
1

Abstract—The need for intelligent unmanned vehicles has been 
steadily increasing.  These vehicles could be air-, ground-, space-, 
or sea-based. This paper will review some of the most common 
software systems and methods that could be used for controlling 
such vehicles.  Early attempts at mobile robots were confined to 
simple laboratory environments. For vehicles to operate in real-
world noisy and uncertain environments, they need to include 
numerous sensors and they need to include both reactive and 
deliberative features. The most effective software systems have 
been hierarchical or multi-layered. Many of these systems mimic 
biological systems. This paper reviews several software 
approaches for autonomous vehicles. While there are similarities, 
there are differences as well. Most of these software systems are 
very difficult to use, and few of them have the ability to learn. 
Autonomous vehicles promise remarkable capabilities for both 
civilian and military applications, but much work remains to 
develop intelligent systems software which can be used for a wide 
range of applications. In particular there is a need for reliable 
open-source software that can be used on inexpensive 
autonomous vehicles.  

Index Terms—Mobile robots, autonomous vehicles, intelligent 
agents, software, and artificial intelligence.  

INTRODUCTION

Mobile robots, or autonomous vehicles, are becoming 
widely used in the military and civilian sectors.  These include 
unmanned air vehicles (UAV), unmanned ground vehicles 
(UGV), unmanned spacecraft, and unmanned underwater 
vehicles (UUV). Most of the existing systems are only semi-
autonomous, and rely on regular human intervention. To go 
beyond this capability will require sophisticated, yet flexible, 
software systems. While there are many existing software 
packages that could be used for mobile robots, they all have 
their advantages and disadvantages. This paper attempts to 
describe some of the more common software packages. It is 
not possible to describe all such packages, so we have chosen 
some of the most common systems for review here. 

Intelligent systems for mobile robots are still in their 
infancy. There is no perfect system yet. The ultimate system 
may well be a hybrid system, which uses combinations of the 
systems described below (or those not mentioned here). 
Future systems will most likely rely on combinations of 
computational intelligence methods, such as traditional 

control, fuzzy logic, neural networks, genetic algorithms, rule-
based methods, or symbolic artificial intelligence.   

In building intelligent systems software for mobile robots or 
unmanned vehicles, it will be valuable to consider biological 
systems, especially humans. An intelligent system will need to 
incorporate capabilities such as sensing, reasoning, action, 
learning, and collaboration.  

It is useful to consider the human brain as the ultimate 
intelligent controller.  It is an astounding device and is still not 
well understood. It has an estimated 1011 neurons (1014 bytes 
of memory) and can process at roughly 1016 operations/second 
[1]. Large parallel supercomputers are approaching the speed 
and power of the human brain [1]. But just as fascinating are 
the human sensor systems (touch, hearing, sight, smell, and 
taste). Replicating this vast array of sensors will be just as 
daunting as replicating the human brain. An intelligent system 
for mobile robots will need to efficiently handle the wide 
variety of possible sensor systems also, and perform data 
fusion. It will also need to emulate (to some extent) the motor 
control functions of humans (actions), which means the 
software will need a mechanism for the output of information 
to motors and servos.  

There are several good references on control approaches for 
robotics [2-5]. The most promising approaches use layered or 
hierarchical control strategies, for example: subsumption [2], 
behavior-based [3], reference model [4], or three-layer [5]. 
Traditional artificial intelligence (AI) approaches [6] have 
been of limited value in developing autonomous robots, 
however fuzzy logic, neural networks, genetic algorithms, and 
symbolic processing may be useful as components within the 
autonomous systems software. In addition, cognitive 
architectures may also be very useful [7]. 

The systems described below all vary in their ability to 
incorporate sensing, reasoning, action, learning, and 
collaboration. Machine learning [8] is probably the most 
difficult part of the problem. Few of the systems below 
(except for the cognitive architectures and the neural 
networks) have the ability to learn. 

Collaboration is also a crucial feature of these systems. 
They will be most interesting and useful when there are many 
of them networked together. Getting one system to 
intelligently operate in the real world is extremely 
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challenging, getting several of them to work together is even 
more difficult. 

Designing and building efficient, reliable mobile robots (or 
autonomous vehicles) will be extremely difficult and will 
require many more years of research and development. But 
even if we can accomplish this, there will be much more to do. 
Questions about when the systems might be “self aware” or 
conscious [9, 10] will remain for a very long time. 

