
Abstract

Micro-architectural techniques of the next decadewill
haveto be more efficient and scalablein order to handle
growing workloadsand longer communicationand mem-
ory latencies. We believethat informationaboutprogram
structure, the data and control relationships between
instructions,canbeusedasa powerfulframework for new
techniques. We arguethat programstructure information
has several inherent advantages over frameworks that
associateinformationeither with instructionsin isolation
or with data. We presentsummariesof four novel meth-
ods that apply program structure information to memory
system problemsfrom disambiguationand data cache
bandwdith to prefetching and coherence optimization.

1   Introduction

Processorperformancehasimprovedat a dramaticratein
thepastdecades,poweredby increasinglyfastercircuitsas
well as architecturaland micro-architecturaltechniques
that allow for both a high clock frequency and increased
parallelism. Our continuing challengeis to sustainthis
rate into the next decade and beyond.

Current designsstand on a foundation of accumulated
knowledgethat itself assumesa certainsetof processing
demandsand technologyparameters.In the future, how-
ever, dataworking setswill bemuchlargerandcommuni-
cation relatively more expensive. If tried and true
techniquesdonotscaleup to thesetremendousworkloads,
wewill needinnovativenew designsthatwill bemoreeffi-
cient and effective.

Webelievethatoneprincipleunderlyingthesenovel meth-
odswill beanincreasedrelianceonprogramstructureand
behavior information. Comparedwith techniquesthat
exploit statisticaldatapropertieslike spatialandtemporal
locality, programbasedmethodshave inherentadvantages
thatallow themto leveragemorecompactrepresentations
into moresignificantgains. In addition,thesenovel tech-

niqueswill alsobecapableof new andfundamentallydif-
ferent operations that will complement conventional
methods.

Our researchfocuseson novel applicationsof program
structureinformation in all aspectsof processing.How-
ever, in this paper we summarizeour efforts towards
improving memorysystemperformance. Current trends
suggestthat this will be a dominatingissuefor architec-
turesof the nearfuture. Memory latency is continuously
increasingin relationto processingspeeds.With theaddi-
tion of wider, moreaggressive pipelines,the latency cost
of asinglememoryrequestis upto hundredsof instruction
execution opportunities. And while growing transistor
budgetsallow morememoryto beintegratedonachipand
reducethe probability of off-chip traffic, new workloads
are more than capableof exceeding these allowances.
Futurearchitectureswill needgreaterdatacacheandoff-
chip bandwidth,lower latency cacheaccess,betterauto-
maticmanagementof largestructureddatasets,andfaster
inter-processor memory communication.

The rest of the paperpresentssynopsesof four recently
proposedprogram based techniquesthat attack these
important aspectsof memory systemperformance. We
show how programstructureinformation can be usedto
prefetchclassesof datastructureswhoseaccesspatterns
defyconventionaladdresspredictionandprefetchingtech-
niques.A secondkind of informationcanbeusedto over-
come the load issue delays introduced by address
disambiguationand cacheaccess. A third kind helpsto
expeditedatasharingpatterndetectionin sharedmemory
multiprocessors.

2   Rationale for Using Program Structure

Themicro-architecturalmemorytechniquesof today, like
cachehierarchiesandprefetchengines,achieve their per-
formanceobjectives by exploiting traditional notions of
program behavior, like spatial locality, temporallocality,
andaddressstreampredictability. The future innovations

New Methods for Exploiting Program Structure and Behavior in Computer
Architecture

Amir Roth and Gurindar S. Sohi
Computer Sciences Department

University of Wisconsin-Madison
1210 W. Dayton St. Madison, WI 53706������� �	��
����� ������
������ 
����������



we speakof require that new aspectsand parametersof
program behavior be defined, studied, and exploited.

