New Methods for Exploiting Program Structure and Behavior in Computer
Architecture

Amir Roth and Gurindar S. Sohi
Computer Sciences Department
University of Wisconsin-Madison
1210 W Dayton St. Madison, WI 53706
{amir, sohi}@cs.wisc.edu

Abstract

Micro-architectural techniques of the next decadewill
haveto be more efiicientand scalablein order to handle
growing workloadsand longer communicatiorand mem-
ory latencies. We believe that informationaboutprogram
structue, the data and control relationships between
instructions canbeusedasa powerfulframevork for nev
techniques. We arguethat program structuie information
has several inherent advantayes over frameavorks that
associatanformation either with instructionsin isolation
or with data. We presentsummarie®f four novel meth-
odsthat apply program structuie informationto memory
system problemsfrom disambiguationand data cache
bandwdith to pefetthing and cohegnce optimization.

1 Introduction

Processoperformanceénasimproved at a dramaticratein
thepastdecadespoweredby increasinglyfastercircuitsas
well as architecturaland micro-architecturaltechniques
that allow for both a high clock frequeny andincreased
parallelism. Our continuing challengeis to sustainthis
rate into the nd decade and lpend.

Current designsstand on a foundation of accumulated
knowledgethat itself assumes certainsetof processing
demandsand technologyparametersin the future, how-
ever, dataworking setswill be muchlargerandcommuni-
cation relatvely more expensve. If tried and true
techniqueslo not scaleup to thesetremendousvorkloads,
we will needinnovative new designghatwill be moreeffi-
cient and dective.

We believe thatoneprincipleunderlyingthesenovel meth-
odswill beanincreasedelianceon programstructure and
behavior information Comparedwith techniquesthat
exploit statisticaldatapropertiedik e spatialandtemporal
locality, programbasedmethodshave inherentadvantages
thatallow themto leveragemore compactrepresentations
into moresignificantgains. In addition,thesenovel tech-

niqueswill alsobe capableof new andfundamentallydif-
ferent operations that will complement conventional
methods.

Our researchfocuseson novel applicationsof program
structureinformationin all aspectsof processing. How-

ever, in this paperwe summarizeour efforts towards
improving memory systemperformance. Currenttrends
suggestthat this will be a dominatingissuefor architec-
turesof the nearfuture. Memory lateng is continuously
increasingn relationto processingpeeds.With the addi-
tion of wider, more aggressie pipelines,the lateny cost
of asinglememoryrequests up to hundredof instruction
execution opportunities. And while growing transistor
budgetsallow morememoryto beintegratedon a chip and
reducethe probability of off-chip traffic, nev workloads
are more than capableof exceedingthese allowances.
Futurearchitecturesvill needgreaterdatacacheand off-

chip bandwidth,lower lateng cacheaccesshetterauto-
matic managemendf large structureddatasets,andfaster
inter-processor memory communication.

The restof the paperpresentssynopsef four recently
proposed program based techniquesthat attack these
important aspectsof memory systemperformance. We

shav how programstructureinformation can be usedto

prefetchclassesf datastructureswhoseaccesatterns
defy corventionaladdresgpredictionandprefetchingtech-
nigues. A secondkind of informationcanbeusedto over-

come the load issue delays introduced by address
disambiguatiorand cacheaccess. A third kind helpsto

expeditedatasharingpatterndetectionin sharedmemory
multiprocessors.

2 Rationalefor Using Program Structure

The micro-architecturamemorytechniqueof today like
cachehierarchiesand prefetchenginesachieve their per-
formanceobjectives by exploiting traditional notions of
program behavior like spatiallocality, temporallocality,
andaddresstreampredictability The future innovations

we speakof requirethat new aspectsand parameterf
program behéaor be defined, studied, angpoited.

Although seeminglyunrelatedthe problemof branchpre-

diction provides a goodillustration of the kind of funda-
mental changesin approachwe suggest. For almosta

decadepranchpredictorswere baseduponanalyzingthe

history of a particularbranchin isolation. A majorleapin

performanceoccurredwhenit was realizedthat the out-

comeof abranchwascorrelatechot only with its own out-

comehistory, but alsowith the previousoutcomeof other
branches.Theinjection of somenotion of program struc-

ture into the processwvasthe catalystfor a wave of power-

ful innovation in branch prediction. While branch
prediction has benefittedfrom the incorporationof pro-

gramstructurenotions,memoryhierarcly designhas,for

thelarge part,ignoredsuchinformation. If programstruc-
ture,in this casetherelationshipdetweerinstructionghat
accessnemory is takeninto considerationbetterdesigns
may result.

