
1

Abstract—The need for intelligent unmanned vehicles has been
steadily increasing. These vehicles could be air-, ground-, space-,
or sea-based. This paper will review some of the most common
software systems and methods that could be used for controlling
such vehicles. Early attempts at mobile robots were confined to
simple laboratory environments. For vehicles to operate in real-
world noisy and uncertain environments, they need to include
numerous sensors and they need to include both reactive and
deliberative features. The most effective software systems have
been hierarchical or multi-layered. Many of these systems mimic
biological systems. This paper reviews several software
approaches for autonomous vehicles. While there are similarities,
there are differences as well. Most of these software systems are
very difficult to use, and few of them have the ability to learn.
Autonomous vehicles promise remarkable capabilities for both
civilian and military applications, but much work remains to
develop intelligent systems software which can be used for a wide
range of applications. In particular there is a need for reliable
open-source software that can be used on inexpensive
autonomous vehicles.

Index Terms—Mobile robots, autonomous vehicles, intelligent
agents, software, and artificial intelligence.

INTRODUCTION

Mobile robots, or autonomous vehicles, are becoming
widely used in the military and civilian sectors. These include
unmanned air vehicles (UAV), unmanned ground vehicles
(UGV), unmanned spacecraft, and unmanned underwater
vehicles (UUV). Most of the existing systems are only semi-
autonomous, and rely on regular human intervention. To go
beyond this capability will require sophisticated, yet flexible,
software systems. While there are many existing software
packages that could be used for mobile robots, they all have
their advantages and disadvantages. This paper attempts to
describe some of the more common software packages. It is
not possible to describe all such packages, so we have chosen
some of the most common systems for review here.

Intelligent systems for mobile robots are still in their
infancy. There is no perfect system yet. The ultimate system
may well be a hybrid system, which uses combinations of the
systems described below (or those not mentioned here).
Future systems will most likely rely on combinations of
computational intelligence methods, such as traditional

control, fuzzy logic, neural networks, genetic algorithms, rule-
based methods, or symbolic artificial intelligence.

In building intelligent systems software for mobile robots or
unmanned vehicles, it will be valuable to consider biological
systems, especially humans. An intelligent system will need to
incorporate capabilities such as sensing, reasoning, action,
learning, and collaboration.

It is useful to consider the human brain as the ultimate
intelligent controller. It is an astounding device and is still not
well understood. It has an estimated 1011 neurons (1014 bytes
of memory) and can process at roughly 1016 operations/second
[1]. Large parallel supercomputers are approaching the speed
and power of the human brain [1]. But just as fascinating are
the human sensor systems (touch, hearing, sight, smell, and
taste). Replicating this vast array of sensors will be just as
daunting as replicating the human brain. An intelligent system
for mobile robots will need to efficiently handle the wide
variety of possible sensor systems also, and perform data
fusion. It will also need to emulate (to some extent) the motor
control functions of humans (actions), which means the
software will need a mechanism for the output of information
to motors and servos.

There are several good references on control approaches for
robotics [2-5]. The most promising approaches use layered or
hierarchical control strategies, for example: subsumption [2],
behavior-based [3], reference model [4], or three-layer [5].
Traditional artificial intelligence (AI) approaches [6] have
been of limited value in developing autonomous robots,
however fuzzy logic, neural networks, genetic algorithms, and
symbolic processing may be useful as components within the
autonomous systems software. In addition, cognitive
architectures may also be very useful [7].

The systems described below all vary in their ability to
incorporate sensing, reasoning, action, learning, and
collaboration. Machine learning [8] is probably the most
difficult part of the problem. Few of the systems below
(except for the cognitive architectures and the neural
networks) have the ability to learn.

Collaboration is also a crucial feature of these systems.
They will be most interesting and useful when there are many
of them networked together. Getting one system to
intelligently operate in the real world is extremely

A Review of Intelligent Systems Software for
Autonomous Vehicles

Lyle N. Long*, Scott D. Hanford, Oranuj Janrathitikarn, Greg L. Sinsley, and Jodi A. Miller
The Pennsylvania State University

* Email: LNL@psu.edu, Telephone: (814) 865-1172

69

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

1-4244-0700-1/07/$20.00 ©2007 IEEE

2

challenging, getting several of them to work together is even
more difficult.

Designing and building efficient, reliable mobile robots (or
autonomous vehicles) will be extremely difficult and will
require many more years of research and development. But
even if we can accomplish this, there will be much more to do.
Questions about when the systems might be “self aware” or
conscious [9, 10] will remain for a very long time.

Another issue that will need to be addressed before
autonomous vehicles are commonplace is software reliability
and safety. Most of the software described herein is research
software, and is not suitable for mission- or safety-critical
systems. To build reliable software systems, one must follow
good software engineering practices [11]. Unfortunately, too
few scientists and engineers are being trained in software
engineering [12].