Another issue that will need to be addressed before 
autonomous vehicles are commonplace is software reliability 
and safety. Most of the software described herein is research 
software, and is not suitable for mission- or safety-critical 
systems. To build reliable software systems, one must follow 
good software engineering practices [11]. Unfortunately, too 
few scientists and engineers are being trained in software 
engineering [12]. 

I. UNMANNED VEHICLES

Unmanned vehicles are being used on the ground, in the air, in 
space, and in water (surface or underwater). Each of these 
offers special challenges and difficulties. 
 Ground vehicles are probably the least challenging, since 
they are usually in equilibrium. If there is a failure, the vehicle 
is not usually damaged. Of course, driving through complex 
terrain or at high speeds is still very difficult, as the DARPA 
Grand Challenge has demonstrated [13]. Ground vehicles also 
include interplanetary rovers, such as those developed at 
NASA’s Jet Propulsion Laboratory [14]. These offer 
additional difficulties due to the long delays in communicating 
with them, and the inability to correct many hardware or 
software failures because they cannot be recalled.  They also 
have to survive in the extreme conditions of space. 
 Water-based vehicles could be surface or underwater 
(UUV) types. Modern torpedoes are essentially intelligent 
autonomous vehicles. UUVs have communication challenges, 
and often must surface to communicate with other systems. 
 Autonomous aircraft are extremely challenging, because 
they usually need autopilots onboard just to maintain straight 
and level flight. The intelligent systems software must then 
interact with the autopilot. These vehicles can be fixed wing 
or rotary wing (e.g. helicopters, ducted fans …) [15]. Fixed 
wing aircraft will typically have higher forward speeds, larger 
range, and greater payload capabilities. Rotary wing vehicles 
will offer the capability to hover, and take off and land in 
smaller areas.  

II. SOFTWARE SYSTEMS

In this section we will give brief descriptions of some existing 
software systems for autonomous vehicles. There are many 
other software systems, including proprietary systems which 
have been developed in industry and government laboratories. 

A. Java Expert System Shell (JESS) 

The Java Expert System Shell (Jess) is a rule-based engine 
written in Java language by Ernest Friedman-Hill at Sandia 
National Laboratories (Livermore, CA). Jess is available for 
download (http://www.jessrules.com). It is free for academic 

use but it requires a license for commercial use. Jess uses a 
forward-chaining Rete algorithm to process rules. In the most 
recent version of Jess, it also supports backward chaining. The 
Jess rules can be specified in two formats: the Jess rule 
language or XML. The Jess rule language is similar to LISP 
and it is recommended over XML. During operation, Jess 
rules make changes to the working memory which is a 
collection of knowledge. Jess can be run as a standalone 
program by using an interactive command-line interface. In 
addition, it can be imported as a Jess library in Java programs. 
Jess can be developed in any text editor but there is also a 
development environment available, JessDE, which is based 
on the Eclipse platform [16]. An interface to hardware can be 
programmed within Java programs. 

Jess has been implemented in a hardware system under the 
concept of a network-based service robot called URC 
(Ubiquitous Robotic Companion) supported by the Korean 
government. The mobile robot can sense the external sensors 
in the network and can also access the remote computer using 
the CAMUS (Context-Aware Middleware for URC System). 
Jess is applied as an inference engine in the task manager of 
CAMUS [17]. In addition to a network-based service robot, 
Jess has also been used in a humanoid intelligence architecture 
- PKD (Phillip K. Dick). The PKD android won first place in 
the 2005 AAAI Open Interaction competition. The android 
can socialize with people by detecting faces and facial 
expressions and recognizing speech. The inputs are sent to a 
control system composed of Jess and Natural Language 
Generation (NLG) Functions. The output is sent to servo 
motors and the sound/speech units [18]. 

B. Fuzzy Logic in Integrated Reasoning 

The Integrated Reasoning Group of the Institute for 
Information Technology of the National Research Council 
(NRC) of Canada has developed two fuzzy logic software 
packages: “FuzzyCLIPS” and “FuzzyJ.” Both of them are 
freely available (http://www.iit.nrc.ca/IR_public/fuzzy) for 
educational use and a commercial license can be obtained 
[19].  

FuzzyCLIPS is an extension of the CLIPS (C Language 
Integrated Production System), which is an expert system 
shell developed by NASA. It integrates a fuzzy reasoning 
engine to CLIPS facts [19]. FuzzyCLIPS is implemented in 
Isaac, a rule-based visual language for geometric reasoning 
designed for mobile robots, which is under development at 
New Mexico State University [20, 21]. The Isaac language 
has been tested by simulating a prototype inference engine to 
perform standard robotic tasks. However, the integration of 
Isaac with a robot model has not been accomplished yet [21].  

The FuzzyJ Toolkit is a Java API (Application Program 
Interface) for handling fuzzy logic systems. It can be used as a 
standalone system or it can be integrated with Jess 
(FuzzyJess). FuzzyJess provides similar capabilities but it is 
more flexible than FuzzyCLIPS [19]. The input and output 
can be handled by using Java APIs. FuzzyJ Toolkit has been 
implemented in a mobile robot that used a Java-based control 
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program for navigating corridors. The robot is a test-bed for 
development of an intelligent wheelchair. It is equipped with a 
camera and infrared sensors. The sensor inputs are processed 
by using fuzzy logic to avoid collisions [22]. 

C. Subsumption Architecture 

Brooks developed the idea of subsumption architectures 
while attempting to build intelligent robots that could be tested 
in real environments at each stage of development [23, 24].  A 
revolutionary idea of this architecture was the linking of 
perception and action without an internal representation of the 
environment in which the robot was situated.  A subsumption 
architecture consists of control layers, each of which 
represents a behavior.  The bottom layer of the architecture 
represents a simple behavior and each layer added on top of 
the bottom layer gives a robot the capability to perform 
another, more complicated behavior.  An important concept is 
that while adding a control layer increases the number of robot 
behaviors, the robot can still function in a real-world 
environment if the new control layer is removed from the 
system.  An early robot using the subsumption architecture 
had a bottom layer that allowed the robot to avoid obstacles in 
a dynamic environment [23].  As stated above, the robot could 
function with only this control layer.  The next layer added to 
the system permitted the robot to perform a wandering 
behavior.  With these two layers, the robot wanders until it 
senses it is close to an obstacle, at which point the bottom 
control layer inhibits the wandering behavior until there is no 
longer an obstacle present. 

Each control layer consists of modules that are 
implemented as augmented finite state machines [25].  The 
modules have input and output lines to permit low bandwidth 
communication with other modules.  Modules that receive 
sensor information and send commands to motors have special 
mechanisms to accomplish this communication.  All of the 
augmented finite state machines, which can be implemented in 
Lisp, run in parallel to achieve the behaviors specified by the 
control layers [23].  A robot controlled by the subsumption 
architecture has demonstrated the ability to build a map of its 
environment without using traditional data structures [26]. 
There have been many fascinating applications for robots 
using the subsumption architecture, including control of six-
legged walking robots [24], control of small rovers on Mars 
[27], and the development of sociable robots [28]. 

D. Autonomous Robotic Architecture (AuRA) 

The Autonomous Robotic Architecture (AuRA) [29-31] is a 
hybrid architecture that combines deliberative and reactive 
components to use the advantages of both symbolic reasoning 
and reactive control.  The hierarchical deliberative 
components include a mission planner, spatial reasoner, and a 
plan sequencer.  The reactive component is a schema 
controller that is responsible for controlling the robot 
behaviors at run-time using motor and perceptual schemas.  
The motor schemas define primitive robot behaviors such as 
avoiding static obstacles and moving ahead while the 

perceptual schemas have used computer vision to detect 
colored blobs and ultrasound to sense obstacles to avoid (and 
to recognize objects). The MissionLab simulator, which can 
be used to generate schema-based control systems, can be 
found at http://www.cc.gatech.edu/ai/robot-lab/ . 
 In AuRA, deliberation only occurs during execution if a 
problem with the plan created by AuRA’s deliberative system 
occurs.  If a problem does occur, the hierarchical planner is 
used to fix the problem, starting with the bottom level plan 
sequencer and moving up to the spatial reasoner and then to 
the mission planner only if the problem has not been resolved 
using a lower level component.  The architecture is modular, 
as the mission planner, spatial reasoner, plan sequencer, and 
schemas can all be changed without affecting the other 
components.  Several adaptation and learning methods have 
been implemented in AuRA including on-line adaptation of 
motor behaviors, case-based learning, and genetic algorithms. 
 Parts of the AuRA architecture have been used in several 
different areas, including manufacturing, multi-robot teams, 
and indoor and outdoor tasks.  The architecture was used to 
control three trash collecting robots that won the 1994 Robot 
Competition sponsored by the AAAI.  The higher levels of 
AuRA’s deliberative reasoning capabilities were not used for 
this competition.  Instead, a finite state acceptor was 
programmed as a plan for trash collecting and was interpreted 
by the plan sequencer at run-time.  The schema controller used 
information from the plan sequencer to activate the perceptual 
and motor schemas required to achieve the desired robot 
behaviors.  For example, in order to pick up a piece of trash, a 
robot’s active schemas could include a perceptual schema to 
detect a red blob (e.g., a soda can) and a motor schema to 
move to a goal position (e.g, the position of the soda can).  
These trash collecting robots were able to work together 
without communicating by using schemas that resulted in the 
robots not coming too close to each other, allowing the team 
to efficiently search for trash. 

E. ARL/PSU Intelligent Controller  

The Applied Research Laboratory at the Pennsylvania State 
University (ARL/PSU) has developed an Intelligent Controller 
(IC) architecture. This is a behavior-based architecture for the 
control of autonomous devices [32]. The Intelligent Controller 
architecture was initially based on the subsumption approach, 
but actual system needs presented additional requirements. 
This resulted in a modified approach to an intelligent control 
architecture [33, 34]. The IC architecture has also been 
extended for collaborative capabilities, resulting in a unique 
approach to coordinated control.  

The ARL/PSU IC architecture has two main components: 
Perception and Response. The role of the Perception Module 
is to create an internal representation of the external world 
relevant to the IC and recognize features of interest from 
incoming data, such as sensor inputs.  Data fusion algorithms 
are responsible for fusing new sensor data with existing sensor 
data so that a current situational awareness is maintained.  A 
fuzzy-logic based classifier is used to determine to what 
degree an object displays certain properties of interest (i.e. 
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friend, foe, obstacle, etc) [35]. The role of the Response 
Module is to create a plan of action to perform a specific 
mission using the situational awareness created by the 
Perception Module.  It accomplishes this by a three level 
hierarchy (Mission Manger, Behaviors, and Actions). The 
Mission Manager arbitrates between Behaviors requesting 
control. Behaviors are autonomous agents capable of 
generating, executing, monitoring and adapting plans to 
achieve a certain task. Actions are responsible for generating 
output commands to low level vehicle and sensor controllers, 
and other ICs (or  humans) in the mission team. 

Currently, both object-oriented C++ and Ada 
implementations of the architecture exist. The IC software is 
capable of interfacing with any sensor or actuator. Sensor data 
is typically processed before it is sent to the IC (e.g. image 
processing, bandpass filtering, discrete Fourier transforms, 
etc.).  An actuator must have a low level controller that 
receives setpoints and controls the actuator appropriately.

Key features of the ARL/PSU IC architecture include: 
• A robust ability to react to unforeseen situations (no 

scripted cases) 
• Autonomous, on-the-fly dynamic planning and re-

planning 
• Situational awareness, with the ability to make inferences 

and recognize the existence of properties from potentially 
incomplete and erroneous input data through the use of 
Continuous Inference Networks (CINets) [35] 

• A common architecture for multi-vehicle collaboration 
• Expandable to incorporate new capabilities as they are 

identified 
• Human interaction at any desired level, but not required 
The ARL/PSU IC architecture has been applied to the 

control of multiple autonomous unmanned aerial vehicles 
(UAVs) [36 - 38] and several unmanned underwater vehicles 
(UUV). The UUVs have been demonstrated and are at a fairly 
high technology readiness level. Much of this work has not 
been published, but there is some discussion of it in references 
[39 - 42]. Using the IC architecture for UAVs is a more recent 
application. These aircraft [36-38] are equipped with 
commercial autopilots (from CloudCap Technologies) that 
handle sensor signal processing and low level control. The 
UAVs running the Intelligent Controller software are capable 
of autonomously performing several missions both 
independently and collaboratively.  

F. Jet Propulsion Labs ASE 

The Applied Sciencecraft Experiment (ASE) is a software 
package designed to facilitate autonomous science. It is 
capable of dynamically planning and executing missions 
related to the capture and downlink of scientific data. The 
software is organized as a three level architecture [43 - 46]. 
The top level is known as the Continuous Activity Scheduling 
Planning Execution and Response (CASPER) system. This 
system controls long term planning. It is responsible for 
scheduling activities that will facilitate the collection and 
downlink of the greatest amount of scientific data, while 

obeying resource constraints (battery power, instrument 
constraints, processing power, available downlink bandwidth, 
etc.). It utilizes dynamic planning, which means that the 
mission plan is continuously updated as new data or goals 
(from users on the ground) are received. The middle layer in 
the architecture is known as the Spacecraft Command 
Language (SCL) layer. The role of this middle layer is to 
translate high level activities sent to it by the CASPER system 
to a detailed sequence of commands that must be executed in 
order to complete the activity. Commands from the ground in 
the form of SCL instructions can also be uploaded at this 
layer. At the lowest level is the flight software. This flight 
software provides low level control of the vehicle hardware. 

The most interesting application of this software has been 
onboard the Earth Observing One (EO-1) spacecraft [43 - 45]. 
The role of this spacecraft is to detect and record items of 
scientific significance on Earth.  It has been used to detect 
events such as volcanic eruptions, ice breakup, and flooding. 
The ASE software allows the spacecraft to detect significant 
items, and plan how to gather more data about them the next 
time the spacecraft passes over the point of interest. The 
software also makes use of limited bandwidth by only sending 
scientifically significant data to Earth, and discarding other 
data. Flying onboard a spacecraft poses some unique 
challenges for the software. The ASE software had to be 
designed to be extremely efficient because the embedded 
processors onboard a spacecraft are typically much less 
powerful than a typical PC. Also because of the cost of a 
spacecraft, reliability is of critical importance. The ASE 
software therefore provides for constraint checking and fault 
detection at each of its three levels. A number of tests have 
been performed onboard EO-1 to validate the ASE software. 
The software has completed these tests with a great deal of 
success.

G. Cognitive Architectures 

Cognitive architectures have been available for years [7]. 
These define the fixed processes that their designers believe 
are important for intelligent behavior, and have been primarily 
used to understand and simulate human cognitive processes. 
But they also have interesting potential for intelligent systems 
software, including mobile robots. Soar and ACT-R are two of 
the most widely known architectures. Both architectures 
originally focused on areas of cognition such as problem 
solving and learning and did not include mechanisms for 
perception and action, but have since been used to interact 
with external environments. In particular, SOAR is an 
extremely interesting software package that includes all the 
features important in a software system (e.g. sensing, 
reasoning, action, and learning). 

1) ACT-R
 ACT-R is implemented in Lisp and can be downloaded at 
the ACT-R website (http://act-r.psy.cmu.edu/).  ACT-R’s 
current architecture consists of goal, declarative memory, 
perception, and motor modules that are hypothesized to 
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represent processes in specific brain regions [47]. A central 
production system uses production rules and a subset of 
information from each module to select a best production to 
fire for each reasoning cycle. Sub-symbolic processes, such as 
activation of declarative memory elements, base-level 
learning, and calculating the utility of each production rule, 
also have an important role in the ACT-R architecture.  In 
addition to this sub-symbolic learning, ACT-R is also capable 
of learning new knowledge “chunks” as well as links between 
chunks and creating new productions from combinations of 
existing productions.  Input and output in ACT-R is 
performed using the visual, motor, speech, and audition 
modules in ACT-R/PM (http://chil.rice.edu/projects/RPM/ 
index.html). The perception and motor modules in ACT-R are 
based on the sensory and motor mechanisms in EPIC [48].  
 ACT-R is probably best known for its use in the 
development in many cognitive models of human performance 
and for an algebra tutoring system [47].  Recently, ACT-R 
models have also been used to control robots.  Bugajska et al. 
[49] developed a hybrid controller with reactive aspects for 
low-level calculations and cognitive aspects using ACT-R for 
high level processes such as reasoning.  This group has also 
developed a robot that interacts with a child and uses an ACT-
R model to study how children learn to play hide and seek 
[50].  Another group intends to use an ACT-R model 
controlling an anthropomorphic robot to learn how to 
collaborate with a human tutor to put together a jigsaw puzzle 
[51]. 

2) SOAR
 The Soar architecture [7, 52], which was originally written 
in Lisp and has since been rewritten using C, can be 
downloaded at the Soar webpage (http://sitemaker.umich.edu/
soar/home).  In a Soar model, domain knowledge is encoded 
as production rules and information about the current state is 
stored in working memory in attribute-value form. If a Soar 
agent does not have enough knowledge to select the best 
operator for each reasoning cycle, an impasse occurs in which 
Soar automatically creates a subgoal to determine the best 
operator. The learning mechanism in Soar (chunking) stores 
the results of the problem solving that is used to achieve the 
subgoal as a new production. Although the Soar architecture 
originally focused on internal problem solving and execution, 
it’s planning, execution, and learning processes have also 
been used to interact with dynamic real world environments.  
Laird and Rosenbloom [53] discussed the characteristics of 
Soar that make it suitable for use in these environments and 
described two robotic systems (a robotic arm and a mobile 
robot that used sonar) that Soar was used to control.  Two of 
these characteristics that make Soar well suited to work in 
such environments are the creation of impasses and automatic 
subgoals that support the hierarchical execution of complex 
goals (abstract operators) and a mix between deliberate 
selection of an operator (when sufficient knowledge is 
available to choose one) and on demand planning that can 
occur when a lack of knowledge results in an impasse.  In 
addition, the Soar Markup Language (SML) has recently been 
developed to allow simple interfaces between the input and 
output links in Soar’s working memory and sensors and 
motors. 

 Past research projects have used Soar agents to control 
unmanned vehicles in simulation environments.   TacAir-Soar 
[54] demonstrated the ability of Soar agents to operate in a 
complex real-time simulation environment.  TacAir-Soar 
agents used 5200 production rules, 450 total operators, and 
130 abstract operators to fly U.S. military fixed-wing aircraft 
in a dynamic nondeterministic simulation environment that 
was accessible only through simulated sensors.  Included in 
the flights performed by these agents were collaborative 
missions that required interaction between agents through 
simulated radio systems. 

H. NIST RCS 

 Reference model architectures, such as the NIST RCS 
(Real-time Control System), have been successfully used in 
intelligent systems [55 - 57]. RCS is available for download at 
ftp://ftp.isd.mel.nist.gov/pub/rcslib. The RCS library 
(http://www.isd.mel.nist.gov/projects/rcslib/index.html)
contains an archive of Java, C++, and Ada code and includes 
development tools, such as a Java based graphical design tool 
for automatic code generation. RCS has been tested on many 
platforms, including the Windows and Linux operating 
systems using Borland C++, Microsoft C++, and GNU g++ 
compilers [58]. 
 RCS focuses on intelligently controlling real machines in 
real world environments. This architecture is organized into a 
hierarchy of nodes determined by the decomposition of a 
system’s mission into increasingly simple tasks. Each node 
has a combination of cognitive and reactive mechanisms, has 
a knowledge base, and is capable of sensory processing, world 
modeling, value judgment, and behavior generation. The 
nodes at the lowest level of the hierarchy interact with sensors 
using their sensory processing modules and with actuators 
using their behavior generation modules. RCS has been 
integrated with a 4-D machine vision approach [59] and the 
architecture’s knowledge base now includes visual images and 
maps in addition to symbolic data structures.  RCS has been 
used in many areas, including manufacturing and unmanned 
vehicle applications.  Recent work using RCS has focused on 
autonomous driving ground vehicles in real world 
environments and autonomous tactical behaviors for teams of 
unmanned military vehicles.  Additionally, implementation of 
learning algorithms into 4D/RCS modules for the LAGR 
(Learning applied to ground robots) program has been a recent 
area of interest [60]. 

I. Other

While we have tried to discuss some of the most well-known 
approaches to software and algorithms useful for autonomous 
vehicles, there are many other approaches that we did not 
have space to discuss. In particular, there is the evolutionary 
robotics approach [61] which uses a combination of neural 
networks and genetic algorithms.  Draper Labs also has an 
agent architecture called ADEPT [62], which represents years 
of research in autonomous systems. There is also ICARUS 
[63] and COGNET [64]. Another interesting technology is the 
PROLOG computer language [65].    
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III. SUMMARY

Short descriptions of several intelligent software systems have 
been presented here. Figure 1 summarizes the key features and 
approaches included in these systems. The IEEE typically 
assumes that “computational intelligence” encompasses neural 
networks, genetic algorithms and fuzzy logic; but this 
definition is too restrictive. While many of these systems use 
fuzzy logic, none of them use neural networks or genetic 
algorithms. And rule-based or symbolic AI is often used.  
Many of the systems are reactive/deliberative; which seems 
essential for complex robots operating in uncertain 
environments. While early systems used Lisp most modern 
packages use either C/C++ or Java. Unfortunately, most of the 
packages have little or no ability to learn. 

IV. CONCLUSION

This has been a brief review of several software systems 
that might be used to control autonomous mobile robots. It is 
important to compare these systems and their algorithms, in 
order to develop better autonomous vehicles. At the present 
time it is extremely difficult to compare these systems since 
they have not been applied to the same problem or vehicle, 
and most of them are very difficult to use as well. It would be 

very valuable to have some well defined test cases which 
could use these methods and compare results. There is also a 
need for more open-source software that is reliable and easier 
to use. 
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Figure 1. Summary of features and methods used in software systems. 
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