow conditions and the
corresponding flow mechanics.

Relative permeabilities krα and krβ are increasing functions of the satu-
ration of the respective fluid. krα and krβ increase as Ca increases (shown
in Figure 37a-f). The behavior of krα is more complicated. In most cases krα

increases as Sα increases, but in certain cases the opposite behavior has been
observed. Roughly speaking, as Ca increases, all the generalized coefficients
increase.

Afterwards, Valvanides and Payatakes (2001) developed a continuum
two-phase flow model, which included the nonlinear dependence of perme-
ability coefficients. Their model was based on the decomposition of a two-
phase system into two subdomains: connected-oil path domain and ganglion
dynamics domain. The main goal in their model was to save computation
time to have a mesoscale predictive model that for practical applications.
The model results were compared with experimental results done in a two-
dimensional micro-model by Avraam and Payatakes (1995a). They founded
fairly good to good agreement with experimental results for low capillary
numbers (Ca = 10−6) at different viscosity ratios (Fig. 37b,e). It seems that
for high capillary numbers, where ganglia dynamics can be important, the
model was not fully successful and there was a need for further improvement
before it could be used for predictive purposes (Fig. 37c).

Bravo et al. (2007) followed the same approach as Avraam and Pay-
atakes (1995,a) did, to study coupling coefficients in extended Darcy’s law.
They used a dynamic pore-network model for simulating disconnected gas
and oil flow. What they presented is very similar to the results of Avraam
and Payatakes (1995a) for very limited cases. They studied the effect of dis-
connected gas bubbles on relative permeability curves for different bubbles
sizes, but only in the viscous-dominated flow regime. They assumed that
gas bubbles were incompressible, which is a good approximation when the
relative variations of absolute pressures of gas bubbles due to the pressure
gradient in water phase and also capillary pressure differences are negligible.
However, at least at pore-scale, this assumption is no valid, because absolute
pressure is known to fluctuate with time and space as Constantinides and
Payatakes (1996) showned.

Bravo et al. (2007) found that when relative permeability of oil increases,
when the viscosity of gas bubbles is smaller than that of oil, and even rela-
tive permeabilities larger than 1 can be obtained. In addition, they showed
that the effect of gas bubble size at different gas saturations on relative
permeability is not monotonic. There is a peak of relative permeability in
the intermediate bubble size. In another study Wang and Mohanty (2000)
investigated the relative permeability in gas-condensate systems. Similar to
Avraam and Payatakes (1995a) as shown in Figure 26, Wang and Mohanty
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1958 V. Joekar-Niasar and S. M. Hassanizadeh

FIGURE 37. Conventional (broken lines) and generalized (solid lines) relative permeability
coefficients for κ = 0.66 (left column) and κ = 3.35 (right column). (a,d) Ca = 10−7. (b,e)
Ca = 10−6. (c,f) Ca = 5 × 10−5, given κ = µn

µw
(Avraam and Payatakes, 1995a).

(2000) illustrated that gas and condensate can have their separate path, or
gas can flow with condensate as ganglia or it can flow as small droplets
if the capillary number increases enough. In another study Jamiolahmady
et al. (2003) developed an irregular lattice porenetwork with circular cross
sections to investigate the effect of velocity on relative permeability, which
was reported in gas-condensate core experiments by Herderson et al. (2001).
To adapt the network structure to a Berea sandstone, the pore throats were
deleted randomly to illustrate average coordination number of 3. To include
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the tortuosity, bends, expansion, and contraction of real porous media in the
idealized network, a hydraulic length was considered for calculation of the
pressure drop. They observed that with increase of the injection velocity,
the relative permeability of gas increases.