Althoughseeminglyunrelated,theproblemof branchpre-
diction providesa good illustration of the kind of funda-
mental changesin approachwe suggest. For almost a
decade,branchpredictorswerebaseduponanalyzingthe
historyof a particularbranchin isolation. A majorleapin
performanceoccurredwhen it was realizedthat the out-
comeof abranchwascorrelatednotonly with its own out-
comehistory, but alsowith thepreviousoutcomesof other
branches.Theinjectionof somenotionof programstruc-
ture into theprocesswasthecatalystfor a wave of power-
ful innovation in branch prediction. While branch
prediction has benefittedfrom the incorporationof pro-
gramstructurenotions,memoryhierarchy designhas,for
thelargepart,ignoredsuchinformation. If programstruc-
ture,in thiscasetherelationshipsbetweeninstructionsthat
accessmemory, is taken into consideration,betterdesigns
may result.

We defineprogramstructurein generalasthecontroland
data dependencerelationships among instructions or
instruction groupssuch as basic blocks, loop bodiesor
entirefunctions. Therearetwo fundamentalreasonsthat
underlie the predictive and computationalpower of pro-
gram structure information:

• Causality. We refer to programstructureas primary
information. Secondary information refers to all
observableprogrambehavior, from branchoutcomesto
memoryreferencesanddata. Programstructure(pri-
mary)informationproducesall observable(secondary)
programbehavior, from branchoutcomesto memory
references. Current methods collect, analyze, and
exploit differentkinds of secondaryinformation in ad
hocways. Programstructureinformationcanbecol-
lectedin a moreunifiedway andthenusedto recreate
pieces of secondary information on demand.

• Stability. At least on modern computers,program
structureis invariant. Capturedandanalyzedonce,it
canbeusedrepeatedlywith confidence,regardlessof a
particular data context.

Causalityandstabilityallow programstructureto form the
informationbasisfor agreatvarietyof micro-architectural
methods. They also endow thesemethodswith several
inter-relatedpropertiesthatincreaserobustness,scalability
and efficiency:

• Early availability. Associatinginformationwith data
implies that in order to accessthe information, the
samedatamustbeavailable. In currentpipelines,and
dependingon theparticularkind of datainvolved, this
may not occur until a forwarded value has been

received or the instruction has generatedan address.
Late availability precludesoptimizations that must
occurearlyin thepipeline. Technically, programstruc-
ture information,which canbeaccessedusinginstruc-
tion identity, can be retrieved before the instruction
itself is fetched. Early availability enablesoptimiza-
tions early in the pipelineandincreasesthe reachand
effectiveness of other optimizations.

• Compactness. All programsareessentiallydataparal-
lel. While thesizeof theprogramremainsfixed(or at
leastrelatively so), the amountof dataprocessedmay
grow arbitrarily large. Consequently, any information
associatedwith theprogramcanbemanagedin a fixed
(and relatively small) amountof space. On the other
hand, storage required to manage data-associated
informationcangrow to sizesproportionalto the data
set.

• Learningamortization. Associatinginformationwith
datarequiresthat the informationbe learnedfor every
dataitem. As a result,datamustbe accessedat least
oncebeforethe given techniquecan be appliedto it.
For datathatis accessedonce(or oncebeforetheinfor-
mationis lost), thispresentsaproblem. Programstruc-
tureinformationis learnedonceperinstructionandcan
subsequentlybeappliedevento neverbeforeseendata.

With thesepropertiesanda priori advantagesin mind,we
revisit severalaspectsof memorysystemfunctionandper-
formancewith anemphasison theapplicationof program
structureinformation. Not surprisingly, we focus on the
relationshipsamongmemoryoperations.In particular, we
exploit memory dependencesor address dependences
which relatestaticsetsof loadsandstoreswhich dynami-
cally referencethesamesetof addresses.We alsoexploit
load valuedependenceswhich tracktheuseof loadedval-
ues.