I. UNMANNED VEHICLES

Unmanned vehicles are being used on the ground, in the air, in
space, and in water (surface or underwater). Each of these
offers special challenges and difficulties.
 Ground vehicles are probably the least challenging, since
they are usually in equilibrium. If there is a failure, the vehicle
is not usually damaged. Of course, driving through complex
terrain or at high speeds is still very difficult, as the DARPA
Grand Challenge has demonstrated [13]. Ground vehicles also
include interplanetary rovers, such as those developed at
NASA’s Jet Propulsion Laboratory [14]. These offer
additional difficulties due to the long delays in communicating
with them, and the inability to correct many hardware or
software failures because they cannot be recalled. They also
have to survive in the extreme conditions of space.
 Water-based vehicles could be surface or underwater
(UUV) types. Modern torpedoes are essentially intelligent
autonomous vehicles. UUVs have communication challenges,
and often must surface to communicate with other systems.
 Autonomous aircraft are extremely challenging, because
they usually need autopilots onboard just to maintain straight
and level flight. The intelligent systems software must then
interact with the autopilot. These vehicles can be fixed wing
or rotary wing (e.g. helicopters, ducted fans …) [15]. Fixed
wing aircraft will typically have higher forward speeds, larger
range, and greater payload capabilities. Rotary wing vehicles
will offer the capability to hover, and take off and land in
smaller areas.

II. SOFTWARE SYSTEMS

In this section we will give brief descriptions of some existing
software systems for autonomous vehicles. There are many
other software systems, including proprietary systems which
have been developed in industry and government laboratories.

A. Java Expert System Shell (JESS)

The Java Expert System Shell (Jess) is a rule-based engine
written in Java language by Ernest Friedman-Hill at Sandia
National Laboratories (Livermore, CA). Jess is available for
download (http://www.jessrules.com). It is free for academic

use but it requires a license for commercial use. Jess uses a
forward-chaining Rete algorithm to process rules. In the most
recent version of Jess, it also supports backward chaining. The
Jess rules can be specified in two formats: the Jess rule
language or XML. The Jess rule language is similar to LISP
and it is recommended over XML. During operation, Jess
rules make changes to the working memory which is a
collection of knowledge. Jess can be run as a standalone
program by using an interactive command-line interface. In
addition, it can be imported as a Jess library in Java programs.
Jess can be developed in any text editor but there is also a
development environment available, JessDE, which is based
on the Eclipse platform [16]. An interface to hardware can be
programmed within Java programs.

Jess has been implemented in a hardware system under the
concept of a network-based service robot called URC
(Ubiquitous Robotic Companion) supported by the Korean
government. The mobile robot can sense the external sensors
in the network and can also access the remote computer using
the CAMUS (Context-Aware Middleware for URC System).
Jess is applied as an inference engine in the task manager of
CAMUS [17]. In addition to a network-based service robot,
Jess has also been used in a humanoid intelligence architecture
- PKD (Phillip K. Dick). The PKD android won first place in
the 2005 AAAI Open Interaction competition. The android
can socialize with people by detecting faces and facial
expressions and recognizing speech. The inputs are sent to a
control system composed of Jess and Natural Language
Generation (NLG) Functions. The output is sent to servo
motors and the sound/speech units [18].

B. Fuzzy Logic in Integrated Reasoning

The Integrated Reasoning Group of the Institute for
Information Technology of the National Research Council
(NRC) of Canada has developed two fuzzy logic software
packages: “FuzzyCLIPS” and “FuzzyJ.” Both of them are
freely available (http://www.iit.nrc.ca/IR_public/fuzzy) for
educational use and a commercial license can be obtained
[19].

FuzzyCLIPS is an extension of the CLIPS (C Language
Integrated Production System), which is an expert system
shell developed by NASA. It integrates a fuzzy reasoning
engine to CLIPS facts [19]. FuzzyCLIPS is implemented in
Isaac, a rule-based visual language for geometric reasoning
designed for mobile robots, which is under development at
New Mexico State University [20, 21]. The Isaac language
has been tested by simulating a prototype inference engine to
perform standard robotic tasks. However, the integration of
Isaac with a robot model has not been accomplished yet [21].

The FuzzyJ Toolkit is a Java API (Application Program
Interface) for handling fuzzy logic systems. It can be used as a
standalone system or it can be integrated with Jess
(FuzzyJess). FuzzyJess provides similar capabilities but it is
more flexible than FuzzyCLIPS [19]. The input and output
can be handled by using Java APIs. FuzzyJ Toolkit has been
implemented in a mobile robot that used a Java-based control

70

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

3

program for navigating corridors. The robot is a test-bed for
development of an intelligent wheelchair. It is equipped with a
camera and infrared sensors. The sensor inputs are processed
by using fuzzy logic to avoid collisions [22].

C. Subsumption Architecture

Brooks developed the idea of subsumption architectures
while attempting to build intelligent robots that could be tested
in real environments at each stage of development [23, 24]. A
revolutionary idea of this architecture was the linking of
perception and action without an internal representation of the
environment in which the robot was situated. A subsumption
architecture consists of control layers, each of which
represents a behavior. The bottom layer of the architecture
represents a simple behavior and each layer added on top of
the bottom layer gives a robot the capability to perform
another, more complicated behavior. An important concept is
that while adding a control layer increases the number of robot
behaviors, the robot can still function in a real-world
environment if the new control layer is removed from the
system. An early robot using the subsumption architecture
had a bottom layer that allowed the robot to avoid obstacles in
a dynamic environment [23]. As stated above, the robot could
function with only this control layer. The next layer added to
the system permitted the robot to perform a wandering
behavior. With these two layers, the robot wanders until it
senses it is close to an obstacle, at which point the bottom
control layer inhibits the wandering behavior until there is no
longer an obstacle present.

Each control layer consists of modules that are
implemented as augmented finite state machines [25]. The
modules have input and output lines to permit low bandwidth
communication with other modules. Modules that receive
sensor information and send commands to motors have special
mechanisms to accomplish this communication. All of the
augmented finite state machines, which can be implemented in
Lisp, run in parallel to achieve the behaviors specified by the
control layers [23]. A robot controlled by the subsumption
architecture has demonstrated the ability to build a map of its
environment without using traditional data structures [26].
There have been many fascinating applications for robots
using the subsumption architecture, including control of six-
legged walking robots [24], control of small rovers on Mars
[27], and the development of sociable robots [28].

D. Autonomous Robotic Architecture (AuRA)

The Autonomous Robotic Architecture (AuRA) [29-31] is a
hybrid architecture that combines deliberative and reactive
components to use the advantages of both symbolic reasoning
and reactive control. The hierarchical deliberative
components include a mission planner, spatial reasoner, and a
plan sequencer. The reactive component is a schema
controller that is responsible for controlling the robot
behaviors at run-time using motor and perceptual schemas.
The motor schemas define primitive robot behaviors such as
avoiding static obstacles and moving ahead while the

perceptual schemas have used computer vision to detect
colored blobs and ultrasound to sense obstacles to avoid (and
to recognize objects). The MissionLab simulator, which can
be used to generate schema-based control systems, can be
found at http://www.cc.gatech.edu/ai/robot-lab/ .
 In AuRA, deliberation only occurs during execution if a
problem with the plan created by AuRA’s deliberative system
occurs. If a problem does occur, the hierarchical planner is
used to fix the problem, starting with the bottom level plan
sequencer and moving up to the spatial reasoner and then to
the mission planner only if the problem has not been resolved
using a lower level component. The architecture is modular,
as the mission planner, spatial reasoner, plan sequencer, and
schemas can all be changed without affecting the other
components. Several adaptation and learning methods have
been implemented in AuRA including on-line adaptation of
motor behaviors, case-based learning, and genetic algorithms.
 Parts of the AuRA architecture have been used in several
different areas, including manufacturing, multi-robot teams,
and indoor and outdoor tasks. The architecture was used to
control three trash collecting robots that won the 1994 Robot
Competition sponsored by the AAAI. The higher levels of
AuRA’s deliberative reasoning capabilities were not used for
this competition. Instead, a finite state acceptor was
programmed as a plan for trash collecting and was interpreted
by the plan sequencer at run-time. The schema controller used
information from the plan sequencer to activate the perceptual
and motor schemas required to achieve the desired robot
behaviors. For example, in order to pick up a piece of trash, a
robot’s active schemas could include a perceptual schema to
detect a red blob (e.g., a soda can) and a motor schema to
move to a goal position (e.g, the position of the soda can).
These trash collecting robots were able to work together
without communicating by using schemas that resulted in the
robots not coming too close to each other, allowing the team
to efficiently search for trash.

E. ARL/PSU Intelligent Controller

The Applied Research Laboratory at the Pennsylvania State
University (ARL/PSU) has developed an Intelligent Controller
(IC) architecture. This is a behavior-based architecture for the
control of autonomous devices [32]. The Intelligent Controller
architecture was initially based on the subsumption approach,
but actual system needs presented additional requirements.
This resulted in a modified approach to an intelligent control
architecture [33, 34]. The IC architecture has also been
extended for collaborative capabilities, resulting in a unique
approach to coordinated control.

The ARL/PSU IC architecture has two main components:
Perception and Response. The role of the Perception Module
is to create an internal representation of the external world
relevant to the IC and recognize features of interest from
incoming data, such as sensor inputs. Data fusion algorithms
are responsible for fusing new sensor data with existing sensor
data so that a current situational awareness is maintained. A
fuzzy-logic based classifier is used to determine to what
degree an object displays certain properties of interest (i.e.

71

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

4

friend, foe, obstacle, etc) [35]. The role of the Response
Module is to create a plan of action to perform a specific
mission using the situational awareness created by the
Perception Module. It accomplishes this by a three level
hierarchy (Mission Manger, Behaviors, and Actions). The
Mission Manager arbitrates between Behaviors requesting
control. Behaviors are autonomous agents capable of
generating, executing, monitoring and adapting plans to
achieve a certain task. Actions are responsible for generating
output commands to low level vehicle and sensor controllers,
and other ICs (or humans) in the mission team.

Currently, both object-oriented C++ and Ada
implementations of the architecture exist. The IC software is
capable of interfacing with any sensor or actuator. Sensor data
is typically processed before it is sent to the IC (e.g. image
processing, bandpass filtering, discrete Fourier transforms,
etc.). An actuator must have a low level controller that
receives setpoints and controls the actuator appropriately.

Key features of the ARL/PSU IC architecture include:
• A robust ability to react to unforeseen situations (no

scripted cases)
• Autonomous, on-the-fly dynamic planning and re-

planning
• Situational awareness, with the ability to make inferences

and recognize the existence of properties from potentially
incomplete and erroneous input data through the use of
Continuous Inference Networks (CINets) [35]

• A common architecture for multi-vehicle collaboration
• Expandable to incorporate new capabilities as they are

identified
• Human interaction at any desired level, but not required
The ARL/PSU IC architecture has been applied to the

control of multiple autonomous unmanned aerial vehicles
(UAVs) [36 - 38] and several unmanned underwater vehicles
(UUV). The UUVs have been demonstrated and are at a fairly
high technology readiness level. Much of this work has not
been published, but there is some discussion of it in references
[39 - 42]. Using the IC architecture for UAVs is a more recent
application. These aircraft [36-38] are equipped with
commercial autopilots (from CloudCap Technologies) that
handle sensor signal processing and low level control. The
UAVs running the Intelligent Controller software are capable
of autonomously performing several missions both
independently and collaboratively.

F. Jet Propulsion Labs ASE

The Applied Sciencecraft Experiment (ASE) is a software
package designed to facilitate autonomous science. It is
capable of dynamically planning and executing missions
related to the capture and downlink of scientific data. The
software is organized as a three level architecture [43 - 46].
The top level is known as the Continuous Activity Scheduling
Planning Execution and Response (CASPER) system. This
system controls long term planning. It is responsible for
scheduling activities that will facilitate the collection and
downlink of the greatest amount of scientific data, while

obeying resource constraints (battery power, instrument
constraints, processing power, available downlink bandwidth,
etc.). It utilizes dynamic planning, which means that the
mission plan is continuously updated as new data or goals
(from users on the ground) are received. The middle layer in
the architecture is known as the Spacecraft Command
Language (SCL) layer. The role of this middle layer is to
translate high level activities sent to it by the CASPER system
to a detailed sequence of commands that must be executed in
order to complete the activity. Commands from the ground in
the form of SCL instructions can also be uploaded at this
layer. At the lowest level is the flight software. This flight
software provides low level control of the vehicle hardware.

The most interesting application of this software has been
onboard the Earth Observing One (EO-1) spacecraft [43 - 45].
The role of this spacecraft is to detect and record items of
scientific significance on Earth. It has been used to detect
events such as volcanic eruptions, ice breakup, and flooding.
The ASE software allows the spacecraft to detect significant
items, and plan how to gather more data about them the next
time the spacecraft passes over the point of interest. The
software also makes use of limited bandwidth by only sending
scientifically significant data to Earth, and discarding other
data. Flying onboard a spacecraft poses some unique
challenges for the software. The ASE software had to be
designed to be extremely efficient because the embedded
processors onboard a spacecraft are typically much less
powerful than a typical PC. Also because of the cost of a
spacecraft, reliability is of critical importance. The ASE
software therefore provides for constraint checking and fault
detection at each of its three levels. A number of tests have
been performed onboard EO-1 to validate the ASE software.
The software has completed these tests with a great deal of
success.

G. Cognitive Architectures

Cognitive architectures have been available for years [7].
These define the fixed processes that their designers believe
are important for intelligent behavior, and have been primarily
used to understand and simulate human cognitive processes.
But they also have interesting potential for intelligent systems
software, including mobile robots. Soar and ACT-R are two of
the most widely known architectures. Both architectures
originally focused on areas of cognition such as problem
solving and learning and did not include mechanisms for
perception and action, but have since been used to interact
with external environments. In particular, SOAR is an
extremely interesting software package that includes all the
features important in a software system (e.g. sensing,
reasoning, action, and learning).

1) ACT-R
 ACT-R is implemented in Lisp and can be downloaded at
the ACT-R website (http://act-r.psy.cmu.edu/). ACT-R’s
current architecture consists of goal, declarative memory,
perception, and motor modules that are hypothesized to

72

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

5

represent processes in specific brain regions [47]. A central
production system uses production rules and a subset of
information from each module to select a best production to
fire for each reasoning cycle. Sub-symbolic processes, such as
activation of declarative memory elements, base-level
learning, and calculating the utility of each production rule,
also have an important role in the ACT-R architecture. In
addition to this sub-symbolic learning, ACT-R is also capable
of learning new knowledge “chunks” as well as links between
chunks and creating new productions from combinations of
existing productions. Input and output in ACT-R is
performed using the visual, motor, speech, and audition
modules in ACT-R/PM (http://chil.rice.edu/projects/RPM/
index.html). The perception and motor modules in ACT-R are
based on the sensory and motor mechanisms in EPIC [48].
 ACT-R is probably best known for its use in the
development in many cognitive models of human performance
and for an algebra tutoring system [47]. Recently, ACT-R
models have also been used to control robots. Bugajska et al.
[49] developed a hybrid controller with reactive aspects for
low-level calculations and cognitive aspects using ACT-R for
high level processes such as reasoning. This group has also
developed a robot that interacts with a child and uses an ACT-
R model to study how children learn to play hide and seek
[50]. Another group intends to use an ACT-R model
controlling an anthropomorphic robot to learn how to
collaborate with a human tutor to put together a jigsaw puzzle
[51].

2) SOAR
 The Soar architecture [7, 52], which was originally written
in Lisp and has since been rewritten using C, can be
downloaded at the Soar webpage (http://sitemaker.umich.edu/
soar/home). In a Soar model, domain knowledge is encoded
as production rules and information about the current state is
stored in working memory in attribute-value form. If a Soar
agent does not have enough knowledge to select the best
operator for each reasoning cycle, an impasse occurs in which
Soar automatically creates a subgoal to determine the best
operator. The learning mechanism in Soar (chunking) stores
the results of the problem solving that is used to achieve the
subgoal as a new production. Although the Soar architecture
originally focused on internal problem solving and execution,
it’s planning, execution, and learning processes have also
been used to interact with dynamic real world environments.
Laird and Rosenbloom [53] discussed the characteristics of
Soar that make it suitable for use in these environments and
described two robotic systems (a robotic arm and a mobile
robot that used sonar) that Soar was used to control. Two of
these characteristics that make Soar well suited to work in
such environments are the creation of impasses and automatic
subgoals that support the hierarchical execution of complex
goals (abstract operators) and a mix between deliberate
selection of an operator (when sufficient knowledge is
available to choose one) and on demand planning that can
occur when a lack of knowledge results in an impasse. In
addition, the Soar Markup Language (SML) has recently been
developed to allow simple interfaces between the input and
output links in Soar’s working memory and sensors and
motors.

 Past research projects have used Soar agents to control
unmanned vehicles in simulation environments. TacAir-Soar
[54] demonstrated the ability of Soar agents to operate in a
complex real-time simulation environment. TacAir-Soar
agents used 5200 production rules, 450 total operators, and
130 abstract operators to fly U.S. military fixed-wing aircraft
in a dynamic nondeterministic simulation environment that
was accessible only through simulated sensors. Included in
the flights performed by these agents were collaborative
missions that required interaction between agents through
simulated radio systems.

H. NIST RCS

 Reference model architectures, such as the NIST RCS
(Real-time Control System), have been successfully used in
intelligent systems [55 - 57]. RCS is available for download at
ftp://ftp.isd.mel.nist.gov/pub/rcslib. The RCS library
(http://www.isd.mel.nist.gov/projects/rcslib/index.html)
contains an archive of Java, C++, and Ada code and includes
development tools, such as a Java based graphical design tool
for automatic code generation. RCS has been tested on many
platforms, including the Windows and Linux operating
systems using Borland C++, Microsoft C++, and GNU g++
compilers [58].
 RCS focuses on intelligently controlling real machines in
real world environments. This architecture is organized into a
hierarchy of nodes determined by the decomposition of a
system’s mission into increasingly simple tasks. Each node
has a combination of cognitive and reactive mechanisms, has
a knowledge base, and is capable of sensory processing, world
modeling, value judgment, and behavior generation. The
nodes at the lowest level of the hierarchy interact with sensors
using their sensory processing modules and with actuators
using their behavior generation modules. RCS has been
integrated with a 4-D machine vision approach [59] and the
architecture’s knowledge base now includes visual images and
maps in addition to symbolic data structures. RCS has been
used in many areas, including manufacturing and unmanned
vehicle applications. Recent work using RCS has focused on
autonomous driving ground vehicles in real world
environments and autonomous tactical behaviors for teams of
unmanned military vehicles. Additionally, implementation of
learning algorithms into 4D/RCS modules for the LAGR
(Learning applied to ground robots) program has been a recent
area of interest [60].

I. Other

While we have tried to discuss some of the most well-known
approaches to software and algorithms useful for autonomous
vehicles, there are many other approaches that we did not
have space to discuss. In particular, there is the evolutionary
robotics approach [61] which uses a combination of neural
networks and genetic algorithms. Draper Labs also has an
agent architecture called ADEPT [62], which represents years
of research in autonomous systems. There is also ICARUS
[63] and COGNET [64]. Another interesting technology is the
PROLOG computer language [65].

73

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

6

III. SUMMARY

Short descriptions of several intelligent software systems have
been presented here. Figure 1 summarizes the key features and
approaches included in these systems. The IEEE typically
assumes that “computational intelligence” encompasses neural
networks, genetic algorithms and fuzzy logic; but this
definition is too restrictive. While many of these systems use
fuzzy logic, none of them use neural networks or genetic
algorithms. And rule-based or symbolic AI is often used.
Many of the systems are reactive/deliberative; which seems
essential for complex robots operating in uncertain
environments. While early systems used Lisp most modern
packages use either C/C++ or Java. Unfortunately, most of the
packages have little or no ability to learn.

IV. CONCLUSION

This has been a brief review of several software systems
that might be used to control autonomous mobile robots. It is
important to compare these systems and their algorithms, in
order to develop better autonomous vehicles. At the present
time it is extremely difficult to compare these systems since
they have not been applied to the same problem or vehicle,
and most of them are very difficult to use as well. It would be

very valuable to have some well defined test cases which
could use these methods and compare results. There is also a
need for more open-source software that is reliable and easier
to use.

REFERENCES

[1] Long, L. N. and Gupta, A., "Scalable Massively Parallel
Artificial Neural Networks," AIAA Paper No. 2005-7168,
AIAA InfoTech@Aerospace Conference, Wash., D.C.,
Sept., 2005.

[2] Brooks, R. A., Cambrian Intelligence: The Early History
of the New AI, MIT Press, Cambridge, 1999.

[3] Arkin, R.C., Behavior-Based Robotics, MIT Press,
Cambridge, 1998.

[4] Meystel, A.M. and Albus, J., Intelligent Systems:
Architecture, Design, Control, Wiley, New York 2001.

[5] Bekey, G.A., Autonomous Robots: From Biological
Inspiration to Implementation and Control, MIT Press,
Cambridge 2005.

[6] Russell, S.J. and Norvig, P., Artificial Intelligence: A
Modern Approach, Prentice Hall, New Jersey, 1995.

[7] Newell, A., Unified Theories of Cognition. Harvard Univ.
Press, Cambridge, 1990.

[8] Mitchell, T.M., Machine Learning, McGraw-Hill, 1997.

1995

D

Java

JESS

1997

R&D

C++ &

Ada

PSU/ARL

IC

1997

R&D

C++

NIST

RCS

1994

D

C

Fuzzy

CLIPS

1987

D

Lisp

ACT-R

1987

D

C &

C++

SOAR

1987

R&D

Lisp

&

Other

?

?

AuRA

1986

R&D

Lisp

&

Other

Sub-

Sumption

Collab-

oration

20022001
Approx.

Year

Freely

Available

Learning

Easy Sensor

Input

R&DD

Reactive (R)

or

Deliberative

(D)

C &

Other
JavaLanguage

Symbolic AI

Fuzzy Logic

Genetic

Algorithm

Neural

Network

NASA

ASE

FuzzyJ

Toolkit

1995

D

Java

JESS

1997

R&D

C++ &

Ada

PSU/ARL

IC

1997

R&D

C++

NIST

RCS

1994

D

C

Fuzzy

CLIPS

1987

D

Lisp

ACT-R

1987

D

C &

C++

SOAR

1987

R&D

Lisp

&

Other

?

?

AuRA

1986

R&D

Lisp

&

Other

Sub-

Sumption

Collab-

oration

20022001
Approx.

Year

Freely

Available

Learning

Easy Sensor

Input

R&DD

Reactive (R)

or

Deliberative

(D)

C &

Other
JavaLanguage

Symbolic AI

Fuzzy Logic

Genetic

Algorithm

Neural

Network

NASA

ASE

FuzzyJ

Toolkit

Figure 1. Summary of features and methods used in software systems.

74

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

7

[9] Dennett, D.C., Consciousness Explained, Back Bay
Books, Boston, 1991.

[10]LeDoux, J., Synaptic Self: How our Brains Become Who
We Are, Penguin, NY, 2002.

[11]Sommerville, I., Software Engineering, 8th Ed., Addison-
Wesley, 2006.

[12]Long, L. N., "The Critical Need for Software Engineering
Education for Aerospace Systems," to appear in
CrossTalk: The Journal of Defense Software Engineering,
2007.

[13]http://www.darpa.mil/grandchallenge/
[14]http://www.jpl.nasa.gov/
[15]http://www.fas.org/irp/program/collect/uav_roadmap2005

.pdf
[16]http://www.jessrules.com
[17]Kim, H., Y. J. Cho, and S. R. Oh, “CAMUS: A

middleware supporting context-aware services for
network-based robots,” IEEE Workshop on Advanced
Robotics and its Social Impacts (ARSO2005), 2005. pp.
237-242.

[18]Hanson, D., A. Olney, I. A. Pereira, and M. Zielke,
“Upending the Uncanny Valley,” AAAI Conference
Proceeding, 2005.

[19]http://www.iit.nrc.ca/IR_public/fuzzy/
[20]Pfeiffer, J.J., Jr., “A Language for Geometric Reasoning

in Mobile Robots,” Proceedings of the 1999 IEEE
Symposium on Visual Languages, 1999. pp. 164-169.

[21]Pfeiffer, J.J., Jr., “A Prototype Inference Engine for Rule-
Based Geometric Reasoning,” Diagrammatic
Representation and Inference, Springer: Germany, 2004.
pp. 216-226.

[22]Ono, Y., H. Uchiyama, and W. Potter, “A Mobile Robot
for Corridor Navigation: A Multi-agent approach,”
Proceedings of the 42nd annual Southeast Regional
Conference, ACM Press, 2004. pp. 379-384.

[23]Brooks, R. A. "A Robust Layered Control System for a
Mobile Robot", IEEE Journal of Robotics and
Automation, Vol. 2, No. 1, March 1986, pp. 14–23.

[24]Brooks, R. A., "Intelligence Without Representation",
Artificial Intelligence Journal (47), 1991, pp. 139–159.

[25]Brooks, R. A. "A Robot that Walks; Emergent Behavior
from a Carefully Evolved Network", Neural
Computation, 1:2, Summer 1989, pp. 253–262. Also in
IEEE International Conference on Robotics and
Automation, Scottsdale, AZ, May 1989, pp. 292–296.

[26]Mataric, M. J. and R. A. Brooks, "Learning a Distributed
Map Representation Based on Navigation Behaviors",
Japan–USA Symposium on Flexible Automation, Kyoto,
Japan, July 1990, pp. 499–506.

[27]Matijevic, M., “Autonomous Navigation and the
Sojourner Microrover,” Science, 17 April 1998: Vol. 280.
no. 5362, pp. 454 – 455.

[28]Breazeal, C., Designing Sociable Robots, The MIT Press,
2002.

[29]Arkin R.C. and Balch T., “AuRA: Principles and Practice
in Review,” Journal of Experimental & Theoretical
Artificial Intelligence, Vol. 9, No. 2-3, Apr. 1997, pp. 175
– 189.

[30]Mackenzie, D., Arkin, R.C., and Cameron, J., "Multiagent
MissionSpecification and Execution," Autonomous
Robots, Vol. 4, No. 1, 1997, pp. 29-57.

[31]Likhachev, M., Kaess, M., Kira, Z. and Arkin, R.C.,
“Spatio-Temporal Case-Based Reasoning for Efficient
Reactive Robot Navigation” Mobile Robot Laboratory,
College of Computing, Georgia Institute of Technology,
2005.

[32]Stover, J.A. and Kumar, Ratnesh, "A Behavior-based
Architecture for the Design of Intelligent Controllers for
Autonomous Systems," IEEE International Symposium
on Intelligent Control/Intelligent Systems and Semiotics,
Cambridge, MA, pp. 308-313. Sept. 15-17, 1999.

[33]Stover, J.A. and Gibson, R.E., "Modeling Confusion for
Autonomous Systems," SPIE, Science Artificial Neural
Networks, 1710, pp. 547-555, 1992.

[34]Stover, J.A. and Gibson, R.E. "Controller for
Autonomous Device", US Patent #5,642,467, June 1997.

[35]Stover, J.A., Hall, D.L., and Gibson, R.E., “A Fuzzy-
Logic Architecture for Autonomous Multisensor Data
Fusion," IEEE Transactions on Industrial Electronics, 43,
pp. 403-410, 1996.

[36]Weiss, L., "Intelligent Collaborative Control for UAVs,"
AIAA Paper No. 2005-6900, AIAA
InfoTech@Aerospace Conference, Washington D.C.,
Sept. 26-29, 2005.

[37]Miller, J., A. F. Niessner. Jr., A. M. DeLullo, P. D.
Minear, and L. N. Long, “Intelligent Unmanned Air
Vehicle Flight Systems,” AIAA Paper No. 2005-7081,
presented at the AIAA InfoTech@Aerospace Conference,
Washington D.C., Sept. 26-29, 2005.

[38]Sinsley, G.L. Miller, J.A., Long, L.N. Brian R. Geiger,
Albert F. Niessner, Jr., and Joseph F. Horn "An
Intelligent Controller for Collaborative Unmanned Air
Vehicles," to be presented at the IEEE Symposium Series
in Computational Intelligence, Honolulu, Hawaii, April 1-
5, 2007.

[39]R. Kumar and J.A. Stover, "A Behavior-Based Intelligent
Control Architecture with Application to Coordination of
Multiple Underwater Vehicles," IEEE Transactions on
Systems, Man, and Cybernetics, 30, pp. 767-784, 2000.

[40]“An Assessment of Undersea Weapons Science and
Technology,” National Academy Press, 2000.

[41]“Autonomous Vehicles in Support of Naval Operations,”
National Academy Press, 2005.

[42]Brown, N. M., "The World of Machine Intelligence,"
Research/Penn State, Vol. 17, no. 2, June, 1996.
 (http://www.rps.psu.edu/jun96/machine.html)

[43]Chien, S., Sherwood, R., Rabideau, G., Castano, R.,
Davies, A., Burl, M., Knight, R., Stough, T., Roden, J.,
Zetocha, P., Wainwright, R., Klupar, P., Van Gaasbech,
J., Cappelaere, P., and Oswald, D., “The Techsat-21
Autonomous Space Science Agent,” Proceedings of the
Autonomous Agents and Multi-Agent Systems
Conference, July 2002.

[44]Chien, S., Sherwood, R., Tran, D., Castano, R., Cichy, B.,
Davies, A., Rabideau, G., Tang, N., Burl, M., Mandl, D.,
Frye, S., Hengemihle, J., Agostino, J., Bote, R., Trout, B.,
Shulman, S., Ungar, S., Van Gaasbeck, J., Boyer, D.,

75

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

8

Griffin, M., Burke, H., Greeley, R., Doggett, T.,
Williams, K., Baker, V., and Dohm, J., “Autonomous
Science on the EO-1 Mission,” International Symposium
on Artificial Intelligence, Robotics, and Automation in
Space (i-SAIRAS 2003), May 2003.

[45]Chien, S., Rob Sherwood, Daniel Tran, Benjamin Cichy,
Gregg Rabideau, Rebecca Castano, Ashley Davis, Dan
Mandl, Stuart Frye, Bruce Trout, Seth Shulman, and
Darrell Boyer, “Using Autonomy Flight Software to
Improve Science Return on Earth Observing One,”
Journal of Aerospace Computing, Information, and
Computing, Vol. 2, April 2005

[46]http://ase.jpl.nasa.gov/
[47] J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C.

Lebiere, and Y. Qin, “An Integrated Theory of the Mind,”
Psychological Review 2004, 11(4), pp. 1026-1060.

[48]D.E. Kieras and D.E. Meyer, “An Overview of the EPIC
Architecture for Cognition and Performance With
Application to Human-Computer Interaction,” Human-
Computer Interaction, 1997, 12, pp. 391-438.

[49]M. D. Bugajska, A. C. Schultz, J. G. Trafton, M.Taylor,
& F. E. Mintz (2002). A hybrid cognitive-reactive multi-
agent controller. In Proceedings of 2002 IEEE/RSJ
International conference on Intelligent Robots and
Systems (IROS 2002). Switzerland.

[50] J. G. Trafton, A. C. Schultz, D. Perznowski, M. D.
Bugajska, W. Adams, N. L. Cassimatis, D. P. Brock
(2006). Children learning to play hide and seek. HRI
2006: Proceedings of the 2006 ACM Conference on
Human-Robot Interaction, v 2006, HRI 2006:
Proceedings of the 2006 ACM Conference on Human-
Robot Interaction - Toward Human Robot Collaboration,
2006, p 242-249

[51]C. Burghart, C. Gaertner, and H. Woern. 2006.
Cooperative Solving of a Children's Jigsaw Puzzle
between Human and Robot: First Results. In Cognitive
Robotics: Papers from the AAAI Workshop: Papers from
the 2006 AAAI Workshop, ed. M. Beetz, K. Rajan, M.
Thielscher, and R. B. Rusu, 33-39. Technical Report WS-
06-03. American Association for Artificial Intelligence,
Menlo Park, California.

[52] J.E. Laird, A. Newell, and P.S. Rosenbloom, “Soar: An
Architecture for General Intelligence. Artificial
Intelligence,” 1987, 33(3), pp. 1-64.

[53] J.E. Laird and P.S. Rosenbloom, “Integrating Execution,
Planning, and Learning in Soar for External
Environments,” In AAAI-90 Proceedings, pp. 1022-1029.

[54]R.M. Jones, J.E. Laird, R.E. Nielsen, K.J. Coulter, R.
Kenny, and F.V. Koss, “Automated Intelligent Pilots for
Combat Flight Simulation,” AI Magazine, Spring 1999,
pp. 27-41.

[55] J.S. Albus, “The NIST Real-time Control System (RCS):
an approach to intelligent systems research,” Journal of
Experimental and Theoretical Artificial Intelligence
9(1997), pp. 157-174.

[56] J.S. Albus and A.J. Barbera, “RCS: A cognitive
architecture for intelligent multi-agent systems,” In
Proceedings of the 5th IFAC/EURON Symposium on
Intelligent Autonomous Vehicles (2004).

[57]C. Schlenoff, J. Albus, E. Messina, A.J. Barbera, R.
Madhavan, and S. Balakirsky, “Using 4D/RCS to
Address AI Knowledge Integration,” AI Magazine,
Summer 2006, pp. 71-81.

[58]V. Gazi, M. L. Moore, K. M. Passino, W. P. Shackleford,
F. M. Proctor, J. S. Albus, The RCS Handbook, John
Wiley & Sons, Inc., N.Y., N.Y., 2001.

[59]E.D. Dickmanns, “An Expectation-Based Multi-Focal
Saccadic (EMS) Vision System for Vehicle Guidance,” In
Proceedings of the 9th International Symposium on
Robotics Research (ISRR ’99). Stanford, CA:
International Foundation of Robotics Research.

[60]R. Bostelman, T. Hong, R. Madhavan, T. Chang, H.
Scott. “Performance analysis of unmanned vehicle
positioning and obstacle mapping.” In Proceedings of
SPIE - The International Society for Optical Engineering,
Unmanned Systems Technology VIII, 2006.

[61]Nolfi, S. and Floreano, D., “Evolutionary Robotics: The
Biology, Intelligence, and Technology of Self-Organizing
Machines,” MIT Press, 2000.

[62]Ricard, M. and S. Kolitz, “The ADEPT Framework for
Intelligent Autonomy,” in VKI Lecture Series on
Intelligent Systems for Aeronautics, von Karman
Institute, Belgium, May 13-17, 2002.

[63]Shapiro, D. and Langley, P.. “Controlling physical agents
through reactive logic programming,” Proceedings of the
Third International Conference on Autonomous Agents,
386-387, ACM Press, Seattle, 1999.

[64]Zachary, W., J-C. Le Mentec, and J. Ryder, “Interface
Agents in Complex Systems,” in C. Nutuen and E. H.
Parks (Eds.), Human Interaction with Complex Systems:
Conceptual Principles and Design Practice, Norwell, MA:
Kluwer, pp. 35-52, 1996.

[65]Bratko, I., Prolog Programming for Artificial
Intelligence, Addison Wesley, Boston, 2000.

76

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Security and Defense Applications (CISDA 2007)