Using a dynamic pore-network model, and assuming a constant in-
jection rate for drainage, Singh and Mohanty (2003) showed that for low
capillary numbers, flow in the wetting phase flow includes only 1% of the
total flow. Based on their results, saturation-relative permeability relation-
ship is a function of capillary number, viscosity ratio and distribution of
the pores as shown already by Blunt and King (1990) and Blunt and King
(1991). Their model is based on the pore-network model developed by King
(1987). However, King (1987) did not consider capillary pressure in the
setup of equations. Later, Blunt and King (1991) added capillary pressure as
a function of local pore size and showed that at the same saturation, rela-
tive permeability of the receding phase in low capillary numbers is below
those with high capillary number as shown in Figure 38. But for the invading
phase, both cases may occur. They explanation was that at very high rates,
flow can proceed through all parts of the network, including the very small
tubes. As Ca decreases, flow is blocked in some places due to capillary
forces. This will tend to decrease the relative permeability of both injected
and displaced fluids. At low rates, the injected fluid moves through only
the widest channels, which means an increase of its permeability relative
to the displaced fluid. Thus, at a given saturation, krα must decrease with
the decrease of flow rate, while krα may either increase or decrease. This
explanation works for different mobility ratios, so that with the decrease of
mobility ratio, relative permeability of the invading phase will decrease. In
addition, nonlinearity of relative permeability-saturation curve increases with
the increase of interfacial tension.

FIGURE 38. Relative permeability-saturation curves for different values of (a) Ca number
and (b) viscosity ratios (Blunt and King, 1991).
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9. DISCUSSION AND SUMMARY

9.1. Current State of Dynamic Pore-Network Models
9.1.1. DYNAMIC PORE-NETWORK MODELING AS AN INVESTIGATION TOOL

In this review, we have given an overview of various aspects of dynamics of
two-phase flow in porous media, investigated using dynamic pore-network
models. Table 4 presents a list of major dynamic pore-network models, their
applications, and their technical specifications (such as size, simulated pro-
cess, pressure algorithm, network geometry, and topology). These models
can provide physicallybased insights into various processes and their depen-
dencies that may be difficult to obtain through laboratory experiments. They
have been used for understanding various aspects of dynamics of two-phase
flow, such as

� pressure field development and evolution of capillary forces and viscous
forces with change of saturation at Darcy scale.

� scaling of invasion patterns (mostly viscous fingering).
� crossover from capillary fingering to viscous fingering and from viscous

fingering to compact flow.
� effect of capillary number and viscosity ratio on residual nonwetting phase

saturation
� effect of geometry (aspect ratio) and topology (coordination number) on

residual nonwetting phase saturation.
� nonequilibrium capillarity effects and dependencies of nonequilibrium

capillarity coefficient.
� dynamic effects on relative permeability and viscous-coupling coefficients.
� dynamics of ganglia such as mobilization, stranding, breakup, and coales-

cence. Contribution of dynamics of ganglia to nonequilibrium effects in
relative permeability.

� dynamic effects in fluid-fluid interfacial area and macroscopic interfacial
velocity.

9.1.2. COMPUTATIONAL ASPECTS OF DYNAMIC PORE-NETWORK MODELS

We have also presented and discussed technical details of dynamic pore-
network models, such as network structure, governing equations, numerical
problems, and boundary conditions.

The major computational issue in the dynamic pore-network modeling
is related to the pressure field calculation. There are two different algorithms
for solving the pressure fields, namely single-pressure and two-pressure ap-
proaches. The single-pressure algorithm is basically applicable to the net-
works with pore elements that have circular cross sections. In such networks,
a pore element is occupied by only one fluid at any given time. To adapt
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the single-pressure algorithm to the networks with angular cross sections,
effective resistance of all pores are calculated using Kirchhoff’s rule for elec-
trical resistors. Then, instead of solving the pressure field in a network filled
with physical fluids, it is solved for a network filled with an equivalent fluid
phase (which is not physical). This approach has some shortcomings that
are explained subsequently.