3   Prefetching Linked Data Structures

As datasetscontinueto grow andrelative memorylaten-
cies increase,proactive memoryhierarchy placementvia
prefetchingbecomesincreasinglyimportant. Hardware
data prefetchingis usually driven by addressprediction
which in turn relieson patternsextractedfrom theaddress
stream. While addressprediction is effective for some
classesof structureddata(e.g.,arrays),otherscontinueto
poseproblems. Linked datastructures(LDS) are espe-
cially troublesome.Althoughcurrentlylesscommonthan
arrays,LDS may becomemore prevalent with the wide-
spread adoption of object oriented programming lan-
guageslike C++ and Java. LDS traversal involves long
chainsof dependentmemoryaccesses.Whenthey missin
the cache,theseLDS accessestypically form a critical



chain and serialize the program. Without parallelism,
prefetching’s effect at reducingoperationlatency becomes
critical. However, LDS referencestreamshave little
expressedarithmetic regularity and render conventional
address predictors and prefetch engines useless.

With addressbasedschemeslargely ineffective, we use
programstructureinformation to constructa prefetching
schemethat avoids explicit addressprediction. Onesuch
technique is dependencebased prefetching (DBP) [5]
which,at a high level, isolatestheprogramthreadrespon-
sible for traversing the LDS and pre-executesit. Inter-
nally, DBP representsthethreadasa collectionof explicit
datadependencerelationships.By ignoring control flow,
this representationallows thethreadto bereplayedoff the
critical processingpath and without the overheadsand
uncertaintiesof sequencing. To prefetch,we obtain an
LDS root addressand allow the representationto unroll
therestof thestructure.As it executes,datait touchesare
prefetchedinto thecache. Dependencebasedprefetching
is fundamentally different than conventional address-
basedprefetching. Ratherthan generatingaddressesby
guessingstatistically(which is whatwe would do without
programstructureinformation),we identify the program
componentsand dependencesthat perform the desired
operationand mimic them. DBP is quite effective for
prefetching LDS with results comparableto, or better
than, the best known software schemes.

The internal representationthat drives DBP is nothing
morethanthe datadependencerelationshipsbetweenthe
instructionsin the program. Specifically, sinceLDS tra-
versalis characterizedby chainsof loadsthat feedother
loads, we capturethe relationshipsbetweenstatic load
pairs. Oncethesedependencesare established,they can
bequeriedusingproducerloadidentity to obtaintheiden-
tities anddescriptionsof all consumingLDS loads. This

representationallows the processor to speculatively
instantiateinstructionsin a dataflow manner. The whole
processcan be viewed as a form of super-aggressive
schedulingthat is not restrictedto selectinginstructions
from within a sequential window.

Dependencebasedprefetchingis an example of a tech-
nique that is enabledby programstructureinformation.
Although addressbasedcounterpartsof this technique
may be constructed,their effectivenessat predictingLDS
addresses are likely to be low.

4   Streamlining Memory Communication

In addition to storing large amountsof structureddata,
memoryis alsousedasan inter-operationcommunication
device. In load-storearchitectures,storestake valuespro-
ducedby creatoroperations(def) andwrite themin mem-
ory sothatsubsequentloadsmayreadthemandpassthem
on to other operations(use). We useprogramstructure
information to streamline this communication mechanism.

Conventionalmemorycommunicationis a laboriousand
somewhat inefficient process. A store computes an
addressand depositsthe value into the memory hierar-
chy. To pick up that value,a subsequentload mustcom-
puteanaddress,wait for all interveningstoreaddressesto
becomeavailable,andfinally accessthememoryhierarchy
if therewere no conflicts. Add to this the fact that the
storeandloadarejustproxiesandwhatshouldbeasimple
act of passinga value from one instructionto anotheris
unnecessarilybut inevitably delayedbecauseof the indi-
rect way of naming the communication channel.

Although inefficient, memorycommunicationis a highly
structuredactivity. Loadsdo not communicatewith arbi-
trary storesor vice versa.Rather, static loadsand stores

Figure 1. Dependence Based Prefetching. (a) A list traversal codewith theinductionload in bold. (b) Thetraversed
list with letters as nodeaddresses.(c) During the first several loop iterations,the dependencepredictor learnsthe
identitiesof theLDSloadsandconstructsa representationof their dependencerelationships.(d) During subsequent
iterations, the dependence representation is consulted to spawn instances of the appropriate loads as prefetches.