We defineprogramstructurein generalasthe controland
data dependencerelationships among instructions or
instruction groups such as basic blocks, loop bodiesor
entirefunctions. Therearetwo fundamentateasonghat
underlie the predictive and computationalpower of pro-
gram structure information:

* Causality We refer to programstructureas primary
information. Secondaryinformation refers to all
obsenableprogrambehaior, from branchoutcomego
memoryreferencesaind data. Programstructure(pri-
mary)informationproducesall obsenable(secondary)
programbehaior, from branchoutcomesto memory
references. Current methods collect, analyze, and
exploit differentkinds of secondarynformationin ad
hocways. Programstructureinformationcanbe col-
lectedin a moreunified way andthenusedto recreate
pieces of secondary information on demand.

¢ Stability At least on modern computers, program
structureis invariant. Capturedand analyzedonce, it
canbeusedrepeatedlywith confidenceregardlessof a
particular data conxe.

Causalityandstability allow programstructureto form the
informationbasisfor agreatvarietyof micro-architectural
methods. They also endav thesemethodswith several
inter-relatedpropertieghatincreaseobustnessscalability
and eficiengy:

* Early availability. Associatinginformationwith data
implies that in order to accessthe information, the
samedatamustbe available. In currentpipelines,and
dependingon the particularkind of datainvolved, this
may not occur until a forwarded value has been

receved or the instruction has generatedan address.
Late availability precludesoptimizations that must
occurearlyin thepipeline. Technically programstruc-
tureinformation,which canbe accessedisinginstruc-
tion identity, can be retrieved before the instruction
itself is fetched. Early availability enablesoptimiza-
tions early in the pipelineandincreaseshe reachand
effectiveness of other optimizations.

* CompactnessAll programsareessentiallydataparal-
lel. While the sizeof the programremainsfixed (or at
leastrelatively so), the amountof dataprocessednay
grow arbitrarily large. Consequentlyary information
associateavith the programcanbe managedn afixed
(andrelatively small) amountof space. On the other
hand, storage required to manage data-associated
information cangrow to sizesproportionalto the data
set.

* Learningamortization Associatinginformationwith
datarequiresthatthe informationbe learnedfor every
dataitem. As aresult,datamustbe accesseat least
oncebeforethe given techniquecan be appliedto it.
For datathatis accessednce(or oncebeforetheinfor-
mationis lost), this presents problem. Programstruc-
tureinformationis learnedonceperinstructionandcan
subsequentlpeappliedevento never beforeseendata.

With thesepropertiesanda priori advantagesn mind, we
revisit severalaspect®f memorysystenfunctionandper-
formancewith anemphasion the applicationof program
structureinformation. Not surprisingly we focuson the
relationshipsamongmemoryoperations.In particular we
exploit memory dependencer address dependences
which relatestatic setsof loadsandstoreswhich dynami-
cally referencethe samesetof addressesWe alsoexploit
load valuedependenceshich trackthe useof loadedval-
ues.

3 Prefetching Linked Data Structures

As datasetscontinueto growv andrelative memorylaten-
ciesincrease proactve memoryhierarcly placementvia
prefetchingbecomesincreasinglyimportant. Hardware
data prefetchingis usually driven by addressprediction
whichin turnrelieson patternsextractedfrom the address
stream. While addresspredictionis effective for some
classef structureddata(e.g.,arrays),otherscontinueto
poseproblems. Linked datastructures(LDS) are espe-
cially troublesome.Although currentlylesscommonthan
arrays,LDS may becomemore prevalent with the wide-
spread adoption of object oriented programming lan-
guagedike C++ and Java. LDS traversalinvolves long
chainsof dependenmemoryaccessesWhenthey missin
the cache,theseLDS accessesypically form a critical

chain and serialize the program. Without parallelism,
prefetchings effect at reducingoperationateny becomes
critical. However, LDS referencestreamshave little
expressedarithmetic regularity and render corventional
address predictors and prefetch engines useless.

With addresshasedschemedargely ineffective, we use
programstructureinformationto constructa prefetching
schemehat avoids explicit addressprediction. Onesuch
techniqueis dependencebased prefetdhing (DBP) [5]
which, ata high level, isolatesthe programthreadrespon-
sible for traversingthe LDS and pre-ecutesit. Inter-
nally, DBP representshe threadasa collectionof explicit
datadependenceelationships. By ignoring control flow,
this representatiomllows the threadto be replayedoff the
critical processingpath and without the overheadsand
uncertaintiesof sequencing. To prefetch,we obtain an
LDS root addressand allow the representatiorio unroll
therestof the structure. As it executesdatait touchesare
prefetchednto the cache. Dependencéasedprefetching
is fundamentally different than corventional address-
basedprefetching. Ratherthan generatingaddressedy
guessingstatistically(which is whatwe would do without
programstructureinformation), we identify the program
componentsand dependenceshat perform the desired
operationand mimic them. DBP is quite effective for
prefetching LDS with results comparableto, or better
than, the best kmen software schemes.

The internal representatiorthat drives DBP is nothing
more thanthe datadependenceelationshipsbetweenthe
instructionsin the program. Specifically sinceLDS tra-
versalis characterizedy chainsof loadsthat feed other
loads, we capturethe relationshipsbetweenstatic load
pairs. Oncethesedependenceare establishedthey can
be queriedusingproducedoadidentity to obtaintheiden-
tities anddescriptionsof all consumingLDS loads. This

representationallows the processorto speculatrely
instantiateinstructionsin a dataflav manner The whole
processcan be viewed as a form of superaggressie
schedulingthat is not restrictedto selectinginstructions
from within a sequential windo

Dependencédasedprefetchingis an example of a tech-
nique that is enabledby programstructureinformation.
Although addressbhasedcounterpartsof this technique
may be constructedtheir effectivenessat predictingLDS
addresses are bky to be lov.

4 Streamlining Memory Communication

In addition to storing large amountsof structureddata,
memoryis alsousedasan inter-operationcommunication
device. In load-storearchitecturesstorestake valuespro-
ducedby creatoroperationgdef) andwrite themin mem-

ory sothatsubsequeribadsmayreadthemandpassthem

on to other operations(use). We use programstructure
information to streamline this communication mechanism.

Corventionalmemory communicationis a laboriousand
someavhat inefficient process. A store computesan
addressand depositsthe value into the memory hierar-
chy. To pick up thatvalue,a subsequentibad mustcom-
puteanaddresswait for all interveningstoreaddresseto
becomeavailable,andfinally accesshememoryhierarcly
if therewere no conflicts. Add to this the fact that the
storeandloadarejust proxiesandwhatshouldbeasimple
act of passinga value from oneinstructionto anotheris
unnecessariljut inevitably delayedbecauseof the indi-
rect way of naming the communication channel.

Although inefficient, memorycommunicationis a highly
structuredactivity. Loadsdo not communicatewith arbi-
trary storesor vice versa.Rather static loadsand stores

(a) for (I=list; | '= NULL; | = I->next) (b)

if (I->key ==key)
process(l);

(c) | B=A->next (d)

B = NULL Producer Consumer
B->key [1=I->next | I = I->next |

== key
process(B)

C = B->next

A B> Cr> D> E> F >
E=D->next =

E = NULL Producer Consumer
E->key [1=1->next | | = I->next |

== key E -
process(E) ?= E->next

F= E->next |-=

Figure 1. Dependence Based Prefetching. (a) A list traversal codewith theinductionload in bold. (b) Thetraversed
list with letters as nodeaddresses.(c) During the first several loop iterations,the dependenceredictor learnsthe
identitiesof the LDS loadsand constructsa representatiorof their dependenceelationships. (d) During subsequent
iterations, the dependencepresentation is consulted to spawn instances of theopppte loads as mfetdes.

are partitionedinto small communicatinggroups with a
low frequeng of inter-groupcommunication.Information
aboutthis structure,which we call memorydependence
information canbeusedto circumwentthedelaysinherent
in eachcomponenstep:disambiguationmemoryaccess,
and defusevaluetransfer As we explain, this structure
can be gploited to all@iate some of these irfefiencies.

We begin by attackingthe delaysassociatedvith address
baseddisambiguation.With communicatiorgroupssmall

and stable,andthe frequeng of intergroup communica-
tion low, the utility of afull address-basedisambiguation
proceduradiminishesgreatly By dynamicallyidentifying

communicatinggroups, group membershipinformation

canbeusedto assesfadissuestatuswithout the needfor

calculatingthe addressesf all previous stores. Memory
dependencspeculationwas introducedby Moshovos et.

al. [3] in the Multiscalarcontext andlater by Chrysosand

Emer [1] in a superscalaervironment. In addition to

avoiding disambiguationmemory dependencénforma-

tion can be usedto syndironize waiting loads with the

storesthey dependon, avoiding unnecessarilyong issue
delays for loads that cannot issue immediately

With disambiguatiorout of the way, memorydependence
informationcanbe usedto eliminatememoryaccess.To
dothis, we usethememorydependenctag (thecommuni-
cation group tag) to name the communicationchannel.
We thenpassvaluesdirectly from storeto load usingthat
name(asif it werearegisterlocation). Sincea communi-
cationgroupmay containmultiple staticstoresthe actual
storeinstanceusedin ary singlecommunications deter-
mineddynamicallyin a procesghatis reminiscenbf (not
surprisingly) register renaming. Specifically a store

placesdts valuein alocationtaggedby the communication
group identifier All subsequengroup loads that occur
beforethe next group storepick up the value. The next
groupstoreoverwritesthevalue,andthecycle repeats.As

a sumical extensionof the basicmechanismit is possible
to allow group loads (in addition to group stores)to
depositvaluesin the communicationchannel. This pro-
vides low lateny accesso memoryvaluesin situations
where multiple loads access the same memory location.

Thesemechanismssimultaneouslyntroducedby Mosho-
vos and Sohi as speculativememorycloaking [4] and by
Tyson and Austin as memory renaming[6], eliminate
cacheaccessand addresscalculationallowing storesand
loadsto communicatedirectly. Theseforms of stream-
lined, low-latengy communicatiorareenabledoy associat-
ing communicationchannelswith program entities like
loads,stores,andcommunicatiorgroups,ratherthanwith
addressesyhich in andof themselescontainno explicit
communication information.

Recall,in memorycommunicatiora store-loadair is sim-
ply aintermediatechannelusedto passa valuefrom some
creatinginstruction (def) to anotherinstruction (usg for
use. The final reduction in communicationlateny is
achieved when we speculatrely corvert thesedetstore-
load-usedependencehainsinto moredirectandefficient
defuseones completelyremoving memoryandits associ-
ated delaysfrom the communicationpath. Speculative
memorybypassingdueto MoshososandSohi[4], canbe
performedwhen both the def and useare simultaneously
in flight. By endaving renaminglogic with program
structureinformation, use can be renamedusing defs

(a) for(i=0;i<WIDTH; i++){ (b) D=t+1 LD/ST Gp
ptl = (tl + SIZE - 1) % SIZE; |: ~ TECEE
- . ruuf0].sq = t2 ruuftil.sq =t
.r.l.l?[ﬂ]'sq = ruu[ptl].sq + 1; t1 = ruufptl].sq | 1
e 0]. ——
uult]sq = ruulptlsq+1; def e R
ruu[tl].sq = ruufptl].sq + 1; store =
ruutl].sq = ruufptl].sq + 1; load
ruu[tl].sq = ruufptl].sq + 1; use
() _To=tisi LD/ST Gp (d) —J@2=ti+i LD/ST Gp
|: ruu[1].sq = t2— ruuftl.sq=t2 | 1 ruu[2].sq = t2——{ ruuftl.sq=12 | 1
™ t1 = ruufpti].sq | 1 _|-> t1 = ruufptl].sq
t1 = ruu[1].sq Mem t1 = ruu2].sq Mem
I: 2=11+1 Hier 2=t1+1 Hier

Figure 2. Speculative Memory Cloaking and Bypassing. (a) loop code with DEF-stoe-load-USEdependence
detailed. (b) Firstand secondterations: memorycommunicatiorproceedsia cade, store/loaddependencéearned
and marked with group tag. (c) Cloaking: store and load communicatevia group tag. DEF-stoe and load-USE
communicationoccur as usual. (d) Bypassing:If DEF-USE are both in-flight, load-stoe dependencés usedto
rename USE using DE${rather than load) output physicalegister \alue then flows dactly via the egister

ratherthanload’s physical register mapping,allowing the
valueto flow from defto usevia a sharedphysicalregistet

Synchronizationgloakingand bypassingare examplesof
optimizationsthat are enabledby the early availability
propertyof programstructureinformation. Addressbased
counterpartsof these optimizationsdo not exist. The
entire focus of thesemethodsis to avoid address-based
memory communication, relegating it to the statusof a
verificationstepandmoving it off the processos critical
path.

5 Amplifying Cache Bandwidth

Increasinglyparallel processingncreaseshe demandfor
datacachebandwidth. Corventionalmethodsfor supply-
ing additionalbandwidthare replication which is costly
to implement,and interleavingwhich requiresadditional
multiplexing logic and may still incur conflicts. We use
program structure information to reduce bandwidth
demanddy shuntingtransient(shortlived) memoryval-
uesto a different structureand relieving the cachefrom
having to service them.

We definetransientmemoryvaluesasonesthat areeither
read or overwritten shortly after being written initially.

Valuetransiences associateavith a storeinstructionand
is structurally determinedby the temporal proximity of

future loads and storesto the same memory location.
Transientvalues are sent to the transient value cace
(TVC). In orderto be of ary service,subsequenstores
andloadsto the sameaddressnustbedirectedto the TVC

aswell. Thisis donespeculatiely usingthe conceptof a

transientvaluegroup, an extensionof the communication
group concept used in cloaking implementations.

As in cloaking, transientvalue communicationmust be
verifiedusingthetraditionalmemorypath. Loadsthatare
directedtowardsthe TVC anddo notfind their valuethere
mustbe sentto the cache andsimilarly for storesthatare
not actually overwritten. However, this verification can
occurafter TVC accessr writebackandonly for mispre-
dictions. In fact, Moshoros and Sohi[4] suggesthatthe

TVC canbe usedto reducethe cachebandwidthdemands
of cloaking/bypassingerification.

Unlike dependencebased prefetching, synchronization
andcloaking,the TVC is address-baseahdassuchdoes
not require the use of programstructure. However, the

predictorusedto direct instructionsinto the TVC is pro-

gram based,an addresshasedimplementationwould be

both more costly and less accurate.

Cloaking, bypassingand the TVC are examplesof how
programstructureinformation can be usedto compactly
representof value attributes (here inter-referencetimes
and lifetimes) and to managethe portion of the memory
hierarcly closeto the processorcore. By capturingthese
andother valueattributes,programstructurecanbe used
to reducetraffic, short-circuitlong transactionsand sup-
ply addedbandwidthin othermemoryhierarcly parts. In
fact, program baseddesignsmay partition the memory
systemhorizontallyratherthanvertically, with eachparti-
tion specializing in handlingalues with certain attrilies.

6 Improving Shared Memory Performance

The power of programstructureinformation can also be
broughtto bearin the sharedmemory multiprocessing
domain. Sharedmemory multiprocessordeature inter-
processarin additionto intra-process(or)memorycom-
munication. Writes by one processomustbe propagted
to otherprocessorso provide communicatioranda con-
sistentview of memory For bandwidthreasonscache
coherences typically implementedon a demandbasis.
However, specializedprotocolsthat reduceboth lateny
andtraffic canbe usedoncecharacteristicommunication
(datasharing)patternsare recognized. For instance, in
migratory sharing,dataitems are first broughtinto local
memoryin read-onlymodeandincur a secondcoherence
event and addedlateny whenthe block is subsequently
written and the mode mustbe changedo modified. If a
migratory sharingpatterncan be predictedat the time of
the read, the read requestcan be changedto a write
requestsaving the secondong lateny transaction. Pro-
ducerconsumer sharing can be similarly optimized.

@ [o-t+1 LD/ST Gp T
ruu[2].sq = t2 ruuftil.sq=12 |11

t1 =ruufptll.sq| 1| 1

1 = ruu[2].sq | " > Mem
2=ti+1 | | [TVC] Hier

) ot LD/ST Gp T
ruu[3].sq = t2|—{ ruuftlj.sq=1t2 |1 |1
|—> t1=ruufptl].sq| 1] 1
t1 = ruu[3].sq Mem
t2=t1+1 ~T [TvC Hier

Figure 3. Transient Value Cache. Using the cloaking/bypassingcode example (a) First iteration: memory
communication/verificatiomonsumesxpensivedata cache resouces,temporl proximity of communicatingstore-
load pairsis recoded. (b) Subsequeriterations: store-loadpairs divertedto TVC,conservinglatacade bandwidth.

@ it (ocky (V) LD

ST

(c)

[*lock | *lock =1 | —

“lock = 1;)

*lockA =1

*lockA —[
—» getS *lockA

— getX *lockA

—Ll *lock | *Ioik 1|

getX *lockB

*lockB =1

Figure 4. Migratory Sharing Pattern Prediction. (a) Syntironizationcodein which a lock is firstreadinitiating read
missprotocolhandling(getS)and subsequentlyritten launching a write fault coheenceaction (getX). (b) Firsttime
throughthe codeboth coheenceactionsexecute dependencéetweerioad and store is marked. (c) Subsequently
using this information the load can initiate the amponding star esent, educing stag latency and networkdffic.

Insteadof waiting for a consumingprocessoito ask for
shareddata,a producingprocessorganspeculatrely pre-
send it, reducing lategat the consumer

With theseobvious benefits muchwork hasbeendevoted
to efficient automaticdetectionand exploitation of these
sharing patterns. Corventional detection schemesare
almostexclusively addres$asedassociatingsharingpat-
tern predictionswith cacheblocks. Although effective,
thesetechniquesare spaceinefficient and possesdittle

predictve power sincesharinginformationis maintained,
and must be learned, on a cache block basis.

Our intuition tells us that program basedpredictorsare
bettersuitedto thistask. Processocommunicationis per-
formedby the program notthedata. More fundamentally
communicationis specified by program structure, the
dependenceelationshipdbetweerreadsandwrites. With
suchstaticunderpinningsit is unlikely thatthe samecode
can engendermultiple communicationpatternsat run
time. KaxirasandGoodmar2] have shavn thisto bethe
case,with compactnesand learningamortizationpaying
large dividends. Programbaseddetectorsassociateshar-
ing informationwith instructiongroupsand apply coher-
ence-protocol optimizations based on participant
instructionidentity ratherthancacheblock address.They
requirelessstoragehancorventionalpredictorsandexpe-
riencethe unoptimizedearningphaseonly onceper code

group rather than once per communicated cache block.

One potentialobstacleto the implementationof program
basedcoherenc@ptimizationis that, althoughtransparent
to the user it requiresprogramstructureinformation to
flow throughwell establishedysteminterfacesthatdon’t
currently provide such capabilities. The coherencebus,
for instance pbseresonly dataaddressesjot instruction
identities. However, the nearfuture promisesto alleviate
theseproblems. Processorswill likely have integrated
coherence-controllerand such integration will surely
soften that interface boundary Highly visible interface
changesawill not take placeunlessmotivatedby compel-
ling performancegains. At the sametime, the perception
of high costdiscouragesesearchavenueswith interface
requirements reducing the likelihood that performance

justificationwill befound. Thisinitial work certainlypro-
videsevidencethat programstructureinformationhasthe
potential for significant performanceimprovementsthat
will justify its inclusion in a system intea€e.

7 Conclusions and Future Directions

We believe that focusingour attentionon program struc-

ture information will resultin new techniquesthat are
powerful, compact,and can scaleto meet performance
demands.Thetechniquesiescribecere thougheffective

for their intendedpurpose,are still in “first-cut” stages.
We have alsoinvesticatedapplicationsof programstruc-

tureinformationin the areasof branchprediction,instruc-

tion prefetching schedulingandautomatiaestructuringpf

data for increasedperformance. We continueto study
these techniques and to search fav eahancements.

References

[1] G.Z. ChrysosandJ.S.Emer. Memory Dependencére-
dictionusingStoreSets.In Proc. 25thInternationalSym-
posiumon ComputerArchitecture pages142—-153,Jun.
1998.

[2] S.KaxirasandJ. GoodmanImproving CC-NUMA Per-
formanceUsing Instruction BasedPrediction.In Proc.
5thInternationalSymposiunon High PerformanceCom-
puter Architecturgpages 161-17, Jan. 1999.

[3] A. Moshovos,S.E. Breach,T.N. Vijaykumar, and G.S.
Sohi.DynamicSpeculatiorand Synchronizatiorof Data
Dependencesn Proc. 24th International Symposiunon
Computer Architecturgpages 181-193, Jun. 1997.

[4] A. Moshovosand G.S. Sohi. StreamliningInter-Opera-
tion Communicatiorvia DataDependenc®rediction.In
Proc. 30th International Symposiurmon Microarchitec-
ture, pages 235-245, Dec. 1997.

[5] A. Roth, A. Moshovos, and G.S. Sohi. Dependence
BasedPrefetchingfor Linked Data StructuresIn Proc.
8th Conferenceon Architectural Supportfor Program-
mingLanguagesnd OperatingSystemgagesl 15-126,
Oct. 1998.

[6] G. Tyson and T. Austin. Improving the Accuracy and
Performanceof Memory CommunicationThrough Re-
naming.In Proc. 30th International Symposiunon Mi-
croarchitecture pages 218-227, Dec. 1997.