The pressure field is obtained by solving the linear system KP = B.
The coefficient K is composed of conductances of pores. In single-pressure
algorithms for angular cross sections, the effective conductance is calcu-
lated from the geometry, regardless of the bulk flow direction or corner
flow in a pore throat. This assumption influences the ability of the model in
reproduction of some pore-scale mechanisms. For instance, pore-scale coun-
tercurrent flow in a pore throat cannot be reproduced. Thus, the capillary
diffusion (through the corner) and its effect on relaxation of the interface
are not modeled properly. It has been observed that during drainage, with
the invasion of nonwetting fluid into a new pore, local imbibition in other
pores behind the macroscopic front may occur. This happens due to the con-
nection of wetting phase through the corners and local countercurrent flow
in the pores. Such a mechanism cannot be modeled by the single-pressure
approach. If the two-pressure algorithm is employed, flow directions of both
nonwetting and wetting fluids are determined by local pressure gradient
within each phase; this results in the reproduction of detailed pore-scale
mechanisms.

The second computational issue is related to the numerical instability.
In particular, the strong nonlinearity at the pore scale causes severe sta-
bility problems in dynamic pore-network models. This has been observed
under capillary-dominated regimes as well as unfavorable viscosity ratios.
This problem, referred to as “capillary pinning” has been reported in many
studies such as Aker et al. (1998 1998b,a); Koplik and Lasseter (1985) and
Løvoll et al. (2005). To remove the nonlinearity caused by capillary forces, in
most studies, such as Aker et al. (1998a, 1998b) and Løvoll et al. (2005) cap-
illary deactivation zones at both ends of pore throats were defined. Based on
this assumption, capillary pressures at the ends of pore throats were forced
to be zero. This assumption was imposed without any physical explana-
tion. However, Joekar-Niasar et al. (2010a) showed that the combination
of a semi-implicit saturation update (instead of explicit saturation update)
and defining entry capillary pressure as well as snap-off capillary pressure
would remove this numerical problem without any ad hoc assumption. Us-
ing this approach, Joekar-Niasar et al. (2010a) showed that results obtained
from multistep pressure dynamic simulations are consistent with results of
quasistatic simulations. However, they stated that the simulations were too
time-consuming. Furthermore, they have mentioned that simulation time is
highly dependent on capillary number and viscosity ratio in dynamic pore-
network models.
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1962 V. Joekar-Niasar and S. M. Hassanizadeh

9.1.3. COMPLEX INVASION MECHANISMS AT PORE LEVEL

As explained in section 3.6, pore-scale invasion mechanisms under imbibi-
tion is more complex than under drainage. Piston-like movement, snap-off,
and cooperative filling are invasion processes that may occur under imbi-
bition. The significance of these mechanisms is highly dependent on the
pore geometry (angularity of cross sections, aspect ratio; Wardlaw and Yu,
1988). For instance, in domains with small aspect ratio, cooperative filling
will be the dominant invasion mechanism, which cannot be simulated by
pore-network models accurately. Thus, application of network models for
predictive purposes for high porosity domains will fail (Joekar-Niasar et al.,
2009). Furthermore, in such media, it is hard to clearly identify pore bodies
and pore throats. With such geometrical complexities, dynamic pore-network
models are less promising for predictive purposes. Thus, application of dy-
namic pore-network models for investigation of two-phase flow in fibrous
material (such as Thompson [2002] who simulated air-liquid flow in paper)
is only qualitatively, and not quantitatively, useful.

Other complexities in dynamics of two-phase flow, which are absent in
quasistatic models, are related to the mobilization of a disconnected phase.
This issue was studied extensively by Payatakes and his coworkers from 1980
to 2002. Generally, they focused on the mobilization of a disconnected phase
(ganglia) and its contribution to dynamic effects in relative permeability
curves. Despite the substantial works they performed, there are some major
shortcomings in their approach such as the following:

� Their micromodels and pore-network models had idealized and regu-
lar geometries. Thus, effects of topological and geometrical properties of
porous media were not investigated. Since pore-scale phenomena (snap-
off, invasion, corner flow) are highly dependent on pore geometry, shape
factor, and aspect ratio, the results of their micromodels and network
models are not directly applicable to most natural porous media.

� Their pore-network model was based on the single-pressure algorithm
for circular cross sections. Thus, effects of corner flow, snap-off, capillary
diffusion, and interface relaxation behind the invading interface could not
be studied.