� � � � � � � � 
  ! � " � # $ % % ! & ' & ( ) * + , - .
� � � � / 0 1 � 2 � � 1 � 2 .
3 � � � � 
 
 � � . !

45 6 7

5 8 7 5 9 7

5 : 7

; < = > ? @ A < B = C D ? E A <

F

G ' 4 ( ) * + , -
G " � # $ % %
G / 0 1 � 2
� � 1 � 2
3 � � � � 
 
 � G .

B ' G ( ) * + , -

& ' & ( ) * + , - & ' & ( ) * + , -
; < = > ? @ A < B = C D ? E A <
& ' & ( ) * + , - & ' & ( ) * + , -

H ' I ( ) * + , -
H " � # $ % %
H / 0 1 � 2
� � 1 � 2
3 � � � � 
 
 � H .

J ' H ( ) * + , -

K ' H ( ) * + , -

G B I H J



are partitionedinto small communicatinggroups with a
low frequency of inter-groupcommunication.Information
about this structure,which we call memorydependence
information, canbeusedto circumventthedelaysinherent
in eachcomponentstep:disambiguation,memoryaccess,
and def-usevalue transfer. As we explain, this structure
can be exploited to alleviate some of these inefficiencies.

We begin by attackingthe delaysassociatedwith address
baseddisambiguation.With communicationgroupssmall
andstable,andthe frequency of inter-groupcommunica-
tion low, theutility of a full address-baseddisambiguation
procedurediminishesgreatly. By dynamicallyidentifying
communicatinggroups, group membershipinformation
canbeusedto assessloadissuestatuswithout theneedfor
calculatingthe addressesof all previous stores. Memory
dependencespeculationwas introducedby Moshovos et.
al. [3] in theMultiscalarcontext andlaterby Chrysosand
Emer [1] in a superscalarenvironment. In addition to
avoiding disambiguation,memory dependenceinforma-
tion can be usedto synchronize waiting loads with the
storesthey dependon, avoiding unnecessarilylong issue
delays for loads that cannot issue immediately.

With disambiguationout of theway, memorydependence
informationcanbe usedto eliminatememoryaccess.To
dothis,weusethememorydependencetag(thecommuni-
cation group tag) to name the communicationchannel.
We thenpassvaluesdirectly from storeto loadusingthat
name(asif it werea registerlocation). Sincea communi-
cationgroupmaycontainmultiple staticstores,theactual
storeinstanceusedin any singlecommunicationis deter-
mineddynamicallyin a processthat is reminiscentof (not
surprisingly) register renaming. Specifically, a store

placesits valuein a locationtaggedby thecommunication
group identifier. All subsequentgroup loads that occur
beforethe next group storepick up the value. The next
groupstoreoverwritesthevalue,andthecycle repeats.As
a surgical extensionof thebasicmechanism,it is possible
to allow group loads (in addition to group stores) to
depositvaluesin the communicationchannel. This pro-
vides low latency accessto memoryvaluesin situations
where multiple loads access the same memory location.

Thesemechanisms,simultaneouslyintroducedby Mosho-
vos andSohi asspeculativememorycloaking [4] andby
Tyson and Austin as memory renaming [6], eliminate
cacheaccessandaddresscalculationallowing storesand
loads to communicatedirectly. Theseforms of stream-
lined, low-latency communicationareenabledby associat-
ing communicationchannelswith program entities like
loads,stores,andcommunicationgroups,ratherthanwith
addresses,which in andof themselvescontainno explicit
communication information.