� Valvanides et al. (1998) and Valvanides and Payatakes (2001) used dy-
namic pore-network models to obtain statistical relationships for coales-
cence, breakup, and mobilization of ganglia as a function of ganglia size
and flow velocity. They obtained statistical kernel functions and employed
them in macroscopic equations of population dynamics of ganglia for one-
dimensional systems. However, they did not clarify how this approach can
be followed in a three-dimensional system. Moreover, due to complexities
of their approach, as well as dependence of kernel functions on geometry
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and topology of porous media, it seems that their methodology cannot be
used for practical purposes.

� From a practical point of view, according to Al-Gharbi and Blunt (2005),
the range of capillary numbers considered in the works of Payatakes and
his co-workers are much larger than the range encountered in reservoir
engineering; under small capillary numbers, mobilization of disconnected
phase is not significant.

9.2. Outlook and Challenges

Compared to the extensive applications of quasistatic pore-network models,
dynamic models have been developed and employed much less frequently.
This has been due to strong numerical instability and tractability, computa-
tional costs, limited verification possibility in a three-dimensional domain,
complexities of physics at pore level, and difficulties in casting the pore-
level physics into network models. Some of the major issues that potentially
can improve applicability of dynamic pore-network models are discussed
subsequently.
Network geometry and topology: None of the dynamic pore-network
models have been developed for natural porous media, which have complex
topology and geometry. While complex quasistatic pore-network models
with mixed-cross-sectional pores and unstructured irregular networks have
been developed (e.g., Øren and Bakke, 2002), network structures of dynamic
models are still quite simple.

Up to now, most works are dedicated to investigation of effect of dy-
namic parameters (capillary number and viscosity ratio) on dynamics of
two-phase flow. Except for Mogensen and Stenby (1998), effect of network
topology on dynamics of two-phase flow has never been studied. Although
Mogensen and Stenby (1998) studied effect of coordination number on resid-
ual saturation under dynamic conditions, they did not provide any analysis
how they have generated an irregular network (variable coordination num-
ber). Furthermore, they used only one realization of network for each coordi-
nation number distribution. It means that no analysis regarding the sensitivity
of results to network generation is provided.
Computational costs: As we have explained, to compare results of dynamic
network models with continuum-scale theories, the local entities should be
averaged over the domain. However, The size of the pore network should
be large enough to represent at least one REV size. The most common
fashion for determining REV is to simulate capillary pressure – saturation
(Pc-Sw) or relative permeability – saturation (kα

r -Sw) curves in networks
with different sizes for fixed statistical parameters. If with increase of the
size of the network, the characteristic curves do not change significantly,
that minimum size of network for those curves can represent the REV size.
This issue was discussed in Joekar-Niasar et al. (2010b) in detail. In some
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works such as Gielen et al. (2005); Joekar-Niasar et al. (2010b) the REV
size for the pore network can be a cube with 30–35 pore bodies in each
direction. However, one should note that with increase of variance of pore
size distribution as well as the correlation length, the REV size will increase.

The analysis of REV size in many works is absent and as shown in
Table 4, many dynamic network models are too small to provide results
representative for REV scale or Darcy scale. For instance, the dynamic model
developed by Al-Gharbi and Blunt (2005) had only 9 × 9 pore units. Thus
their simulation results were highly influenced by boundary conditions. An-
other example of boundary effects on the results can be found in the work
of Nordhaug et al. (2003) on the computation of interfacial velocity. There
is a velocity overshoot at high saturations, which seems to be a boundary
effect. Applying constant flux and fully periodic boundary conditions, ap-
plied by Constantinides and Payatakes (1996) and later on by Knudsen and
Hansen (2002), can eliminate the effects of boundary and initial conditions
on simulation results. However, since the simulations need to be continued
until steady-state is reached, simulations may be too time-consuming.

The largest pore-network model run on a single-processor computer
reported in the literature, using a dynamic pore-network model, has around
150000 nodes (Joekar-Niasar and Hassanizadeh, 2011) which has been used
for capillary numbers from 10−5 to 10−7 and viscosity ratio of M = 1.

Furthermore, it should be noted that in most dynamic pore-network
models, interfaces are not tracked within the pore throat. It means that the
implicit assumption is made that the time associated with the pore throat
filling is much smaller than the time required for pore body filling. Although
this assumption may be valid for granular media, it is probably not reasonable
for porous media with long pore throats. Tracking the interfaces within pore
throats will be computationally too expensive. It should be noted that the
simulation time of dynamic pore-network models is highly dependent on
viscosity ratio and capillary number. Simulation of a capillary-dominated
regime takes much more time compared with viscous fingering, and viscous
fingering much more time than stable invasion (Joekar-Niasar et al., 2008).
Up to now, no dynamic pore-network model has been developed for parallel
computation. One of the major limitations of dynamic pore-network models
is related to the pore filling residence time. Since at each time step, the
minimum residence time is selected, one can guess why dynamic pore-
network models are computationally too expensive. Adapting the discretized
equations to be independent of local residence time, similar to the algorithm
developed by Dahle et al. (2005), may improve the computational aspect of
these model.
Limited possibility for direct comparison with experiments: As the re-
viewed works illustrate, none of the dynamic pore-network models has been
validated against experiments in three-dimensional natural porous media.
Monitoring local (pore-scale) real time measurements in three-dimensional
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domains is still challenging and too difficult. Imaging techniques for obtain-
ing real-time pore-scale information in which fluid interfaces are moving
have yet to be developed. It seems that simulations can be only validated
against measurements outside the porous media (such as outflow boundary
pressures).
Complexities of physics of two-phase flow dynamics: Comparison be-
tween experiments and quasistatic simulations show that Young-Laplace
equations can be used successfully to describe the invasion process where
only capillary forces are dominant. However, different issues may be of im-
portance under dynamic conditions. For instance, pore-scale simulations of
a single tube show that dynamics of contact angle is important (e.g Blake
and Haynes, 1969). Also, computational analyses have shown that inertia ef-
fect in highly dynamic conditions are important (e.g., Ridgway et al., 2002).
Up to now, most dynamic models have employed the Washburn equation
without inertia effects. These effects need to be incorporated in dynamic
pore-network models for capturing pore-scale mechanisms, such as Haines
jump.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the reviewer, Dr. Rink van Dijke from
Heriot-Watt University, for his very useful comments and suggestions. The
authors are members of the International Research Training Group NUPUS,
financed by the German Research Foundation (DFG) and The Netherlands
Organization for Scientific Research (NWO). This research was financed by
Utrecht Centre of Geosciences.

REFERENCES

Aker, E.K., Maloy, K.J., and Hansen, A. (1998b). Simulating temporal evolution of
pressure in two-phase flow in porous media. Physical Review E 58, 2217–2226.

Aker, E., Maloy, J., Hansen A., and Batrouni, G.G. (1998a). A two-dimensional net-
work simulator for two-phase flow in porous media. Transport in Porous Media
32, 163–186.

Al-Futaisi, A., and Patzek, T.W. (2003). Extension of hoshenkopelman algorithm to
non-lattice environments. Physica A 321, 665–678.

Al-Gharbi, M.S., and Blunt, M.J. (2005). Dynamic network modeling of two-phase
drainage in porous media. Physical Review E 71, 016308–016308.

Avraam, D.G., Kolonis, G.B., Roumeliotis, T.C., Constantinides, G.N., and Payatakes,
A.C. (1994). Steady-state two-phase flow through planar and non-planar model
porous media. Transport in Porous Media 16, 75–101.

Avraam, D.G., and Payatakes, A.C. (1995). Flow regimes and relative permeabilities
during steady-state two-phase flow in porous media. Journal of Fluid Mechanics
293, 207–236.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 0

8:
41

 3
0 

D
ec

em
be

r 
20

15
 



Fundamentals of Two-Phase Flow in Porous Media 1969

Avraam, D.G., and Payatakes AC. (1995a). Generalized relative permeability coeffi-
cients during steady-state, two-phase flow in porous media and correlation with
the flow mechanisms. Transport in Porous Media 20, 135–168.

Avraam, D.G., and Payatakes, A.C. (1999). Flow mechanisms, relative permeabilities
and coupling effects in steady-state two-phase flow in porous media. the case of
strong wettability. Industrial and Enginerring Chemistry Research 38, 778–786.

Barenblatt, G., Patzek T., and Silin, D. (2003). The mathematical model of nonequi-
librium effects in water-oil displacement. SPE Journal 8, 409–416.

Berentsen, C.W.J., and Hassanizadeh, S.M. (2006). On the equivalence of measured
and averaged pressures in porous media. Paper presented at the 16th Interna-
tional Conference on Computational Methods in Water Resources, Copenhagen,
Denmark.

Blake, T.D., and Haynes, J.M. (1969). Kinetics of liquid/liquid displacement. Journal
of Colloid and Interface Science 30, 421–423.

Blunt, M.J. (2001). Flow in porous media—pore-network models and multiphase
flow. Current Opinion in Colloid & Interface Science 6, 197–207.

Blunt, M., Jackson, M.D., Piri M., and Valvatne, P.H. (2002). Detailed physics, pre-
dictive capabilities and macroscopic consequences for pore-network models of
multiphase flow. Advances in Water Resources 25, 1069–1089.

Blunt, M., and King, P. (1990). Macroscopic parameters from simulations of the pore
scale flow. Physical Review A 42, 4780–4788.

Blunt, M., and King, P. (1991). Relative permeabilities from two- and three- dimen-
sional pore- scale network modeling. Transport in Porous Media 6, 407–433.

Blunt, M., King P., and Scher, H. (1992). Simulation and theory of two-phase flow
in porous media. Physical Review A 46, 7680–7702.

Blunt, M., and Scher, H. (1995). Pore-level modeling of wetting. Physical Review E
52, 6387–6403.

Bondino, I., McDougall S., and Hamon, G. (2009). A pore-scale modeling approach
to the interpretation of heavy oil pressure depletion experiments. Journal of
Petroleum Science and Engineering 65, 14–22.

Bosanquet, C.H. (1923). On the flow of liquids into capillary tubes. Philosophical
Magazine Series 6 45, 525–531.

Bottero, S. (2009). Advances in theories of capillarity in porous media. PhD thesis,
Utrecht University, the Netherlands.

Bottero, S., and Hassanizadeh, S.M. (2006). Experimental and numerical study to
investigate dynamic capillary pressure effect in two-phase flow in porous media.
Paper presented at the 16th International Conference on Computational Methods
in Water Resources, Copenhagen, Denmark.

Bravo, M.C., Araujo M., and Lago, M.E. (2007). Pore network modeling of two-phase
flow in a liquid-(disconnected) gas system. Physica A 375, 1–17.

Brooks, R.H., and Corey, A.T. (1964). Hydraulic properties of porous media. Tech.
Rep. Hydrol. Pap. No. 3, Colorado State University.

Camps-Roach, G., O’Carroll, D.M., Newson, T.A., Sakaki T., and Illangasekare, T.H.
(2010). Experimental investigation of dynamic effects in capillary pressure: Grain
size dependency and upscaling. Water Resources Research 46, W08544.

Celia, M.A., Reeves, P.C., and Ferrand, L.A. (1995). Recent advances in pore scale
models for multiphase flow in prous media. Reviews of Geophysics 33, 1049–1058.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 0

8:
41

 3
0 

D
ec

em
be

r 
20

15
 



1970 V. Joekar-Niasar and S. M. Hassanizadeh

Chaouche, M., Rakotomalala, N., Salin, D., Xu, B., and Yortsos, Y.C. (1994). Capil-
lary effects in drainage in heterogeneous porous media: continuum modeling,
experiments and pore network simulations. Chemical Engineering Science 49,
2447–2466.

Chen, J.D., and Wilkinson, D. (1985). Pore-scale viscous fingering in porous media.
Physical Review Letters 55, 1892–1896.

Constantinides, G.N., and Payatakes, A.C. (1991). A theoretical model of collision
and coalescence of ganglia in porous media. Journal of Colloid and Interface
Science 141, 486–504.

Constantinides, G.N., and Payatakes, A.C. (1996). Network simulation of steady-state
two-phase flow in consolidated porous media. AIChE Journal 42, 369–382.

Constantinides, G.N., and Payatakes, A.C. (2000). Effects of precursor wetting films
in immiscible displacement through porous media. Transport in Porous Media
38, 291–317.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009). Introduction to
algorithms (3rd ed.). Cambridge, MA: MIT Press.

Dahle, H.K., and Celia, M.A. (1999). A dynamic network model for two-phase im-
miscible flow. Computational Geosciences 3, 1–22.

Dahle, H.K., Celia, M.A., and Hassanizadeh, S.M. (2005). Bundle-of-tubes model
for calculating dynamic effects in the capillary-pressure-saturation relationship.
Transport in Porous Media 58, 5–22.

Das, D., Gauldie R., and Mirzaei, M. (2007). Dynamic effects for two-phase flow in
porous media: Fluid property effects. AIChE Journal 53, 2505–2520.

Das, D.B., Mirzaei M., and Widdows, N. (2006). Non-uniqueness in capillary
pressure–saturation–relative permeability relationships for two-phase flow in
porous media: Interplay between intensity and distribution of random micro-
heterogeneities. Chemical Engineering Science 61, 6786–6803.

Dias, M.M., and Payatakes, A.C. (1986a). Network models for two-phase flow in
porous media part 1. immiscible microdisplacement of non-wetting fluids. Jour-
nal of Fluid Mechanics 164, 305–336.

Dias, M.M., and Payatakes, A.C. (1986b). Network models for two-phase flow in
porous media part 2. motion of oil ganglia. Journal of Fluid Mechanics 164,
337–358.

DiCarlo, D.A. (2006). Quantitative network model predictions of saturation behind
infiltration fronts and comparison with experiments. Water Resource Research
42, W07408.

Du, C., and Yortsos, Y. (1999). A numerical study of the critical gas saturation in a
porous medium. Transport in Porous Media 35, 205–225.

Dullien, F.A.L. (1992). Porous media: Fluid transport and pore structure. (2nd Rev.
ed.), San Diego, CA: Academic Press.

Entov, V.M. (1980). Theory of nonequilibrium effects associated with the flow of
nonuniform fluids in porous media. Fluid Dynamics 15, 365–369.

Fatt, I. (1956). The network model of porous media, i. capillary pressure character-
istics. Petroleum Trans. AIME 207, 144–159.

Fenwick, D.H., and Blunt, M.J. (1998). Network modeling of three-phase flow in
porous media. SPE Journal 3, 86–97.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 0

8:
41

 3
0 

D
ec

em
be

r 
20

15
 



Fundamentals of Two-Phase Flow in Porous Media 1971

Ferer, M., Bromhal, G.S., and Smith, D.H. (2005). Two-phase flow in porous media:
Crossover from capillary fingering to compact invasion for drainage. Physical
Review E 71, 026303.

Ferer, M., Ji, C., Bromhal, G.S., Cook, J., Ahmadi G., and Smith, D.H. (2004).
Crossover from capillary fingering to viscous fingering for immiscible unstable
flow:experiment and modeling. Physical Review E 70, 016303.

Ferer, M., Sams, W.N., Geisbrecht, R.A., and Smith, D.H. (1993). Crossover
from fractal to compact flow from simulations of two-phase flow with fi-
nite viscosity ratio in two-dimensional porous media. Physical Review E 47,
2713–2723.

Ferer, M., and Smith, D.H. (1994). Dynamics of growing interfaces from the simula-
tion of unstable flow in random media. Physical Review E 49, 4114–4120.

Fernández, J.F., Rangel R., and Rivero, J. (1991). Crossover length from invasion
percolation to diffusion-limited aggregation in porous media. Physical Review
Letters 67, 2958–2961.

Figus, C., Le Bray, Y., Bories S., and Prat, M. (1999). Heat and mass transfer with
phase change in a porous structure partially heated continuum model and pore
network simulations. International Journal of Heat and Mass Transfer 42, 2557–
2569.
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