Recall,in memorycommunicationastore-loadpair is sim-
ply a intermediatechannelusedto passa valuefrom some
creatinginstruction(def) to anotherinstruction(use) for
use. The final reduction in communicationlatency is
achieved when we speculatively convert thesedef-store-
load-usedependencechainsinto moredirectandefficient
def-useones,completelyremoving memoryandits associ-
ated delays from the communicationpath. Speculative
memorybypassing, dueto MoshovosandSohi [4], canbe
performedwhenboth the def andusearesimultaneously
in flight. By endowing renaming logic with program
structureinformation, use can be renamedusing def’s

Figure 2. Speculative Memory Cloaking and Bypassing. (a) loop code with DEF-store-load-USEdependence
detailed. (b) First andseconditerations:memorycommunicationproceedsvia cache, store/loaddependencelearned
and marked with group tag. (c) Cloaking: store and load communicatevia group tag. DEF-store and load-USE
communicationoccur as usual. (d) Bypassing:If DEF-USEare both in-flight, load-store dependenceis usedto
rename USE using DEF’s (rather than load’s) output physical register.  Value then flows directly via the register.

3  � � �  � L M N O P / Q . R M N O P !
S T T U - & V W X Y ' S T T U Z - & V W X Y [ \ ]

� � � � � � ^ ! � _ ` N a b c ! � L L . �

� � � �

d + e
f g + S

h i j k l m Z

5 6 7

5 9 75 8 7

5 : 7

� � � n  � o � 
 p � � � � n 3  � o � 
 p [ \ ]
S T T U - & V W X Y ' � � � n 3  � o � 
 p L Q !
� � � n  � o � 
 p � S T T U Z - & V W X Y L Q ]
� � � n  � o � 
 p � � � � n 3  � o � 
 p [ \ ]

q + r
X - s S +
& s t q
T X +

- u ' - \ [ \
S T T U \ V W X Y ' - u

- \ ' S T T U \ V W X Y
- u ' - \ [ \

- \ ' S T T U Z - & V W X Y \
S T T U - & V W X Y ' - u \

d + e
f g + S

h i j k l m Z- u ' - \ [ \
S T T U v V W X Y ' - u

- \ ' S T T U v V W X Y
- u ' - \ [ \

- \ ' S T T U Z - & V W X Y \
S T T U - & V W X Y ' - u \

d + e
f g + S

h i j k l m Z- u ' - \ [ \
S T T U u V W X Y ' - u

- \ ' S T T U u V W X Y
- u ' - \ [ \

- \ ' S T T U Z - & V W X Y \
S T T U - & V W X Y ' - u \

m Z
\ w

x + y



ratherthanload’s physical registermapping,allowing the
valueto flow from defto usevia asharedphysicalregister.

Synchronization,cloakingandbypassingareexamplesof
optimizationsthat are enabledby the early availability
propertyof programstructureinformation. Addressbased
counterpartsof theseoptimizationsdo not exist. The
entire focus of thesemethodsis to avoid address-based
memorycommunication, relegating it to the statusof a
verificationstepandmoving it off the processor’s critical
path.

5   Amplifying Cache Bandwidth

Increasinglyparallelprocessingincreasesthe demandfor
datacachebandwidth. Conventionalmethodsfor supply-
ing additionalbandwidthare replication, which is costly
to implement,and interleavingwhich requiresadditional
multiplexing logic and may still incur conflicts. We use
program structure information to reduce bandwidth
demandsby shuntingtransient(short lived) memoryval-
uesto a different structureand relieving the cachefrom
having to service them.

We definetransientmemoryvaluesasonesthatareeither
read or overwritten shortly after being written initially.
Valuetransienceis associatedwith a storeinstructionand
is structurally determinedby the temporalproximity of
future loads and stores to the same memory location.
Transient values are sent to the transient value cache
(TVC). In order to be of any service,subsequentstores
andloadsto thesameaddressmustbedirectedto theTVC
aswell. This is donespeculatively usingtheconceptof a
transientvaluegroup, anextensionof thecommunication
group concept used in cloaking implementations.

As in cloaking, transientvalue communicationmust be
verifiedusingthetraditionalmemorypath. Loadsthatare
directedtowardstheTVC anddo not find their valuethere
mustbesentto thecache,andsimilarly for storesthatare
not actually overwritten. However, this verification can
occurafterTVC accessor writebackandonly for mispre-
dictions. In fact,Moshovos andSohi [4] suggestthat the

TVC canbeusedto reducethecachebandwidthdemands
of cloaking/bypassing verification.

Unlike dependencebased prefetching, synchronization
andcloaking,the TVC is address-basedandassuchdoes
not require the useof programstructure. However, the
predictorusedto direct instructionsinto the TVC is pro-
gram based,an addressbasedimplementationwould be
both more costly and less accurate.

Cloaking, bypassingand the TVC are examplesof how
programstructureinformation can be usedto compactly
representof value attributes (here inter-referencetimes
and lifetimes) and to managethe portion of the memory
hierarchy closeto the processorcore. By capturingthese
andother valueattributes,programstructurecanbeused
to reducetraffic, short-circuitlong transactions,andsup-
ply addedbandwidthin othermemoryhierarchy parts. In
fact, program baseddesignsmay partition the memory
systemhorizontallyratherthanvertically, with eachparti-
tion specializing in handling values with certain attributes.

6   Improving Shared Memory Performance

The power of programstructureinformation can also be
brought to bear in the sharedmemory multiprocessing
domain. Sharedmemory multiprocessorsfeature inter-
processor, in addition to intra-process(or),memorycom-
munication. Writesby oneprocessormustbepropagated
to otherprocessorsto provide communicationanda con-
sistentview of memory. For bandwidthreasons,cache
coherenceis typically implementedon a demandbasis.
However, specializedprotocolsthat reduceboth latency
andtraffic canbeusedoncecharacteristiccommunication
(datasharing)patternsare recognized. For instance, in
migratory sharing,dataitems are first brought into local
memoryin read-onlymodeandincur a secondcoherence
event and addedlatency when the block is subsequently
written andthe modemustbe changedto modified. If a
migratorysharingpatterncanbe predictedat the time of
the read, the read requestcan be changedto a write
request,saving the secondlong latency transaction.Pro-
ducer-consumer sharing can be similarly optimized.

Figure 3. Transient Value Cache. Using the cloaking/bypassingcode example (a) First iteration: memory
communication/verificationconsumesexpensivedata cache resources,temporal proximity of communicatingstore-
loadpairs is recorded. (b) Subsequentiterations:store-loadpairsdivertedto TVC,conservingdatacachebandwidth.

5 6 75 : 7

d + e
f g + S

h i j k l m Z- u ' - \ [ \
S T T U u V W X Y ' - u

- \ ' S T T U u V W X Y
- u ' - \ [ \

- \ ' S T T U Z - & V W X Y \
S T T U - & V W X Y ' - u \

\
\
l

l z { d + e
f g + S

h i j k l m Z- u ' - \ [ \
S T T U | V W X Y ' - u

- \ ' S T T U | V W X Y
- u ' - \ [ \

- \ ' S T T U Z - & V W X Y \
S T T U - & V W X Y ' - u \

\
\
l

l z {



Insteadof waiting for a consumingprocessorto ask for
shareddata,a producingprocessorscanspeculatively pre-
send it, reducing latency at the consumer.

With theseobviousbenefits,muchwork hasbeendevoted
to efficient automaticdetectionand exploitation of these
sharing patterns. Conventional detection schemesare
almostexclusively addressbased,associatingsharingpat-
tern predictionswith cacheblocks. Although effective,
thesetechniquesare spaceinefficient and possesslittle
predictive power sincesharinginformationis maintained,
and must be learned, on a cache block basis.

Our intuition tells us that programbasedpredictorsare
bettersuitedto this task. Processorcommunicationis per-
formedby theprogram,not thedata. More fundamentally,
communicationis specified by program structure, the
dependencerelationshipsbetweenreadsandwrites. With
suchstaticunderpinnings,it is unlikely thatthesamecode
can engendermultiple communicationpatterns at run
time. KaxirasandGoodman[2] have shown this to bethe
case,with compactnessand learningamortizationpaying
large dividends. Programbaseddetectorsassociateshar-
ing informationwith instructiongroupsandapply coher-
ence-protocol optimizations based on participant
instructionidentity ratherthancacheblock address.They
requirelessstoragethanconventionalpredictorsandexpe-
riencetheunoptimizedlearningphaseonly oncepercode
group rather than once per communicated cache block.

Onepotentialobstacleto the implementationof program
basedcoherenceoptimizationis that,althoughtransparent
to the user, it requiresprogramstructureinformation to
flow throughwell establishedsysteminterfacesthatdon’t
currently provide suchcapabilities. The coherencebus,
for instance,observesonly dataaddresses,not instruction
identities. However, the nearfuture promisesto alleviate
theseproblems. Processorswill likely have integrated
coherence-controllersand such integration will surely
soften that interface boundary. Highly visible interface
changeswill not take placeunlessmotivatedby compel-
ling performancegains. At thesametime, theperception
of high cost discouragesresearchavenueswith interface
requirements,reducing the likelihood that performance

justificationwill befound. This initial work certainlypro-
videsevidencethatprogramstructureinformationhasthe
potential for significant performanceimprovementsthat
will justify its inclusion in a system interface.

7   Conclusions and Future Directions

We believe that focusingour attentionon program struc-
ture information will result in new techniquesthat are
powerful, compact,and can scale to meet performance
demands.Thetechniquesdescribedhere,thougheffective
for their intendedpurpose,are still in “first-cut” stages.
We have also investigatedapplicationsof programstruc-
tureinformationin theareasof branchprediction,instruc-
tion prefetching,schedulingandautomaticrestructuringof
data for increasedperformance. We continue to study
these techniques and to search for new enhancements.

References
[1] G.Z. ChrysosandJ.S.Emer.Memory DependencePre-

dictionusingStoreSets.In Proc.25thInternationalSym-
posiumon ComputerArchitecture, pages142–153,Jun.
1998.

[2] S.KaxirasandJ.Goodman.Improving CC-NUMA Per-
formanceUsing Instruction BasedPrediction.In Proc.
5thInternationalSymposiumonHigh PerformanceCom-
puter Architecture, pages 161–17, Jan. 1999.

[3] A. Moshovos,S.E. Breach,T.N. Vijaykumar, and G.S.
Sohi.DynamicSpeculationandSynchronizationof Data
Dependences.In Proc.24thInternationalSymposiumon
Computer Architecture, pages 181–193, Jun. 1997.

[4] A. Moshovosand G.S. Sohi. StreamliningInter-Opera-
tion Communicationvia DataDependencePrediction.In
Proc. 30th International Symposiumon Microarchitec-
ture, pages 235–245, Dec. 1997.

[5] A. Roth, A. Moshovos, and G.S. Sohi. Dependence
BasedPrefetchingfor Linked Data Structures.In Proc.
8th Conferenceon Architectural Supportfor Program-
mingLanguagesandOperatingSystems, pages115–126,
Oct. 1998.

[6] G. Tyson and T. Austin. Improving the Accuracy and
Performanceof Memory CommunicationThrough Re-
naming.In Proc. 30th InternationalSymposiumon Mi-
croarchitecture, pages 218–227, Dec. 1997.

Figure 4. Migratory Sharing Pattern Prediction. (a) Synchronizationcodein which a lock is first readinitiating read
missprotocolhandling(getS)andsubsequentlywritten launchinga write fault coherenceaction(getX). (b) First time
throughthe codeboth coherenceactionsexecute, dependencebetweenload and store is marked. (c) Subsequently,
using this information the load can initiate the corresponding store event, reducing store latency and network traffic.

� � � " } & s ~ � . �

} & s ~ � ' \ ! �
� � �

5 : 7 5 6 7 5 8 7h i k l} & s ~ � �
' ' v

} & s ~ � � ' \

} & s ~ � } & s ~ � ' \
y + - k } & s ~ � �
y + - � } & s ~ � �

h i k l} & s ~ � �
' ' v

} & s ~ � � ' \

} & s ~ � } & s ~ � ' \

y + - � } & s ~ � �


