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Preface

The literature on equilibrium behavior of customers and servers in
queuing systems is rich. However, there is no comprehensive survey of
this field. Moreover, what has been published lacks continuity and leaves
many issues uncovered.

One of the main goals of this book is to review the existing literature
under one cover. Other goals are to edit the known results in a unified
manner, classify them and identify where and how they relate to each
other, and fill in some gaps with new results. In some areas we explicitly
mention open problems. We hope that this survey will motivate further
research and enable researchers to identify important open problems.

The models described in this book have numerous applications. Many
examples can be found in the cited papers, but we have chosen not to
include applications in the book. Many of the ideas described in this
book are special cases of general principles in Economics and Game
Theory. We often cite references that contain more general treatment of
a subject, but we do not go into the details.

For each topic covered in the book, we have highlighted the results
that, in our opinion, are the most important. We also present a brief
discussion of related results. The content of each chapter is briefly de-
scribed below.

Chapter 1 is an introduction. It contains basic definitions, models and
solution concepts which will be used frequently throughout the book.
This chapter also deals in depth with a seemingly simple model (the
shuttle example) which is used to illustrate some of the main themes of
this book.

Chapter 2 studies the basic model in which customers decide whether
or not to join a queue, after observing its length. The differences be-
tween individual optimization (Nash Equilibrium), social optimization,
and profit maximization are emphasized. Various ways to regulate the

xi



xii TO QUEUE OR NOT TO QUEUE

queue and induce customers to behave in the socially desired way are
discussed.

Chapter 3 deals with the same model as Chapter 2 except that cus-
tomers cannot observe the queue length before they make their decisions.
We also discuss models with additional features such as: customers know
their exact service requirement; the customer population is heteroge-
neous; the queueing discipline is not first-come first-served.

Chapter 4 analyzes queues in which customers differ by their priority
levels. In some models priority is set according to the customer’s type,
in others customers have the option of buying priority. A main issue in
models of the latter type is how to select prices that induce customers
to buy the right priority level so that the overall welfare is maximized.

Chapter 5 is concerned with two types of behavior. In the first, cus-
tomers have the option to abandon (or renege) the queue after their
waiting conditions deteriorate. In an observable system customers may
renege if the queue becomes too congested. In an unobservable system
reneging may result from waiting costs that increase in time. The sec-
ond type of behavior allows customers to jockey among queues and to
purchase information about which queue is the shortest.

Chapter 6 deals with models in which customers possess information
on the state of the queue at a given point in time. Examples are service
systems that open and close at given times, scheduled service, and mod-
els in which customers may leave the system temporarily after observing
a long queue and retry at a later time.

Chapter 7 studies competition among service providers who try to
attract customers while maximizing their profits. We discuss how prices,
priorities, and information are used to achieve this goal.

Chapter 8 deals with long-run decisions of servers regarding their ser-
vice rates. A higher rate means better service and helps to attract more
customers, but it usually comes at a higher cost to the server.

A central issue in this book is how to reduce the time individuals spend
waiting in queues. This is a desirable goal since waiting time is often
assumed to be fruitless, even though this is not always the case. One
of the authors (R.H.) recalls such an incident more than twenty years
ago. While waiting in a queue, he first learned about Naor’s work from
his friend and colleague Ami Glazer from the University of California,
Irvine. It was then that the first seed for this book was sown.



Chapter 1

INTRODUCTION

Customers in service systems act independently in order to maximize
their welfare. Yet, each customer’s optimal behavior is affected by acts
taken by the system managers and by the other customers. The result
is an aggregate “equilibrium” pattern of behavior which may not be
optimal from the point of view of society as a whole. Similar observations
have been known to economists for a long time, but have been made
explicit in the context of queueing theory only after the publication in
1969 of a paper by P. Naor [133]. The scope of queueing theory prior to
Naor’s paper is well reflected in a “Letter to the Editor” [103] published
in 1964 by W.A. Leeman. It ends with the following excerpt:

It is a bit surprising that in a capitalistic economy, applied queueing theory
limits itself to recommendations of administrative measures for the reduction
of queues. One might have expected to observe such an approach in a planned
economy but not in an economy in which prices and markets play so large a
role.

Leeman saw three objectives that can be attained by pricing a queue-
ing system. First, improving the allocation of existing service facili-
ties by shifting demand from spatial-temporal bottlenecks and allocat-
ing through centrally established priorities, rather than according to a
first-come first-served rule. Second, decentralizing management deci-
sions, and lastly, guiding long-run investment decisions. Leeman missed
a fourth important objective that was filled by the seminal paper of
Naor, namely, regulating the demand process that, without such an act,
tends to use the facility excessively.

Extensive research on optimal control of queues followed Naor’s work.
We will concentrate on another area of research that followed Naor’s pa-
per, namely, equilibrium behavior in queueing systems. It is interesting

1



2 TO QUEUE OR NOT TO QUEUE

to note however, that the concept of equilibrium is not central in Naor’s
work and is treated there only implicitly (see §2).

A basic economic principle states that the optimal allocation of scarce
resources requires that a cost be charged to the users of such resources.
Knudsen [90] observed that in stochastic queueing models, the meaning
of scarcity is broader than in the usual static and deterministic models
of economic theory. If the expected demand for service is smaller than
the capacity of the service system, then in a deterministic model the
resource is not considered scarce. Still, a cost charged to customers may
increase social welfare. This is because at any point in time there is a
positive probability that the service capacity is fully utilized. Even when
the arrival rate is smaller than the service rate (so that the server can
accommodate all arrivals), queues are formed due to the variability in
service and inter-arrival times. A queue may be considered a price the
system has to pay in order to guarantee some level of server utilization.
Thus, the criteria for economic optimality are significantly different in
stochastic and deterministic models.

In the rest of this introduction we define and discuss the concepts that
will be used throughout this book. We also introduce a simple model
that illustrates many of the subtleties of decision making in queues.

1. Basic concepts
The concept of an equilibrium plays a central role in this book and

the necessary background material is presented in this section.

Throughout this book “equilibrium” means “Nash equilibrium”.

1.1. Strategies, payoffs, and equilibrium
A non-cooperative game is defined as follows. Let N = {1, . . . , n}

be a finite set of players and let Ai denote a set of actions available
to player i ∈ N . A pure strategy for player i is an action from Ai. A
mixed strategy corresponds to a probability function which prescribes a
randomized rule for selecting an action from Ai. Denote by Si the set
of strategies available to player i.

A strategy profile s = (s1, . . . , sn) assigns a strategy si ∈ Si to each
player i ∈ N . Each player is associated with a real payoff function
Fi(s). This function specifies the payoff received by player i given

that the strategy profile s is adopted by the players. Denote by s−i a
profile for the set of players N \ {i}. The function Fi(s) = Fi(si, s−i)
is assumed to be linear in si. This means that if si is a mixture with
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probabilities α and 1−α between strategies s1
i and s2

i , then Fi(si, s−i) =
αFi(s

1
i , s−i) + (1 − α)Fi(s

2
i , s−i) for any s−i.

Strategy s1
i is said to weakly dominate strategy s2

i (for player i), if for
any s−i, Fi(s

1
i , s−i) ≥ Fi(s

2
i , s−i) and for at least one s−i the inequality is

strict. A strategy si is said to be weakly dominant if it weakly dominates
all other strategies in Si. A strategy s∗i is said to be a best response for
player i against the profile s−i if

s∗i ∈ arg max
si∈Si

Fi(si, s−i).

A strategy profile se is an equilibrium profile if for every i ∈ N , se
i is a

best response for player i against se
−i, i.e.,

se
i ∈ arg max

si∈Si

Fi(si, s
e
−i), i ∈ N.

Remark 1.1 If a best response s∗i is a mixture of strategies then all
these strategies are also best responses. This property does not hold
when “best response” is replaced by “equilibrium”.

We will deal mostly with games with indistinguishable infinitely many
players (usually customers). In this case, denote the common set of
strategies and the payoff function by S and F , respectively. Let F (a, b),
be the payoff for a player who selects strategy a when everyone else
selects strategy b. A symmetric equilibrium is a strategy se ∈ S such
that

se ∈ arg max
s∈S

F (s, se).

In other words, se is a symmetric equilibrium if it is a best response
against itself.

We do not assume that an equilibrium always exists. Indeed, in §2.11,
§5.1 and §7.3 we present models where no equilibrium exists.

We will often classify queues according to whether or not their length
can be observed before a customer makes a decision. We refer to these
cases as observable queues and unobservable queues, respectively. . In
observable queues, customers face situations which correspond to states
of the system and are called upon to choose an action out of a given
set. The definitions of actions, strategies, payoffs and equilibria can be
extended to state dependent models as well.

For example, a state may correspond to the number of customers
in the system, and the action set may include joining as an ordinary
customer, joining as a priority customer, or not joining at all. A pure
strategy prescribes an action to each state. A strategy profile and an
initial state induce a probability distribution over the states. Player i
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obtains a payoff that depends on the state, his action, and the strategies
selected by others. Player i is interested only in his expected payoff,
where the expectation is taken over the states and the actions prescribed
by the strategy of customer i in each state.

1.2. Steady-state
When evaluating an individual’s expected payoff which is associated

with a strategy x as a response against all others using strategy y, we
assume that steady-state conditions (based on all using strategy y) have
been reached. In most of the models there is an underlying Markov pro-
cess, whose transition probabilities are induced by the common strategy
selected by all. Hence, “steady-state” has the standard meaning of limit
probabilities and an individual assumes that this is the distribution over
the states.

To illustrate this point assume an M/M/1 queue (see Section 4 below)
with a potential arrival rate of 4 customers per unit of time, a service
rate of 5 per unit of time, and customers who join with probability
0.75. Under steady-state, a customer who considers joining the queue
evaluates his expected waiting time by 1

5−4·0.75 (see (1.4)). Of course,
had this customer been the first or second to arrive to a system that
initializes with an empty queue, his evaluation would have been different.

The situation is more involved when the decision maker may face one
out of several possible states. For example, consider the observable ver-
sion of the above decision problem in which customers observe the queue
length before deciding whether or not to join. Consider a strategy δ and
denote the action taken according to it in state s by δ(s). For simplicity,
assume that δ is a deterministic strategy. Here s = 0, 1, 2, . . . are possible
queue lengths an arrival may face upon arriving, and δ(s) can either be
join or balk. Such strategy, when used by all, determines the transition
probabilities over a Markov process with state space {0, 1, 2, . . .}. Let
πs(δ) be the limit probability of state s given that s is the initial state
and strategy δ is adopted by all.1 Hence, the expected waiting time for
an individual who uses strategy δ′ when all use strategy δ is

∑

s|δ′(s)=join

πs(δ)
s + 1

µ
. (1.1)

1In case of periodicity, with period d, replace the limit by averaging the limits along d
consecutive periods. Note that

∑∞

s=0
πs(δ) does not necessarily sum up to 1. On one hand,

it can be greater than 1 (in fact, can even be unbounded) when more than one recurrent
chain exists, and on the other hand it may sum up to 0. An example for the latter case is
when λ > µ and δ(s) = join for all s ≥ 0.



Introduction 5

1.3. Subgame perfect equilibrium

A commonly cited drawback of the equilibrium concept is the possi-
bility that the solution is not unique. We describe here and in the next
subsection two refinements which can be used to reduce the number of
solutions.

The transition probabilities between various states usually depend on
the strategy adopted by the customers. In particular, it is possible that
for a given strategy and initial state, some states have zero steady-state
probability. When computing the customers’ expected payoffs, these
states receive a weight of 0. Therefore, it is immaterial which actions are
prescribed for these states in order to examine whether a given strategy
is a best response. For example, for those states s with πs(δ) = 0, the
value of (1.1) is the same regardless of whether δ ′(s) is join or balk. Yet,
a strategy ought to prescribe an action for every state. This fact often
leads to multiple equilibria, some of which are counterintuitive.

A subgame perfect equilibrium (SPE) prescribes best responses in
all states, including those that have zero steady-state probability. An
example for multiple equilibria with exactly one SPE is given in Section
5.2. For more on the concept of SPE in queueing systems see Hassin
and Haviv [73].

1.4. Evolutionarily stable strategies

A (symmetric) equilibrium strategy is, by definition, a best response
against itself. However, it need not be the unique best response. Specif-
ically, let y be an equilibrium strategy. There may be a best response
strategy z 6= y such that z is strictly a better response against itself
than y is. In this case, y is unstable in the sense that when starting
with y, it may be that the players adopt the best response z, and then
a new equilibrium, at z, will be reached. If no such z exists then y is
said to be an evolutionarily stable strategy or ESS (see Maynard-Smith
[122]). Note that if y is an equilibrium strategy and it is the unique best
response against itself, then it is necessarily ESS.

Formally, an equilibrium strategy y is said to be an ESS if for any
z 6= y which is a best response against y, y is better than z as a response
to z itself: y ∈ arg maxx∈S F (x, y), and for any strategy z 6= y such
that z ∈ arg maxx∈S F (x, y), F (y, z) > F (z, z). Note, that there exist
examples in which no equilibrium strategy is an ESS.

1.5. The Braess paradox

The addition of new options may lead to a new equilibrium in which
everybody is worse-off. The following payoff matrix describes an instance
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of the well known prisoner’s dilemma (where (x, y) means a payoff of x
to the row player and y to the column player):

A B

A (1,1) (3,0)

B (0,3) (2,2)

In the unique equilibrium, both players select A. Yet, if they select B
instead, both get higher payoffs. If B were the only option, they would
both end up with 2, but once option A is introduced, the resulting new
equilibrium is worse for both.

Braess [30] introduced this phenomenon in the context of transporta-
tion models, showing that the addition of a new road segment may lead
to an equilibrium in which all users of a road network are worse-off. This
phenomenon is commonly denoted as the Braess paradox.

The paradox may also appear when an increase in the amount of
information available to the players leads to a new equilibrium in which
all are worse-off. Indeed, more information may mean more strategies,
so that this phenomenon is in line with the Braess paradox. The effect
of increased information and the Braess paradox in queueing systems,
are discussed in §3.2 and §3.8.

1.6. Avoid the crowd or follow it?
In many queueing models, strategies can be represented by a single

numerical value. For example, in the “bribery” model of §4.5, a strategy
prescribes how much to pay for service. In such cases, the following
question turns out to be meaningful:

Is an individual’s best response a monotone increasing (or decreasing) function
of the strategy selected by the other customers?

Let F (x, y) be the payoff for a customer who selects strategy x when
all others select strategy y. Assume that for any y there exists a unique
best response x(y):

x(y) = arg max
x

F (x, y).

We are interested in cases where x(y) is continuous and strictly mono-
tone. Figure 1.1 illustrates a situation where a strategy corresponds
to a nonnegative number. It depicts one instance where x(y) is mono-
tone decreasing and another where it is monotone increasing. We call
these situations avoid the crowd (ATC) and follow the crowd (FTC),
respectively. The rationale behind this terminology is that in an FTC
(respectively, ATC) case, the higher the values selected by the others,
the higher (respectively, lower) is one’s best response.
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y

x = y

x

45o

Figure 1.1. ATC and FTC instances

An equilibrium strategy y satisfies x(y) = y. In other words, it is a
fixed point of the function x. It is of interest to determine if a model
is ATC or FTC since, clearly, in the ATC case at most one equilibrium
exists whereas multiple equilibria are possible in the FTC situation.

2. Threshold strategies
In this section we describe a class of strategies, known as threshold

strategies, which is common in queueing systems. Suppose that upon
arrival the customer has to choose between two actions, A1 and A2, after
observing a nonnegative integer-valued variable which characterizes the
state of the system. For example, the state may be the length of the
queue and the actions may be to join or to balk.

A pure threshold strategy with threshold n prescribes one of the ac-
tions, say A1, for every state in {0, 1, . . . , n − 1} and the other action,
A2, otherwise.

In many cases it is natural to look for an equilibrium pure threshold
strategy. However, it is often possible to construct instances where, for
example, if everyone in the population uses the threshold 4 then the best
response for an individual is 5 and if everyone in the population adopts
the threshold 5 then the best response is 4. This is the case with the
upper function in Figure 1.2. In such cases, a pure threshold strategy
that defines an equilibrium may not exist. Consequently, the definition
of a threshold strategy is extended as follows:
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A threshold strategy with threshold x = n + p, n ∈ IN, p ∈ [0, 1),
prescribes mixing between the two pure threshold strategies n and n+1
so that strategy n receives the weight of 1−p and strategy n+1 receives
the weight of p. The resulting behavior is that all select a given action,
say A1, when the state is 0 ≤ i ≤ n − 1; select randomly between A1

and A2 when i = n, assigning probability p to A1 (the action prescribed
by strategy n + 1) and probability 1− p to A2 (the action prescribed by
strategy n); select A2 when i > n. If x is an integer (p = 0), the strategy
is pure. Otherwise, it is mixed.

We are interested in models where a best response for an individual
against any strategy x is a pure threshold strategy: for some integer
k(x), if the state is in {0, . . . , k(x) − 1} choose A1. Otherwise, choose
A2. The following situation is typical: k(x) has points of discontinuity
with a step of unit size which may be upwards or downwards. At a
point of discontinuity x, both of the two pure strategies involved are
best responses against x and hence any mixing between them (which is
a mixed threshold strategy) is also a best response against x. A threshold
x defines an equilibrium if either k(x) = x (in which case x is an integer)
or x is between k(x−) and k(x+).2 In both cases, if all customers adopt
the threshold strategy x, then this is also a best response and no one has
an incentive to deviate to another strategy. In short, it is an equilibrium
strategy.

Recalling from Section 1.6, the behavior reflected by a monotone non-
increasing function k(x) is referred to as avoid the crowd (ATC). It means
that the higher is the threshold adopted by others, the lower is the
threshold giving the best response for a given customer. Similarly, the
case where k(x) is monotone non-decreasing is referred to as follow the
crowd (FTC). It means that the higher the threshold adopted by others,
the higher is the threshold giving the best response for a given customer.

There are important differences between the two cases. Under ATC
there is at most one fixed point. It may describe a pure strategy or
a mixed one. Figure 1.2 depicts two non-increasing step functions. In
one, the equilibrium strategy obtained at x1 is pure, in the other, the
equilibrium strategy obtained at x2, is mixed. The FTC case is more
involved and it may have multiple equilibria. It can be seen from Figure
1.3 that k(x) may have numerous fixed points.

Remark 1.2 The data are said to be non-degenerate if none of the
jumps of k(x) occur at an integer x value. Let x1, x2, . . . be the values of

2It is convenient to view both cases as solutions to the equation k(x) = x, that is, as fixed
points of k(x).
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Figure 1.2. Equilibrium in an ATC situation

the fixed points. From Figure 1.3 we observe that for k = 1, 2, . . ., x2k+1

corresponds to a pure equilibrium strategy whereas x2k corresponds to a
mixed equilibrium strategy. When we allow degenerate data there may
be consecutive pure equilibrium strategies. If the equilibrium is unique
then it is pure.

3. Costs and objectives

The welfare of a customer consists of benefits associated with service,
from which direct payments and indirect costs associated with waiting
are subtracted. The sum of direct and indirect costs is referred to as the
full price. We assume that the customers involved are risk neutral in
the relevant range of payments and benefits so that they maximize their
expected welfare.

In most cases it is assumed that the value of a unit of time for each
customer is constant (denoted by C), so that spending t time units in
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Figure 1.3. Equilibrium in an FTC situation

the system has a total cost of Ct.3 The value of C may differ from one
customer to another.4

A queueing system may also be considered from a social point of view.
When we adopt this viewpoint, we assume that the goal in controlling
the system is to maximize social welfare which is defined here as the
total expected net benefit of the members of the society, including both
customers and servers. From this approach, a payment transferred be-
tween individuals in the population has a zero net effect on social welfare
and thus no effect on the system’s optimization. Therefore, the social
goal is to maximize the sum of benefits from service minus waiting and
operating costs.

3An interesting generalization to this rule is proposed by Balachandran and Radhakrishnan
[19]. Suppose that waiting t time units costs Ceat for given parameters C > 0 and a ≥ 0.

Then, the expected waiting cost of a customer is
∫∞

0
Ceatw(t) dt where w(t) is the density

function of the waiting time. In an M/M/1 system w(t) = (µ − λ)e−(µ−λ)t where λ is the
arrival rate and µ is the service rate. In this case the expected cost equals C

µ−a−λ
. Note that

the case of linear waiting costs is obtained when a = 0.
4See Deacon and Sonstelie [43] and Png and Reitman [140] for empirical studies concerning
this parameter.
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In some cases we will deal with models of class decision, where cus-
tomers belong to classes and each class makes its decisions to maxi-
mize the total welfare of its members. This assumption leads to a non-
cooperative game with a finite number of players. It is assumed that the
arrival processes of customers in various classes are independent, and in
particular, if the joint arrival process is Poisson with rate λ, and the pro-
portion of class-i customers is pi, then the arrival process of i-customers
is Poisson with rate piλ.

We use the term waiting time for the time from arrival to departure.
Some authors use the term sojourn time. Waiting time excluding service
time is referred to as queueing time.

4. Queueing theory preliminaries

This section contains a short account of some basic concepts and re-
sults from queueing theory which will be used frequently in this book.
We use conventional notation to describe basic models. For example,
an M/G/s system has s identical servers facing a Poisson stream of
customers and no specific service distribution is assumed (M stands for
“Markovian” whereas G stands for “general”). The quoted results as-
sume steady-state conditions.

We consider a variety of types of decisions made by the customers of
a queueing system. A main one is whether to join or not. We apply the
common terminology that distinguishes between balking as the act of
refusing to join a queue and reneging as the act of leaving a queue after
joining it. The arrival process usually refers to the process by which
the demand for service is generated, whereas the joining process consists
only of those customers who decide to join (i.e., they do not balk). In
the literature, the rates of arrival and joining are often termed as the
potential demand, and the effective arrival rate. When the arrival and
joining rates differ, that is when balking is exercised, we often use Λ for
the arrival rate and λ for the joining rate.

The service discipline mostly discussed in this book is first-come first-
served (FCFS). However, we frequently deal with other regimes. There
are two common versions of last-come first-served (LCFS) disciplines.
The first, without preemption, in which a new arrival is positioned at
the head of the queue but the customer in service is allowed to complete
it. The second, with preemption, in which a new arrival preempts a
customer who might be in service. It is usually assumed that service,
when resumed, is continued from the point where it was interrupted.
The acronym used to describe this discipline is LCFS-PR.

Another queueing regime is processor sharing. It has two common ver-
sions. Under egalitarian processor sharing (EPS) the server splits its ser-
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vice capacity evenly among all present customers. In particular, if n cus-
tomers are present during the entire time interval of length ∆t, and at the
beginning of this interval their completed workloads were (x1, . . . , xn),
then at its end their completed workloads are (x1 + ∆t

n , . . . , xn + ∆t
n ).

Also, if the service requirements are exponential with rate µ, then a
tagged customer completes his service during the next ∆t units of time
with probability µ

n∆t + o(∆t). Otherwise, when the split of capacity
is based on customers’ parameters, it is called discriminatory processor
sharing (DPS). There are also two versions of random order disciplines.
In one, whenever a server becomes free, a random customer from the
queue is selected to commence service. In the other version, whenever
a server completes service, a customer from the queue is randomly cho-
sen to be the one to whom this service is granted. We will mention
some similarities between EPS and the latter type of the random order
discipline.

A service discipline is strong if the rule by which the next customer to
be served is selected does not take into account the actual residual service
requirements. It is work-conserving if the server is never idle when
the queue is not empty, and a customer whose service was interrupted
resumes it from the point of interruption. Under a work-conserving
discipline, the total unfinished work at any time is the same as in the
corresponding FCFS model.

Examples for disciplines that are strong and work-conserving are FCFS,
LCFS, random order, order which is based on customers payments, and
EPS.

Service requirements are assumed to be independent and identically
distributed. Denote by µ−1 the (common) expected service requirement
(i.e., µ is the rate of service). For stability, assume that the system’s uti-
lization factor ρ = λ

µ is strictly less than 1 (sometimes, when individual

optimization leads to stability, this assumption is removed).
The following five results hold when the arrival process is Poisson with

rate λ, the service distribution is exponential (an M/M/1 model) with
rate µ, and the service discipline is strong and work-conserving. They
also hold for M/G/1 models when the service discipline is either EPS or
LCFS-PR.

The probability that n (n ≥ 0) customers are in the system (at
arbitrary times as well as at arrival times) is

(1 − ρ)ρn. (1.2)
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The expected number of customers in the system is

ρ

1 − ρ
. (1.3)

The expected waiting time is

1

µ(1 − ρ)
=

1

µ − λ
. (1.4)

The expected length of a busy period, i.e., the expected time from an
arrival to an idle server until the server becomes idle again, is5

1

µ(1 − ρ)
. (1.5)

The expected time between a customer’s arrival and the first time
the server is idle is

1

µ(1 − ρ)2
. (1.6)

The following property holds for M/M/1 queues:

The time it takes to reduce the number of customers in the system
from n to n−1, n ≥ 1, and the length of a busy period are identically
distributed.

For a general service distribution we obtain the M/G/1 model. The
Khintchine-Pollaczek (K-P) formula calculates the expected queueing
time in an M/G/1 queue where the service discipline is strong, work-
conserving and without preemption. Examples for such disciplines are
FCFS, LCFS without preemption, and random order. Examples for
disciplines for which the K-P formula does not hold are EPS and LCFS-
PR. The K-P formula says that the expected queueing time (excluding
service) is

Wq =
λx2

2(1 − ρ)
, (1.7)

where x2 denotes the mean squared service time.

5This expression is identical to (1.4). It can be explained by observing that in a LCFS-PR
M/M/1 system, an arrival stays for a length of time that has the same distribution as a
busy period. Moreover, all strong and work-conserving disciplines in M/M/1 queues share
the same expected waiting time.
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5. A shuttle example
In this section we illustrate some of the issues presented in the previous

section.6 The model is concerned with two servers operating according
to different modes of batch service. For convenience, we present the
model in terms of transportation services. Consider two types of such
services. The first is a shuttle service that departs whenever the number
of waiting passengers reaches the transporter’s capacity.7 We assume the
capacity of a transporter is seven passengers. No limit on the number
of transporters is assumed. The second is a bus service. Buses arrive
according to a stochastic process with a known expected residual inter-
arrival time8 which we assume to be five minutes. No limit on the bus
capacity is assumed.

Commuters are assumed to have no preference as to the type of ser-
vice, and their only concern is their expected waiting times. The gen-
eration of commuters who require service is assumed to form a Poisson
process with rate λ. We analyze the commuters’ decision process under
two different cases. In the observable model, an arriving commuter ob-
serves the number of waiting commuters at the shuttle service, whereas
in the unobservable model he does not have this information.

5.1. The unobservable model
Suppose that when making their choice, commuters are not informed

about the number of commuters at the shuttle terminal at that instant.
Also, once a decision is made, it is too costly to change it.

The waiting time of a commuter who selects the shuttle service de-
pends on the choice made by the others. Specifically, the higher the rate
of arrival to the shuttle station, the lower the expected waiting time
for this service. Thus, if a critical mass of the commuters chooses the
shuttle service, then the expected waiting time until the shuttle departs
might be sufficiently low, making it attractive for individual commuters.
This, of course, is possible only if λ is not too small. We will show that
the precise condition is λ > 3

5 , which is assumed below. Consequently,
we expect one of the following situations: either all choose the shuttle
service, or none do.

6The model which we describe in this section is an example of a coordination game. See, for
example, Crawford [38].
7Compare with Kosten’s “unscheduled ferry problem” and “custodian’s problem” [93].
8The residual inter-arrival time is the period between a random inspection of the process
until an arrival occurs.
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Both solutions define equilibria and nothing in the description of the
model can determine which solution will be obtained. Moreover, as we
show next, both are ESS.

A strategy, pure or mixed, corresponds to a fraction, p, which is the
probability of selecting the shuttle service (so that 1−p is the probability
of selecting the bus operation). Let W (p, q) be the expected waiting time
for an individual who uses strategy p, while the others use strategy q.
Strategy p is an ESS if the following two conditions hold:

W (p, p) ≤ W (q, p) for any strategy q;

if W (q, p) = W (p, p) for q 6= p, then W (p, q) < W (q, q).

Both p = 0 and p = 1 are ESS, since W (1, 1) < W (q, 1) (respectively,
W (0, 0) < W (q, 0)) for any q 6= 1 (respectively, q 6= 0) and hence the
second condition for an ESS is automatically satisfied.9

Next we examine whether additional equilibria, obviously mixed, ex-
ist. Suppose that commuters use a mixed (symmetric) strategy with
0 < p < 1. The resulting arrival process to the shuttle is Poisson with
rate pλ. This strategy defines an equilibrium if commuters are indiffer-
ent between using the shuttle and the bus, so that no commuter has an
incentive to change his behavior. However, such an equilibrium is not
an ESS. Indeed, if any fraction (let alone all) of the commuters changes
its behavior, say by making the bus service more popular, this will tip
the balance and make the bus service more attractive. In other words,
deviation from the equilibrium is self-perpetuating, and it causes more
(and more) to deviate in the same direction, leading to a new equilib-
rium in which all use the bus. Similarly, any shift to a more frequent
use of the shuttle service will result in everybody using this service.

Recall that the shuttle capacity is 7 and the expected waiting time for
a bus is 5 minutes. Assume that the commuters follow the mixed strategy
p. If a tagged commuter selects the shuttle service, then the number of
waiting commuters that he meets upon arrival is i with probability 1

7

for i = 0, . . . , 6, and his expected waiting time equals 6−i
λp .10 Therefore,

his (unconditional) expected waiting time is 3
λp . If p < 3

5λ (respectively,

p > 3
5λ ) then his unique best selection is the bus (respectively, shuttle).

9If, for example, the shuttle operator prefers the solution with p = 1, then one way to attain
this goal is by convincing the commuters that this is indeed the situation!
10This is where the steady-state assumption is used. The number of commuters waiting for
the shuttle service defines a Markov process with the state space S = {0, 1, . . . , 6}. The only
transitions are from state i to state (i + 1) mod 6 and they all have rates λp. The resulting
limit probabilities are uniform.
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Figure 1.4. Best response vs. fraction of shuttle users

He is indifferent between the two options if p = pe where pe = 3
5λ .11

Thus, pe is an equilibrium strategy. However, pe is not an ESS. For
example, W (0, pe) = W (pe, pe) but W (0, 0) < W (pe, 0) = ∞. A similar
result holds when 0 is replaced with 1. In fact, pe is a best response for
an individual only if all others use this strategy, whereas any strategy
p is a best response against pe. Note that if all use p > pe then 1 is
uniquely the best response, and if p < pe then 0 is uniquely the best
response (see Figure 1.4).

Remark 1.3 The best response function is monotone non-decreasing.
This is an example of an FTC situation, which explains the existence of
multiple equilibria.

To summarize, three equilibrium strategies exist in the non-trivial
case where λ > 3

5 . The two pure equilibria are ESS. Moreover, p =
0 remains the unique best response as long as the rest use strategy
p < 3

5λ . Similarly, p = 1 is the unique best response as long as the

the rest use strategy p > 3
5λ . The stability of the equilibria p = 0

and p = 1 is reflected by the property that even if a non-negligible
deviation from strategies 0 or 1 takes place among all commuters, the
best response is not affected. The mixed equilibrium prescribes the
shuttle with probability pe = 3

5λ . This equilibrium is not an ESS.

11When 3
5λ

> 1, commuters appear at a rate so low that even when all of them use the
shuttle service, the individual’s best response is still to use the bus service. In other words,
when λ < 3

5
, using the bus service is a dominant strategy.
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5.2. The observable model
Assume now that commuters observe the number of people already

waiting at the shuttle terminal, and then decide which service to choose.
Of course, the higher the number of commuters already waiting for the
shuttle, the more a new arrival tends to select this service.

Consider an individual who arrives when the shuttle is empty, and
assume the most favorable case in which all select this service. His
expected waiting time for the shuttle service is then 6

λ . If under these
conditions it is best for him to select the shuttle service, it is of course
also best for those who observe a longer queue for the shuttle service.
On the other hand, if he does not select the shuttle service, nobody will
(the next arrivals will also face an empty queue and will follow through
with the same reasoning), and hence this service will never be used. The
conclusion of this analysis is that if λ > 6

5 , all use the shuttle service

and if λ < 6
5 , none do.

This informal analysis is correct but not complete. In particular, it
does not distinguish between equilibria which are subgame perfect and
those which are not. We now proceed with a formal analysis.

A pure strategy is a function from the number, i, of commuters wait-
ing for the shuttle upon arrival of a commuter to the set of actions (i.e.,
which service to select). For example, the strategy δ = (s, b, s, b, s, b, s)
prescribes taking the shuttle whenever i is even and taking the bus when-
ever i is odd. It is clear that those states where b is prescribed are
recurrent (in fact, absorbing) and those where s is prescribed are tran-
sient. The exception for the latter is δ = (s, s, . . . , s) where all states are
recurrent.12

When λ > 6
5 , (s, s, . . . , s) is the unique equilibrium. Moreover, as all

states are recurrent this is also the unique SPE. The analysis is more
involved when λ < 6

5 . Now the strategy (s, s, . . . , s) is not an equilibrium:
given that all follow it, it prescribes a suboptimal action for the recurrent
state i = 0. Therefore, a necessary condition for a pure strategy δ to be
an equilibrium is that i(δ) ≥ 0 where

i(δ) = max{i|δ(i) = b}.
As said above, all states for which the bus is prescribed under δ are
recurrent (in fact, absorbing), whereas the others are transient. Thus, for

12A state is said to be recurrent if a Markov process which initiates in it will visit it again
with probability 1. Alternatively, this state will be visited an infinite number of times with
probability 1. A recurrent state is said to be absorbing if once a process enters it, it will
stay there forever with probability 1. A non-recurrent state is said to be transient. In other
words, a Markov process which initiates in it will visit it again with probability less than 1,
and thus the number of visits there is finite with probability 1.
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an equilibrium, only optimality at the former group has to be checked.13

In fact, only optimality at i(δ) has to be checked since if b is an optimal
action at i(δ), it is certainly an optimal action for states i such that
i < i(δ), and if δ(i) = s for i 6= i(δ) then i is transient. In particular,

δ is an equilibrium if and only if 6−i(δ)
λ ≥ 5. In other words, the set of

pure equilibria are all δ with 0 ≤ i(δ) ≤ 6 − 5λ.
Clearly, in a SPE, s is prescribed for state 6. Given that i > 6 − 5λ

and that for every state j, j > i, the strategy prescribes s, then to be
a best response, the strategy must also prescribe s to state i. Likewise,
for states i ≤ 6 − 5λ it must prescribe b. Thus, an equilibrium strategy
is subgame prefect if and only if it prescribes the bus for all states
i ≤ 6 − 5λ and the shuttle for the rest.

To summarize, excluding the cases where 6− 5λ is an integer, for any
λ there exists a unique SPE which is of the type (b, . . . , b, s, . . . , s).14

When 6 − 5λ ≥ 2, more equilibria exist and they are of the form
(x, . . . , x, b, s, . . . , s) where x stands for any action and the last b ap-
pears in some position i where i ≤ 6 − 5λ.

We conclude the equilibrium analysis by comparing the unobservable
and the observable cases. When 3

5 < λ < 6
5 , the shuttle operator is

better-off in the unobservable case than in the observable case. Indeed,
in the unobservable case, there is one ESS in which the shuttle operator
gets all of the demand whereas in the observable case, the shuttle op-
erator gets no demand at all in all possible equilibria. If the option is
given, the shuttle operator would conceal the information on how many
commuters are waiting. The opposite holds when λ > 6

5 . Here, when the
information is concealed there exists an ESS where the shuttle operator
receives no demand. Therefore, the shuttle operator prefers to reveal the
information and get all the demand in the unique equilibrium (in fact,
SPE).15 When λ < 3

5 , the shuttle operator is indifferent between the
options since in both cases all of the demand goes to the bus operator.

5.3. Social optimality
We now illustrate the difference between the equilibrium solution and

the solution that maximizes the overall welfare of the commuters. In our
model, a commuter who chooses the shuttle generates positive external-
ities. This means that by increasing the rate of arrival to the shuttle,
the expected waiting time of the other commuters who make the same

13The steady-state assumption is used here: under these conditions, the transient states have
zero probability of being observed by an arrival.
14The set of b’s may be empty, when λ > 6

5
, but not the set of s’s.

15Compare with §3.2.
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choice is reduced (whereas the expected waiting time of the bus users is
not affected). Customers who independently maximize their own welfare
ignore these externalities, and it therefore may happen that the shut-
tle is less used in equilibrium than under a social welfare maximizing
solution.

The socially optimal solution of the unobservable model is simple.
Since the social goal is to minimize the expected waiting time, the solu-
tion is either that all commuters use the shuttle or that they all use the
bus. In the first case the expected waiting time is 3

λ and in the second

case it is 5. Therefore, if λ > 3
5 then all should use the shuttle, and if

λ < 3
5 then all should use the bus. If λ = 3

5 the two solutions are socially
equal, meaning that it does not matter which means of transportation
the commuters use, as long as they all use the same one. Note that when
λ < 3

5 the unique equilibrium solution is socially optimal. When λ > 3
5 ,

social optimality requires that all use the shuttle, but the solution that
all use the bus is also an equilibrium.

The social considerations in the observable case are similar to those
in the unobservable case, and the same behavior is optimal: if λ > 3

5

then all should use the shuttle, and if λ < 3
5 then all should use the bus.

Note that when λ > 6
5 , the socially optimal solution where all use the

shuttle is also an equilibrium, but in the range 3
5 < λ < 6

5 the socially
optimal solution where all use the shuttle is not an equilibrium. The
reason, as we have mentioned before, is that the commuters ignore the
positive externalities associated with the action of choosing the shuttle.
Among those who ignore the externalities are those who arrive to an
empty shuttle: optimizing their individual welfare they prefer the bus
but socially it is desired that they join the shuttle’s queue.

6. Non-stochastic models
In this section we briefly mention some papers that deal with equi-

libria in non-stochastic queueing models. When a good is available in
limited quantity and sells below market price, queues form. The length
of waiting time stabilizes at such a level that the full price (consisting of
the good’s nominal price plus the waiting cost) of the marginal potential
consumer equals the good’s value. Thus, the resulting equilibrium wait-
ing time may be independent of the service time. Barzel [26] explained
that

the resource cost of this allocation, time spent in the queue, represents a cost
of establishing property rights in the good.
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He also concluded that although one expects the poor, who have low
time value, to profit from the institution of “rationing by waiting”, the
beneficiaries may often be among the rich.

Donaldson and Eaton [46] considered price discrimination between
consumers with low and high time values by offering to sell the product
under two options involving different combinations of money and time
prices. We will describe related queueing models in §7.

Another model in Shy [156], is based on MacKie-Mason and Varian
[115]. There, the utility of customer i, i = 1, . . . , n, is assumed to be
given by

Ui =
√

qi − C
Q

U
− pqi,

where qi is the capacity allocated to (or used by) customer i, Q =
∑n

j=1 qj , U is the total capacity available, C is a cost parameter, and p

is a price charged per unit of capacity. The term C Q
U reflects the effect

of congestion. Shy derived the equilibrium as well as the social optimal
capacity allocations, and showed that the two coincide when p = C n−1

U .
Several other papers in the economic literature deal with rationing

of goods through queueing, see [6, 135, 141, 160] and their references.
These papers model centrally planned economies in which products can
be purchased at a low official price after waiting in queues. The products
can also be purchased in “black markets” at higher prices and without
waiting. This situation opens possibilities for poor customers to spend
their time in queues, buy products at the official prices, and re-sell them
in the black market. Thus, each individual allocates his resources, money
and time, in order to maximize his utility. This literature treats waiting
times in queues in the same way it treats the prices, namely, it searches
for prices and waiting times which determine equilibria, and apart from
this no queueing mechanism that relates waiting time to supply and
demand is assumed. Therefore, such models do not fit the framework of
this book.



Chapter 2

OBSERVABLE QUEUES

This chapter deals with queueing systems, where an arriving customer
observes the length of the queue before making his decisions.

1. Naor’s model

The subject of Naor’s paper [133] is the control of a FCFS M/M/1
system. In Naor’s model, a queue manager announces an admission fee,
and customers react by setting a pure strategy which distinguishes the
states of the queue where customers join from those where they balk.
It is easily seen that individual optimization generally determines an
equilibrium based on a pure threshold strategy. The concept of equilib-
rium is not central in this model since the decision of whether to join
the queue in a given state is independent of the strategy adopted by
the other customers. Yet, a customer’s decision to balk when observing
a queue length greater than the threshold, is based on the assumption
that those present in the queue will not leave (renege) before they are
served (see Remark 2.1 below).

Naor noticed that in observable queues the individual’s decision devi-
ates from the socially preferred one. This gap is caused by externalities
generated when joining the queue: a customer who joins the queue may
cause future customers to spend more time in the system. The indi-
vidual’s objective does not take these externalities into consideration.
Because of these negative external effects, the equilibrium arrival rate is

21
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greater than the socially desired one.1 We start by listing the assump-
tions underlying Naor’s model:

1 A stationary Poisson stream of customers - with parameter λ - arrives to
a single server facility.

2 The service times are independent, identically, and exponentially dis-
tributed with parameter µ.

3 A customer’s benefit from completed service is R.

4 The cost to a customer for staying in the system (either while waiting or
while being served) is C per unit of time.

5 Customers are risk neutral, that is, they maximize the expected value of
their net benefit.

6 Utility functions of individual customers are identical and additive, from
the public (social) point of view.

7 Rµ ≥ C.2

8 The service discipline is FCFS.

9 A decision to join is irrevocable, and reneging is not allowed.

10 Upon arrival, a customer inspects the queue length and decides whether to
join or balk. A customer who balks leaves the system and never returns.

The individual’s optimizing strategy in this model is straightforward.
A customer who joins the queue when i customers are already in the
system (including the one who is currently served) expects a benefit

R − (i+1)C
µ . The customer then enters if this value is nonnegative, that

is, if i+1 ≤ Rµ
C . Otherwise, the customer balks. Consequently, the pure

threshold strategy ne with3

ne =

⌊

Rµ

C

⌋

, (2.1)

is an equilibrium strategy. Under this strategy, an arriving customer
joins the queue if he observes ne − 1 or fewer customers and balks if he
observes ne customers or more. Note that ne is the maximum possible
number of customers in the system under individual optimization, and
the result is an M/M/1/ne queueing system.

Overall (social) optimization is not as trivial. We observe that there
exists a pure threshold socially optimal strategy. This can be argued as

1Individual optimization causes more congestion than is socially desired also in more general
models. See, for example, Mills [129].
2Otherwise, all individuals, even in the most ideal situation of observing an empty system,
would balk.
3bxc denotes the largest integer which is less than or equal to x.
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follows: clearly, a pure optimal strategy exists, and any pure strategy
is in effect a threshold strategy, where the threshold coincides with the
smallest queue size for which the strategy prescribes balking (see Remark
2.2).

Denote by SO the expected social benefit per unit of time.4 Given a
maximum queue length of n, the probability of observing n customers
in the system is qn = ρn

∑n

i=0
ρi . Assuming ρ 6= 1, the probability that an

arriving customer joins is5

1 − qn =
1 − ρn

1 − ρn+1
, (2.2)

and the expected number of customers in the system is

Ln =
ρ

1 − ρ
− (n + 1)ρn+1

1 − ρn+1
.

Hence,

SO = λR(1 − qn) − CLn

= λR
1 − ρn

1 − ρn+1
− C

[

ρ

1 − ρ
− (n + 1)ρn+1

1 − ρn+1

]

. (2.3)

Let n∗ be a maximizer of (2.3). Naor designed a procedure for com-
puting n∗ which is based on the property that the function given in (2.3)
is unimodal.6 Naor also showed that n∗ ≤ ne. In the next section we
present an alternative derivation for n∗.

In order to motivate customers to adopt the threshold n∗ rather than
ne, Naor suggested imposing an appropriate admission fee. Based on
(2.1), an admission fee p induces the socially optimal threshold if

n∗ =

⌊

(R − p)µ

C

⌋

. (2.4)

Payments are not considered part of the social welfare function and
therefore the exact fee is irrelevant as long as it satisfies (2.4).

Alternatively, the queue can be regulated by imposing a toll on wait-
ing, i.e., increasing C instead of reducing R. Such a toll, t, induces the

4The subscript O stands for observable.
5The results hold also for ρ = 1 when taking the appropriate limits. In fact, in this case
1 − qn = n

n+1
.

6Haviv and Puterman [77] showed in a different way that a threshold optimal strategy exists.
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optimal threshold n∗ if

n∗ =

⌊

Rµ

C + t

⌋

.

We will derive n∗ in Section 3.

Remark 2.1 If Assumption 9 is relaxed and customers are allowed to
renege, the decision of whether or not to join may depend on the behavior
of the customers who are already in the system. If some of them plan
to renege, then a customer may join even if he observes ne or more
customers in the queue. Yet, for a customer who joined after observing
at most ne − 1 customers, reneging later is clearly a suboptimal action
(see §5.1). After eliminating strategies that prescribe reneging, it is best
for an arriving customer who observes ne to balk.

Remark 2.2 Unless Rµ
C is an integer, the unique threshold equilibrium

strategy is ne. However, there are other non-threshold equilibria. For
example, joining whenever the queue size is not ne, is an equilibrium.
This may seem puzzling at first, but if all follow this strategy, then the
states corresponding to ne + 1 customers or more are transient. Hence,
whatever is prescribed for these states is irrelevant to establishing (or
refuting) that a strategy defines an equilibrium. It is true, though, that
the threshold strategy ne is the unique SPE.

Remark 2.3 If Rµ
C is an integer, then mixing with any probability be-

tween joining and balking when observing ne − 1 customers (and other-
wise doing as before) is also an equilibrium strategy.

2. The LCFS-PR model
Hassin [66] suggested a way to achieve social optimality without im-

posing admission fees. This section is devoted to describing this ap-
proach and its implications. We adopt Naor’s model with two changes:

Assumption 8 changes as follows:

The service discipline is LCFS-PR, that is, a newly arrived customer joins the
system and is immediately served, possibly preempting the service of another
customer. Preempted customers join a queue where later arrivals get priority
over earlier arrivals. When a preempted customer’s turn to re-enter service
comes, his service is resumed from the point of interruption.

Assumption 9 changes as follows:

At any instant, each customer is allowed to renege at no additional cost and
never return. The queue is fully observable at any instant, so that a customer
can base his decision on the queue length and on his position in it.
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In a FCFS queue, a new customer is placed at the end of the queue,
and therefore imposes no negative externalities on customers already in
the system. However, this customer may impose negative externalities
on future arrivals. The essence of the discrepancy between individual
and social optimization in Naor’s FCFS model lies in the fact that the
customer ignores these externalities. Therefore, the individual may join
a queue even when his own expected welfare is smaller than the expected
reduction in welfare to future customers.

The externalities imposed by a newly arrived customer on those who
are presently in the system, are highest if he is assigned to the head of
the queue. Under LCFS-PR, every arriving customer is placed at the
head of the queue, pushing back those customers who arrived earlier.
However, all future arrivals will be placed in front of him and therefore
he does not impose any external effects on them.

Hassin observed that LCFS-PR leads to a socially optimal behavior
by the customers. The relevant decision that an individual faces is when
to leave the queue rather than whether to join it. By the memoryless
property of the exponential distribution it follows that the distributions
of the customers’ residual service are independent of the queue length
and of the amount of service each of them has already received. Since
the model assumes homogeneous customers, the waiting customers have
identical time and service values as well as identical distributions of
residual service time. Therefore, when a customer decides to renege
there is no other customer behind him. Since everybody present is served
prior to the person at the end of the queue, he imposes no externalities,
regardless of his action. In other words, his considerations coincide with
those of the society, and hence he will reach the same conclusion of
whether or not to renege. In particular, his threshold is n∗. (Note that
from the social point of view the order of service is irrelevant, so that
the socially optimal threshold is the same under the FCFS and LCFS-
PR regimes.) In the next section we use this observation in order to
determine n∗.7

We now discuss the LCFS-PR model and its implications.

There is a strategic difficulty associated with the LCFS-PR model.
A customer whose service has been preempted is motivated to renege
and re-enter the system, pretending to be a new arrival. Such behav-

7Remarks 2.1 and 2.2 also apply to the FCFS-PR model. A customer in position n∗ knows
that the same reasoning that led him not to renege earlier leads everyone in front of him
not to renege while in positions 1 to n∗ − 1. Similarly, the equilibrium is not unique. For
example, reneging if and only if there are exactly n∗ customers ahead in the queue is also an
equilibrium strategy. Yet, the threshold strategy of n∗ is the unique SPE.
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ior contradicts Assumption 10 in Naor’s model and therefore must
be prevented administratively.8

The important property of the LCFS-PR model that leads to optimal
individual behavior is that the last customer in the queue remains at
the end of the queue as long as he is in the system and therefore
he imposes no externalities. This property is preserved by any queue
discipline with the property that the newly arrived customer is placed
anywhere except for at the end of the queue. A particularly appeal-
ing policy is to assign a newly arrived customer, whenever the server
is busy, to the position before the last. This policy reduces the cus-
tomer’s incentive to renege and re-enter as a new arrival. There is,
however, another difficulty associated with this solution. Suppose
that customer A is now at the end of the queue while B is just one
position ahead of him. If A reneges, then B becomes the last one, and
all future arrivals will be positioned ahead of him. Thus B may find
it beneficial to offer A a payment so that A doesn’t renege. Such side
payments must be prevented to preserve optimal behavior. This can
be done by concealing the identities of the customers in the queue.

The solution just proposed has other advantages over LCFS-PR: (i)
Preemption may incur some loss of service and this solution is asso-
ciated with fewer preemptions. (ii) Risk averse customers are worse
off under the LCFS-PR discipline than under other queue disciplines
like FCFS, since LCFS-PR is associated with a larger waiting time
variance.9 Under the LCFS-PR rule some customers are continuously
served without waiting while others wait for long periods of time and
finally renege without being served. In particular, in a FCFS queue
no customer incurs negative utility (assuming that the utility asso-
ciated with immediate balking is 0), while this is not the case with
LCFS-PR. Assigning new arrivals to the position before last reduces
all these drawbacks while maintaining a socially optimal behavior.

The model is of course a simplified one. However, the qualitative
implications are quite general. It is well known that if customers
differ by their characteristics (waiting cost, service distribution, ser-
vice value, etc.) social welfare can be increased by proper assignment

8If waiting “at home” is less costly than waiting in the queue it may be socially desirable
that a customer returns to the system after balking or reneging. Models with retrials are
discussed in §5.
9Kingman [87] showed that FCFS (respectively, LCFS-PR) minimizes (respectively, maxi-
mizes) the variance of the waiting time.
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of priorities (this is the subject of §4). A consequence of the above
discussion is that:

– Assigning priorities may be beneficial even when the customers
are identical!

Suppose that priorities are assigned randomly or according to some
irrelevant basis. The customer at the end of the queue will usually
have low priority, and may expect most future arrivals to be placed in
front of him. This decreases the externalities he imposes and makes
his decision of whether to renege closer to the socially optimal one.

Olson [136] showed that a LCFS-PR regime can be induced through
an appropriate price menu, so that customers receive priority levels
based on the amount they paid rather than administratively. Such a
pricing system will also achieve social optimality. See also §4.1.3.

An LCFS-PR discipline induces optimal customers’ behavior also in
more general observable models. For example, consider an M/M/s
system, where the servers may have different service rates. An ar-
riving customer starts service at the fastest server. This action may
preempt the service of an earlier customer who is then moved to the
second fastest server, and so on. A customer at the slowest server
may be returned to the queue. It is also possible that the customer at
the end of the queue reneges at this stage as a result of the increase
in his expected waiting time. As in the single server system (and
because of the same reasons), reneging is done in the socially optimal
way. Variations of this model with s = 2 were analyzed by Xu [177].

Illustrative descriptions of the LCFS-PR model and its consequences
were given by Nalebuff in [132] and Landsburg in [98].

3. Social optimization
In this section we derive the threshold equilibrium strategy under the

LCFS-PR regime.10 As discussed in the previous section, this threshold
coincides with n∗, the socially optimal threshold.

Let n be the maximum possible length of the queue, i.e., a customer
reneges whenever there are n other customers in front of him. This
number includes the one in service. Let fn be the expected benefit for
a customer in position n in the LCFS-PR queue when all (including the
customer under consideration) renege from position n+1. Of course, fn

10See Olson [136] for an alternative proof.
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is monotone decreasing in n and n∗ is the largest n such that fn ≥ 0.
Next we determine the value of fn in terms of the model’s parameters.

Lemma 2.4

fn = R
1 − ρ

1 − ρn+1
− C

µ(1 − ρ)

[

n − (n + 1)ρ
1 − ρn

1 − ρn+1

]

. (2.5)

Proof: Under the stated conditions, the probability that the customer
eventually receives the benefit of R is the same as the ruin probability
in the gambler’s ruin problem11 when the initial asset is n, the goal is
n + 1 and the winning probability in each round equals p = λ

λ+µ = ρ
1+ρ .

Let q = 1 − p. The ruin probability is

(

q
p

)n+1
−
(

q
p

)n

(

q
p

)n+1
− 1

=
1 − ρ

1 − ρn+1
.

This value multiplied by R is the positive part of the utility of an in-
dividual who is in position n and plans to renege in case he reaches
position n + 1. For the negative part, note that the expected number of
rounds until the game is over, that is, the gambler is either ruined or he
reaches his goal, is

n

q − p
− n + 1

q − p

1 −
(

q
p

)n

1 −
(

q
p

)n+1 =
1 + ρ

1 − ρ

[

n − (n + 1)ρ
1 − ρn

1 − ρn+1

]

.

Multiply this expression by (λ + µ)−1 to get the expected time in the
system for such a customer and then by C to get the expected waiting
cost.

Based on (2.5), fn ≥ 0 if and only if

Rµ

C
≥ n(1 − ρ) − ρ(1 − ρn)

(1 − ρ)2
. (2.6)

Denote the right-hand side of (2.6) by g(n) and observe that

g(n) =
n(1 − ρ) − ρ(1 − ρn)

(1 − ρ)2

11See, for example, [53].
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=
n −∑n

i=1 ρi

1 − ρ

=
n
∑

i=1

iρn−i

=
n−1
∑

i=0

(n − i)ρi.

The function g(n) is unbounded and strictly increasing in n for any fixed
ρ > 0 whereas g(0) = 0. A unique value of n∗ therefore exists such that

g(n∗ − 1) ≤ Rµ
C < g(n∗) and this is the maximum number of customers

in the system under a welfare maximizing control of the queue.

In Naor’s presentation, let g(ν) = ν(1−ρ)−ρ(1−ρν )
(1−ρ)2 be defined over the

real line and let ν∗ be the unique solution to g(ν) = Rµ
C , then n∗ = bν∗c.

Also,

g(ν) − ν =
ρ

1 − ρ2

[

ν(1 − ρ) − (1 − ρν)
]

=
ρ(1 − ρ)

1 − ρ2

[

ν − (1 + ρ + · · · + ρν−1)
]

≥ 0.

Therefore, recalling (2.1),

n∗ = bν∗c ≤ bg(ν∗)c =

⌊

Rµ

C

⌋

= ne.

In words:

Individual optimization leads to longer queues than are socially de-
sired.

This result is robust in the sense that it also holds for more general
queueing models, as shown in [84, 90, 109, 157, 163, 178, 179].

4. Profit maximization
Suppose now that the server charges an admission fee p but, as op-

posed to the social point of view where the funds collected are considered
to be transfer payments, now they are the server’s profits. The model
assumes that the fee p is announced and customers base their decision
of whether to join the queue on this fee. Thus, a customer who observes
i customers in the system enters only if the value R of service is at least
as large as the expected full price p+C i+1

µ . Another way to look at this
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behavior is that customers evaluate service completion only by R − p.
Given p, the maximal possible length of the queue is, as in (2.4),

n =

⌊

(R − p)µ

C

⌋

. (2.7)

Recall that qn denotes the probability of observing n customers in the
system given that n is also the threshold they adopt, i.e., n is the largest
possible number of customers to be present at the same time. Thus, qn

is the balking probability. The effective arrival rate is then λ(1− qn) and
the rate of profits is λ(1 − qn)p. The server chooses a desired threshold
n and sets the maximum price that conforms with this threshold, that
is12

p = R − Cn

µ
. (2.8)

This, coupled with (2.2) implies that for a given threshold n, the server’s
profit is

ZO(n) = λ
1 − ρn

1 − ρn+1

(

R − Cn

µ

)

= λR
1 − ρn

1 − ρn+1

νe − n

νe
, (2.9)

where

νe =
Rµ

C
.

A profit-maximizing threshold satisfies the following two conditions:
ZO(n) > ZO(n − 1) and ZO(n) ≥ ZO(n + 1). Substituting in (2.9),
the first condition amounts to

1 − ρn

1 − ρn+1
(νe − n) >

1 − ρn−1

1 − ρn
(νe − n + 1),

or

(νe − n)
(1 − ρn)2 − (1 − ρn−1)(1 − ρn+1)

(1 − ρn+1)(1 − ρn)
>

1 − ρn−1

1 − ρn
.

Assume that ρ 6= 1. Note that the fraction in the left-hand side is
positive so that both sides can be divided by it without changing the
direction of the inequality. This leads to

νe − n >
(1 − ρn−1)(1 − ρn+1)

ρn−1(1 − ρ)2
.

12The price p given in (2.8) is such that an arrival who observes n − 1 customers in the

system, where n =
(R−p)µ

C
, is indifferent between joining (after paying) or balking. Hence,

this price is optimal only under the assumption that customers break ties in favor of joining.
Otherwise, it is better to charge a little less than p, and formally no optimal price exists.
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Substituting n + 1 for n and reversing the direction of the inequality,
the second condition becomes

νe − n − 1 ≤ (1 − ρn)(1 − ρn+2)

ρn(1 − ρ)2
.

These two conditions can be summarized to

n +
(1 − ρn−1)(1 − ρn+1)

ρn−1(1 − ρ)2
≤ νe < n + 1 +

(1 − ρn)(1 − ρn+2)

ρn(1 − ρ)2
. (2.10)

Define a variable ν ≥ 1 which depends on ρ for ρ ≥ 0 through the
following relation:

νe = ν +
(1 − ρν−1)(1 − ρν+1)

ρν−1(1 − ρ)2
. (2.11)

For given νe and ρ, the right-hand side strictly increases from 0 to ∞
with ν.13 Therefore, there exists a unique solution νm to (2.11). Let
nm = bνmc, then nm uniquely satisfies the optimality conditions (2.10).
The profit-maximizing fee is then R−nm

C
µ , and the corresponding rate

of profits is

ZO = λR
1 − ρnm

1 − ρnm+1

(

1 − nmC

µ

)

. (2.12)

It is immediate that νe ≥ νm so that ne ≥ nm. Naor also showed that
ne ≥ n∗ ≥ nm.

We now describe some additional results.

Naor showed that the profit-maximizing fee is greater than the welfare
maximizing fee. Knudsen [90] generalized this result to multi-server
queues with nonlinear waiting cost functions. In particular, Naor’s
result still holds when the benefit from service is decreasing and con-
cave in the time of stay in the system. Simonovits [157] proved a
similar result for GI/M/s queues.

Yechiali [178] showed how to compute the profit-maximizing fee in
a GI/M/1 queue under two models. In the first, customers react
to the fee independently, as in (2.7). In the other, customers are
organized and collectively choose a threshold that maximizes their

13Naor observed that if ρ = 1 no true singularity exists for this function. The function is
well behaved there and its value equals ν2 − 1.
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total welfare given the fee, which is considered from their point of
view as a real cost (and not a transfer payment, as assumed in Section
3). The server knows the way customers react to the fee and selects
the fee in a way that maximizes profits. Let nm and n̄m be the
thresholds which result under profit maximization when customers
react in an individual and in a collective way, respectively. Simonovits
[157] proved that in the M/M/1 queue n̄m ≤ nm, and conjectured
that the same relation holds for a general service distribution.

Rue and Rosenshine [149] investigated the sensitivity of the thresh-
olds and gains in Naor’s model to changes in the arrival rate. The
qualitative results are:

– Under individual optimization, the social welfare is a unimodal
function. It increases with λ for small values of λ due to the
increased usage of the server, but decreases for larger values due
to the increased expected waiting time.

– The welfare maximizing threshold is a monotone non-increasing
function of the arrival rate.

Hassin [66] also investigated the effect of changes in the arrival rate
on the thresholds. As λ grows from 0 to ∞, νe is constant, ν∗ is
non-increasing, and νm increases from 1 reaching its maximum value
at λ = µ, and then decreases back to 1 as λ → ∞. For λ < µ,
when either n∗ or nm changes, the difference between them decreases.
However, for λ > µ, this difference decreases when n∗ changes and
increases when nm changes, since both are decreasing step-functions
and ν∗ > νm.

Denote by ŜO the social welfare under a profit-maximizing fee in the
observable model. Substituting nm in (2.3) one gets that

ŜO = λR

{

1 − ρnm

1 − ρnm+1
− 1

νe

[

1

1 − ρ
− (nm + 1)ρnm

1 − ρnm+1

]}

. (2.13)

The functions ZO and ŜO are illustrated in Figure 2.1. ŜO has dis-
continuities at the values of λ where nm changes. The jumps are
upwards for λ < µ and downwards when λ > µ. The functions coin-
cide whenever nm = 1, since in this case the server’s profits coincide
with the social welfare (the consumer surplus is 0 in both cases). As
λ increases, the functions approach µR − C which is the net rate of
benefit to the customer who is currently served.
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Figure 2.1. Profit and social welfare under a profit-maximizing fee

In the LCFS-PR queue, the expected welfare of each customer is
independent of the queue length at the time of his arrival. A profit-
maximizing fee exactly equals the value of expected welfare, and
leaves the customers with zero surplus.14 Under such a fee, every
arriving customer joins the system, and his behavior after joining is
independent of the fee. In other words, the optimal behavior of the
customers is preserved in a LCFS-PR queue even if it is managed by a
profit maximizer. This property contrasts the non-optimal behavior
induced by a profit maximizer in a FCFS queue.

14We assume that indifferent customers join. Otherwise the price should be slightly lower,
leaving some positive surplus. See the footnote about (2.8).
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5. Heterogeneous customers
Larsen [99] considered a generalization of Naor’s model assuming that

customers differ by their service values. Suppose that the service value
R of an arriving customer is a random variable with a distribution func-
tion F . An arriving customer knows his value, but this is his private
information and hence it cannot be used by the server to discriminate
among customers.

Suppose that an admission fee p is imposed. A customer who observes
i customers in the system joins if his service value is at least p + C i+1

µ .
Therefore, the joining process when i customers are present, is Poisson
with rate

λi = λF̄

(

p + C
i + 1

µ

)

,

where F̄ = 1 − F . The steady-state probabilities q0, q1, . . . are given by

qi = Aiq0, i ≥ 1

and

q0 =

[ ∞
∑

i=0

Ai

]−1

,

where for i ≥ 1

Ai =
λ

µ
F̄

(

p + C
i

µ

)

Ai−1,

and A0 = 1.
The server operates at rate µ as long as the system is not empty.

Hence, the average rate of profits to the server is then

Z(p) = (1 − q0)µp.

The expected social welfare gained from a customer who arrives while
the system is in state i is

Si(p) = F̄

(

p + C
i + 1

µ

) [

E

(

R
∣

∣

∣ R > p + C
i + 1

µ

)

− C
i + 1

µ

]

.

The average welfare contribution per unit of time is

S(p) = λ
∞
∑

i=0

qiSi(p).

This expression may be simplified by substituting

λqiF̄

(

p + C
i + 1

µ

)

= µqi+1,
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which gives

S(p) = µ
∞
∑

i=0

qi+1

[

E

(

R
∣

∣

∣ R > p + C
i + 1

µ

)

− C
i + 1

µ

]

.

Larsen conducted a numerical study assuming that R is a continuous
uniform random variable, and found that both Z(p) and S(p) are uni-
modal functions. For the special case where the customers join if and
only if the system is empty, Larsen proved that the profit-maximizing
fee is greater than or equal to the welfare maximizing fee, as in Naor’s
model.

In contrast, Edelson and Hildebrand [47] showed that this property
does not necessarily hold if customers also differ by their time values.
They presented an example with just two types of customers, where
various values for the parameters yield a socially optimal admission fee
that is smaller, equal, or greater than the profit maximizing fee. Afèche
and Mendelson [3] provided conditions under which each of these cases
occurs.

The model of Edelson and Hildebrand [47] and Parra-Frutos and
Aranda-Gallego [138] assumes two classes of customers with arrival rates
λi and time values Ci, i = 1, 2. This leads to thresholds n1 and n2 as in
(2.1) such that an i-customer joins if he observes no more than ni − 1
customers in the system.

Schroeter [154] modified Naor’s model by assuming that the time value
C is uniformly distributed over an interval [0, Cmax]. This assumption
simplifies the derivation of the profit-maximizing price. An individual
who observes k customers in the system joins the queue if his time value

C is at most (R−p)µ
k+1 . Assuming that Cmax is large enough so that a

customer with this time value does not join even when observing an
empty queue, the joining process is Poisson with a state dependent rate

λ(p, k) = a (R−p)µ
k+1 , where a = Λ

Cmax
and Λ is the potential rate of demand.

An analysis of this proportional balking model is presented in Page [139].
In particular, the expected rate of service completions is given by

λ(p) = µ(1 − e−a(R−p)).

The profit maximizer’s problem is to select a price p which maximizes
pλ(p). This price is obtained from the first-order condition

1 + ap = ea(R−p).

De Vany [41] considered an observable queue where the demand for
service is a function Λ(p) of the admission fee. After observing the queue,



36 TO QUEUE OR NOT TO QUEUE

some customers balk (if the queue size exceeds a common threshold), and
the resulting joining rate is λ(p). We see a problem in this model. The
dependence of the potential demand on the admission fee suggests that
customers are heterogeneous and we would expect them to have distinct
thresholds. Moreover, if there is no cost associated with observing the
queue, then every customer who values the service by at least p + C

µ
should arrive first and then decide whether or not to join according
to his individual threshold. On the other hand, there may be a cost
associated with arriving and observing the queue. In this case, the arrival
rate should stabilize at a level which depends on the expected full price
(consisting of the arrival cost, admission fee, and waiting cost) and not
only on the admission fee. De Vany’s main result is that, as in Naor’s
model, the fee charged by a profit maximizing server is too high and
thus the rate by which customers join is too small relative to the socially
optimal solution.15

Miller and Buckman [128] considered an M/M/s/s model: the first
s stands for the number of servers and the second for the maximum
number of customers that can stay in the facility at any given time.
Hence, there is no queue and an arriving customer who finds all servers
busy must balk. The model assumes heterogeneous service values, so
that for any given value of service fee, the demand consists of only those
customers whose service value exceeds the fee.16 Miller and Buckman
showed that the optimal fee T ∗ satisfies

T ∗ =
As(T

∗) − As−1(T
∗)

µ

where Ai(T ) is the expected social welfare per unit of time when the
number of servers is i and the service fee is T . Thus:

The social welfare maximizing price per expected unit time of service,
T ∗µ, equals the incremental productivity of the s-th server under the
optimal price T ∗.17

6. Non-FCFS queues without reneging
When the service discipline in an observable queue is not FCFS, the

decision of whether or not to join depends not only on the state of the
queue but also on the strategy adopted by future arrivals. In Section 2

15See [33] for a criticism of the model of [41].
16There is no waiting in queue and therefore the value of service is compared to the price
and not to a full price.
17Note that As−1(T ∗) is not the maximum rate of social gains in the s − 1 servers model,
since the optimal price then is not T ∗.
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we described the consequences of a LCFS-PR discipline when reneging
is allowed. In this section we describe several models where reneging
is forbidden. The equilibrium strategies in such models are different in
nature from those obtained when reneging is allowed.

6.1. LCFS
Tilt and Balachandran [168] considered a GI/M/s LCFS model (with-

out preemption) where reneging is forbidden, but balking is allowed.
Hassin and Haviv [73] considered the same model with emphasis on sub-
game perfect solutions. Consider first a GI/M/s/(N + s) LCFS model,
that is, where the number of customers in the system is at most N + s.
A customer who observes N customers in the queue balks. Since there
is no preemption in the model, a customer who observes a free server
joins if and only if R ≥ C

µ .
Tilt and Balachandran allowed heterogeneous service and time values,

and admission fees that depend on the customer’s type. They showed
how to compute an SPE when the queue length is bounded. We will
consider below the case of homogeneous customers.

Suppose that a customer arrives when all the servers are busy and
there are i customers in the queue. Recall that i = N means that
the customer must balk, so assume that 0 ≤ i < N . Note that of all
possible values of i in this range, the preferred one for a new customer
is i = N − 1. The reason is that these N − 1 customers do not impose
any waiting time on the new customer, since they are guaranteed to stay
behind him as long as he is in the queue. Moreover, the customer is not
concerned with future arrivals, as they are forced to balk as long as the
new customer is still in the queue.

The forced joining strategy prescribes joining the system as long as this
is possible. Let Qn be the expected queueing time of a customer who
observes n, n = 1, . . . , N , vacant positions upon arrival, when all other
customers adopt the forced joining strategy. Tilt and Balachandran
showed that for n = 1, . . . , N

Qn =
1

sµ

n−1
∑

j=0

(

λ

sµ

)j

.

Clearly, Qn is monotone increasing in n: a higher value of n means that
more future arrivals are expected to overtake the new customer. The
expected net benefit of such a customer, if he joins, is

Rn = R − C

(

1

µ
+ Qn

)

which is monotone decreasing in n.
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Suppose the model’s parameters are set so that for some k, 1 ≤ k ≤
N − 1, Rk > 0 but Rk+1 < 0. Then, the best response for a customer
who observes state n (when all others using the forced joining strategy)
is to join when 1 ≤ n ≤ k and balk otherwise. Remove now the forced
joining assumption. Still by induction we conclude that under an SPE,
customers join when n ≤ k and balk when n = k + 1. The fact that
customers do not join when n = k + 1 makes it worthwhile to join when
n = k+2. Continuing with this line of reasoning we conclude that under
the SPE strategy, customers balk if n = ik + 1 for some i ≤ 1 and join
otherwise.

There are other pure equilibrium strategies. An example for such a
strategy when N > 2k +1 is as follows: join if and only if the number of
customers in the queue is smaller then j for some j < k. The strategy
does not prescribe an optimal response when the number of customers
observed upon arrival is i, N −k ≤ i ≤ N −1: joining is certainly better.
Yet, it is still an equilibrium since these states are transient under this
strategy.

Consider now the model with N = ∞. Assume again that Rk > 0
and Rk+1 < 0. The above-mentioned properties are still valid for an
equilibrium. However, in this case there are more pure subgame perfect
equilibria. An SPE prescribes for some l ∈ {0, . . . , k − 1} joining in all
states except for those whose index is (k +2)i+ l for some integer i > 0.
For example, when λ is sufficiently large so that A0 > 0 but A1 < 0,
there are two SPE solutions. One prescribes joining if and only if the
queue length has an odd value, the other if and only if it is even.

6.2. EPS and random queues
Altman and Shimkin [10] considered a system of observable egalitar-

ian processor sharing (EPS) where reneging is forbidden. Customers
decide whether to join the queue after observing the number of cus-
tomers already there. As in the LCFS model, customers are affected by
the strategies adopted by future customers. This is an ATC situation,
and Altman and Shimkin showed how to compute the unique (pure or
mixed) threshold equilibrium strategy. This strategy is also the unique
SPE.18

In a similar model, service is granted in random order. In fact, due
to the memoryless service process, the two models coincide with respect
to the decision problem posed here if the decision about whose service
was completed is done randomly among the customers in the queue

18An extension where customers differ in their expected service time is considered in Ben-
Shahar, Orda and Shimkin [28].
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after service completions. When customers commence service in random
order, the threshold can be computed in a similar way.

A variation of the model, where reneging is allowed, leads to a different
model which is analyzed in detail in §5.1.

7. Discounting
Chen and Frank [34] generalized Naor’s model assuming that both

the customers and the server maximize their expected discounted utility
using a common discount rate. Chen and Frank computed the profit
and social welfare maximizing pricing schemes for this generalization of
Naor’s model.19 We illustrate this approach by describing the customers
response to a given admission fee of size p.

Let γ be the discount rate. Consider a customer who joins at time 0
and denote by θ his service completion time. The expected benefit for
this customer is

E

[

e−γθR − p − C

∫ θ

0
e−γtdt

]

, (2.14)

where the expectation E is taken with respect to θ.
Assume that the service times are exponentially distributed with a

rate µ. If the arriving customer observes n customers already in the
system, then θ follows an Erlang distribution with parameters n+1 and
µ. In this case, E[e−γθ] = φn+1 where

φ =
µ

µ + γ
.

Therefore, the expression in (2.14) equals

φn+1
(

R +
C

γ

)

−
(

p +
C

γ

)

.

The customer prefers joining to balking if

φn+1
(

R +
C

γ

)

≥
(

p +
C

γ

)

,

or

n ≤ logφ

(

p + C
γ

R + C
γ

)

− 1.

19Naor’s model is obtained if the discount rate is 0.
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8. State dependent pricing
The discrepancy between the profit-maximizing price and the welfare-

maximizing price in Naor’s model follows from the monopoly’s inability
to extract all of the consumer surplus. Therefore, the monopoly’s objec-
tive differs from the social one. In §3 we will see that this discrepancy
doesn’t exist in the unobservable version of this model. Chen and Frank
[34] observed another case where the profit maximizer’s objective co-
incides with the social one, namely, when the server is able to adjust
the price to the state of the system (and the population of customers is
homogeneous). They showed that the profit-maximizing pricing scheme
is to charge the maximum possible fee that does not deter customers
from joining, as long as the queue length is less than a threshold, and
to charge a high fee otherwise. All of the consumer surplus then goes to
the server whose strategy (of whether to accept or reject a customer) is
therefore socially optimal.

Chen and Frank also considered the case where customers have het-
erogeneous service values. It is assumed that these values are not known
to the server and hence they cannot be used to discriminate among cus-
tomers. In this case, Chen and Frank found that the socially optimal
strategy is as in the homogeneous case where the expected service value
is used as a common value. Thus, the socially optimal behavior depends
on the service distribution only trough its mean value. In particular,
there is no loss of generality in assuming an exponential distribution.
Moreover, as in the case where the server cannot adjust the fee to the
state of the system (Section 5), the profit-maximizing fees tend to be
higher than the socially optimal fees.20

The profit-maximizing strategy is socially optimal also when cus-
tomers differ in their attributes, as long as the relevant information is
available to the server and can be used to determine the admission fee.

Motivated by applications in the mortgage market, Levy, A and Levy,
H [106] considered an M/M/1 queue where the server advertises a price
pi (from a given set) whenever there are i customers in the system. It
is assumed that there is a demand function D so that the joining rate
associated with pi is λi = D(pi). The novel assumption of the model
is that a customer who leaves at time t pays the price advertised just
before t. Thus, upon joining, the customer doesn’t know how much
he will have to pay for the service. Levy and Levy proved that under

20Socially, the exact fees are unimportant, as long as they induce joining and balking in the
socially desired states. Hence, by saying that the server charges fees that are too high we
mean that the threshold induced by these fees is too low.
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the profit-maximizing pricing scheme, pi+1 ≥ pi i = 0, 1, . . . , and that
the expected profit is higher than in the corresponding system where
customers pay the price advertised before their arrival.

We suggest an extension of the model where the joining rates λi are
determined through an equilibrium mechanism. Suppose that the po-
tential rate of demand is Λ, and that customers differ by their value of
service. Consider a known strategy of the server, consisting of the prices
p0, p1, . . . . The joining rates λ0, λ1, . . . define an equilibrium if λi

Λ equals
the probability that the service value of a random customer is at least
the expected full price Pi associated with state i. For given joining rates
λ0, λ1, . . . , the expected full prices Pi are computed as follows: let qi,j

be the probability that a customer who joins while the system is in state
i leaves the system in state j (the state just before he leaves is j + 1),
then

Pi = C
i + 1

µ
+

∞
∑

j=0

qi,jpj+1.

9. Waiting for the right server
Kumar and Walrand [97] considered a general model of optimal rout-

ing which also applies to queues. Consider a GI/G/s system with service
rates µ1 ≥ · · · ≥ µs. Whenever a server becomes free it is offered to the
waiting customers according to their order in the queue. A customer
may either accept the offer or reject it and stay in the queue (in the
same position). In the latter case, the service from this server is offered
to the next in line. Based on a similar result by Agrawala, Coffman,
Garey and Tripathi [5] for a static model with no arrivals, Kumar and
Walrand proved that the equilibrium strategy is such that a customer
in position i accepts the offer to commence service with server j, if and
only if

i >

∑j−1
k=1 µk

µj
− (j − 1).

Kumar and Walrand proved that under certain assumptions, the equilib-
rium and socially optimal policies coincide. However, they didn’t provide
specific examples when the assumptions are satisfied, leaving this issue
open.

Another model where customers can delay their decision was consid-
ered by Mandelbaum and Yechiali [118]. In their model, all customers
join the system unconditionally except for one “smart” customer who is
allowed to choose among joining, balking, or waiting outside the system
in order to make a decision at the next service completion (choosing
again from the three options). Mandelbaum and Yechiali solved the
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smart customer’s problem, however, they did not extend the model for
the case where all customers are smart. It is an interesting open question
to define such a model and characterize its equilibria.

In another problem of this type, Hlynka, Stanford, Poon, and Wang
[80] (see [161] for a generalization) considered a GI/M/2 system. Cus-
tomers, with the possible exception of a single smart customer, follow
a strategy of joining the shortest queue. The smart customer has the
option of waiting as long as he wishes before deciding which queue to
join. During his observation time, new customers may join the system
and take their place in front of the smart customer. Again, defining and
characterizing equilibrium when all customers are smart is still an open
problem for future research.

10. Non-exponential service requirements

Altman and Hassin [9] presented an example for an M/G/1 queue
without an equilibrium threshold joining strategy. In this example, the
service time is 0 with an extremely high probability and 1 with the
complement extremely low probability. The information available to an
arriving customer is the number of customers in the system. No equilib-
rium threshold joining strategy exists, since the queue length provides
a signal to the arriving customer on the residual service time of the
customer currently in service. Altman and Hassin showed that the equi-
librium strategy prescribes randomization when there is a customer in
service and no queue, joining if the queue size is greater than one but
less than some threshold, and balking otherwise.

A similar complication arises when analyzing customers’ equilibrium
behavior in an M/G/s system, for s > 1, where the number of customers
in the system is observable but not the time already spent in service
by the current customer. In particular, it is not necessarily true that
customers select the shortest queue (see, Whitt [175] for the analysis of
a similar model).

The socially optimal strategy in a GI/M/1 system may include reneg-
ing. This may happen when a new arrival is expected soon and the
length of the queue is already at its maximum under the optimal strat-
egy. When reneging is not allowed, the optimal joining strategy is of the
threshold type. This extension of Naor’s model was analyzed by Yechiali
[178]. Mendelson and Yechiali [125] analyzed a further refinement of this
model allowing “conditional acceptance” of a customer. Specifically, an
(n, t)-strategy prescribes joining if the number of customers observed is
less than n, and balking otherwise. It also prescribes reneging for the
last customer in the queue if there are n customers in the system and
t units of time elapsed since the last arrival. The rationale behind this
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strategy is that for specific inter-arrival distributions, the information
that no arrival occurred during t time units indicates that a new ar-
rival is expected soon.21 Therefore, with high probability, the customer
who reneges will soon be replaced, and meanwhile the overall waiting
costs are reduced. Mendelson and Yechiali investigated conditions under
which the optimal (n, t)-strategy is with t < ∞.

11. Related literature
Naor’s model and results have been extended in several papers. Sur-
veys were given by Johansen and Stidham [84], Stidham [164], and
Mendelson and Whang [124]. General conditions for optimality of
threshold type policies for controlling Poisson input-output systems
were given by Hassin and Henig [74].

Rosenblum [147] considered a model where customers differ by their
waiting costs (time value) and have the option of trading positions.
The value of service is identical for all customers and each one of
them knows the time value of the other customers in the queue. A
customer may renege at any time. The resulting queue turns out to
be ordered in decreasing value of time. A drawback in this model
is (Assumption 9 in [147]) that it assumes that customers ignore
possible future profits that may be obtained by trading positions.
A model which takes future transactions into account will be more
complete.22.

Van Ackere and Ninios [1] applied simulation to solve a model where
the server can affect the arrival rate by advertising the facility. Atkin-
son refined their results. Let A, n, and qn be the amount invested in
advertising the facility, the equilibrium threshold, and the probabil-
ity that the length of the queue is n (given that n is the threshold),
respectively. Van Ackere and Ninios considered two variations. In
one, the potential arrival rate linearly depends on A. In the second,
customers also take into consideration the probability that their visit
will be unsuccessful, and the potential arrival rate is assumed to be
A(1 − qn).

21See §5.1 for the concept of increasing hazard rate (IHR).
22Holt and Sherman [81] also considered the possibility of resale in their “waiting-line auction”
model. See §6.1





Chapter 3

UNOBSERVABLE QUEUES

In the previous chapter we assumed that actions are selected after
observing the queue. In this chapter, we present models where the cus-
tomers do not observe the queue prior to their actions.

1. Identical customers
The properties of the basic unobservable single server queue were dis-

covered by Edelson and Hildebrand [47]. They adopted the first eight
assumptions of Naor’s observable model as listed in §2.1, and added the
following modifications.

Assumption 10 changes as follows:

At the time a customer’s need for service arises, he irrevocably either joins the

queue or balks. It is not possible for him to observe the queue length before

making this decision.

Assumption 8 is relaxed as follows:

The service discipline is strong and work-conserving.1

As in the observable model, a customer who joins the queue imposes
negative externalities on others and therefore individual optimization
leads to excessive congestion unless the queue is regulated.2 This prop-
erty will be formally proved below.

1For example, the service discipline may be FCFS, LCFS (with or without preemption), EPS,
or random order. Under all these disciplines, the expected waiting time is given in (1.4).
2In a more general context, Hardin [64] showed that if each individual uses a common resource
to maximize his own utility, then the equilibrium has excessive use of the resource.

45
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1.1. Equilibrium
We start by evaluating the customers’ behavior in equilibrium when

an admission fee of size p is imposed and the potential arrival rate is
Λ. There are two pure strategies available for a customer: to join the
queue or not to join. A pure or mixed strategy can be described by a
fraction q, 0 ≤ q ≤ 1, which is the probability of joining. Given that
the admission fee is p, we denote the equilibrium probability of joining
by qe(p), and the corresponding equilibrium (effective) arrival rate by
λe(p). Of course, λe(p) = qe(p)Λ < µ. We denote the expected waiting
time when the (effective) arrival rate is λ < µ by W (λ) = 1

µ−λ . (For

λ ≥ µ, define W (λ) = ∞.) This function is continuous and monotone
increasing. The net benefit for a customer who joins the queue is the
value of service, R, minus the full price, p + CW (λ). We distinguish
three cases:

p + CW (0) ≥ R. In this case, even if no other customer joins, the
net benefit of a customer who joins is non-positive. Therefore, the
strategy of joining with probability qe(p) = 0 is an equilibrium strat-
egy and no other equilibrium is possible. Moreover, in this case, not
joining is a dominant strategy.

p+CW (Λ) ≤ R. In this case, even if all potential customers join, they
all enjoy a non-negative benefit. Therefore, the strategy of joining
with probability qe(p) = 1 is an equilibrium strategy and no other
equilibrium is possible. Moreover, in this case, joining is a dominant
strategy.

p + CW (0) < R < p + CW (Λ). In this case, if qe(p) = 1 then a
customer who joins suffers a negative benefit. Hence, this cannot be
an equilibrium strategy. Likewise, if qe(p) = 0, a customer who joins
gets a positive benefit, more than by balking. Hence, this too can-
not be an equilibrium. Therefore, there exists a unique equilibrium

strategy where qe = λe(p)
Λ and where λe(p) solves CW (λe(p)) = R−p.

Substituting W (λ) = 1
µ−λ , we obtain the expressions given in Table

3.1.
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Figure 3.1. The best response vs. the joining probability

Case λe(p) qe(p) W (λe(p))

Λ ≤ µ − C
R−p

Λ 1 1
µ−Λ

0 ≤ µ − C
R−p

≤ Λ µ − C
R−p

µ− C
R−p

Λ
R−p

C

µ − C
R−p

< 0 0 0 1
µ

Table 3.1. The equilibrium strategy

Remark 3.1 Suppose that the probability of joining is q: if q < qe(p)
then the unique best response is 1, if q = qe(p) then any strategy between
0 and 1 is a best response, and if q > qe(p) then the unique best response
is 0. Since the best response is a monotone non-increasing function of
the strategy, the model is of the ATC type. Figure 3.1 depicts the best
response function and the equilibrium point.

1.2. Social optimization
We now turn our attention to social optimization. Let the socially

optimal joining probability be q∗, and let the socially optimal joining
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rate be λ∗ where λ∗ = q∗Λ. Then,

λ∗ = arg max
0≤λ≤Λ

{λ[R − CW (λ)]} .

Since W (λ) is strictly convex, the function to be maximized is strictly
concave and has a unique maximum. Substituting W (λ) = 1

µ−λ we get
that the solution

µ −
√

Cµ

R
= arg max

0≤λ<µ

{

λR − Cλ
1

µ − λ

}

is optimal as long as it is in [0,Λ]. The fact that the solution is nonneg-

ative follows from the assumption that Rµ ≥ C. Thus, if Λ ≥ µ −
√

Cµ
R

then λ∗ = µ −
√

Cµ
R . Otherwise, λ∗ = Λ. Let SU

3 be the social welfare
under the optimal arrival rate λ∗. Table 3.2 summarizes the optimal
joining strategy.

Case λ∗ q∗ W (λ∗) SU

Λ ≥ µ −
√

Cµ

R
µ −

√

Cµ

R

µ−

√

Cµ
R

Λ

√

R
Cµ

(√
Rµ −

√
C
)2

Λ ≤ µ −
√

Cµ

R
Λ 1 1

µ−Λ
Λ
(

R − C
µ−Λ

)

Table 3.2. The socially optimal strategy

It follows from the assumption Rµ ≥ C that λe(0) ≤ λ∗. Thus, as in
the case of observable queues, individual optimization leads to queues
that are longer than are socially desired. This gap can be corrected by
imposing an appropriate admission fee, as discussed in the next section.

Balachandran and Srinidhi [23] observed that if λe(0) < Λ then

(

1 − λ∗

µ

)2

= 1 − λe(0)

µ
.

3The subscript U stands for unobservable.
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Remark 3.2 Assume that λ∗ < Λ. Consider a tagged customer who is
given the lowest possible priority so that he is served only when there
are no other customers in the system. In particular, his service may
be preempted (and resumed later from the point of interruption). The
change in the tagged customer’s priority has no effect on social welfare.
However, with this change, the tagged customer imposes no externalities.
By (1.6) his expected waiting cost when the arrival rate equals λ∗ is
C
µ

(

1 − λ∗

µ

)−2
, which by Table 3.2 equals R. Hence, if λ = λ∗, the tagged

customer is indifferent between joining and not; if λ < λ∗, he prefers
joining; and if λ > λ∗, his choice is not to join. Thus, as expected, when
λ = λ∗ the tagged customer who imposes no externalities behaves in
the socially desired way. This principle will be used in §4.5 to present a
decentralized way for optimally controlling an unobservable queue.

Remark 3.3 We assumed that the service duration follows an exponen-
tial distribution. However, unlike in the observable case, the same qual-
itative results are obtained for any service distribution. Balachandran
and Srinidhi [23] examined the sensitivity of the solution to uncertainty,

as reflected by the second moment x2 of the service time distribution.
They concluded that both λ∗ and λe(0), as well as the ratio λ∗

λe(0) , are

monotone decreasing in x2. The latter property means that:

The need to control the queue becomes more critical as the uncer-
tainty measured by the variance of the service requirement, increases.

1.3. Profit maximization
We consider now a monopolistic server that sets a profit-maximizing

admission fee pm. A monopoly does not leave a positive customer sur-
plus, since in such a case the admission fee can be increased without re-
ducing the arrival rate. Therefore, pm + CW (λ) = R. The monopoly’s
problem is to maximize λpm subject to 0 ≤ λ ≤ Λ and

pm = R − CW (λ). (3.1)

Recall that the social objective is to maximize the total welfare of
the server and the customers, which is λp + λ[R − CW (λ) − p]. The
term λp cancels, reflecting the assumption that social utility is additive
so that from social point of view the admission fees are merely transfer
payments that have no effect on social welfare. Hence, the social problem
is to maximize λ[R − CW (λ)] subject to 0 ≤ λ ≤ Λ. By (3.1):

The objectives of a profit maximizer and the society coincide.
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λ∗

pm

R − C
µ

R −
√

RC
µ

Λ

Figure 3.2. Monopoly prices vs. rate of arrival

The socially optimal arrival rate λ∗ can be induced by an appropriate
admission fee, which also maximizes total profit. When λ∗ < Λ this fee
equals

pm = p∗ = R − CW (λ∗) = R −
√

CR

µ
.

When λ∗ = Λ, the profit maximizer chooses the maximum fee which
induces this rate, that is, pm = R− C

µ−Λ . A social planner would choose
this fee, or any smaller fee, since any such choice induces the same
optimal arrival rate, Λ.

Chen and Frank [33] observed that:

pm is monotone non-increasing in Λ (see Figure 3.2).

Thus, an increase in demand may lead to a reduction in price! This
may seem counterintuitive, but can be explained as follows: when the
arrival rate increases the expected waiting time increases, and customers
are inclined to pay less for service. In other words:

Since the quality of the goods depends inversely on the demand, the
price needs to be reduced when demand increases.

Edelson and Hildebrand also discussed an extension of their model
in which the server imposes a two-part tariff. For a given inspection
fee a customer may choose to inspect the queue length and then choose
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between balking and paying an admission fee to join the queue. For any
given admission fee, the profit-maximizing inspection fee coincides with
the customer’s expected gain from inspecting the queue. Thus again,
all of the customer’s surplus goes to the server and the server chooses
socially optimal fees.

Remark 3.4 The model does not allow reneging. However, this as-
sumption is redundant if we assume that the queue remains unobservable
also after joining. This is because the expected residual waiting time is
non-increasing with the time already spent in the queue (see §5.2). In
an M/M/1 queue, due to the memoryless property of the waiting time,
this value is constant, whereas when reneging is exercised by a positive
fraction of the customers, it is strictly decreasing with the time in the
queue.

Remark 3.5 Joining with probability qe(p) is an equilibrium strategy
also in a LCFS-PR observable queue without reneging. The reason is that
the length of the queue is unimportant to the new arrival. However, as
shown by Tilt and Balachandran [168] and Hassin and Haviv [73], this
is not the unique SPE.

2. Observable vs. unobservable queues
Hassin [66] compared social welfare and profit maximization in the

observable and unobservable models. Let SU and SO denote the social
welfare under a social welfare-maximizing policy in the unobservable and
observable models, respectively. Similarly, ZU and ZO denote the profit
under a profit-maximizing admission fee. Recall from Section 1.3 that

ZU = SU .

Let ŜO denote the social welfare in the observable model when a profit-
maximizing admission fee is charged. Note that there is no need to
define the respective variable ŜU since the profit-maximizing fee in the
unobservable model is the same as the welfare-maximizing fee.

If the queue is controlled by a social welfare maximizing fee, an ob-
servable queue would have a higher welfare than the corresponding un-
observable queue. In the observable case, a customer would enter only
when it is socially desirable to do so, whereas in the unobservable case
only the probability that a customer joins is controlled, and it is still
possible for customers to enter when the queue is too long or to balk
when it is too short. Hence

SU ≤ SO.
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Hassin reached the following conclusions:

If Rµ ≤ 2C then ZU < ZO for all Λ > 0. This follows by comparing
ZU = SU from Table 3.2 with ZO in (2.12). Hence the profit maxi-
mizer prefers to reveal the queue length to the customers if this can
be done without cost.

If Rµ > 2C then a unique potential arrival rate ΛZ exists such that
ZU > ZO for Λ < ΛZ , and ZU < ZO for Λ > ΛZ . Thus, when
Λ < ΛZ the profit maximizer prefers to conceal the queue length
from the customers whereas when Λ > ΛZ he prefers to disclose this
information.

The same properties hold in respect to ŜO and SU for a different
threshold value, ΛS . This follows by comparing SU from Table 3.2
with ŜO in (2.13). Thus, when Λ < ΛS it is socially preferred that the
profit maximizer will be unable to inform the customers on the queue
length, whereas when Λ > ΛS an observable queue gives (under profit
maximization) a higher value of social welfare than the observable
queue.

Figure 3.3 illustrates the case Rµ > 2C, and shows that ΛZ > ΛS .

For arrival rates ΛS < Λ < ΛZ , the profit maximizer prefers to
conceal the queue length but social welfare would increase if the server
could be induced to disclose this information.

It is never socially worthwhile to induce the profit maximizer to con-
ceal the queue length (when he does not voluntarily do so).4

Chen and Frank [33] compared the effective arrival rates in the ob-
servable and unobservable models assuming a fixed admission fee. Let
λO and λU be the equilibrium arrival rates in the observable and unob-
servable models, respectively. Clearly λO < Λ, and if Λ is small then
λU = Λ and therefore in this case λU > λO. On the other hand, if Λ
is very large then in the observable model the server is almost always
active and λO ≈ µ. In the unobservable system, customers still choose
a sufficiently small joining rate to avoid high congestion and therefore
λU is significantly smaller than µ. In fact, as can be seen from Table

4Schroeter [154] made a similar comparison in a model where time values are uniformly
distributed over an interval [0, Cmax]. He found that for sufficiently large arrival rates, the
server would never have an incentive to conceal the queue length, nor would it be in the
interest of society to do so. This result conforms with Hassin’s conclusions for the case of
common time values. Hassin found, however, that for smaller values of λ the outcome is
different.
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Figure 3.3. Profits and welfare in observable and unobservable queues

3.1, when Λ is large µ and λU differ by the constant C
R−p . Thus, in

this case λU < λO. Furthermore, Chen and Frank proved that the dif-
ference λO − λU monotonically increases with Λ, so that there exists a
unique critical value Λ∗ for which the two rates coincide. In particular,
for Λ < Λ∗, λU > λO, and for Λ > Λ∗, λU < λO.

Larsen [99] conducted numerical experiments comparing the profits
and social welfare in the observable and unobservable models, while
assuming that the service values were uniformly distributed in the pop-
ulation. Larsen found that in most cases the values obtained in the
observable case were higher. When the opposite result was obtained,
the difference was quite small.

3. Heterogeneous service values
Littlechild [110] extended the model of Edelson and Hildebrand as-

suming that customers have different service values. For 0 ≤ λ < ∞, let
V (λ) denote the expected total value of completions of service (per unit
of time) corresponding to an (effective) arrival rate λ. The function V



54 TO QUEUE OR NOT TO QUEUE

represents a continuous distribution of service values in the population
of potential customers. In equilibrium, there is a threshold such that
only customers with service values above this threshold arrive to obtain
service. This explains why V is assumed to be concave: V ′(λ) represents
the (positive but decreasing) marginal social gain from a customer who
joins the system.5

The results obtained by Littlechild for the M/M/1 queue were gener-
alized to a GI/G/s model and extended further by Mendelson [123], as
we now describe.6

As before, let λ∗ be the socially optimal arrival rate. Then,

λ∗ = arg max
λ≥0

{V (λ) − λCW (λ)} .

An optimal rate λ∗ satisfies (and can be determined by) the first-order
condition

V ′(λ∗) = CW (λ∗) + λ∗CW ′(λ∗). (3.2)

The first term in the right-hand side is the customer’s cost due to his
own waiting time. The second is an externality cost he imposes on oth-
ers, defined as the rate by which waiting costs for the other customers
increase when the arrival rate increases by an infinitesimal amount.
Thus, from the social point of view, customers should join as long as
the marginal increase in social utility due to their service is larger than
the marginal increase in costs due to congestion.

Under individual optimization, customers ignore the externalities that
they impose and the equilibrium rate λe satisfies V ′(λe) = CW (λe).
Comparing this equation with (3.2) we conclude that λe > λ∗.

This discrepancy can be corrected by imposing an admission fee p∗,
so that λ∗ becomes the new equilibrium arrival rate, i.e., p∗ satisfies

V ′(λ∗) = p∗ + CW (λ∗). (3.3)

5Another interpretation of the model is as follows. Consider a potential arrival rate of Λ.
A customer’s value of service is a continuous random variable with density function f , with
cumulative distribution function F . Let F̄ = 1 − F . In equilibrium, the arrival rate is such
that the value of service for the marginal customer equals the expected full price associated
with joining the queue. Thus, only those who value service by more than a threshold, say a,
join. This leads to an arrival rate of ΛF̄ (a). The social optimal threshold a∗ satisfies

a∗ = arg max
a≥0

[

Λ

∫ ∞

x=a

xf(x) dx − CΛF̄ (a)W (ΛF̄ (a))

]

.

On the other hand, in equilibrium, customers join the queue if and only if they value service
by more than ae, where ae uniquely solves ae = CW (ΛF̄ (ae)).
6De Vany and Saving [42] also considered a similar model.
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λ

V ′(λ) p∗ + CW (λ)

p∗ + CW (0)

λ∗

Figure 3.4. Supply and demand curves

The roles of the marginal gain V ′(λ) and the full price p + CW (λ)
are similar to those of supply and demand curves and the situation is
depicted in Figure 3.4.

Combining (3.2) and (3.3),

p∗ = λ∗CW ′(λ∗). (3.4)

Hence:

The optimal admission fee p∗ coincides with the externalities that an
individual who joins imposes on the others, when the arrival rate is
λ∗.7

Consider now the problem of a profit-maximizing monopoly. The
problem is to determine an admission fee pm such that the resulting
equilibrium arrival rate λm maximizes λp = λ[V ′(λ) − CW (λ)]. The
first-order conditions are

V ′(λm) + λmV ′′(λm) = CW (λm) + λmCW ′(λm). (3.5)

Observe that (3.2) and (3.5) are identical except for the presence of the
negative term λmV ′′(λm) in the left-hand side of (3.5). Therefore,

CW (λm)+λmCW ′(λm)−V ′(λm) < CW (λ∗)+λ∗CW ′(λ∗)−V ′(λ∗) = 0.

7This phenomenon exists in other models of congestion. For a review in the context of road
pricing, see [130].



56 TO QUEUE OR NOT TO QUEUE

By the convexity of W and the concavity of V ,

d

dλ

[

CW (λ) + λCW ′(λ) − V ′(λ)
]

= 2CW ′(λ) + λCW ′′(λ) − V ′′(λ) > 0.

Therefore:

λm < λ∗.

pm = V ′(λm) − CW (λm) > V ′(λ∗) − CW (λ∗) = p∗.

These qualitative results are similar to those obtained by Naor [133]
for an observable queue and identical customers. However, in the unob-
servable case they were obtained under more general conditions.

Larsen [99] analyzed the sensitivity of the maximum profit and welfare
to an increased heterogeneity in the value of service. Larsen assumed
that the value of service in the population is a continuous random vari-
able with uniform distribution over an interval [a − ∆, a + ∆]. Larsen
showed that an increase in ∆ always leads to an increase in the social
welfare obtained under a welfare-maximizing admission fee. This result
is expected since when ∆ increases, those who join value the service
more highly whereas those whose value of service is low do not join in
any case. On the other hand, Larsen found that an increase in ∆ may
lead to either an increase or a decrease in the profit obtained under a
profit-maximizing fee.

4. Heterogeneous service values and time costs
Suppose that customers belong to one out of m classes where class i

is characterized by service and time values Ri and Ci, respectively. For
simplicity, assume that the ratios Ri

Ci
are distinct and R1

C1
> R2

C2
> · · · >

Rm

Cm
. Let Λi be the potential arrival rate of class i, i = 1, . . . ,m.

4.1. Equilibrium
Balachandran and Schaefer [21, 22] characterized the equilibrium so-

lution: for some 1 ≤ r ≤ m, classes 1, . . . , r− 1 arrive at their maximum
rates Λi, r-customers split between joining and balking, and the other
classes fully balk. Splitting of class r is possible if Rr = CrW (λ) where λ
is the resulting aggregate arrival rate, so that r-customers are indifferent
between joining and balking. To summarize, λ =

∑r−1
i=1 Λi + λr where r

and λr are determined by Rr = CrW (λ). Of course, Ri > CiW (λ) for
i = 1, . . . , r − 1 and Ri < CiW (λ) for i = r + 1, . . . ,m.8

8Section 3.2 of [22] contains further properties of the equilibrium in this case.
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Suppose now that the potential arrival rates Λ1, ...,Λm are infinite.
If Ri − CiW (λ) > 0 then more members of this class join the queue.
Consequently, in equilibrium only 1-customers join the queue, and λ1

satisfies R1 = C1W (λ1). This is known as the class dominance phe-
nomenon, which holds also under social optimization (see below) but
not necessarily with the domination of the same class.

4.2. Social optimization
Balachandran and Schaefer [21, 22] observed (assuming unbounded

potential arrival rates) that social welfare is also maximized when all
but a single class fully balk. The reasoning is that for any given aggre-
gate arrival rate λ, the social goal is to maximize

∑m
i=1 λi[Ri −CiW (λ)]

subject to
∑m

i=1 λi = λ and λi ≥ 0 i = 1 . . . ,m. This “continuous
knapsack problem” is optimized by admitting only one class j which
maximizes Ri − CiW (λ) over 1 ≤ i ≤ m, and setting λj = λ and λi = 0
for i 6= j. Assume now an M/M/1 system. Suppose that it is socially
optimal that class j dominates the system, so that λi = 0 for every
i 6= j. Then, λj is determined by Table 3.2, and the social welfare is
(√

Rjµ −√Cj
)2

. It follows that the social problem is to solve

max
1≤i≤m

(

√

Riµ −
√

Ci

)

and set for the maximizing class j, λj = µ −
√

Cjµ
Rj

(and λi = 0 for

i 6= j). This solution may be different from the equilibrium solution,
which admits a class with a maximum value of the ratio Ri

Ci
. Hence,

even in the M/M/1 case, the class that uses the facility in equilibrium
may differ from the socially desired class (and then, given this class, the
arrival rate exceeds the socially optimal one).

4.3. Class decision
Balachandran and Schaefer [22] and Gibbens and Kelly [56] considered

a class decision model with m classes. In their model, the utility of class j
is λj [Rj−CjW (λ)], where λj denotes the arrival rate of j-customers, j =
1, . . . ,m, and λ =

∑m
i=1 λi. In equilibrium, Rj − CjW (λ) − λjCjW

′(λ)
is 0 if λj > 0, and non-positive if λj = 0. Thus,

λj =

[

Rj − CjW (λ)

CjW ′(λ)

]+

, j = 1, . . . ,m. (3.6)



58 TO QUEUE OR NOT TO QUEUE

Summation gives

λ =
m
∑

j=1

[

Rj − CjW (λ)

CjW ′(λ)

]+

.

The right-hand side is monotone decreasing in λ (recall that W is convex)
and hence a unique solution λ exists. Then, using (3.6), λj , 1 ≤ j ≤ m,
can be determined.

5. Customers know their demand
Consider the model of Section 1 but with one change: customers base

their decision of whether to join the queue on their service time. We
assume that the service time is private information of the customer. We
consider equilibrium threshold strategies under two service disciplines:
FCFS, and egalitarian processor sharing (EPS) EPS,. In both cases,
the equilibrium behavior is based on a threshold, xe, such that only
customers with service requirement t ≤ xe join. By the same reasoning
as in Section 1, the socially optimal threshold, x∗ is smaller than xe.

Assume that the service time is a continuous random variable with
distribution and density functions G and g, respectively, and that Λ
is the potential arrival rate. Given that only customers with service
duration of at most x join, the arrival rate is λ(x) = ΛG(x).

5.1. FCFS
Suppose that only customers with a service requirement of at most

x join. Then, the density function of service requirements among cus-

tomers who join is g(y)
G(x) for 0 ≤ y ≤ x (and 0 elsewhere), and the expected

service requirement among them is

m(x) =
1

G(x)

∫ x

y=0
yg(y) dy.

Let

ρ(x) = ΛG(x)m(x) = Λ

∫ x

y=0
yg(y) dy (3.7)

be the effective utilization factor of the system. By the Khintchine-
Pollaczek formula (1.7), the expected queueing time for those who join
is9

Wq(x) =
Λ
∫ x
y=0 y2g(y) dy

2(1 − ρ(x))
.

9Assuming an M/M/1 model rather than M/G/1 does not lead to a simpler analysis: the
service distribution of those who join is never exponential.
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The equilibrium threshold xe is defined by

C(xe + Wq(xe)) = R,

whereas the social optimal threshold x∗ is

x∗ = arg max
x

{ΛG(x)(R − C[m(x) + Wq(x)])} .

5.2. EPS
The EPS, model was solved by Haviv [75]. In an M/G/1 EPS queue

with a utilization factor ρ, the expected time in the system for a customer
with service requirement t is (see, for example, [148] p. 174)

Wt =
t

1 − ρ
.

When the threshold strategy x is applied, the expected time in the sys-
tem for a customer with service requirement t (t > x is possible here)
is

Wt(x) =
t

1 − ρ(x)
,

where ρ(x) is as defined in (3.7). The equilibrium threshold xe is given
by

Cxe

1 − ρ(xe)
= R.

Using (1.3), the expected number of customers in the system, under the
threshold x, is

ρ(x)

1 − ρ(x)
.

Hence,

x∗ = arg max
x

[

ΛG(x)R − Cρ(x)

1 − ρ(x)

]

,

and by the first-order conditions, x∗ satisfies

Cx∗

[1 − ρ(x∗)]2
= R.

It is possible to regulate the system by imposing an admission fee of
T such that

R − T =
Cx∗

1 − ρ(x∗)
,

or a fee of p per unit of service time such that px∗ = T , or a fee t per
unit of time in the system such that

R =
(C + t)x∗

1 − ρ(x∗)
.
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5.3. Shortest service first
Suppose now that the service requirement of an arrival is also known

to the server, and that the service regime is such that customers with
shorter service requirements receive preemptive priority over customers
with longer requirements. The same rule applies to the order in which
preempted customers return to service. Note that priority levels are
based on original requirements and not on the residual requirements
which change while in the system. Service is resumed from the point
where it was interrupted.

Customers know their demand and need to decide irrevocably whether
or not to join. Consider an equilibrium strategy of the threshold type:
for some xe, all those with demand x ≤ xe join, whereas the others
balk. Denote by x∗ the socially optimal threshold. We observe that
the customer with the longest service requirement who joins imposes
no externalities on the others. Therefore, his objective coincides with
the social objective, and we conclude that he joins if and only if this is
socially desired. Thus, we conclude that xe = x∗.

We next show how to compute this common threshold. Let Tx denote
the expected waiting time of a customer whose service time is x, when
the threshold strategy x is used by all. Then (see, for example [89] p.
124),

Tx =
x(1 − ρ(x)) + Λ

∫ x
y=0 g(y)y dy

[1 − ρ(x)]2

Txe uniquely satisfies
CTxe = R.

6. Finite buffer
Lin and Ross [108] considered a queueing system with a waiting area

(or buffer) of bounded size. In their model, arrivals are forced to balk
when the buffer is full. Since admission to the queue is not guaranteed,
we refer to an arrival as a trial.10

To illustrate such models, Lin and Ross considered an M/M/1/1 sys-
tem, namely a single server system with no waiting room. The service
value is R, and without loss of generality assume that the time value is
C = 0.11 There is also a cost T < R associated with each trial. This is a
real cost, not a transfer payment. The potential arrival rate is denoted
by Λ, and let ρ = Λ

µ . The customer’s problem in this model is: to try or
not to try.

10A model where rejected customers retry later is discussed in §6.4.
11Otherwise, just replace R with R − C

µ
and C with 0.
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A strategy is characterized by the probability p that a customer tries.
The effective trial rate is then λ = pΛ and the server is idle with proba-
bility µ

µ+pΛ . The (expected) payoff for one who tries is therefore

Rµ

µ + pΛ
− T. (3.8)

Clearly, this is an ATC situation and therefore there exists a unique
equilibrium. By (3.8), if Λ < µR−T

T , then regardless of what the others
do, one’s best action is to try (in other words, trying is a dominant
strategy). Otherwise, no dominant strategy exists. If p = µ R−T

TΛ then
a customer is indifferent between trying or not. Hence, trying with
this probability is the equilibrium strategy. Denote the equilibrium trial
probability by pe, then

pe =











1 ρ ≤ R−T
T

R−T
Tρ ρ > R−T

T .

The socially optimal trial probability is defined by

p∗ = arg max
p

p

(

Rµ

µ + pΛ
− T

)

.

Hence,

p∗ =















1 ρ ≤
√

R
T − 1

√

R
T
−1

ρ ρ >
√

R
T − 1 .

When ρ ≤
√

R
T − 1, pe = p∗ = 1. Otherwise, pe > p∗. It is possible to

induce p∗ in equilibrium by imposing an appropriate fee on trials or on
service completions.

Sumita, Masuda and Yamakawa [166] considered a system with a finite
buffer of size K. A customer who encounters a full buffer is rejected and
obtains service from an alternative server. If the buffer is not full then
the customer is accepted. To describe their model we define the following
functions:

V (λ) - aggregate utility gained by the arriving customers if all are accepted.
R(λ) - aggregate utility gained by the arriving customers if all are rejected.
α(λ, µ, K) - probability of acceptance.
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β(λ, µ, K) - probability of rejection.
G(λ, µ, K) - expected cost incurred by accepted customer.
M(λ, µ, K) - expected cost incurred by rejected customer.
pA - fee imposed on accepted customers.
pR - fee imposed on rejected customers.

The social objective is to maximize αV + βR − λ(αG + βM) subject
to the equilibrium condition

αV ′ + βR′ = α(pA + G) + β(pR + M).

An arriving customer causes negative externalities in two ways: by in-
creasing waiting costs of other customers, and by increasing the prob-
ability of rejection for future customers. The authors call the latter
type loss externalities. They proved that the equilibrium arrival rate,
when no admission fees are imposed, is higher than the optimal arrival
rate, and showed that this can be corrected by appropriate fees. They
also solved the long-run problem in which both µ and K are decision
variables and a cost c(µ,K) is added to the social objective function.

7. Multi-server models

7.1. Homogeneous service values
Bell and Stidham [27] analyzed an equilibrium model of routing cus-

tomers in a queueing system. This section describes a simplified ver-
sion of their model. Consider n exponential servers with service rates
µ1 ≥ µ2 ≥ · · · ≥ µn. For convenience, let µn+1 = 0. The arrival process
is Poisson with rate Λ, and it is routed to the servers so that a customer
is assigned to server i with probability λi

Λ , and consequently, the arrival
process to server i (i = 1, . . . , n) is Poisson with rate λi. Balking is not
allowed, and therefore

∑n
i=1 λi = Λ. We assume Λ <

∑n
i=1 µi.

7.1.1 Equilibrium

In equilibrium, if λi > 0 then λj > 0 for j = 1, . . . , i. Thus, in
equilibrium, there exists an index ie such that λj > 0 for j ≤ ie and
λj = 0 otherwise. Of course it is possible that all servers are active,
i.e., ie = n. Moreover, in equilibrium the active servers share the same
expected waiting time, so that µj − λj = µ1 − λ1 for j ≤ ie, and µj <

µ1 − λ1 for j > ie. Apply
∑ie

j=1 λj = Λ, to get

λi = µi −
∑ie

j=1 µj − Λ

ie
, i = 1, . . . , ie. (3.9)

Thus:
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In equilibrium, the excess rate of the active servers over total demand
is equally distributed among the active servers.

By (3.9) and the fact that the expected waiting time at ie is at least
1

µie
, the expected waiting time at an active server i in equilibrium is

ie
∑ie

j=1 µj − Λ
=

1

µie − λie

>
1

µie

.

On the other hand, if a customer joins an inactive server, then he only
has to stay for his own service duration. Since no customer chooses to
join an inactive server, and in particular server ie + 1, it follows that

ie
∑ie

j=1 µj − Λ
≤ 1

µie+1
.

These two inequalities imply that the equilibrium value of ie is given by

ie = min

{

i

∣

∣

∣

∣

1

µi+1
≥ i
∑i

j=1 µj − Λ

}

. (3.10)

7.1.2 Social optimization

The social problem is to set a routing vector (λ1, . . . , λn) which solves
the following problem:

min
n
∑

j=1

λj

µj − λj

subject to
n
∑

j=1

λj = Λ,

and
0 ≤ λj < µj , j = 1, 2, . . . , n.

Again, in an optimal solution a threshold index i∗ exists, such that
server j is active if and only if j ≤ i∗.

The contribution of an active server i to the social objective is λi

µi−λi
.

In an optimal solution, the marginal values of these contributions, i.e.,
their derivatives as functions of the arrival rates, µi

(µi−λi)2
, 1 ≤ i ≤ i∗,

are all equal to some value, say α. Hence,

λi = µi −
√

µi√
α

, i = 1, 2, . . . , i∗. (3.11)
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Apply
∑i∗

i=1 λi = Λ to get

√
α =

∑i∗

i=1
√

µi
∑i∗

i=1 µi − Λ

and hence

λi = µi −
√

µi
∑i∗

j=1
√

µj





i∗
∑

j=1

µj − Λ



 , i = 1, . . . , i∗.

In a socially optimal solution, as in equilibrium, the input to an ac-
tive server is equal to its service rate minus a portion of the excess
of the total rate of service of the active servers over total demand.
However, in contrast to the equilibrium solution, this excess is not
distributed uniformly among the active servers when social optimiza-
tion is sought, but in a way that is proportional to the square root
of their service rates.

The optimal value of i∗ is obtained as for ie in (3.10):

i∗ = min











i

∣

∣

∣

∣

1

µi+1
≥

(

∑i

j=1
µj − Λ

)2

(

∑i

j=1

√
µi

)2











.

By (3.11) the expected waiting time for a customer joining server i,

i ≤ i∗, is
√

α√
µi

. Thus, under socially optimal routing, the waiting time

at a slow server is greater than it is at a fast server.

The optimal routing is not sustainable in equilibrium as customers
will “migrate” from higher indexed servers to those with lower indices.
It turns out that there exists an index it such that the arrival rates
to servers with index at most it are larger in equilibrium than under
social optimization, whereas the opposite holds with respect to the
servers with an index greater than it. Thus, in equilibrium, customers
overload the fast servers, relative to the socially optimal routing.

it ≤ ie ≤ i∗.

7.2. Heterogeneous service values
The model of Bradford [29] is similar to that of Section 3 in regard to

the function V ′(λ). It assumes that there are m customer classes with
Poisson arrivals, and class i has a service value function Vi(λi). Ser-
vice requirements are homogeneous. A central planner has to determine
how much to charge a joining i-customer. The novelty of the model is
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the existence of n servers with different service rates. Let πij be the
probability that an arriving i-customer is routed to queue j. Denote by
Wi(λ, π) the expected waiting time of an i-customer, given an arrival
rate vector λ and a routing matrix π. This value is a weighted average
of waiting times at various queues.

The social optimization problem is

max
λ,π

m
∑

i=1

[Vi(λi) − CiλiWi(λ, π)] . (3.12)

Assume now that the solution has positive arrival rates for each class
(this holds when V ′

i (0), 1 ≤ i ≤ m, are sufficiently large). The first-order
conditions are

V ′
i (λi) − CiWi(λ, π) −

m
∑

k=1

∂Wk(λ, π)

∂λi
Ckλk = 0, 1 ≤ i ≤ m. (3.13)

Let pi denote the admission fee of an i-customer. Then, in equilibrium,

V ′
i (λi) = CiWi(λ, π) + pi, 1 ≤ i ≤ m.

Hence, prices which induce optimal social arrival rates satisfy

pi =
m
∑

k=1

∂Wk(λ, π)

∂λi
Ckλk, 1 ≤ i ≤ m, (3.14)

where the vector λ is determined by (3.13).
Suppose prices, routing probabilities, and arrival rates are given. A

joining i-customer is asked for his class and is then charged and routed
in accordance with the class he claims to belong to. Let ri(k) be the
probability that an i-customer announces that he belongs to class k.
Then the arrival rate to server-j is

γj =
m
∑

i=1

m
∑

k=1

λiri(k)πkj , 1 ≤ j ≤ n. (3.15)

Denote by W(j)(γ) the expected waiting time in queue-j, j = 1, . . . , n,
when the arrival rate to this queue is γ. Then,

Wi(λ, π) =
m
∑

k=1

ri(k)
n
∑

j=1

πkjW(j)(γj), 1 ≤ i ≤ m.

For a given pricing and routing scheme, a set of arrival rates and
reporting probabilities constitute an equilibrium if they solve

min
ri(1),...,ri(m)

m
∑

k=1

ri(k)



pk + Ci

n
∑

j=1

πk,jW(j)(γj)



 , 1 ≤ i ≤ m, (3.16)



66 TO QUEUE OR NOT TO QUEUE

subject to
∑n

k=1 ri(k) = 1 for all i = 1, . . . ,m, and ri(k) ≥ 0 for all i
and k, where γj is as in (3.15) and the arrival rates solve

V ′
i (λi) =

m
∑

k=1

ri(k)



pk + Ci

n
∑

j=1

πk,jW(j)(γj)



 , 1 ≤ i ≤ m.

Call a pricing and routing scheme incentive-compatible if ri(i) = 1
(and hence ri(k) = 0 for k 6= i) for all 1 ≤ i ≤ m minimizes (3.16).
Bradford proved the following theorem.

Theorem 3.6 Let λ∗ and π∗ be the maximizers of (3.12). Then, the
corresponding set of prices given in (3.14) are incentive-compatible in
the sense that the optimal joining probabilities combined with customers’
truthful revelation of their class type define an equilibrium.

Consider now the problem faced by a facility manager trying to max-
imize his profit. The facility manager sets a menu of admission fees and
routing probabilities. He is not able to distinguish customer classes but
he knows the functions Vi. Each arriving customer then chooses from
the menu, pays the fee and is routed to a server according to the proba-
bilities corresponding to the stated class. Suppose that for i = 1, . . . ,m,
i-customers reveal that they belong to class i, and choose (pi, πi) from
the menu. In order for this to be an equilibrium the following conditions
are necessary:

pk − pl ≥ Cl[Wl(λ, π) − Wk(λ, π)], k 6= l, (3.17)

V ′
i (λi) = pi + CiWi(λ, π). (3.18)

Condition (3.17) means that a customer cannot increase his welfare by
choosing a payment other than the one intended for his class. Condition
(3.18) is the equilibrium condition for setting the arrival rates λi, 1 ≤
i ≤ m.

By substituting (3.18) in (3.17) we obtain

V ′
k(λk) − V ′

l (λl) ≥ (Ck − Cl)Wk(λ, π), k 6= l. (3.19)

The objective of the queue manager is to maximize
∑

i λipi. Substi-
tuting (3.18) we get that the manager’s optimization problem is

max
m
∑

i=1

[λiV
′
i (λi) − λiCiWi(λ, π)]
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subject to (3.19).
Bradford proved that

For every class, the arrival rate is no larger for the profit-maximizing
solution than it is for the socially optimal one.

Suppose that Ci < Ci+1 i = 1, . . . ,m − 1, and λi > 0, i = 1, . . . ,m.
Bradford proved the following results:

If (3.19) is satisfied for all (k, l) with |k−l| = 1 then it is also satisfied
for every k, l.

In a profit-maximizing solution, customers from class i + 1 are indif-
ferent between choosing (pi, πi) and (pi+1, πi+1).

7.3. Class decision
Lee and Cohen [102] considered a set of n facilities, where the k-th

facility is an M/M/sk queueing system with mean service time of 1
µk

.
The arrival process consists of m independent classes whose demands
generate Poisson streams with rates γi, i = 1, . . . ,m. The i-th stream
is controlled by an agent. The agent selects rates xik and routes his
customers so that the arrival process of i-customers to the k-th facility
is Poisson with rate xik,

∑n
k=1 xik = γi. The aggregate arrival rate to

facility k is λk =
∑m

i=1 xik.
Denote by Wk(λk) the expected waiting time at the k-th queue. The

expected waiting time for i-customers is then 1
γi

∑n
k=1 xikWk(λk). The

expected number of i-customers who are in service at any instance is
∑n

k=1
xik

µk
. Lee and Cohen assumed that agent i’s objective is to set a

routing vector xik, k = 1, . . . , n, so as to minimize a weighted sum of
these two functions

bi1

γi

n
∑

k=1

xikWk(λk) + bi2

n
∑

k=1

xik

µk
,

given the routing vectors of the other agents. This is an m-person game.
The main results are:

There exists an equilibrium.

If the facilities are identical (sk = s and µk = µ for k = 1, . . . , n),
then the equilibrium is unique.

In general, the equilibrium allocation does not optimize social welfare,
but in the case of identical facilities, it does.
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8. Queueing networks
Queueing networks are a main area of research. Some work about

optimal control of simple queueing networks has been done (see Stid-
ham [164] for a survey) but only very little is known about equilibrium
behavior in such models.

8.1. The Braess paradox
The work of Cohen and Kelly [36] extends the Braess paradox (§1.1)

to queueing networks. The Braess paradox occurs in transport networks
when the addition or expansion of a link generates a new equilibrium
with higher travel costs to all users of the network. Cohen and Kelly
demonstrated that a similar phenomenon is possible in queueing net-
works. We now outline a simplified version of their example.

Consider an arrival process of customers to a service system with an
average rate of 1. The system consists of three facilities denoted by A,B
and C. The service demand of a customer can be fulfilled by visiting C
and either A or B. A and B are single server facilities with a service
rate of 1, whereas C has an infinite number of servers. Let ω be the
expected delay at A or B when the arrival rate to this facility is 1

2 . We
assume that the service at C has a constant length of 2ω time units. In
equilibrium the usage rates are 1

2 both at A and B, and the expected
total delay of each customer is 3ω.

Suppose now that a third option is added: service can also be fulfilled
by visiting both A and B. The former solution no longer corresponds to
an equilibrium since, when customers equally split between the former
options, the new one guarantees a shorter delay of 2ω. In the new
equilibrium the arrival rate of customers who select the new option is
positive but less than 1 (had it been 1, the arrival and service rates at A
and B would be equal, implying infinite delay). In the new equilibrium,
the A − B option is selected by a positive fraction of the customers,
whereas the others equally split between the A −C and B −C options.
Hence, the expected delay at A and B strictly exceeds ω. In equilibrium
the expected delays are equal for all of the customers. In particular,
those who select A and C incur a delay exceeding 3ω and therefore all
customers suffer longer delays than in the original situation.

Calvert, Solomon, and Ziedins [32] show that the Braess paradox can
also occur in observable queues. For further discussion on the Braess
paradox see the survey by Altman, Boulogne, El Azouzi and Jimenez
[8].
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8.2. Heterogeneous service values
Masuda and Whang [120] generalized the model of Section 3 as fol-

lows. Let N be a finite set of identical servers. Customers are classified
according to their needs. A k-customer can accomplish service by visit-
ing a subset R ∈ N from a given collection of subsets (called “routes”
although there is no ordered “flow” in a “network” in this model) Rk.
Let Vk(λk) be the aggregate service value to k-customers if their demand
rate is λk. It is assumed that the expected waiting time at server i is
a function Wi(λi) of the total demand λi at the server. Selecting route
R ∈ Rk is associated with a price p(R). In equilibrium, for every route
R used by k-customers,

V ′
k(λk) = p(R) + C

∑

j∈R

Wj(λj),

where C is the time cost. For routes not used by k-customers, the right-
hand side is at least as large as the left-hand side. This equilibrium is
also known as Wardrop equilibrium (see [172]).

Masuda and Whang proved the following results:

Assume that the functions V ′
k strictly decrease to 0, and the func-

tion W is strictly increasing. Then for any given set of route prices,
{p(R)}, there exists a unique equilibrium.

A socially optimal solution can be induced in equilibrium by setting
route prices such that

p(R) = C
∑

j∈R

λ∗
jW

′(λ∗
j), (3.20)

where λ∗
j is the arrival rate to server j under a socially optimal solu-

tion. Thus, as in (3.4), the price is equal to a congestion externality
cost caused by selecting route R.

The route price is additive. Hence, it is sufficient to charge a service
fee Cλ∗

jW
′(λ∗

j ) at server j for j ∈ N , where p(R) is as in (3.20).
Again this is an externality price. This is a more convenient charging
method since the number of servers is typically much smaller than
the number of routes.

It is not always possible to induce social optimality by charging a fee
that only depends on the type of customer (and not on his choice of
route).

Masuda and Whang also investigated the long-run problem of setting
optimal service rates (see §8), and extended some of the results discussed
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in §8.1. Note that because of the Braess paradox, for a fixed set of prices,
it may be optimal to reduce the rates of some servers, even if this action
does not yield direct savings in operation costs.

8.3. Serial networks with overtaking
Another model that deals with equilibrium in a queueing network is

mentioned by Larson [100]. In this model, customers (vessels on inland
U.S. waterways) move between queues (at locks) and select their travel
speeds. High speed is associated with higher travel cost due to high fuel
consumption. A customer who observes another customer just behind
him increases his speed to avoid being overtaken and having to wait
longer at the next queue. Larson claims that eventually customers move
at their maximum speeds, and this is socially inefficient.12 The model,
however, is not formally described and analyzed, and it is not clear
why travelling at maximum speed is indeed an equilibrium when there
is some positive distance between customers (so that the one behind
has no chance of overtaking the one in front). It may be that such an
equilibrium is possible if customers’ travel speeds differ or are subject
to uncertainty. This is an interesting open problem.

9. Related literature
Chen and Frank [33] discussed the robustness of the main result of
Edelson and Hildebrand [47], that a profit maximizer chooses a so-
cially optimal admission fee, when the assumption of a linear utility
function is removed. A main issue here is how to model the social
utility of the collected fees λp. Since these fees and the aggregate in-
dividual utilities are treated differently, there is no reason to expect
that the socially optimal policy leaves customers with zero surplus.
Therefore, the profit and welfare-maximizing admission fees differ.
This is illustrated in [33] by an example that uses a specific utility
function and the social value of the collected fees is assumed to be
linear. Under certain conditions it is shown that a socially optimal
fee may induce negative expected customer welfare. Such an outcome
is natural when the customer’s value of a monetary unit is smaller
than its social value.

Balachandran [16] considered an unobservable M/G/1 model with a
fixed cost c of running the service facility. This cost does not depend
on the number of customers served or their service times. Given an
arrival rate λ, c is absorbed by the customers so that each individual

12This is an example of rent dissipation, see Remark 4.6.
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pays c
λ . Balachandran investigated the impact of this cost allocation

on the equilibrium arrival rate λe. An increase in λ affects the welfare
of a customer in two ways: it increases his expected waiting costs,
but it decreases his share in covering the operating cost c. Therefore,
it is not clear a priori whether a joining customer gains or looses from
an increase in λ.

Balachandran proved that the equilibrium arrival rate is unique, and
then investigated the related question of how the equilibrium arrival
rate behaves as a function λ(c) of the operating cost. First, for any
c > 0, λe(c) < λe(0). This result is expected since with a positive
operating cost each customer is worse-off in comparison to the zero
operating cost case. Second, λe(c) is monotone decreasing if and only
if the total expected cost per unit of time due to queueing is greater
than the expected cost of maintaining the service center while it is
idle. In terms of λe this condition is

λe(c)CWq(λe(c)) > c

(

1 − λe(c)

µ

)

.

Last, the class dominance property (see Section 4.1) does not hold in
this model.

Stidham [165] raised an issue that is commonly discussed in economic
models. Consider a discrete time version of the model of Section 3.
Fix a value for λt and suppose that the server sets a price pt that
maximizes his profits given λt. Suppose now that the arrival rate
at period t + 1 is set to the value λt+1 that equates the marginal
value of service with the full price, under the assumption that the
arrival rate is λt, that is, V ′(λt+1) = pt + W (λt). Suppose that
this process repeats itself. Will pt and λt converge to the optimal
values? In particular, is this the case when the process initializes
near the optimal values? In other words, is the optimal solution
stable? Stidham showed that this may or may not be the case, and
gave necessary and sufficient conditions for the M/M/1 model (see
also Rump and Stidham [150]).

Friedman and Landsberg [54] considered a discrete time model in
which customers in period n + 1 decide whether or not to enter the
queue based on the expected delay, which they assume to be the
same as the delay in the previous period n. They proved that if the
capacity of the queue is sufficiently large, the equilibrium arrival rate
is stable. For small capacities, the arrival rate typically oscillates
near the equilibrium.
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The issue of stability of the equilibrium was further investigated by
Masuda and Whang [120] under the assumption that the system man-
ager does not have full knowledge of the demand. They considered
alternative dynamic pricing rules and models of adaptive learning
with bounded rationality, and characterized the equilibrium and its
stability conditions.



Chapter 4

PRIORITIES

Priorities are often used in queueing systems as a mechanism for ser-
vice allocation. By carefully selecting an appropriate system of priorities,
both social welfare and profits can be increased.1 This chapter also con-
siders models where customers purchase priority. The rationale behind
purchasing priority is twofold: priority enables overtaking ordinary cus-
tomers who are present upon arrival, and it avoids being overtaken by
later-to-arrive priority customers. The latter reason means that as more
customers purchase priority, the more inclined an individual should be
to do so himself in any given state. In other words, this is an FTC
situation.

1. Observable queues

1.1. Equilibrium payments
The earliest work on equilibrium behavior in priority queues was pub-

lished by Balachandran [15]. Consider an observable M/M/1 queue
in which each arriving customer chooses from a discrete infinite set
{b(0) < b(1) < · · ·} of possible payments. Customers are assigned pri-
ority levels according to their payments and ties are broken in a FCFS
manner. Balking is not allowed and customers are not informed on the
payments made by others.2

1See the survey by Levhari and Sheshinski [105] for a discussion of these benefits.
2Balachandran claims that Theorem 4.1 also holds when an arriving customer knows the
payments made by those already in the system. In particular, under the stated equilib-
rium, knowledge of n implies knowledge of the payments. This is correct, but care must be
taken about predicting the behavior of future customers if the new arrival deviates from the
equilibrium strategy.

73
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The state of the system, n ≥ 0, is defined in the case of a non-
preemptive priority discipline as the number of customers in the queue,
excluding the one in service. In the case of a preemptive priority disci-
pline, this number includes the customer in service.

Consider the strategy of choosing the lowest payment that guaran-
tees joining the head of the queue. If customers follow this strategy
then a LCFS discipline is induced. Moreover, if this strategy is adopted
and state n is observed then the payments made by the n customers
are b(0), . . . , b(n − 1), and in this order. Therefore, a payment of b(n)
guarantees that the arriving customer is positioned at the head of the
queue. Theorem 4.1 gives sufficient conditions for this strategy to define
an equilibrium:

Theorem 4.1 The strategy in which a customer who observes state n
upon arrival chooses payment b(n) is an equilibrium if and only if

max
i≥1

[b(i) − b(i − 1)] ≤ C

µ(1 − ρ)
≤ 1 + ρ

ρ
min
i≥1

[b(i) − b(i − 1)] .

Proof: We give the proof for the non-preemptive version (the proof
for the preemptive version is similar). Tag a customer who chooses
to deviate from the claimed strategy and offer a lower payment, say
b(n − r). He saves b(n) − b(n − r) in direct payments but the time he
spends in the system increases by r busy periods and hence his expected
waiting costs increase by Cr

µ(1−ρ) (see (1.5)). Therefore, if the claimed

strategy induces an equilibrium then the left inequality must hold.
Suppose now that the tagged customer deviates from the prescribed

strategy and chooses to pay b(n + 1). If a new customer arrives before
the service of the tagged customer is completed, then the new arrival will
offer a payment of b(n + 1) and will not overtake the tagged customer.
The expected reduction in waiting time is 0 if the service of the tagged
customer ends before the next arrival, and it is the expected length of
a busy period, C

µ(1−ρ) , otherwise. The latter occurs with probability
λ

λ+µ = ρ
1+ρ . The condition for equilibrium is then

Cρ

µ(1 − ρ)(1 + ρ)
≤ b(n + 1) − b(n).

It can be shown in a similar way that the same condition also guarantees
that a a customer cannot profit by deviating to a payment b(n + r) for
r > 1.
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The theorem was generalized to a GI/G/1 system by Balachandran
and Srinidhi [24].

Note that since all customers are assumed to be identical, and balking
is not allowed, there is no question regarding social optimality in this
model.

Balachandran and Lukens [17] proved analogous conditions to those
given in Theorem 4.1 for the following model, which is a mixture of
the FCFS and LCFS disciplines. An arriving customer selects the same
payment as the highest one paid by customers in the queue and joins the
end of the segment of the queue of customers who paid this amount. If
however, the size of this group exceeds a threshold, the arriving customer
chooses a higher payment and then joins the head of the line, creating
a new group.

Tilt and Balachandran [168] extended the model to allow customers
with different time values. They showed that multiple pure equilibria
may exist and that an equilibrium may induce various service orders,
including FCFS and LCFS.

1.2. Two priority classes
Adiri and Yechiali [2] focused on the case of two priority classes. They

assumed that the price for becoming a lower priority “ordinary cus-
tomer” is 0. This assumption is without loss of generality since their
model does not allow balking or reneging. The models described in
the previous subsection assumed a solution, and gave conditions on the
prices for priorities so that the solution defines an equilibrium. The ap-
proach of Adiri and Yechiali is different. They assumed a given price
for priority and computed an equilibrium solution. In their model, two
FCFS queues are formed in front of a single server, one line for priority
customers and one for ordinary customers. The service of an ordinary
customer is preempted if a priority customer arrives.3 The preempted
customer then moves to the head of the queue of ordinary customers
and resumes service from the point where it was interrupted only when
no priority customers are present. Upon arrival and after observing the
length of the two queues, a customer decides whether to purchase prior-
ity. The price for priority is θ (measured in units of time). Customers
cannot purchase priority while waiting.

The arrival process is Poisson with rate λ, the single server provides
service whose length is exponentially distributed with mean 1

µ regardless
of priority level, and all customers bear a cost of C per unit of waiting

3Similar results hold in the model without preemption.
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0,n

0,n+1

1,n 2,n

0,10,0

1,n+1

Figure 4.1. Transition diagram of a mixed threshold strategy

time. For stability, assume that ρ = λ
µ < 1. No reneging or balking

is allowed and therefore the value associated with service completion is
immaterial.

Denote by (i, j), i, j ≥ 0, a typical state of the system observed by
an arrival, where i and j denote the number of priority and ordinary
customers, respectively, in the system. A pure strategy prescribes for
each state an action: to purchase priority or not. Evidently, the optimal
action of a customer depends on the state of the system and the strategies
adopted by future arrivals.

Adiri and Yechiali considered pure strategies of the following type:
buy priority if and only if the number of customers in the queue is at
least a threshold n.

If the system initializes with state (0, 0) and all follow the pure thresh-
old strategy n, then the state space is basically one-dimensional since
the only possible states are (0, j), j = 0, . . . , n and (i, n), i = 1, 2, . . . ,
and from the total number of customers in the system one can infer the
two-dimensional state. When the initial state in not (0, 0) (but still the
threshold strategy n is used), then sooner or later, state (0, 0) will be
reached and the above pattern will hold from then on. In other words,
when all use the threshold strategy n, then the only recurrent states are
(0, j) j = 0, . . . , n and (i, n) i = 1, 2, . . . , whereas the other states are
transient.

Hassin and Haviv [72] continued this line of research obtaining the
results described in this section. They extended the set of possible
strategies to include mixed strategies of the following kind: for some
nonnegative real number x = n+p, where n is an integer and 0 ≤ p < 1,
a customer who observes a total of k customers in the system joins the
ordinary queue if k ≤ n − 1, does so with probability p if k = n, and
otherwise buys priority. Note that when p = 0 we get the pure strategy
with threshold n. Figure 4.1 depicts the transitions among states when
p > 0. The strategy mixes between the two threshold strategies n (with
probability 1 − p) and n + 1 (with probability p). This can be seen in
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the figure, where the upper path corresponds to the pure strategy n + 1
and the lower path corresponds to the pure strategy n.

For n ≥ 1, let W (n) be the expected time in the system of the last
customer in the ordinary queue when the state is (0, n) and all use the
pure threshold strategy n. Let B = 1

µ−λ be the expected length of a busy

period (equivalently, the expected time it takes to reduce the number of
customers in the system by one).

Theorem 4.2 The integer threshold strategy n, n ≥ 1, specifies an equi-
librium if and only if

θ +
C

µ
− CB ≤ CW (n) ≤ θ +

C

µ
. (4.1)

The threshold n = 0 specifies an equilibrium if and only if θ + C
µ ≤ CB.

Proof: Assume that the entire population uses the integer threshold
strategy n for some n ≥ 1. For n to describe a best response strategy for
an individual, two conditions are necessary. First, if he observes state
(0, n − 1), not buying priority is optimal, that is,

CW (n) ≤ θ +
C

µ
.

Second, if he encounters state (0, n), his optimal action is to buy priority,
that is

C[B + W (n)] ≥ θ +
C

µ
.

Moreover, these conditions are also sufficient: if it is optimal to buy
priority at (0, n), it is also optimal to do so at (i, n) for i ≥ 1; if it is
optimal not to buy priority at (0, n − 1), it is also optimal not to do so
at (0, j) for j ≤ n − 2. To verify the first claim, note that purchasing

priority in state (i, n) is associated with a cost of θ+ C(i+1)
µ , whereas not

buying priority costs C[(i + 1)B + W (n)]. Since B > 1
µ , if the former is

greater than the latter for i = 0, then this is clearly the case for i > 0.
Similar arguments explain the second claim.

The fact that the threshold strategy n = 0 prescribes an equilibrium
if and only if θ + C

µ ≤ CB is straightforward.
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Theorem 4.3

For n ≥ 1,
1

µ
≤ W (n + 1) − W (n) ≤ B. (4.2)

lim
n→∞

[W (n + 1) − W (n)] =
1

µ
. (4.3)

The number of pure threshold equilibria is between 1 and
⌊

1
1−ρ

⌋

.

The lower and upper bounds of 1 and
⌊

1
1−ρ

⌋

on the number of pure

equilibria are attainable.

Proof: The left inequality in (4.2) follows since the value of W (n + 1),
in comparison to the value of W (n), involves at least one more service
completion. The right inequality can be argued as follows: W (n) + B
is the expected waiting time for an ordinary customer when n ordinary
customers are ahead of him, no priority customers are present, and all
use the threshold strategy n. W (n + 1) considers the same scenario but
with one difference: all use the threshold strategy of n + 1. This is of
course more favorable for the ordinary customer in position n + 1 and
hence W (n + 1) ≤ W (n) + B.

The proof for (4.3) is technical. For details see [72]. Yet, this result has
a simple explanation. Compare two ordinary customers, one in position
n and one in position n+1 where in both cases no priority customers are
present. The former customer is in a system where all use the threshold
strategy n and the latter where all use n + 1. Looking at the two under
the same realization of events, the latter commences service for the first
time as soon as the former leaves. When n is large it is unlikely that he
will ever be preempted since the expected queue length behind him is
bounded. Hence, his additional time in the system approaches 1

µ when
n → ∞.

The third claim of the theorem follows from (4.2) and the fact that
the interval bounding W (n) for an equilibrium n (as defined by (4.1)) is
of width B. Thus, the number of pure equilibria is at least one and at

most
⌊

B
1/µ

⌋

which equals
⌊

1
1−ρ

⌋

.

For the fourth claim, when θ = 0 there is exactly one equilibrium (at
n = 0), leading to the stated lower bound. The upper bound is attained
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Figure 4.2. Pure and mixed equilibria

when θ → ∞. This is a consequence of the limit stated in (4.3) and the
fact that the width of the interval determined by (4.1) equals 1

µ(1−ρ) .

For a non-integer value x > 0, let W (x) be the expected time in the
system for the last customer in the ordinary queue when the state is
(0, dxe) and all use the threshold strategy x. A necessary condition for x
to define an equilibrium strategy is that a customer who observes state
(0, bxc) upon arrival is indifferent between buying priority and not (and
therefore randomizing between the two options is a best response). In
fact, this condition is sufficient since it also implies that each of the
other actions prescribed by the strategy for any recurrent state is a best
response. The next theorem follows from this observation. The left-hand
side of the expression is the expected cost associated with not buying
priority and the right-hand side gives the expected cost associated with
buying it.

Theorem 4.4 The non-integer threshold x defines an equilibrium strat-
egy if and only if

CW (x) = θ +
C

µ
.
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Figure 4.2 illustrates the function W (x). The equilibria in this exam-
ple correspond to pure strategies x = 2, x = 3 and a mixed one where
2 < x < 3. Several observations follow:

For 0 < x ≤ 1, W (x) = B. The customer in question is the first in
the ordinary queue, and until his departure every new arrival will join
the priority queue and overtake him. Thus, his waiting time equals
a busy period.

For a fixed value of dxe, W (x) is continuous and monotone decreasing
in x. This holds because as x increases, customers are less likely to
purchase priority, thereby reducing the expected future waiting time
of the customer currently in position dxe of the ordinary queue.

W (n+) − W (n) = B. W (n+) equals the expected length of a busy
period B, which is the time it takes a customer in position n + 1 to
reach position n when (almost) all use strategy n, plus the expected
waiting time from position n under (basically) the same conditions,
i.e., W (n).

W (n+) − W (n + 1) ≤ B − 1
µ . This holds since

W (n+) − W (n + 1) ≤ W (n+) − W (n) − 1

µ
= B − 1

µ
.

The inequality here follows from Theorem 4.3 and the equality follows
from the previous observation.

The sequence of equilibrium strategies alternates between pure and
mixed strategies. The exception is when W (n+) = θ+ 1

µ for some in-

teger n (which is atypical and the data have to be specifically selected
in order for this phenomenon to occur). In such cases consecutive
pure equilibrium thresholds exist.

As observed, W (n+)−W (n) = B, whereas the decrease in the func-
tion between consecutive integers satisfies W (n+) − W (n + 1) < B.
Therefore, if the equilibrium condition for a mixed strategy at x is
satisfied, then both bxc and dxe are pure equilibria. In particular,
both the smallest and the largest x values that correspond to equi-
librium strategies are integers. Moreover, the set of thresholds that
define pure equilibria consists of consecutive integers.

W (x) is computed as follows. Let Hx
i,k be the (future) expected wait-

ing time for an ordinary customer at position i in his queue (i = 1
corresponds to a customer in service), when k ordinary customers are
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behind him, the priority queue is empty, and the threshold x is used. Of
course, i ≥ 1, k ≥ 0 and i + k ≤ dxe. The H values can be computed
by solving a set of linear equations, as shown below. Given these values,
W (x) is computed by setting W (x) = Hx

dxe,0.
Assume that a threshold x = n + p, 0 < p ≤ 1 is adopted by the

population. Then the maximum possible length of the ordinary queue
(including the customer in service) is dxe = n+1, leading to the following
set of equations:4

Hx
1,n = B,

Hx
1,n−1 = 1 + λpHx

1,n + λ(1 − p)(B + Hx
1,n−1),

Hx
1,k = 1 + λHx

1,k+1 k = 0, 1, . . . , n − 2,

Hx
i,k = 1 + λHx

i,k+1 + µHx
i−1,k i = 2, . . . , n − 1 k = 0, . . . , n − i − 1,

Hx
i,n−i = 1 + λpHx

i,n−i+1 + λ(1 − p)(B + Hx
i,n−i) + µHx

i−1,n−i i = 2, . . . , n,

Hx
i,n−i+1 = 1 + λ(B + Hx

i,n−i+1) + µHx
i−1,n−i+1 i = 2, . . . , n + 1.

An O(n2) recursive solution procedure that takes advantage of the
special structure of these equations is suggested in [72]. In particular,
the system possesses a unique solution.

We conclude this section with several observations.

Let n be such that both inequalities in (4.1) are strict. Then among
the threshold strategies, n is the unique best response for an individ-
ual against all others using the threshold strategy n. The situation is
different when the equilibrium is based on a non-integer threshold x:
if all customers deviate to any threshold strategy x− η (respectively,
x+η) for any η > 0 then bxc (respectively, dxe) is now a strictly bet-
ter response against x than x itself. Thus, when limiting ourselves to
threshold strategies, pure equilibria are ESS whereas mixed equilibria
are not.

The threshold strategy n means that customers purchase priority if
they observe n or more customers in the system. Suppose that this
is an equilibrium strategy. Consider now the following non-threshold
strategy: purchase priority if the number of customers is exactly n.
This too is an equilibrium. This may seem strange since it prescribes
not to purchase priority when the number of customers is large. How-
ever, assuming the system initializes in state (0, 0), then if all follow
this non-threshold strategy, states of the type (i, n + j) with i ≥ 0

4To simplify the presentation, we select the time units so that λ + µ = 1. In the case of a
pure strategy, with p = 0, the first and the last equations are not relevant.
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and j ≥ 1 will never be reached and hence it does not matter what
is prescribed there as long as the strategy agrees with the threshold
strategy for states (0, i), 0 ≤ i ≤ n. In particular, the two strategies
lead to the same progression of events. If the initial state is not (0, 0),
the above is still true in the long-run since the states (i, n + j) with
i ≥ 0 and j ≥ 1 are transient under the two strategies.

The previous item described a non-threshold equilibrium strategy
which is not subgame perfect (SPE). We observe that the threshold
equilibrium strategies are not necessarily SPE. The threshold strat-
egy considers only the number of customers in the system, and not
their type. It is easy to construct examples where the type matters.
For example, consider a case where λ ≈ 0. Then, if only priority
customers are present then clearly there is no gain associated with
buying priority. This is, of course, not the case if the present cus-
tomers are ordinary.

Suppose that the value of service is R, and that customers can balk.

Clearly, the priority queue will never exceed m =
⌊

(R−θ)µ
C

⌋

. If m ≥ 1

then an arrival who observes m priority customers in the queue balks.
If m = 0 then customers never buy priority, and they join the ordinary

queue as long as its length is at most
⌊

Rµ
C

⌋

− 1.

Let Bm = 1
µ

∑m−1
i=0 ρi be the expected length of a busy period in the

M/M/1/m queue (that is, an M/M/1 queue with a buffer of length
m, including the customer in service). The analysis for the model
that allows balking is similar to the one which forbids balking. In
particular, this analysis can be achieved by replacing B with Bm.

Hassin and Haviv designed an example with an equilibrium strategy
in which the set of recurrent states is different from the one induced by
any threshold strategy. The example assumes that balking is allowed.

1.3. Profit maximization
Alperstein [7] considered the model of the previous subsection, but

with several priority levels managed by a profit maximizing server. Alper-
stein proved that the profit maximizing pricing scheme is such that the
resulting equilibrium is with a threshold of 1 for each priority type except
for the highest one. When the number of priority types is unbounded,
this means that the service discipline generated in equilibrium is LCFS-
PR. Alperstein also proved that the profit increases with the number of
priority levels and that for an unbounded number of such levels, cus-
tomers’ surplus is 0.
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These results are related to Hassin’s claim that in a LCFS-PR expo-
nential queue, customers’ behavior is socially optimal (see §2.2).

2. Unobservable queues
We now consider the unobservable version of the model discussed in

Section 1.2, where customers decide whether to purchase priority at the
price of θ without first observing the queue. A strategy is associated
with a probability p of purchasing priority.

There are two ways in which an increase in the parameter p, used
by all other customers, affects a given customer. On the one hand, it
increases the expected number of customers who overtake an ordinary
customer and hence increases the incentive to purchase priority. On
the other hand, it decreases the expected number of ordinary customers
that a priority customer expects to overtake and hence decreases the
incentive to purchase priority. The latter effect does not exist in the
observable model since there, the number of ordinary customers to be
overtaken is known at the time of making the decision. Therefore, unlike
the observable model, it is not intuitively clear here if the model is of
the FTC type. It turns out however, that it is, as proved in the next
theorem.

Under the FTC assumption, there are three possibilities for an equi-
librium, exactly as in the shuttle model of §1.5: there may be a unique
equilibrium with either p = 0 or p = 1, or there may be three equilibria,
p = 0, p = 1 and a third pe such that 0 < pe < 1. The precise conditions
are listed in the following theorem:

Theorem 4.5

The model is of the FTC type.

If θ ≤ Cρ
µ(1−ρ) then p = 1 is a dominant strategy;

If θ ≥ Cρ
µ(1−ρ)2 then p = 0 is a dominant strategy;

If Cρ
µ(1−ρ) < θ < Cρ

µ(1−ρ)2 then there are three equilibria: p = 0, p = 1

and p = 1
ρ − C

θµ(1−ρ) .

The pure equilibria are ESS. Mixed equilibria are not.

Proof: Given that strategy p is adopted, the arrival process of priority
customers is Poisson with rate λp and therefore the expected waiting
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time of a priority customer is 1
µ−λp . Let W denote the expected waiting

time of an ordinary customer. Then, the expected waiting time of a
random customer can be computed in two ways. First, it equals the
expected waiting time in a FCFS queue, which is 1

µ−λ . Second, it is
1

µ−λp with probability p and W with probability 1 − p. Thus,

1

µ − λ
=

p

µ − λp
+ (1 − p)W,

from which we conclude that W = µ
(µ−λ)(µ−λp) .

5

The reduction, f(p), in expected waiting costs due to becoming a
priority customer is

f(p) =
λC

(µ − λ)(µ − λp)
=

ρC

µ(1 − ρ)(1 − λp)
.

This function is monotone increasing with p, from which the FTC prop-
erty follows.

Hence,

When θ ≤ f(0), it is uniquely optimal for a customer to purchase
priority no matter what the others do. In other words, this is a
dominant strategy.

When θ ≥ f(1), it is uniquely optimal for a customer not to purchase
priority no matter what the others do. Again, this is a dominant
strategy.

When f(0) < θ < f(1) there exists a unique value pe, 0 < pe < 1, such
that given that pe is adopted by the other customers, a customer is
indifferent between purchasing priority or not. Solving f(p) = θ leads
to pe = 1

ρ − C
θµ(1−ρ) . This equilibrium is not ESS: if p is larger than

pe, the unique best response is to buy priority, whereas if p is smaller
than pe, then the unique best response is not to buy. Therefore,
in addition to the mixed equilibrium, there are two pure equilibria,
where all buy priority and where none do. These pure equilibria are
ESS.

Figure 4.3 depicts the best response function for the three cases.

Remark 4.6 The second item of Theorem 4.5 means that if θ is smaller
than the expected queueing cost under the FCFS discipline, then all

5For an alternative derivation see, for example, [89] p. 125.
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1 1

1 1

1

ppp
45o
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1

θ > f(1) f(0) < θ < f(1)θ < f(0)

Figure 4.3. Best response vs. fraction of priority customers

customers will purchase priority in equilibrium. Thus, the additional
option of buying priority makes everybody worse-off: all customers pay
θ but in practice nobody gains from it. This is an example of rent
dissipation, see [94, 169]. Similarly, when f(0) < θ < f(1), a fraction
of the customers purchases priority in equilibrium; those who do not
purchase priority are worse-off because they are pushed to the back of
the queue; those who purchase priority have in equilibrium the same
expected net benefit as those who do not, and therefore these customers
are also worse-off.

We have seen that in both the observed and the unobserved models the
situation is of the FTC type. Agastya [4] suggested a static model which
yields a different outcome. Suppose that n + 1 customers are present
in a queue. Tag one of the customers and assume that of the other n
customers x are ordinary customers and n − x are priority customers.
The service order in each class is random. If the tagged customer buys
priority then his expected queueing time is x

2µ . Otherwise, if he joins

as an ordinary customer, his expected queueing time is (x + n−x
2 ) 1

µ .

The expected amount saved when buying priority is equal to n
2µ . An

interesting outcome is that this saving is independent of x!
Suppose now that each of the n + 1 customers possesses the option

of paying θ for priority. Then, if θ < C n
2µ (respectively, θ > C n

2µ ) there

is a unique equilibrium in which all (respectively, none) buy priority. If
θ = C n

2µ then any strategy is an equilibrium.

3. Discriminatory processor sharing
Processor sharing relates to situations in which servers split their ca-

pacity among the customers who are present in the system. Thus, the
larger the number of customers in the system, the slower the service rate
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they receive. In §1.4 and in §3.5 we referred to an egalitarian processor
sharing model (EPS) in which customers evenly share the capacity of
a single server. A more general model is the discriminatory processor
sharing model (DPS) in which each customer owns a relative priority
parameter and receives service proportionally to his parameter. Thus, if
n customers are present and their priority parameters are x1, x2, . . . , xn,
with xi ≥ 0 for 1 ≤ i ≤ n, then customer i receives service at a rate
of xi
∑n

j=1
xj

of the server’s capacity.6 Of course, EPS is a special case of

DPS in which the relative priorities are identical.
We next deal with two unobservable DPS models. In the first, only

two parameters are available whereas in the second, customers are free
to choose any nonnegative value. In both models the arrival process
is Poisson with parameter λ, service requirements are exponentially dis-
tributed with parameter µ > λ (that is, ρ < 1), the common time value is
C per time unit, balking and reneging are not permitted, and customers
are not aware of their own service requirement.

3.1. Two relative priority parameters
Let x1 > x2 ≥ 0 be the two relative priority parameters available.

Without loss of generality assume that x1+x2 = 1. Each customer has a
choice of paying an amount of θ > 0 and obtaining the priority parameter
x1, or else getting the priority parameter x2. This is an extension of the
model considered in the previous section, where x1 = 1 and x2 = 0, since
the mean waiting time in this model is as in the corresponding relative
priority model with FCFS service discipline within each class.

A strategy is characterized by the probability q of purchasing x1.
Based on Fayolle, Mitrani and Iasnogorodski [51] the expected waiting
time for an x1-customer is

1

µ − λ

[

1 − λ(1 − q)(x1 − x2)

µ − λ(x1q + x2(1 − q))

]

, (4.4)

and for an x2-customer it is

1

µ − λ

[

1 +
λq(x1 − x2)

µ − λ(x1q + x2(1 − q))

]

. (4.5)

Let f(q) be the reduction in the expected waiting costs for an x1-
customer in comparison with an x2-customer, when all use the strategy

6A customer with xi = 0 receives service only when no customers with positive parameters
are present. If all present customers have xi = 0 then they evenly share the capacity of the
server.
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q. Then from (4.4) and (4.5),

f(q) =
C

µ − λ

λ(x1 − x2)

µ − λ(x1q + x2(1 − q))
.

Since f(q) is monotone increasing in q, 0 ≤ q ≤ 1, the model is of
the FTC type. The next theorem generalizes Theorem 4.5. Note that
Remark 4.6 also holds for this model.

Theorem 4.7

If θ < f(0), q = 1 is a dominant strategy.

If θ > f(1), q = 0 is a dominant strategy.

If f(0) < θ < f(1), there are three equilibria: q = 0, q = 1 and qe

where f(qe) = θ. Specifically,

qe =
1

ρ(x1 − x2)
− C

(µ − λ)θ
− x2

x1 − x2
.

The pure equilibria are ESS. The mixed equilibrium is not.

3.2. A continuum of relative priority parameters
Haviv and van der Wal [79] allowed customers to purchase relative

priorities for any nonnegative amount of their choice, and the relative
priority obtained for a price p ≥ 0 is a monotone increasing function
x(p), with x(0) = 0. The inverse function x−1(y) denotes the price one
pays to receive priority y.7

3.2.1 A linear price function

We start with the simpler case where x(p) = p.

Theorem 4.8 For a DPS system with x(p) = p, there is a unique equi-
librium in which all customers pay

ρC

µ(1 − ρ)(2 − ρ)
.

The proof starts with several observations and lemmas.

7Haviv and van der Wal also treated a variation of this model in which each customer receives
service individually but the order of entrance to service is determined probabilistically by
relative priorities.
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Let W (n, p) be the expected residual waiting time of a customer who
paid p, given that all others pay 1 and that he is in service with n other
customers. Observe that W (n, 0) is the expected sum of n + 1 busy
periods and thus

W (n, 0) =
n + 1

µ − λ
.

When p → ∞ this customer gets absolute priority, and therefore W (n,∞) =
1
µ . Thus, for 0 < p < ∞

1

µ
< W (n, p) <

n + 1

µ − λ
.

For p > 0 and n ≥ 0, W (n, p) satisfies the difference equation:8

(λ + µ)W (n, p) = 1 + λW (n + 1, p) + µ
n

n + p
W (n − 1, p). (4.6)

Lemma 4.9 For some functions A(p) and B(p), and every n ≥ 0,

W (n, p) = A(p)n + B(p). (4.7)

Proof: At a given time, say time 0, tag a customer who paid p, when
there are n other customers in the system and all other customers (in-
cluding future arrivals) pay 1. Suppose that an additional customer joins
the system. The lemma claims that the added expected waiting times
inflicted on the tagged customer due to the additional customer is inde-
pendent of n. To prove this, suppose that service is given in a weighted
round-robin fashion, namely for some (small) quantum ∆, the server,
in a cyclical order, dedicates the service capacity for an amount of time
∆ to each of the other customers and then serves the tagged customer
for an amount of time p∆. Consider the service times of the additional
customer, those who arrive during his service, those who arrive during
their periods of service,... , ad infinitum. The tagged customer may be
present during some of these periods but the distribution of his added
time in the system due to the extra customer is independent of how
many others are present in the system at time 0. Finally, look at the
expected waiting time inflicted by the added customer when ∆ goes to
0. This is exactly the value of A(p).

8The coefficient of W (−1, p) is 0 so there is no need to define this term.
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Lemma 4.10 The functions A(p) and B(p) defined in Lemma 4.9 are

A(p) =
1

µ(1 + p − ρ)
, (4.8)

and

B(p) =
1 + p

µ(1 + p − ρ)
. (4.9)

Proof: (4.8) and (4.9) follow by substituting (4.7) into (4.6). In partic-
ular, select any pair of values for n, such as 0 and 1, and get two linear
equations for A(p) and B(p), which are solved by (4.8) and (4.9).

Lemma 4.11 Denote by g(p) the expected time in the system for a cus-
tomer who pays p when the other customers pay 1. Then,

g(p) =
1 + p − ρp

(1 + p − ρ)(1 − ρ)µ
. (4.10)

Proof: The distribution of the number of customers in the system is
as in an M/M/1 model with the same arrival rate and mean service
time. Therefore, the probability that a customer observes n ≥ 0 other
customers in the system upon his arrival is (1 − ρ)ρn, see (1.2). If he
pays p then his expected waiting time is

g(p) = A(p)
∞
∑

n=0

(1 − ρ)ρnn + B(p)

which along with (4.8) and (4.9) gives (4.10).

Remark 4.12 Note that g(0) = 1
µ(1−ρ)2 is equal to the expected time

in an M/M/1 system from the arrival of a customer until the server is
idle for the first time, see (1.6); g(1) = 1

µ(1−ρ) is the expected waiting

time in an M/M/1 EPS, see (1.4); when p → ∞, g(p) → 1
µ .

Proof of Theorem 4.8: Suppose that all customers pay the price of 1. In
order for 1 to be the optimal price for a tagged customer, it is necessary
that

d

d p
(Cg(p) + p)

∣

∣

∣

p=1
= 0, (4.11)

where g(p) is given in (4.10). Since g(p) is convex, this condition is also
sufficient. Straightforward differentiation shows that if

C =
µ(1 − ρ)(2 − ρ)

ρ
,

then (4.11) holds. A change of scale concludes the proof.
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3.2.2 A concave price function

Now we are ready to generalize the result to any strictly monotone
increasing and concave function x(p).

Theorem 4.13 If x(p) is concave then there exists a unique equilibrium
priority level xe, where xe is the unique solution to

xe
d

d y
x−1(y)

∣

∣

∣

y=xe

=
Cρ

µ(1 − ρ)(2 − ρ)
.

Proof: Let Ŵ (b, a) be the expected time in the system for a customer
who buys priority level b when everybody else buys priority level a. Note

that Ŵ (b, a) = g
(

b
a

)

where g is defined in Lemma 4.11. Replacing p in

(4.10) with b
a , and taking the derivative with respect to b we get

∂

∂b
Ŵ (b, a) = −

ρ
a (2 − ρ)

(

1 − ρ + b
a

)2
µ(1 − ρ)

.

The cost for a customer whose priority is b when all others have pri-
ority a is CŴ (b, a)+x−1(b). By Lemma 4.11 and the concavity of x(p),
this function is convex in b (for any given a). Differentiating with respect
to b and equating to 0 gives

C
ρ
a (ρ − 2)

(

1 − ρ + b
a

)2
µ(1 − ρ)

+
d

db
x−1(b) = 0. (4.12)

When b = a we get that in equilibrium

a
d

d a
x−1(a) =

ρC

µ(1 − ρ)(2 − ρ)
.

For example, if x(p) = p
1
n , then

xe =
ρC

nµ(1 − ρ)(2 − ρ)
.

It is not intuitively clear whether this model is ATC, FTC, or neither
of these. Consider the implicit function of b in the variable a, which is
defined through (4.12):

d

db
x−1(b)

[

b2

a
+ (1 − ρ)2a + 2(1 − ρ)b

]

=
(2 − ρ)ρ

µ(1 − ρ)
C. (4.13)
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The term in the square brackets increases with b. For any given value of
b, this term decreases with a as long as 0 < a < b

1−ρ , and in particular,

when a = b. It is monotone increasing for a > b
1−ρ . This, coupled

with the convexity of the inverse function x−1, implies that in order
to maintain equality in (4.12) and in (4.13), one needs to increase b if
0 < a < b

1−ρ , and decrease it if a > b
1−ρ . In equilibrium a = b so that

around this point there is an FTC situation.

4. Incentive compatible prices

The design of optimal price mechanisms may require knowledge of
characteristics of the customers. These characteristics are seldom known
to the queue manager and must be estimated or obtained from the cus-
tomers’ own statements, a situation that may create an incentive for
customers to declare untruthful values. The topic of this section is the
design of incentive compatible prices that not only induce optimal be-
havior from the central planner’s point of view when the true parameter
values are given to him, but also induce truthful statements from the
customers as part of the resulting equilibrium.

4.1. Heterogeneous time values

The simplest and most intuitive model of an incentive compatible pric-
ing scheme is that of Ghanem [55]. The model assumes an unobservable
M/G/1 facility where the time value of customers is a continuous non-
negative random variable whose value is known to the customer but not
to the system’s manager. Balking is not allowed and the objective of the
system’s manager is to minimize the expected waiting costs by assign-
ing customers to m priority classes and using a non-preemptive priority
discipline. The parameter m is exogenously given.

Ghanem first proved the intuitive result that for social optimization
higher priority should be given to customers with a higher time value
(this is the Cµ-rule). Therefore, an optimal solution is characterized by
numbers α1 > α2 > · · · > αm−1 where αi is the separation point between
priority i and i + 1, and customers with αi ≤ C < αi−1, 1 ≤ i ≤ m,
(with α0 = ∞ and αm = 0) should obtain priority i, which is higher
than priority i + 1.

To induce customers to state their true classes, admission fees p1 >
p2 > · · · > pm are announced. Let W1 < W2 < · · · < Wm be the ex-
pected waiting times at each priority queue. These values are computed
under the assumption that customers join their classes according to the
socially optimal solution.
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Since αi is the optimal separation point between queue i and queue
i + 1, a customer with C = αi is indifferent between joining queue i and
joining queue i + 1. Thus, pi + αiWi = pi+1 + αiWi+1, or

pi − pi+1 = αi(Wi+1 − Wi), i = 1, . . . ,m − 1.

Note that one of the fees can be set in an arbitrary way, say pm = 0,
since balking is not permitted and only the differences in fees matter.
It is straightforward that under this pricing scheme, customers with
C < αi prefer priority i+1 to i and those with C > αi have the opposite
preference. Hence, given these prices, individual optimization minimizes
the systemwide delay costs.9

4.2. Pricing based on externalities
Dolan [45] also considered a model in which customers are identical

except for having different time values, and priority levels are assigned
to customers according to their declared value of time. The informa-
tion that is available to an arriving customer includes the queue length
upon his arrival, the declared time values of the customers in the queue,
and the residual service time of the customer in service. Using this
information, the customer declares a value to his time and obtains pri-
ority accordingly. The goal is to induce customers to declare their true
time value so that the resulting order of service optimizes social welfare.
Dolan suggested the use of Clarke prices. The idea is that each customer
pays for the costs he imposes on others (both past and future arrivals)
when joining the queue. These costs are calculated based on the assump-
tion that customers reveal their true time values. If this assumption is
correct then the cost paid by a customer is equal to the externalities
he imposes. It follows that under this pricing rule, the strategy that
prescribes declaring the true time value defines an equilibrium.

To explain this result, consider first a static model in which no new
arrivals are expected. Suppose that all customers declare their true
values, C1 > · · · > Ck. If customer i increases his declaration to a value
C such that C > Ci−1 then he overtakes customer i − 1. This decreases
his waiting time by say, τ time units, at the expense of a similar increase
in customer i− 1’s waiting time. He directly saves Ciτ but there will be
an increase in the price he pays by an amount of Ci−1τ > Ciτ , which is
the cost he imposes on customer i − 1. Hence his net gain is negative.
Similarly, a decrease in the stated value below Ci adds waiting costs
which are larger than the decrease in his payment.

9Ghanem derived explicit solutions for m = 2 and uniform or exponential time value distri-
butions.
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Generally, if a customer overstates his time cost he must compensate
the customers who will have to wait longer as a result of this act. How-
ever, the total waiting time of customers in the system is independent
of the declaration, so that the extra wait of these customers is exactly
what the current one saves. Since these customers have higher time
values than his, compensating for their increased waiting time costs the
customer more than what he saves. Similarly, understating the time
value adds waiting costs to the customer while reducing his payment.
Yet, the saved payments were used to pay for the time of customers
with lower time values so that again the net gain is negative.

This argument is general and holds for both absolute and relative
priority regimes, and for observable as well as unobservable models.

4.3. Heterogeneous values of service
Mendelson and Whang [124] extended the model of §3.3, assuming

m customer classes. For each i = 1, . . . ,m, a function Vi(λi) is given,
specifying the aggregate rate of utility from serving i-customers when
their rate of arrival to the system is λi. Vi is monotone increasing,
continuously differentiable, and strictly concave. V ′

i can be interpreted
as the value of service associated with the marginal customer, when
customers are ordered in a decreasing order of service value. The service
time of an i-customer is exponentially distributed with rate µi, and his
time value is Ci per unit of time. Denote by Wi(λ) and W q

i (λ) the i-
customer’s expected waiting and queueing time, respectively, given the
vector of arrival rates λ = (λ1, . . . , λm). The social objective is

max
λ≥0

m
∑

i=1

[Vi(λi) − λiCiWi(λ)].

For a given λ, social welfare is maximized (under the appropriate con-
ditions, see [52]) if the Cµ-rule is applied, giving higher non-preemptive
priority to customers with a higher value of Ciµi. Social optimality
requires imposing prices that yield the right arrival rates under this pri-
ority rule and also induce customers to reveal their true class. Assume
therefore that Wi(λ) and W q

i (λ) are defined under this assumption.
The vector of optimal arrival rates, λ∗ , satisfies the first-order condi-

tions

V ′
i (λ∗

i ) = CiWi(λ
∗) +

m
∑

j=1

Cjλ
∗
j

∂Wj(λ)

∂λj

∣

∣

∣

λ=λ∗
, 1 ≤ i ≤ m. (4.14)
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If prices pi are charged to i-customers then the equilibrium arrival
rates satisfy

V ′
i (λi) = pi + CiWi(λ), 1 ≤ i ≤ m. (4.15)

The following theorem is straightforward from (4.14) and (4.15).

Theorem 4.14 If prices p∗i ,

p∗i =
m
∑

j=1

Cjλ
∗
j
∂Wj(λ)

∂λi

∣

∣

∣

λ=λ∗
, 1 ≤ i ≤ m, (4.16)

are imposed then the optimal arrival rates λ∗ define an equilibrium.

As in the single-class case (§3.3), the value of p∗
i can be interpreted as

externalities that an i-customer imposes on the others, given λ∗ .

4.3.1 Homogeneous mean service requirements

Assume that µi = µ for every i = 1, . . . ,m, and without loss of
generality, µ = 1. Assume further that C1 > C2 > · · · > Cm. Suppose
that the system’s organizer cannot distinguish among the classes and
therefore arriving customers are asked to identify their class and are
charged accordingly. The next theorem gives sufficient conditions under
which customers are motivated, in equilibrium, to state their true class.

Theorem 4.15 Suppose that every arrival has the option to either balk
or join. If he joins, he chooses one price from the set {p∗

1, . . . , p
∗
m}

defined by (4.16). If he pays p∗i , he receives the priority of class i. Then,
the following behavior defines an equilibrium: an i-customer joins if he
values the service by more than V ′

i (λ∗
i ). If he joins then he pays p∗i .

Proof: The Cµ priority rule gives top priority to class 1, second priority
to class 2, etc. From [89] p.121,

Wi(λ
∗) = W q

i (λ∗) + 1 =

∑m
j=1 λ∗

i

Si−1Si
+ 1, 1 ≤ i ≤ m, (4.17)

where Si = 1 −∑i
k=1 λ∗

k. By (4.16) and (4.17)

p∗i =
m
∑

j=1

λ∗
jCj

Sj−1Sj
+

m
∑

j=1

λ∗
jCjW

q
j (λ∗) + λ∗

j+1Cj+1W
q
j+1(λ

∗)

Sj

where λ∗
m+1 = W q

n+1 = Cn+1 = 0. Let P j
i be the full price of an i-

customer who joins while claiming to be a j-customer. By (4.17)

P j
i = p∗j + CiWj(λ

∗) = p∗j + Ci

[

∑m
k=1 λ∗

k

Sj−1Sj
+ 1

]

.
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Mendelson and Whang proved the theorem in two steps. First they
proved local optimality, that is, for all i,

P i
i ≤ min(P i−1

i , P i+1
i ).

Then they proved transitivity: for k > j > i (or k < j < i) if P i
i < P j

i

and P j
j < P k

j , then also P i
i < P k

i . This can be done with tedious but
straightforward algebra, which we omit.

4.3.2 Heterogeneous mean service requirements

When classes differ in their service rates, there is no analogue to The-
orem 4.15. For this case, Mendelson and Whang proposed a scheme that
charges customers on the basis of both the declared class and the realized
processing time. It is assumed that upon arrival, a customer does not
know his service time, but he knows to which class he belongs, and in
particular his time value Ci and expected service time 1

µi
. Let pi(t) be

the amount to be paid by a customer who declares himself an i-customer
and his service time turns out to be t, 0 ≤ t < ∞.

Theorem 4.16 There is no incentive compatible pricing scheme of the
type

pi(t) = Kif(t), 1 ≤ i ≤ m,

i.e., prices that are a product of a class charge and a length-of-service
charge.

Theorem 4.17 There is an incentive compatible pricing scheme of the
type

pi(t) = Ait + Bt2, 1 ≤ i ≤ m.

Mendelson and Whang derived A1, . . . , Am and B. They showed that
under this price mechanism each joining customer pays his conditional
expected externalities (where the expectation here is over the service
requirements).10 The quadratic term in the expression can be explained
by the fact that a longer service increases both the number of customers
who wait for its completion and the length of time each of them waits.11

Mendelson and Whang actually proved a stronger property. For each
(ordered) pair of classes i and k, they defined the cheating penalty to be
the cost of announcing k when the actual class is i. Then in equilibrium,
for any fixed i, this penalty function is unimodal in k with a minimum
at i.

10The equilibrium need not be unique, see [124] p. 882. Lederer and Li [101] gave much
attention to this point in their model.
11See Chapter 10 of Wilson’s book on nonlinear pricing [176] for a broader treatment of
nonlinear priority pricing.
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5. Bribes and auctions
Priority pricing as used by Ghanem [55], Dolan [45], Adiri and Yechiali

[2], Hassin and Haviv [72], and Mendelson and Whang [124] means that
customers face a menu of priority levels from which they select one, and
pay the price determined by the system manager for this priority level.

In this section we assume a different scheme in which each customer
chooses the amount he wishes to pay for priority and then he is placed
in the queue ahead of those who paid smaller amounts. This scheme is
called auctioning or bribery according to the context. It turns out that
this decentralized scheme also induces optimal customer behavior, i.e., a
social optimal joining rate.12

Hassin [67] suggested auctioning as a solution to the problem of over-
congestion of the equilibrium arrival rates in unobservable queues, as
observed by Edelson and Hildebrand [47] (see §3.1).13 Hassin added the
following to the assumptions made by Edelson and Hildebrand:

When joining the queue, a customer chooses a nonnegative amount to
pay the server. He is not informed on the amounts paid by others.

A customer is placed in the queue ahead of all those who paid lesser
amounts. This may mean preempting the service of another customer.

The service distribution is exponential and identical for all customers.
When a customer whose service was interrupted returns to service, it is
resumed from the point where it was stopped with no loss of service.

There is no reneging, that is, a customer who joins the queue cannot leave
afterwards.14

Let B denote an equilibrium cumulative distribution function of pay-
ments for those customers who decide to join.

Lemma 4.18 B is continuous and strictly increasing in an interval [0, a]
for some a > 0 and B(a) = 1.

Proof: A discontinuity of B at x implies that with a positive probability
there is a customer in the queue, who offers exactly x. Therefore, an

12Rashid [145] described a situation in which priorities are informally formed in a seemingly
egalitarian (FCFS) system due to pressures from customers who are willing to pay in order
to reduce their waiting time. Rashid concluded that the resulting corruption may increase
social welfare as long as it is kept within bounds.
13In the general context of allocation of goods when applicants bear bid preparation costs, the
decision of an individual to apply for a good may prevent another customer from receiving
it. Because of this external effect the equilibrium behavior may not be socially optimal.
Samuelson [151] (see [67] for extensions) showed that socially optimal participation can be
induced when the allocation is done through auctioning.
14As observed in Remark 3.4, in the unobservable FCFS model the memoryless property
of the residual waiting time makes this phenomenon a result of the model rather than an
assumption.
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arrival’s expected welfare will be larger by a non-infinitesimal amount if
he offers x + dx rather than x. This contradicts the condition that in
equilibrium customers maximize their expected welfare. Positivity of a
follows similarly.

If B(x) is constant for b ≤ x ≤ d but increases for x > d, then a cus-
tomer who offers b instead of d reduces his expenses without increasing
the risk of getting a less favorable position. This is again a contradiction
to the equilibrium requirement. The fact that B increases from 0 follows
similarly.

We will prove the optimality of the equilibrium arrival pattern in
several cases. We recall that social welfare is the difference between
the average rates of value obtained from service and waiting costs. The
difference is a concave function of λ because the expected waiting costs
are convex in λ. Therefore, to prove social optimality of the equilibrium
solution it is sufficient to prove it for the marginal effect of changing the
effective arrival rate.

5.1. Homogeneous customers
The equilibrium behavior of customers is characterized by a specific

probability that a potential customer joins the queue and a specific dis-
tribution of payments among those who join. The expected welfare of a
customer who joins equals the service value minus the payment and the
expected waiting cost. In equilibrium, all customers have identical ex-
pected welfare. This value is 0 if the potential arrival rate is sufficiently
large and in equilibrium some of the customers do not join.

Theorem 4.19 Under equilibrium, customers’ joining pattern is so-
cially optimal.

Proof: Due to the memoryless characteristic of the exponential distribu-
tion, the residual service length of each customer in the system has the
same (exponential) distribution. Also, the model assumes linear waiting
costs and no loss of service due to preemption. Therefore, the order in
which customers are served is irrelevant from the social point of view.
This implies that the effect on social welfare that is caused by a customer
who joins is independent of his payment.

In equilibrium an arriving customer is indifferent among all possible
payments in [0, a] for some a > 0. In particular, customers join as long
as it is worthwhile to do so with no payment at all (i.e., with x = 0).
By Lemma 4.18, a customer who offers no payment is placed at the end
of the queue and stays there until his service is completed, imposing no
extra waiting time on others.
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We conclude that a customer joins if and only if he finds it worthwhile
to do so when he bears all of the additional waiting costs resulting from
his arrival. But this is exactly the social criterion! Thus the consid-
erations of the individual customer and the social planner coincide, as
claimed.

We now derive further properties of the equilibrium solution. Let Λ
denote the potential demand and let Wx denote the expected waiting
time in equilibrium of a customer who joins the queue and pays x. We
consider first the case λ∗ < Λ. By Lemma 4.18 and the fact that in
equilibrium all share the same utility, it follows that

x + CWx = R, 0 ≤ x ≤ a. (4.18)

Clearly, Wa = 1
µ . Substituting x = a in (4.18) we obtain

a = R − C

µ
. (4.19)

By (1.6), W0 = 1
µ(1−ρ)2 . If Λ > µ−

√

Cµ
R then by Table 3.2, a customer

is indifferent between joining (in particular, with zero payment) and

balking, and thus C
µ(1−ρ)2

= R. Hence, λ = µ −
√

Cµ
R , which coincides

with λ∗ as defined in Table 3.2.
Consider now the case λ∗ = Λ. As in (4.18), x + CWx is constant

for all x, 0 ≤ x ≤ a, but this constant may now be smaller than or
equal to R. Thus, Wx = W0 − x

C for 0 ≤ x ≤ a. Taking x = a and

recalling that Wa = 1
µ , we conclude that a = C

(

W0 − 1
µ

)

< R − C
µ ,

where W0 = 1

µ
(

1−Λ
µ

)2 .

We now provide an alternative explanation for Theorem 4.19. The
cost incurred by a customer who joins the queue is CW0 and is inde-
pendent of his payment. A customer who pays x waits only Wx, and
directly contributes CWx to the social costs. Therefore, the difference
C(W0 −Wx) expresses the externalities he imposes on others. However,
by (4.18) this expression equals x, so that:

In equilibrium, the amount paid by a customer equals the externali-
ties he imposes.

This again explains why the individual’s behavior is socially optimal.15

15See the discussion in Section 4.2.
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Social welfare equals

S = λ∗[R − CW (λ∗)], (4.20)

where the expected waiting time, W (λ∗), is independent of the order
of service. This observation follows from the assumption of exponential
service with no service loss as a result of preemption. Thus, W (λ∗) is
identical to the expected waiting time in a similar queue with an average
arrival rate of λ∗ and a FCFS discipline.

The server’s profit consists of the payments obtained from those cus-
tomers who join the queue:

Z = λ∗
∫ a

0
xdB(x),

where a is defined in (4.19). From (4.18), x = C(W0 − Wx), and hence

Z = λ∗
∫ a

0
C(W0 − Wx)dB(x) = λ∗C[W0 − W (λ∗)]. (4.21)

Comparing (4.20) with (4.21) we find that

S = Z + λ∗(R − CW0),

where the term R − CW0 turns out to be the consumer surplus. Note
that if not all of the potential demand is served, customers are indifferent
between joining the queue and not, so that this value is 0 and then,

S = Z. (4.22)

Suppose now that the assumptions of exponential service and no loss
of service due to preemption are dropped, but still assume that the
service demands are independent and identically distributed. The indi-
vidual’s decision consists of two parts: whether to join the queue, and if
so, how much to pay. Hassin [67] noted that although for a given state
of the queue and a given distribution of payments social welfare may be
affected by the payment of a joining customer (certain payments may be
preferred in order to avoid preemption or in order to serve a customer
with a short residual service first), the unconditional distribution of pay-
ments is irrelevant to social welfare. The only part in the customer’s
decision that matters is his probability of joining.

As before, customers join as long as it is worth doing so without any
payment, and this fact is independent of the service distribution. Again,
the customers impose no externalities in this case and therefore, the rate
by which customers join is socially optimal.
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5.2. Heterogeneous customers
We now consider customers with different service values, waiting costs,

or service requirements.

5.2.1 Heterogeneous service values

Theorem 4.20 Suppose that customers value service differently. In
equilibrium, the arrival process is optimal.

Proof: The amount of payment of a customer who joins the queue is
independent of his service value. Hence, an equilibrium payment dis-
tribution for the joining customers is computed as if they came from a
homogeneous population. Consequently, for some constant Re all the
joining customers have service value R ≥ Re and all those who decide
to balk have R ≤ Re.

Consider an individual who decides to balk. If he is somehow per-
suaded to change his decision and join, then his contribution to social
welfare is R − CW0(λ), regardless of his payment. But this individual,
while deciding not to join, already considered the possibility of joining
with no payment and rejected it. Hence, R − CW0(λ) ≤ 0, and the
change in his behavior does not increase social welfare. Similarly, social
welfare cannot be increased by persuading customers not to join.

5.2.2 Heterogeneous service requirements

Suppose that in addition to different service values, customers differ
by their service requirements as expressed by different service rates. A
customer with parameters R and µ faces the following problem:

max

{

0,max
x≥0

{

R − x − C

[

W q
x(λ) +

1

µ

]}}

,

where W q
x(λ) is the expected queueing time of a customer who pays x.

By considering R − C
µ as the value of service completion, the payments

of those who decide to join are independent of their parameters. In par-
ticular, the order in which they are served is independent of their service
requirements. This is not compatible with social optimality, which re-
quires serving customers in increasing order of their service rates.16

5.2.3 Heterogeneous waiting costs

We now assume that customers have different C and R values but
have identical service rates. For simplicity, assume that time values C

16A similar difficulty exists with Mendelson and Whang’s [124] priority prices, see Section
4.3.2. The solution there is to base the charges on the realized processing time.



Priorities 101

in the population have a strictly monotone distribution function over a
closed domain.

Lemma 4.21 Let x1 and x2 be payments made in equilibrium by two
customers with time values C1 and C2, respectively. If C1 > C2 then
x1 > x2.

Proof: First we prove that x1 ≥ x2. Suppose otherwise, that C1 > C2

but x1 < x2. We observe that W (x1) > W (x2) since otherwise the C2-
customer would be better-off by reducing his payment without increasing
his expected waiting time. Since the C1-customer chose to pay x1, it
follows that

x1 + C1W (x1) ≤ x2 + C1W (x2).

Since the C2-customer chose to pay x2, it follows that

x1 + C2W (x1) ≥ x2 + C2W (x2).

Subtracting the second inequality from the first,

(C1 − C2)W (x1) ≤ (C1 − C2)W (x2),

or W (x1) ≤ W (x2). This is a contradiction.
Suppose now that x1 = x2 = x. It follows that all customers with

C2 ≤ C ≤ C1 also pay the amount of x. This contradicts Lemma 4.18.
Thus we conclude that x1 > x2.

Theorem 4.22 Suppose that customers have identical service rates, but
they differ by their service values and waiting costs. Then, in equilib-
rium, customers’ behavior is socially optimal.

Proof: Once a customer decides to join, his payment is independent
of his service value. By Lemma 4.21, individual optimization results in
higher payments and priorities for the customers with the higher waiting
costs, from among those who decide to join. This is clearly the socially
desirable allocation of priorities among those who join. It is less obvious
that the division between arrivals and non-arrivals conforms with social
optimality. To demonstrate this property, assume for simplicity that
there is just a finite set C1 < C2 < · · · < Cn of possible waiting costs.
Under equilibrium, all Ci-customers who decide to join have the same
expected waiting times (though not the same expected welfare since they
may differ in their service value). As in Lemma 4.18, the cumulative
probability distribution of payments of Ci-customers is continuous and
strictly increasing on some interval [ai−1, ai] with ai−1 < ai and a0 = 0.

A C1-customer imposes externalities only on other C1-customers. As
in Section 5.1, such a customer’s payment equals the additional waiting
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cost he imposes on others, and a C1-customer joins if and only if it is
socially desirable for him to do so.

Suppose inductively that this property holds for Ci−1-customers. The
external effects caused by a Ci-customer who pays ai−1 are the same as
those caused by a Ci−1-customer who offers the same amount (since
the service rates are identical). If he chooses to increase his payment
(within the interval [ai−1, ai]), he will reduce his expected waiting costs
but not his expected welfare (since the expected welfare is the same for
all Ci-customers). Thus, the extra payment equals the expected saving
in waiting costs, which in turn equals the expected additional waiting
costs to other Ci-customers. We conclude that if he pays ai−1 + g then,
by the inductive assumption, ai−1 is the part of the externalities imposed
on Ck-customers, k < i, and g equals the part imposed on Ci-customers.
Altogether, the payment is again equal to the externalities, and a cus-
tomer joins only if the sum of his waiting cost and the externalities
he imposes is less then his service value. Thus, customers’ equilibrium
conforms with social optimization.

5.2.4 Heterogeneous waiting costs: a special case

We now describe an explicit solution for an M/G/1 system with cus-
tomer payments. This model was considered independently by Lui [112]
and Glazer and Hassin [60]. For simplicity, we assume that the value
of service is sufficiently high so that in equilibrium all of the potential
demand, with rate Λ, joins.17 Service times have a general distribution
function G(t) with mean 1

µ . Time value in the population is a continuous

random variable with cumulative distribution F (C) and density f(C).
The priority is assumed to be non-preemptive, but a similar analysis is
possible for the preemptive case.

Suppose that a cumulative distribution of payments (or “bribes”),
B(y), is given. The expected cost of a C-customer who pays y, is then

y + C

(

Wq(y) +
1

µ

)

(4.23)

where Wq(y), his expected queueing time, depends on the distribution
B. From Kleinrock [89] p. 12,

Wq(y) =
W0

[1 − ρ + ρB(y)]2
(4.24)

17A solution with a balking option and identical service value is presented by Lui [112].
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where ρ = Λ/µ and W0 = Λ
2

∫∞
0 t2 dG(t).18

Recall from Lemma 4.21 that in equilibrium, the function of payments,
y(C) is strictly monotone increasing. The following theorem character-
izes this function.

Theorem 4.23

y(C) =

∫ C

x=0

2ρW0

[1 − ρ + ρF (x)]3
f(x) dx. (4.25)

Proof: A customer wishes to minimize his expected cost (4.23). There-
fore, y(C) satisfies the first-order condition

− 1

C
= W ′(y(C)).

This, coupled with (4.24), leads to

1

C
=

2W0ρB′(y(C))

[1 − ρ + ρB(y(C))]3
, (4.26)

where B(y) is the equilibrium distribution function of payment. By

Lemma 4.21, B(y(C)) = F (C), so that B ′(y(C)) = f(C)
y′(C) . Inserting

these relations in (4.26) leads to

y′(C) =
2W0ρCf(C)

[1 − ρ + ρF (C)]3
.

The solution to this equation, with y(0) = 0 is given in (4.25).
For the case of homogeneous customers, Glazer and Hassin [60] proved

the following theorem:

Theorem 4.24 If all customers share the same cost parameter C, the
equilibrium payment is a random variable whose support is [0, a] where
a = CW0[(1 − ρ)−2 − 1] and whose cumulative distribution function is

B(y) =
1

ρ

[

(

1

(1 − ρ)2
− y

CW0

)− 1
2

− (1 − ρ)

]

, 0 ≤ y ≤ a. (4.27)

18When priority is preemptive and service is exponential, the expected waiting time is given
by

W (y) =
1/µ

[1 − ρ + ρB(y)]2
.

This expression differs from (4.24) by a multiplicative constant, and thus the analysis in this
section applies therefore also to this case.
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Proof: By (4.24)

y + CWq(y) = y +
CW0

[1 − ρ + ρB(y)]2
,

where B(y) is the equilibrium payment distribution function. In equi-
librium, y + CWq(y) is identical for all y in the support. In particular,
when y = 0 it equals

CW0

(1 − ρ)2
.

The last two equations imply (4.27). The value of a is deduced from
B(a) = 1.

We have shown that the equilibrium solution optimizes social welfare.
Another question is whether the customers gain from the institution of
a payment mechanism in comparison to the FCFS discipline. We now
measure customers’ net welfare after subtracting their payments. Glazer
and Hassin [60] checked this effect in some cases. They found that:

If C is uniformly distributed, and in particular if all customers have
the same C-value, then all customers are worse-off if a payment sys-
tem is introduced.

If there are two customer classes, the introduction of a payment sys-
tem may lower the mean cost per customer.

If C is exponentially distributed, then the introduction of the pay-
ment system does not change the mean cost per customer.

Afèche and Mendelson [3] extended the model of this section in several
ways:

Allowing a minimum price (that is, an admission price in addition to
customers voluntary payment).

Investigating the short run monopoly strategy in the heterogeneous
model.

Investigating who gains and who looses from the institution of the
payment machinery in the general model.

6. Class decision
In this section we survey models about class decisions, that is, classes

of customers making controlled joint decisions to maximize the welfare
of the class.
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Rao and Petersen [143] considered a general congestion model that has
no specific queueing structure. In their model, the demand for service
generates a set of classes, each associated with a demand function as
well as a time value. The model assumes that there is a fixed number
of priority levels, and each customer class decides how much demand to
route to each priority level. The model allows the server to discriminate
among customers and to impose on each of them a different cost function
that linearly depends on the demand rates that the customer routes to
each of the priority levels.

Given the price structure and the demand and routing decisions of
the others, each customer class optimizes its own welfare. Rao and Pe-
tersen proved that this price structure is sufficiently flexible so that by
selecting the right price coefficients, an equilibrium solution of customer
demand and routing decisions that maximizes social welfare can be ob-
tained. Moreover, it turns out, as in §3.1, that under these assumptions
the server can extract all of the customers’ surplus and thus maximizes
profits by imposing socially optimal prices. To compute these prices the
server must have information on the customers’ demand functions and
time values.

In Section 4.3 we described the model of Mendelson and Whang [124],
and incentive compatible prices derived there. The authors also men-
tioned that these prices are not incentive compatible if each class of
customers optimizes its own total welfare. They write:

Intuitively, the class decision structure mitigates the within-class externality
problem, since decisions are made by fiat for the class as a whole, but it also
increases the market power of each user class. Consequently, this decision
structure requires a separate analysis which is left for further research.

Van Mieghem [127] considered a single server unobservable queue with
customers that send streams of jobs to be served. A central feature of the
model is that the waiting cost is a convex function of the waiting time.
It is further assumed that each customer is free to split his demand rate
among priority levels, called grades. The rate by which customer i sends
jobs to grade k is denoted by λi

k. The service rate for these jobs is µi. The
service process is modeled by classes which capture the finest possible
information that the server possesses. The server cannot distinguish
among different jobs in a given class. Consequently, the scheduling rule
is defined in terms of classes. Under full information there is a class j per
each pair (i, k) and its arrival and service rates are Λj = λi

k and µj = µi,
respectively. Under asymmetric information, types are not observable
and each class j consists of the aggregate demand for some service grade

j, with Λj =
∑

i λ
i
j and mean service time 1

µj
= 1

Λj

∑

i
λi

j

µi . The server’s

operating cost is convex in the aggregate demand rate.
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The discipline within each grade is FCFS but the server is free to
select at any moment the next customer to be served from any of the
grades.

A consequence of the nonlinearity of the waiting cost function is that
for any given pattern of arrival rates, a dynamic generalization of the
Cµ-rule, denoted GCµ-rule, is used to improve social welfare.

To define the GCµ-rule, let C j be the marginal delay cost of customer
j, and Nj(t) the number of waiting class j jobs at time t. The GCµ-rule
computes at time t the following index and gives priority to the class
with the highest value:

Ij(t) =







Cj
(

Nj(t)
Λj

)

µj under full information
∑

i

λi
j

Λj
µjC

i
(

Ni(t)
Λi

)

under asymmetric information.

Note that with full information, the index j refers to a customer whose
jobs constitutes class j.

Under heavy traffic conditions it is shown by van Mieghem [126] that
this rule is asymptotically optimal and reduces to the regular Cµ-rule if
the delay cost functions are linear.

Most of the analysis of [127] relates to a model with price differ-
entiation, that is, the queue manager can set different price menus to
different customer classes. Under full information, it can extract all of
the customers’ surplus and, as in §3.1, profit maximization leads to a
socially optimal pricing scheme. Specifically, it is shown that this can be
achieved by a customer-specific two-part tariff, consisting of a fixed fee
plus a variable usage fee. For asymmetric information there is a question
of incentive compatibility. The results of Mendelson and Whang [124]
and Lederer and Li [101] (§7.4) are extended by showing that under
the dynamic Gcµ-rule with arbitrary delay cost functions, there exist
grade-specific prices which are socially optimal and also incentive com-
patible (assuming atomistic customers and homogeneous service time
distributions).

Sanders [152] considered a class-decision model with an M/M/1 queue
serving n classes. The queue manager determines the rate, λi, of demand
by each of these classes. Class i has a utility function Ui(λi,W ) which is
assumed to be differentiable in λi and W , non-decreasing in λi and non-
increasing in W . The goal is to maximize U =

∑

i Ui(λi,W ) subject to
λ =

∑

i λi < µ and W = (µ−∑i λi)
−1. The problem can be solved if the

utility functions are known. However, it is assumed that this information
is not available. The manager can propose an allocation λ1, . . . , λn and
request that the classes state the values of the partial derivatives ∂Ui

∂λi

and ∂Ui

∂W , and update the allocation based on the reported values. This
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information is sufficient to apply a gradient (steepest descent) algorithm
(which converges to the optimal allocation).

Classes may cheat and report partial derivatives with respect to λi

that are larger than the true values and partial derivatives with respect
to W which are smaller than the true values, in order to increase the
rates allocated to them. The main result of the paper is a set of incentive
compatible (possibly negative) side payments given to each class (which
are functions of the reported values of all n classes). These payments
induce classes to reveal their correct derivatives. This result is based on
a “myopic assumption” that classes behave as if the current iteration
is the final one. Thus, each class reports the value of its derivatives in
order to maximize the utility associated with his side payment and the
rate allocated to him in the next iteration. The incentive compatible
payment suggested is a quadratic function of the reported derivatives.

Radhakrishnan and Balachandran [142] considered a firm with two
divisions that share a common M/G/1 facility. Each division incurs
a different constant waiting cost. Each division’s manager determines
a rate of (demand) arrival to the facility and an “effort level” which
affects the profits that the division brings to the firm in a monotone
increasing concave manner. The manager of the firm determines an
incentive scheme of payments to the divisions, based on the realized
rates of demand and profit, and aimed at maximizing the total profit
of the firm. The manager of each division maximizes his own welfare
consisting of the incentive payments minus costs related to the effort
level and waiting costs. The actions of the divisions interact through
the common expected waiting time in the queue.

The paper restricts the analysis to incentive payments that linearly
depend on the realized demand and profit of the division. The main
result of the paper is that a necessary condition for the incentive scheme
to induce optimal behavior in equilibrium, is that the division obtains
all the profits which it brings to the firm after subtracting a cost propor-
tional to the usage rate of the facility. It is shown however, that it might
be that no such scheme induces optimal demand and effort selections.

7. Related literature

In §3.4 we observed the class dominance phenomenon which prevails
in an M/M/1 queue: under both equilibrium and social optimiza-
tion, customers from just a single class join the system (though not
necessarily the same class under the two criteria). Balachandran and
Radhakrishnan [18] showed that a socially optimal allocation of pri-
orities does not necessarily give the highest priority to the class that
dominates in the FCFS discipline. Another result is that there are
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situations where the optimal fee imposed on a higher priority class is
lower than that which is imposed on a lower priority class.

An early model of priority allocation and an incentive compatible
pricing scheme is described in Marchand’s work [119]. It consid-
ers an economy where individuals from a heterogeneous population
consume a “composite product” and use the service provided by a
facility. Their utility depends on the amount of consumption and the
delay at the facility. The service and production rates are simultane-
ously determined so as to maximize a weighted sum of the individual
benefits. It is assumed that the service requirement is deterministic
and depends on customer’s type. For this setting, an approximately
incentive compatible pricing scheme is developed.

Beja and Sid [181] considered a system with a fixed arrival rate and
no balking, where customers differ by their time values and service
times. There are m priority classes (m is given exogenously). The
manager knows the realization for each arrival and needs to assign
the customer a priority class. The optimal assignment is based on
m−1 break-points where the variable of interest is the cost to service
time ratio (as in the Cµ-rule).

Whang [174] considered a general unobservable multi-class queueing
model. The utility of a class is a monotone increasing concave func-
tion of its arrival rate. Its waiting cost is a monotone increasing
convex function of the total arrival rate. Whang showed that the
socially optimal solution is a Pareto efficient allocation which can
be achieved with various bargaining mechanisms. The mechanisms
are: (1) Private bargaining for service rights; (2) Clarke tax mech-
anism (Section 4.2); (3) Centrally planned pricing (§3.3). Whang
considered the mechanisms both under the assumption of infinitesi-
mal customers (a “continuum economy”) and in the model of class
decision (a “discrete economy”). A key result of [174] is the equiv-
alence of these mechanisms, and that the main differences among
them lie with the logistics in which each of them operates and their
information requirements.

Koenigsberg [92] extended Naor’s model and presented optimality
conditions for profit maximization, assuming a set of heterogeneous
customer classes and a preemptive non-resume priority system. How-
ever, more research is needed on this model and the resulting opti-
mality conditions are just a first step towards understanding it.



Chapter 5

RENEGING AND JOCKEYING

This chapter discusses models in which customers react to certain
conditions created after they join the queue. Customers may renege from
the queue if the expected utility from remaining in the queue becomes
negative. This may happen when conditions in the system deteriorate,
due to a slow-down in the service rate, an increase in the expected queue
length, a decrease in the value of service, or other reasons. Recall that
reneging was already mentioned in §2 in a LCFS model where the last in
line may renege when a new customer arrives. Another model in which
customers react to changes in the state of the system deals with an
observable multi-server queue where jockeying from one line to another
(probably shorter) is allowed.

1. Reneging in observable queues
There is no individual or social incentive to renege from an observable

M/M/s queue if the cost of waiting per unit of time is constant, since
conditions do not deteriorate over time: if it was worth joining then it is
worth staying until service is completed. When the cost per unit time of
waiting increases in time, reneging may be justified. A complicating is-
sue is that it is not clear who is going to renege. A customer at the back
of the queue may have a longer expected future waiting time (assuming
that others in the queue will not renege) but his waiting costs per time
unit are still low compared to the customers ahead of him. A distinc-
tion should be made between models that assume that each customer
knows the arrival times of those ahead of him, and models in which this
information is not available. In both, the customer’s strategy depends
on his expectation about the reneging strategies of the customers ahead
of him, and an equilibrium strategy may have a complex structure.

109
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In the following model, reneging may be exercised even when the
waiting costs are linear. Assume that the service time has a decreasing
hazard rate,1 and that the length of time, t, since the current service
started is known to all customers. An equilibrium strategy will be de-
fined by thresholds t1 ≥ t2 ≥ · · · ≥ tn = 0 so that a customer at position
i reneges if t ≥ ti.

The model of Mendelson and Yechiali [125] (see also §2.10) has some
similar features. They analyzed social optimality in a GI/M/1 system.
A customer who observes i customers in the system upon his arrival
balks if i ≥ n, and enters otherwise. A customer at position n may
renege if t time units have elapsed since the last arrival without any
service completion. For this reason, Mendelson and Yechiali described
the acceptance of the n-th customer as conditional. They showed that
such a strategy may increase social welfare relative to the best simple
control limit strategy.

The situation seems to be simpler in single-server egalitarian processor
sharing (EPS) systems, where the service capacity is evenly split among
the customers currently in the system. In §2.6.2 we described the way
Altman and Shimkin [10] modeled the observable EPS system. Their
model distinguishes the arriving customer from those already in the sys-
tem by allowing him to balk after observing the state of the system.
Reneging is forbidden, so the decision taken upon arrival is irrevocable.

An alternative model, treated by Assaf and Haviv [13], assumes that
all customers in the system at a given time, including a new arrival, are
indistinguishable. Therefore, it is sufficient to consider strategies that
are independent of the time already spent in the system. Balking is
excluded, but a customer may decide to renege at any time if this act
maximizes his expected welfare, given the total number of customers
present at that instant. This model is the subject of the rest of this
section.

The model allows randomized strategies in which customers form lot-
teries continuously in order to determine whether or not to renege. The
odds of these lotteries are constant as long as the number of customers
in the system does not change. The resulting strategy is equivalent to

1For t ≥ 0, the hazard rate of a nonnegative continuous random variable with a probability

distribution F and density function f is defined as h(t) =
f(t)

1−F (t)
. Suppose that the waiting

time is distributed according to F . Then, given that one has already waited t units of
time, the probability that his waiting time terminates during the next ∆ units of time is
h(t)∆ + o(∆). F has an increasing hazard rate (IHR) if h is monotone non-decreasing in
t. It has a decreasing hazard rate (DHR) if h is non-increasing in t. Without reneging, the
residual waiting time in a FCFS M/M/1 queue is exponentially distributed, in which case
the hazard rate is constant and thus it is both IHR and DHR.
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one that prescribes reneging after an exponentially distributed time with
a parameter chosen by the customer. The parameter may be updated
when the number of customers in the system changes.

Assaf and Haviv argued that there is no (pure or mixed) equilibrium
in this model.2 First, there is no equilibrium in pure strategies since if
everyone reneges at state n then an individual will do better by staying
all alone and getting the full attention of the server; if n is large and no
one intends to leave, then the best response for any given customer is
to renege.3 Second, there is no equilibrium in mixed strategies, since if
an equilibrium prescribes mixing at state n then all customers at this
state are indifferent between staying and reneging and their utility is 0.
If a new arrival occurs, then the n+1 customers have a strictly negative
utility and thus they should opt to renege immediately. But this cannot
be part of an equilibrium.

Assaf and Haviv resolved the issue of the non-existence of an equilib-
rium by using a weaker concept of equilibrium. A strategy defines an
ε-equilibrium if when all players follow it, an individual cannot increase
his (expected) payoff by more than ε by deviating from this strategy.
Assaf and Haviv showed that there exists an ε-equilibrium strategy, for
any ε > 0, as we describe below.

Consider an observable M/M/1 EPS model with time value C and
service value R satisfying R > C

µ . Denote by (N, θ, η(ε)) the strategies
which are characterized by an integer threshold N ≥ 2, a reneging rate
θ, and a series of reneging rates {ηn(ε)}∞n=N+1 with limε→0 ηn(ε) = ∞
for any n ≥ N + 1, such that:

1 No reneging occurs when the queue size is less than N .

2 Customers renege at rate θ when the queue length is N . This means
that a customer reneges after an interval whose length is exponen-
tially distributed with parameter Nθ, if no arrival or service comple-
tion occurs first.

3 Customers renege at rate ηn(ε) when the queue length is n, n ≥ N+1.
For small values of ε this implies that when the queue length reaches
N + 1, one customer (selected randomly among all present in the
system) almost instantaneously reneges. Thus, states such as N + 2
or N + 3 are practically never reached.

2In fact, the argument there leads to the conclusion that no SPE exists. See Hassin and
Haviv [73] for a discussion of this issue.
3This is an ATC situation.
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The limit of (N, θ, η(ε))-strategies where the rates ηn(ε), n ≥ N + 1,
approach infinity as ε → 0, gives the following cooperative rule: no one
reneges when fewer than N customers are in the system; as soon as N
customers are present, a reneging time is selected from an exponential
distribution with parameter Nθ; if nobody arrives or completes service
by then, then one of the customers is selected randomly to renege at that
time; as soon as the number in the system reaches N +1, the customers
form a lottery that selects one of them to leave immediately. We denote
this rule as the (N, θ)-rule.

For 1 ≤ n ≤ N and θ ≥ 0, let fn(N, θ) be the expected (future)
reward for one who finds himself with n − 1 others in the system when
the (N, θ)-rule is in effect. 4 Then for n = 1, . . . , N − 1

(µ + λ)fn(N, θ) = −C + µ
n − 1

n
fn−1(N, θ) + λfn+1(N, θ) + Rµ

1

n
(5.1)

and

(µ + λ + Nθ)fN (N, θ) = −C + (µ + Nθ)
N − 1

N
fN−1(N, θ) +

Rµ

N
+

λN

N + 1
fN (N, θ).

(5.2)

Assaf and Haviv proved the following theorem:

Theorem 5.1 Let N ∗ = min{N | N ≥ 2, fN (N, 0) < 0}, and let θ∗ ≥ 0
satisfy fN∗(N∗, θ∗) = 0. Then,
(i) N∗ and θ∗ are well defined and unique.
(ii) (N ∗, θ∗), coupled with some rates {ηn(ε)}∞n=N∗+1 with limε→0 ηn(ε) =
∞ for n ≥ N ∗ + 1, define an ε-equilibrium strategy.

For any given values of N and θ, (5.1) and (5.2) are a linear system of
N equations in the variables f1(N, θ), . . . , fN (N, θ). Note that fN (N, 0)
is monotone decreasing in N . Hence, the value of N ∗ can be found
by solving a system as (5.1) and (5.2) with θ = 0 for various values of
N and using a one dimensional search for finding the smallest N with
fN (N, 0) < 0. The next objective is to find θ∗. Using fN∗(N∗, θ∗) = 0
(which is a necessary condition for η − quilibrium for all η > 0), for
the N∗ − 1 equations in (5.1), leads to a nonlinear system of equations
with the unknowns θ∗, f1(N

∗, θ∗), . . . , fN−1(N
∗, θ). It is interesting to

note that a solution can be obtained by solving an (N ∗ − 1) × (N ∗ − 1)
system of linear equations, even though (5.2) contains a product of the
variables θ∗ and fN∗−1(N

∗, θ∗). See [13] for details.

4f0(N, θ) need not be defined since its coefficient in (5.1) is 0.
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Remark 5.2 This section deals with observable EPS models. The un-
observable EPS model has two variations. In the simpler one, customers
apply strategies that do not take into account the length of time that
they have been waiting. Here, the equilibrium reneging time is exponen-
tially distributed (as one continuously forms identical lotteries between
reneging and staying) and the only question left is how to compute the
equilibrium parameter. In the other variation, the strategies take into
account the time already spent in the system. This model seems to be
more complicated.

2. Reneging in unobservable queues
Consider an unobservable queue similar to the one discussed in §3.1,

but add to it the option of reneging. The queue remains unobservable
after a customer joins, and in particular the customer does not know if
his service has already started.

Hassin and Haviv [70] proved that the option of reneging is never
exercised in equilibrium. The argument is that without reneging, the
customer’s virtual waiting time has a constant hazard rate. Therefore,
when the option of reneging is added, the customer’s virtual5 waiting
time is with IHR. Since the waiting costs per unit of time and the value
of service do not vary with time, a customer who joined never reneges. In
this section we describe two models in which the value of service mono-
tonically decreases with time, and consequently reneging is exercised in
equilibrium.

2.1. A single step reward function
Suppose that for some parameter T , the value of service is R if it is

completed at most T time units after arrival, where R > C
µ . Otherwise,

its value is 0. Of course, no customer will stay in the system longer
than T time units. Hassin and Haviv [70] proved that a customer will
also never renege earlier. Again, this is due to the IHR property: while
waiting, for less than T units of time, a customer’s situation is constantly
improving, i.e, his chances of completing waiting in the next unit of times
increases with his waiting time. Hence, if he decides to join, it is better
for him not to renege prior to T . A consequence of this observation
is that a customer who joins, either completes service or reneges while
in service, but he never reneges while waiting in the queue. The fact

5The virtual queueing time is defined as the time until a customer commences service assum-
ing that he never reneges.
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that customers renege affects the equilibrium joining probability, qe. In
particular, qe is different than the one reported in Table 3.1.

Denote by (q, T ) the strategy of joining with probability q and reneg-
ing T time units after joining. Hassin and Haviv proved that if everybody
adopts this strategy, the expected utility of a customer who joins is

f(q) =
R(µ − µe−(µ−λq)T ) + λqCT (µ−λq)e−(µ−λq)T −Cµ(1−e−(µ−λq)T ))

µ−λq

µ − λqe−(µ−λq)T
.

(5.3)
If f(1) ≥ 0 then qe = 1. Otherwise qe is the unique root of f(q) = 0.

Lastly, (qe, T ) is also an ESS. When f(1) > 0, this is trivial. Other-
wise, the best responses to (qe, T ) consist of (p, T ) for any 0 ≤ p ≤ 1,
since the customer is indifferent between joining and balking. Yet, if all
switch to p for some p > qe (which is a best response against qe), then
balking is strictly better than joining, making (qe, T ) a better response
than (p, T ). A similar argument holds when p < qe.

2.2. Convex waiting costs
In this section we assume that R = 1,6 and that customers do not

renege while in service. Let c(t) be the waiting cost per unit of time,
incurred by a customer who has already spent t time units waiting. The
function c(t) is assumed to be monotone increasing, reflecting reduced
level of patience while waiting. Alternatively, it may represent a reduc-
tion in the value of service. Assume further that c(0) = 0 (implying
that a customer joins upon arrival), limt→∞ c(t) > µ (implying reneg-
ing no later than T2 where c(T2) = µ),7 and that c(t) is continuously
differentiable.

The total cost of waiting t units of time is C(t) =
∫ t
0 c(τ) dτ. Thus,

C(t) is monotone increasing and convex.
A multi-server model with these assumptions was analyzed by Haviv

and Ritov [78]. In this subsection, we describe their results for the single
server case.

Let h(t) denote the hazard rate of the virtual queueing time. Haviv
and Ritov showed that the only candidate for a pure equilibrium strategy
is reneging at T2. This is an equilibrium if when all customers renege at
T2, the resulting hazard function satisfies h(t) ≥ c(t) for every t, t ≤ T2.
The formula of h(t) is given in [78].

6We could allow the service value to be time-dependent as well, but since only the ratio of
these two functions matters, the assumption R = 1 is without loss of generality.
7See [78] for the analysis without these two assumptions.
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Haviv and Ritov proved that if

1 β(t) = c(t) − c′(t)
c(t)

is monotone increasing;

2 T2 > T1, where T1 is determined by β(T1) = µ − λ;

3 c(t) is concave along the interval [T0, T1], where T0 < T1 is defined by
c(T0) = µ − λ,

then the unique equilibrium is such that reneging time is a random
variable with distribution function G(t), where

G(t) =



























0 0 ≤ t < T1

1 − µ−β(t)
λ T1 ≤ t < T2

1 t ≥ T2.

Note that G(t) defines an atom at T2. Since c(T2) = µ, the probability

mass at T2 equals c′(T2)
λµ .8

Example: Suppose that c(t) =
√

t. If λ ≤ 1
2µ2 then reneging at T2 =

µ2 is the unique equilibrium. Otherwise, if λ > 1
2µ2 , then the unique

equilibrium is

G(t) =



























0 0 ≤ t < T1

1 − µ−
√

t+ 1
2t

λ t1 ≤ t < µ2

1 t ≥ µ2.

2.3. Heterogeneous customers
Mandelbaum and Shimkin [117] considered an unobservable M/M/s

model with reneging. Once service commences, the customer is aware of
this fact and he stays until his service is completed. Customers differ by
their values of service R and time C, and as in the previous subsection,
only the ratio γ ≡ C

R matters. This ratio is continuously distributed in
the population.9 A strategy prescribes for each value of γ a (possibly
random) reneging time. Since γ is random, any reneging strategy among

8Under other conditions, including c(0) > 0, there may be one more atom, at 0. This atom
corresponds to the fraction of customers who balk as soon as they arrive if they find a busy
server.
9The assumption of a continuous distribution is central. It implies that no mass of customers
shares the same ratio γ.
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customers leads to random reneging times across the entire population
of customers.10

Suppose that a γ-customer uses the strategy of reneging Tγ time units
after his arrival, if he is not admitted to service by then.11 This strategy
profile defines a distribution F (V ) of the virtual queueing time. Consider
a customer with service value R, time costs C and reneging strategy T ,
given the virtual waiting time distribution F . His expected net benefit
is

U(T ) =

∫ T

0
(R − Cv)dF (v) − CT [1 − F (T )].

Thus,

U ′(T ) = (R − CT )F ′(T ) − C[1 − F (T )] + CTF ′(T )

= RF ′(T ) − C[1 − F (T )]

= R[1 − F (T )][h(T ) − γ],

where γ = R
C and

h(t) =
F ′(t)

1 − F (t)

is the hazard rate.12

In an M/M/s system, the hazard rate is constant. When reneging
is introduced, the virtual queueing time is with an increasing hazard
rate (IHR). Therefore, U ′ changes its sign at most once, and when this
happens the sign changes from negative to positive. Consequently, U is
either monotone or unimodal with a minimum. The maximizing value is
therefore in one of the extremes: T ∈ {0,∞}. It follows that there is a
threshold value θ such that customers with γ < θ never renege, and those
with γ > θ renege immediately upon their arrival if all the servers are
busy. Given that the queueing time of a customer in an M/M/s system
with arrival rate λ, service rate µ, and joining probability p, is positive,
its distribution is exponential with parameter sµ − λp. Therefore, in
such a system h(t) = sµ − λp. The threshold θ can be found by solving
θ = sµ − λPr[γ < θ], where Pr[γ < θ] is the probability that a random
customer has γ < θ.

Mandelbaum and Shimkin also considered the same model with an
additional feature: when a customer decides to arrive he is accepted

10A recent paper by Shimkin and Mandelbaum [155] deals with heterogeneous customers
with non-linear waiting costs.
11Note that T = 0 means that a customer reneges immediately after arriving if the server is
busy. This strategy is different from balking.
12In general, F has a mass at t = 0 and therefore F (0) is defined as F (0+).
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only with probability q. The customer is not informed whether he has
been accepted, and therefore he may keep on waiting even after being
rejected. As time in the queue progresses, the prior probability q of
having been rejected is updated. Mandelbaum and Shimkin showed the
following properties:

The posterior probability that a customer has been rejected increases
with the time elapsed since his arrival.

The queueing time has a unimodal hazard rate, first increases and
then decreases. Therefore, there may be two t-values in which h(t) =
γ. The intersection in the increasing phase of h corresponds to a
local minimum. Hence, the best reneging strategy for a γ-customer is
either T = 0 or where his hazard rate equals γ and is in its decreasing
phase.

There exists a unique equilibrium strategy which assigns for any γ a
deterministic reneging time.

3. Jockeying
Jockeying in a multi-server queueing system is the action of moving

from one queue to another. Consider two FCFS observable queues oper-
ated by identical servers, and assume that jockeying is costless. Suppose
also that customers are indifferent between servers, and initially they
select a server randomly. Clearly, whenever the lengths of the queues
differ by 2, the last customer in the longer queue switches to the shorter
one.

In contrast to this straightforward solution, when jockeying is costly
the structure of an equilibrium strategy may be complex. Suppose that
jockeying costs CJ . One is tempted to suggest that once the difference
between the two queues is greater than µCJ +1, the last customer in the
long queue should jockey. However, jockeying under such conditions may
be suboptimal. For example, if the arrival rate is very small the customer
may prefer to postpone his decision until the next service completion. He
may even wait for several service completions, but in such a case he takes
a risk, namely that a customer in front of him in the long queue jockeys
first. This model poses an interesting open questions for research.

The situation is also complex when the queues are not observable.
In a common situation, a customer can observe his queue but not the
other one. In such a case, a customer may try his luck and jockey even
when this action is associated with a cost. Of course, he may discover
that the other queue is not shorter than his original queue. It even may
happen that the other queue is so long that the customer will decide to
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return to his original queue (bearing the jockeying cost again). The act
of jockeying can be viewed in this model as that of acquiring information
about the length of the other queue.

Glazer and Hassin [58] observed that under jockeying, the lengths of
the two queues become positively correlated. Thus, when a customer
joins a queue, he provides information about the current congestion of
the other queue. This information can be used by other customers when
making their decision on whether or not to jockey. This means that jock-
eying is associated with positive externalities between the two queues.
Moreover, when other customers jockey more frequently, the differences
in the lengths of the two queues decrease and the benefit an individual
customer expects to gain by jockeying becomes smaller. Thus, this is an
ATC situation.

Another difficulty associated with this model is that customers who
have jockeyed at least once have private information about the length of
the other queue.13 This is the type of information assumed in models of
retrials (see §6).

Characterizing the equilibrium strategies in models of the abovemen-
tioned type is an open research problem.

3.1. Jockeying and the value of information
Haviv and Hassin [69] considered a mixture of the observable and

unobservable models of jockeying, assuming that a fraction of the cus-
tomers can see the state of the system upon their arrival. The model
assumes a Poisson arrival process with rate λ and two servers with sep-
arate queues and exponential service with rate µ. An arriving customer
can acquire the information about which queue is shorter by paying CI

(measured in time units). A customer who does not purchase this infor-
mation chooses a queue randomly. Informed customers join the shorter
queue (breaking ties with equal probabilities).

Information can be acquired just once and only upon arrival. Thus,
after joining, all customers are alike. Customers (informed as well as
uninformed) jockey costlessly from the rear of one line to the rear of
the other when the difference between them reaches a given threshold
of N .14 We assume N ≥ 3, since information on which queue is shorter
has no value when N = 2.

The value of information is the expected added time in waiting for
an uninformed customer in comparison with an informed one. Let g(p)

13See our comment on [91] in Section 4.
14Without jockeying, the model is intractable, as other models in which customers join the
shortest queue. See, for example, Kingman [86].
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be the expected value of information when the proportion of informed
customers is p. Then, p defines an equilibrium if: p = 0 and g(0) ≤ CI ,
or 0 < p < 1 and g(p) = CI , or p = 1 and g(1) ≥ CI . When g(p) is
monotone decreasing, exactly one of these three cases holds and a unique
equilibrium exists. However, g does not always possess this property.

One could argue that the value of information is a decreasing function
of p, and conclude that this is an ATC situation: when the fraction of
informed customers is large, it is less likely that a server is idle while
customers are waiting in the other queue; hence, the expected waiting
time is smaller. Moreover, for a fixed number of customers in the system,
the expected difference in the lengths of the two queues and therefore
the value of information is smaller.

The above intuitive argument is not complete. There need not be
any direct relation between the expected waiting time and the reduction
in expected waiting time gained when purchasing information. As a
matter of fact, in numerical examples for N = 3, the value of information
increases with p and hence FTC prevails in these cases. The explanation
is as follows: for N = 3 the information is useful only when the difference
in the lengths of the queues is exactly 1 (when it is 2, if the new arrival
joins the long queue the difference will become 3 so that the customer
immediately jockeys even if he does not buy the information). The
probability that the difference is 1 increases with p. However, when
N ≥ 4, the numerical examples showed that the value of information
decreases with p, as expected by the original intuition.

Hassin and Haviv also addressed the question of whether customers
purchase the socially desired amount of information in equilibrium. If
CI is a transfer of payment and not an actual cost, then in the optimal
solution everyone should be informed. If CI is a real cost, the question
of whether customers buy too much or too little information depends
on whether the total gain for an individual, g(p) − CI , outweighs the
externalities that such an action imposes on others. Hassin and Haviv
derived the externalities for N = 3 and found that both directions are
possible in equilibrium, namely customers may buy too much or too
little information than is socially desired. The following subsections are
devoted to the computation of g(p).

3.2. Expected waiting time

For k ≥ 0 and i ≥ 0, let Mk,i be the expected (future) waiting time of
a customer with k customers in front of him (in his queue), and a total of
i customers behind him in his queue and from position max{k−N +3, 0}
and up in the other queue. Note that under the model’s assumption, if
the length of one queue is at least k+1 then the length of the other queue
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is at least k + 2 − N . Also note that the expected waiting time of the
customer under consideration is not a function of how the i customers
are split between the two queues. Clearly, Mk,i = k+1

µ for k ≤ N − 2.
Without loss of generality assume that λ+2µ = 1. Define M−1,i = 0,

then,

Mk,i = 1 + λMk,i+1 + µMk,i−1 + µMk−1,i+1, k ≥ 0 , i ≥ 1. (5.4)

For k ≤ N − 2, Mk−N+1,2N−3 = k+1
µ , so that the boundary conditions

are
Mk,0 = 1 + λMk,1 + µMk−1,1 + µMk−N+1,2N−3, k ≥ 0,

Mk,i =
k + 1

µ
, 0 ≤ k ≤ N − 2, i ≥ 0,

lim
i→∞

Mk,i ≤
k + 1

µ
, k ≥ 0.

These equations and their solutions are independent of p. However,
the stationary probabilities, and thus the unconditional expected waiting
time and the value of information, are functions of p.

3.3. Steady-state probabilities
Hassin and Haviv applied the matrix-geometric technique for com-

puting the stationary distribution (see Neuts [134]). Let πi,j be the
stationary probability that i customers are in front of one of the servers
and j ≥ i are in front of the other (including customers in service). For
i ≥ 0, let L(i) be the set of N states (i, i), (i, i + 1), · · · , (i, i + N − 1).
Let πi be the row-vector of the stationary probabilities of the states in
L(i) ordered as above. For i ≥ 1, a transition from a state in L(i) can
take place only to states in L(i − 1), L(i) or L(i + 1). Thus, for some
matrices Q0,Q1 and Q2 in IRN×N and for i ≥ 1,

πiQ0 + πi+1Q1 + πi+2Q2 = 0. (5.5)

Specifically, let λ1 = λ1+p
2 and λ2 = λ1−p

2 . Then,

Q0(ij) =







λ1 i = 2, . . . , N − 1, j = i − 1
λ i = N, j = N − 1
0 otherwise,

Q1(ij) =



































−1 i = 1, . . . , N, j = i
λ i = 1, j = 2
µ i = 2, . . . , N − 1, j = i − 1
λ2 i = 2, . . . , N − 1, j = i + 1
2µ i = N, j = N − 1
0 otherwise,
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and

Q2(ij) =







2µ i = 1 , j = 2
µ i = 2, . . . , N − 1 , j = i + 1
0 otherwise.

Consequently,15 there exists a rate matrix (which is a function of p)
R ∈ IRN×N such that for i ≥ 0,

πi+1 = πiR.

Specifically, R = limk→∞ X(k) where X(0) is the zero N × N matrix,
and X(k + 1) = X(k)2Q2 + X(k)(I + Q1) + Q0 for k ≥ 0. By utiliz-
ing the spectral representation of the rate matrix R, an expression for
the stationary probabilities can be obtained as we now describe. Let
ω1, ω2, . . . , ωN be the eigenvalues of R. Let E1, E2, . . . , EN be rank-
one (projection) matrices with the properties that EiEj = 0 if i 6= j,
EiEi = Ei, REi = EiR = wiEi for 1 ≤ i, j ≤ N and

R =
N
∑

i=1

ωiEi

is the spectral representation of R. Then,

Rk =
N
∑

i=1

ωk
i Ei, k ≥ 1.

It was shown by Neuts [134] that when the stationary distribution exists,
all eigenvalues of R are in the unit disk. Moreover, since one row of Q0

is zero, also one row of R is zero, and hence at least one eigenvalue of
R is 0. This completes the description of how to compute π i for i ≥ 1
once π0 is known. The straightforward details for computing π0 can be
found in [69].

3.4. The value of information
The value of information, g(p), is the difference in expected waiting

times between uninformed customers and informed ones when a fraction,
p, of customers purchases information:

g(p) =
∞
∑

k=0

N−2
∑

i=1

πk,k+i

[

Mk+i,N−i−2 + Mk,N−2+i

2
− Mk,N−2+i

]

=
∞
∑

k=0

N−2
∑

i=1

πk,k+i

2
(Mk+i,N−i−2 − Mk,N−2+i) .

15See [134], pp. 80–83.
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Hassin and Haviv evaluated g(p) for selected values of N . They con-
cluded that g(p) is monotone increasing when N = 3 and monotone
decreasing for larger values of N . Thus, when N = 3, the more cus-
tomers acquire information the higher its value. Hence, if C > g(1)
(respectively, C < g(0)) nobody (respectively, everybody) acquires in-
formation and this is the unique equilibrium strategy. Moreover, it is a
dominant strategy. If g(p∗) = C for some 0 ≤ p∗ ≤ 1, then p∗ prescribes
an equilibrium strategy. However, in this case p = 1 and p = 0 are also
equilibrium strategies.

In all the numerical examples tested by Hassin and Haviv it was shown
that for N ≥ 4 g(p) is monotone decreasing, and hence if g(0) ≤ C
then there is a unique equilibrium at p = 0. Moreover, not purchasing
the information is a dominant strategy. The same can be said about
purchasing information when g(1) > C. If g(p∗) = C for some p∗ ∈ (0, 1)
then p∗ prescribes the unique equilibrium.

4. Related literature
Koenigsberg [91] considered models of two servers with reneging or

jockeying. As in De Vany [41], it is assumed that the arrival rate depends
only on the price (and not on the expected full price). Reneging and
jockeying are done in a probabilistic way with a rate which depends on
the ratio of the expected costs at the two servers. This assumption is
not justified from assumptions on rational behavior of the customers.
Furthermore, it is assumed that a customer knows nothing about the
present state of the other system. This is problematic: a customer
who just jockeyed has information about the other system. Also, the
model should take into consideration that the queue lengths are not
independent and therefore the length of one queue reveals information
about the other one.



Chapter 6

SCHEDULES AND RETRIALS

This chapter deals with models where customers choose their time of
arrival. Such models contain some non-stationary element like known
times that a service facility is open, a scheduled (possibly periodic) ser-
vice, or information about the state of the queue in past instants.1

1. Waiting time auctions
Holt and Sherman [81] considered a model for the allocation of a fixed

known number, say n, of identical prizes at a specified time on a FCFS
basis, to N individuals who independently choose their arrival times.
To avoid trivialities assume N > n. Individuals are then motivated to
arrive early and increase their chances of obtaining a prize. Early arrival
is associated with a cost, and its benefits depend on the strategies of
the other claimants. Individuals differ by their time value C and by
their value R of the prize. However, only the time value of the prize
α = R

C matters. It is assumed that α is continuously distributed in
the population according to a distribution function G. Individuals learn
whether they get a prize only at the time of allocation of prizes: “losers”
also wait.

Holt and Sherman described an equilibrium in which individuals with
higher time values of a prize arrive earlier. Thus, the time of arrival
before prizes are allocated is a function t(α). Given G(α) it is possible
to compute another function F (α), which gives the probability that an
individual with time value of prize α obtains a prize. Specifically, F (α)

1Related research on transportation models, originated from the work of Vickrey [170] on
equilibrium travel times during the rush hours.
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is the probability that the number of applicants with values greater than
α, out of the other N − 1 applicants, does not exceed n − 1:

F (α) =
n−1
∑

i=0

(

N − 1

i

)

G(α)N−1−i[1 − G(α)]i.

The equilibrium arrival times t(α) satisfy

t′(α) = αF ′(α) (6.1)

for all α > 0. This relation equates the marginal values of the cost of
arriving earlier and the expected value from the associated increase in
the probability of getting a prize.

Assuming that there is some cost (time or monetary) associated with
arriving, a threshold value α∗ exists such that only those with α > α∗

choose to arrive. A person with α = α∗ is indifferent between arriving
and not, and if he decides to arrive then he does so at time 0: t(α∗) = 0.
With this initial condition, the solution to (6.1) is

t(α) =

∫ α

α∗
ydF (y).

Holt and Sherman further verified that this is an equilibrium.
Holt and Sherman also considered variations of the model. One result

is that if losers do not wait (they can observe that the length of the
queue upon their arrival exceeds the number of prizes) then the equilib-
rium involves longer waiting times for the winners, so that the expected
waiting time is unchanged.

2. ?/M/1

Glazer and Hassin [59] considered the customer’s decision of when
to visit a service facility that opens daily during a prespecified time
interval. They referred to the model (with a single server and exponential
service) as ?/M/1. This approach differs from most of the queueing
literature which assumes that the arrival process is given exogenously.
Though some papers considered the optimal setting of appointments,
the abovementioned paper was the first to consider the way customers
choose their arrival time in a decentralized queueing system where each
customer maximizes his own welfare.2

The model’s assumptions are:

2Drivers’ departure time decisions in the face of travel time uncertainty have been investigated
by Arnott, de Palma, and Lindsey [12] and other papers mentioned there.
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1 The facility opens at time 0 and closes at time T .

2 The service discipline is FCFS.

3 All customers arriving prior to time T are served.

4 A customer may obtain a favorable position in the queue by arriving
before time 0, but no service is provided until this time.

5 Customers cannot observe the queue before making their irrevocable de-
cision of when to arrive.

6 Individulas from a very large population decide whether or not to arrive
during the day. The total number of arrivals during the day has a Poisson
distribution with an expected value λ.

7 The service requirement of each customer is exponential with the same
rate µ.

8 A customer has no preferences with regard to his time of arrival except
that he wants to choose one that minimizes his expected waiting time.

The arrival process can be described by a distribution function F (t),
which gives the probability that a random customer among those who
arrive during the day, arrives prior to time t. One can see (similar
to §4.5) that in equilibrium the function F (t) is continuous (so that no
point has mass probability of arrival) and the range in which it is strictly
increasing is an interval of the type (−w, T ) for some w > 0. We denote
by f(t) the density function corresponding to F (t). Thus, the arrival
process is non-homogeneous Poisson, with rate λf(t) at time t.

Since each customer minimizes his expected waiting time, in equilib-
rium each instant in which a customer may arrive has the same expected
waiting time. Equivalently, since all customers have the same service
distribution, customers minimize their expected queueing time. The ex-
pected queueing time of a customer who arrives at −w is w, since he is
guaranteed to encounter an empty queue. Therefore, in equilibrium, the
expected queueing time is exactly w for an arrival at any time in the
interval (−w, T ).

The expected queueing time for an arrival at a given instant depends
on the pattern of customer arrivals prior to this instant. We will now
determine necessary conditions on the function F (t) that are satisfied in
equilibrium.

Consider first the situation faced by a customer who arrives at time
t < 0. The expected number of customers ahead of him in the queue
is λF (t). Because service commences only at time zero, his expected

queueing time is w = λF (t)
µ − t (recall that t < 0 which explains the

subtraction). Thus, d
dt

[

λF (t)
µ − t

]

= 0. We conclude that
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Between time −w and 0, the density function is uniform., i.e.,

f(t) =

{

0 t < −w
µ
λ −w ≤ t < 0.

(6.2)

Consider next the arrival process after time 0. Let the probability
that exactly k customers are in the system at time t be Pk(t). Let the
expected number of customers in the system at t be N(t). The expected
queueing time for a customer who joins at t is proportional to N(t). In

equilibrium, N(t) is constant and d[N(t)]
dt = λf(t) − µ[1 − P0(t)] = 0, for

0 ≤ t ≤ T . Thus,

f(t) =
[1 − P0(t)]µ

λ
, 0 ≤ t ≤ T. (6.3)

Note f(t) is discontinuous in 0. The rate of arrival at time t is λf(t),
and it is independent of the realization of the arrival process prior to
time t. Hence, the state probabilities Pk(t) satisfy the relations

P ′
0(t) = P1(t)µ − P0(t)λf(t) , 0 < t < T, (6.4)

and for k = 1, 2, . . .

P ′
k(t) = Pk−1(t)λf(t) + Pk+1(t)µ − Pk(t)[λf(t) + µ], 0 < t < T. (6.5)

To define boundary conditions, we observe from (6.2) that the proba-
bility that a customer arrives before time 0 is wµ

λ , so that the number of
arrivals prior to time 0 is Poisson with mean wµ, and for k = 0, 1, 2, . . .

Pk(0) = (wµ)k e−wµ

k!
. (6.6)

The probability that a customer arrives after time 0 is
∫ T
0 f(t) dt =

1 − wµ
λ . Therefore,

w =

(

1 −
∫ T

0
f(t)dt

)

λ

µ
. (6.7)

The arrival pattern in equilibrium can be determined from (6.2)-(6.7).
In particular, solve (6.4)-(6.5) by replacing f(t) with its expression given
in (6.3).

Glazer and Hassin showed that
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The arrival rate after opening time is not constant but rather de-
creases with t.

As in other queueing models, the individualistic behavior is not so-
cially optimal. This problem is most clearly seen with respect to the
behavior of customers prior to time 0. In equilibrium, customers arrive
as early as w time units before the opening of the facility. Indeed, when
λ is large relative to T , most customers join the queue before the facility
opens for service. A solution to the problem of non-optimality of individ-
ualistic behavior is the institution of an appointment system, but such
a solution may be too expensive in many situations. Another solution
proposed in [59] is service in random order, at least among those cus-
tomers in the queue at time 0. This discipline takes away the incentive
to arrive prior to the opening time of the facility. Note that in such a
case there is a positive probability of arrival exactly at time zero.

3. Arrivals to scheduled batch service
Glazer and Hassin [61] considered a different model in which cus-

tomers decide when to arrive with the aim of minimizing their expected
waiting time. In this model, service is scheduled at evenly spaced times,
say . . . ,−2,−1, 0, 1, 2, . . . The interval between consecutive services is
denoted as a cycle, and the discussion will be, without loss of generality,
about the cycle (0, 1]. The queue discipline is FCFS and service is pro-
vided in batches of at most N customers. If more than N customers are
present at the time of service then only N are served then and the rest
wait for future services.3 The arrival process is such that the arrivals in
various cycles are independent and identically distributed. Specifically,
let the total number of arrivals within a cycle be a Poisson random vari-
able with mean λ < N . A customer has to decide when to arrive in his
cycle.

Arrivals strictly within the cycle are socially inefficient since service
does not start until the end of the cycle. Therefore, it is desired that
customers arrive only at the end of the cycle. However, if there is a pos-
itive probability that the number of waiting customers exceeds N , such
a solution is not an equilibrium. The reason is that by arriving infinites-
imally earlier a customer may secure a better position in the queue and
reduce his expected waiting time by a non-infinitesimal amount. The
rest of this section characterizes the equilibrium solution.

3Another similar situation is the “custodian’s problem” described by Kosten [93]. Kosten
assumed that service starts only when the server is idle and the number of waiting customers
is at least a given threshold. To obtain our present model, this assumption needs to be
changed to a fixed schedule.
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As in the previous section, the arrival pattern is fully characterized by
a probability distribution function F (t) that gives the expected propor-
tion of customers (among those who choose to come in the given cycle)
who join the queue before t, t ∈ (0, 1]. In other words, F (t) is the prob-
ability that a random customer arrives at most t time units after the
beginning of a cycle. Again, one easily verifies that in equilibrium, F is
continuous, and the interval in which F is strictly monotone increasing
has the form (t0, 1] for some t0 ≥ 0. The arrival process during [t0, 1]

follows a non-homogeneous Poisson process with rates λ(t) = λ dF (t)
dt .

Let W (t) be the expected waiting time of a customer who arrives at
t ∈ (0, 1]. The equilibrium conditions imply that for some w, W (t) = w
for t ∈ [t0, 1] and W (t) ≥ w for t ∈ (0, t0). We now turn to compute w
and F .

For j = 0, 1, 2, . . ., let qj be the probability that j new customers arrive
in a cycle, and let rj be the probability that j customers are in the queue
just before a scheduled service. Note that the values qj are exogenously
given whereas the values of rj are derived from the equilibrium solution.
Then,

r0 = q0

N
∑

i=0

ri , (6.8)

and for j > 0,

rj = qj

N
∑

i=0

ri +
j
∑

i=1

qj−irN+i. (6.9)

Consider a customer who chose to arrive just prior to the service
at time 0. In equilibrium, he is indifferent between this choice and
arriving at t0. By definition, there are no arrivals in (0, t0). Therefore, by
postponing his arrival to t0 he does not risk his position in the queue. If
the queue length prior to 0 is N or larger, then by postponing his arrival
to t0, he would save a wait of t0. If however, the queue length prior to
time 0 is at most N−1 then he would be served immediately if he arrives
prior to 0, and if he postpones his arrival to t0 then he would wait 1− t0
to be served at time 1. Therefore, (1 − t0)

∑N−1
j=0 rj = t0(1 −∑N−1

j=0 rj),
or

t0 =
N−1
∑

j=0

rj . (6.10)

To complete the description of the equilibrium solution we now com-
pute F . Denote by Pj(t) the probability that exactly j customers are in
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the queue at time t. Then,

P0(t) =
N
∑

j=0

rj , 0 < t ≤ t0, (6.11)

and

Pj(t) = rN+j, j = 1, 2, . . . 0 < t ≤ t0. (6.12)

The expected waiting time of a customer who arrives at time t can be
expressed by

W (t) = (1 − t) +
∞
∑

i=1

i
iN+N−1
∑

j=iN

Pj(t), t0 < t < 1,

so that

dW (t)

dt
= −1 +

∞
∑

i=1

i
iN+N−1
∑

j=iN

P ′
j(t) = 0, t0 < t < 1. (6.13)

Since the arrival process is non-homogeneous Poisson,

P ′
0(t) = −λ(t)P0(t)dt, t0 < t < 1, (6.14)

and for j > 0,

P ′
j(t) = λ(t)[Pj−1(t) − Pj(t)], t0 < t < 1. (6.15)

Substituting (6.15) in (6.13) and equating to 0 we obtain

1 = λ(t)
∞
∑

i=1

i
[

PiN−1(t) − P(i+1)N−1(t)
]

= λ(t)

[ ∞
∑

i=1

iPiN−1(t) −
∞
∑

i=2

(i − 1)PiN−1(t)

]

= λ(t)
∞
∑

i=1

PiN−1(t),

or

λ(t) =

[ ∞
∑

i=1

PiN−1(t)

]−1

, t0 < t < 1. (6.16)
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Equations (6.8)-(6.16) determine the equilibrium arrival pattern. For
N = 1, (6.16) simplifies to

λ(t) =
∞
∑

i=1

[Pi−1(t)]
−1 = 1, t0 < t < 1.

Thus,

When N = 1 the arrival rate is constant in the interval (t0, 1), and
t0 = 1 − λ.

Glazer and Hassin numerically solved the equations for other values of N
and in these cases the arrival rate turned out to decrease in time within
the interval (t0, 1).

4. Retrials
Another situation in which customers choose arrival times in order to

maximize their welfare is concerned with retrials or, repeated calls. In
these models customers who observe a busy system upon arrival, leave
temporarily and return later. Between trials, the customer is said to
be in orbit. The information that such a customer possesses is usually
limited to knowledge that the servers were busy at the time of the last
trial. In particular, he cannot observe the number of customers in orbit.
The survey paper by Falin [49] contains an extensive discussion on this
model and its variants.

In this section we consider the single server model of Kulkarni [96],
Elcan [48], and Hassin and Haviv [71]. Customers arrive according to a
Poisson process with rate λ, service requirements are exponential with
rate µ, a customer who observes a busy server leaves temporarily and
tries again later. Each retrial costs r, and the cost while orbiting is C
per unit of time.4 Balking is not allowed in this model.

Assume that the time lengths between retrials are independent and
exponentially distributed with parameter η. In particular, any value of
η corresponds to a strategy. Other strategies, for example when periods
between retrials follow non-exponential distributions, are not allowed
in this model. This assumption means that the only information that
customers who are in orbit possess is that they are indeed in orbit. For
example, they do not recall how many unsuccessful retrials they have
had in the past or how much time has elapsed since their last retrial. In
particular, they retry during the next ∆t units of time with probability
η∆t+o(∆t). When we allow this probability to be time-dependent, i.e.,

4Of course, only the ratio C
r

is of interest.
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equal to η(t)∆t+o(∆t) for some function η(t), where t is the time elapsed
since the last retrial, corresponds to a general distribution of retrial
intervals. The problem of computing an equilibrium retrial process in
this more general case is still open and seems to be more complicated.

4.1. Steady-state probabilities
We start by deriving the state probabilities and expected time in orbit

per customer (see, for example, Falin [49], and also Kulkarni [96] who
gave extensions to general service distributions). The states underly-
ing the corresponding Markov process are pairs (i, j), where i denotes
whether the server is busy (i = 1) or not (i = 0), and j denotes the
number of customers in orbit. Let pi,j be the steady-state probability of
state (i, j). Then, for i = 0, 1, . . .

(λ + iη)p0,i = µp1,i,

and
(i + 1)ηp0,i+1 = λp1,i.

Combining the two equations we obtain

p1,i+1 = ρ

(

1 +
λ

η(i + 1)

)

p1,i,

and by induction

p1,i = ρi
i
∏

j=1

(

1 +
λ

ηj

)

p1,0, i ≥ 0,

where an empty product is defined as 1. Consider the function

Gs(x) =
∞
∑

i=0

xi
i
∏

j=1

(

1 +
s

j

)

=
∞
∑

i=0

(s + 1) · · · (s + i)

i!
xi

=
∞
∑

i=0

(

s + i

i

)

xi

= (1 − x)−1−s.

Then, using
∑∞

i=0 p1,i = ρ (which is the fraction of time in which the

server is busy) and substituting x = ρ and s = λ
η we conclude that

p1,0 = ρ





∞
∑

i=0

ρi
i
∏

j=1

(

1 +
λ

ηj

)





−1

= ρ

[

Gλ
η
(ρ)

]−1

= ρ(1 − ρ)
1+ λ

η . (6.17)
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It follows that for i ≥ 0,

p0,i = ρi+1(1 − ρ)1+
λ
η

µ

λ + iη

i
∏

j=1

(

1 +
λ

ηj

)

.

We next compute the expected number of customers in orbit. First,

∞
∑

i=1

ip1,i = p1,0

∞
∑

i=1

iρi
i
∏

j=1

(

1 +
λ

ηj

)

= p1,0

(

1 +
λ

η

)

ρ (1 − ρ)−
(

λ
η
+2
)

,

where the second equality follows from the observation that ∂
∂ xGλ

η
(x)|x=ρ =

(1 + λ
η )(1 − ρ)−2−λ

η . Combining with (6.17) we obtain

∞
∑

i=1

ip1,i =
ρ2

1 − ρ

(

1 +
λ

η

)

. (6.18)

Similarly,
∞
∑

i=1

ip0,i = p1,0
λ

η
(1 − ρ)−

(

1+ λ
η

)

,

which, with (6.17), gives

∑

i=1

ip0,i =
λ

η
ρ. (6.19)

By (6.18) and (6.19), the expected number of customers in orbit is

Lq =
∞
∑

i=1

i(p0,i + p1,i) =
ρ2

1 − ρ
+

λρ

(1 − ρ)η
. (6.20)

Lq equals the queue length in the corresponding M/M/1 queue, plus
a term which is the expected excess of customers in the system in this
model.5 As expected, this excess is monotonically decreasing with η.
Moreover, it approaches 0 when η → ∞. Since the arrival rate to the
orbit queue is λρ, we obtain by Little’s formula that the expected time
in orbit for a customer who observes a busy server upon his initial arrival
is

1

1 − ρ

(

1

µ
+

1

η

)

.

5The model is not work-conserving since it allows the server to stay idle while customers are
waiting to be served.
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Note that his (conditional) expected waiting time is decomposed into
two sources. The first is as in a standard M/M/1 queue, and the second
term expresses therefore the expected time added because of the non-
work-conserving nature of the model. This decomposition is typical in
models that involve server vacations.

4.2. Social optimality
Kulkarni [95] computed the socially optimal rate of retrials. The prob-

lem is to select a value for η which minimizes CLq + rηLq. An increase
in η is associated with more frequent retrials. This means retrying when
the probability that the server is still busy increases, and therefore an
increase in η leads to an increase in the expected number of retrials. On
the other hand, a reduction of η is associated with an increase in the
expected time a customer spends in orbit. The optimal rate balances
these two effects.

Substituting Lq from (6.20) and differentiating with respect to η, we
obtain from the first-order condition for the optimal rate, that

η∗ =

√

Cµ

r
.

We observe that:

The optimal retrial rate is independent of the arrival rate.

An increase in λ increases the utilization of the server (as expressed
by λ/µ). Thus, for any value of η, both the expected number of retrials
and the expected time in orbit increase. The surprising result is that
these changes preserve the optimal balance between the two opposing
effects and thus the value of η∗ is not affected.

4.3. Equilibrium
We now derive the equilibrium retrial rate for the case of exponential

service as given by Elcan [48]. The derivation for an arbitrary service
distribution appears in Hassin and Haviv [71] and is based on results
from Kulkarni [95].

We need to derive the expected orbiting time for a tagged customer
who uses a retrial rate of γ when all others use η. We denote this value by
g(γ, η). Note that we do not assume in this definition that the customer
observes a busy server upon arrival (and hence, the time in orbit may
be 0 with a positive probability).
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The expected total cost for such an individual is

f(γ, η) = C

(

g(γ, η) +
1

µ

)

+ γrg(γ, η).

In equilibrium, if all use η then this is also a best response. Hence, we
look for an η such that

∂f(γ, η)

∂γ

∣

∣

∣

γ=η
= 0. (6.21)

We will show that such a rate exists and that it is unique.
Let φi denote the expected time in orbit of the tagged customer given

that he is in orbit, the server is busy, and there are i other customers
in orbit. Then, g(γ, η) =

∑∞
i=0 p1,iφi.

6 The following lemma appears in
[48]. We give an alternative proof.

Lemma 6.1 For i ≥ 0,
φi = ai + b

with
a =

η

µ[(1 − ρ)η + γ]
, (6.22)

and

b =
1

µ
+

1 + ρ

γ
+

ρη(λ + γ)

µγ[(1 − ρ)η + γ]
. (6.23)

Proof: We first argue for the affinity of φi as a function of i. Compare
the tagged customer when he is with i or i+1 others in orbit. The extra
customer in the latter case inflicts an expected added time in orbit on
the tagged customer. We argue that this added value is independent of
i. While in orbit, the tagged customer’s retrials form a Poisson process
with rate γ. Likewise, the retrials of the extra customer form a Poisson
process with rate η. Therefore, the extra customer enters service first,
and hence increases the delay of the tagged customer, with probability

η
η+γ (which is independent of i). This expected added delay equals the

expected service time of the extra customer, 1
µ , plus service times of

those who arrive during his service time and who overtake him, plus the
service times of those who arrive and overtake the tagged customer while
the latter are served, and so on. Again, all these values are independent
of i. This completes the proof for the affinity of φi.

6p1,i is a function of η and φi is a function of γ and η. In order to simplify the presentation,
we omit reference to these parameters.
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Note that a is the expected added delay of the tagged customer due
to the above-mentioned extra customer. This added delay is 0 with
probability γ

γ+η and positive with probability η
γ+η . Conditioning on the

latter case, the expected delay equals the expected service time 1
µ plus

the expected number of customers to arrive during this service time,
λ
µ , multiplied by the expected delay each of them adds to the tagged
customer, which is again a. In summary,

a =
η

γ + η

(

1

µ
+

λ

µ
a

)

,

which is solved uniquely by the value for a stated in (6.22).
Lastly, b is the expected time in orbit for the tagged customer who is

orbiting alone given that the server is busy. Thus,

b =
1

λ + µ
+

λ

λ + µ
(a + b) +

µ

λ + µ
W (6.24)

where W is the expected waiting time for the tagged customer who is
orbiting alone while the server is idle. Also,

W =
1

λ + γ
+

λ

λ + γ
b. (6.25)

Solving (6.24) and (6.25) for b, completes the proof.

Theorem 6.2 A unique equilibrium retrial rate ηe exists, with

ηe =
Cρ +

√

C2ρ2 + 8µCr(1 − ρ)(2 − ρ)

4r(1 − ρ)
.

Proof: Lemma 6.1 and (6.18) imply that

g(γ, η) =
∞
∑

i=0

(ai + b)p1,i

= a
∞
∑

i=0

ip1,i + bρ

= a
ρ2

1 − ρ

(

1 +
λ

η

)

+ bρ.

Substituting a and b from (6.22) and (6.23), we obtain

g(γ, η) =
ρ

1 − ρ

[

1

µ
+

1

γ
+

ρ

µ

η − γ

(1 − ρ)η + γ

]

. (6.26)
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Therefore,

∂ f(γ, η)

∂ γ

∣

∣

∣

γ=η
=

ρ

1 − ρ

[

r

(

1

η
+

1

µ

)

+ (C + rη)

(

− 1

η2
+

ρ

µ

1

η(ρ − 2)

)]

.

With (6.21), this gives a quadratic function

2r(1 − ρ)η2 − Cρη − Cµ(2 − ρ) = 0,

which has a unique positive root, ηe, as claimed.
We note that

ηe increases monotonically with λ.

When ρ ↑ 1, ηe ↑ ∞.

When ρ ↓ 0, ηe ↓ η∗.

The equilibrium retrial rate is higher than the optimal retrial rate.
This property follows since 2 − ρ > 2(1 − ρ) so that

ηe >

√

Cµr(1 − ρ)2

r(1 − ρ)
= η∗. (6.27)

In particular, in equilibrium customers stay in orbit less time than
they do under social optimization. Yet, of course, their total costs
are higher.

When a customer selects his retrial rate he ignores the way this act af-
fects other customers. Thus, the optimal and equilibrium retrial rates
differ. When a customer in orbit retries he may prevent another cus-
tomer, new or in orbit, from succeeding. This means that an arrival,
and in particular a retrial, is associated with negative externalities.
We observed that ηe > η∗. This reflects the fact that the length
of the queue t time units after the server was observed to be busy,
stochastically decreases with t. Therefore, the negative externalities
associated with a retrial decrease in the time since the previous trial.
Hence, a customer who ignores these externalities retries sooner than
is socially desired.

The expected cost of a customer increases as others retry at a higher
rate. In other words, f(γ, η) increases monotonically with η for any
fixed γ. To verify this property note that f(γ, η)− C

µ = (C+γr)g(γ, η)

so that ∂f(γ,η)
∂η is proportional to ∂g(γ,η)

∂η . Using (6.26), these deriva-
tives have the same sign as

(1 − ρ)η + γ − (η − γ)(1 − ρ) = γ(2 − ρ)
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and therefore it is positive. An intuitive explanation for this prop-
erty can be found on lines similar to the arguments for the previous
observation. The higher the retrial rates of others, the higher the
probability that the server is busy again when the tagged customer
retries.

Equation 34 of Elcan [48] gives the derivative of an individual’s best
response γ as a function of the rate η adopted by the others. When
η = ηe this derivative is negative, which shows that in the neighbor-
hood of ηe the situation is ATC.

Hassin and Haviv [71] suggested two ways to resolve the difference
between the optimal and equilibrium retrial rates. The first is by partial
compensation (a rebate) to customers for their actual waiting costs. The
other is by taxing unsuccessful retrials.

Theorem 6.3 A positive rebate, P < C, per unit of waiting time ex-
ists, that induces an equilibrium with the optimal retrial rate η∗. It is
determined by

(C − P )ρ +
√

(C − P )2ρ2 + 8(C − P )µr(1 − ρ)(2 − ρ)

4r(1 − ρ)
=

√

µC

r
.

The same effect can be achieved by imposing a toll T = r P
C−P per retrial

so that the cost per retrial is now r + T .

Proof: By (6.27), ηe > η∗. Also, note that ηe is continuously monotone
increasing in C. Therefore, it suffices to show that for sufficiently small
values of C, the resulting equilibrium retrial rate is smaller than the
original η∗. Indeed, when C − P approaches 0, the value of ηe also
approaches 0 and therefore, for some intermediate value of P , equality
holds. In particular, the stated equation has a unique solution P ∈
(0, C).

To compute T observe that the optimal and the equilibrium rates
depend on r and C only through their ratio. We obtain the desired toll
value by solving r+T

C = r
C−P .

5. Related literature
Daniel [39] considered a model in which a given set of identical cus-
tomers would most like to be served at a specific time. In addition
to the usual linear waiting costs, customers also incur linear costs if
service starts earlier or later than this desired point in time. The
number of customers is Poisson and the length of service is deter-
ministic. Each customer announces his scheduled arrival time but
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the actual arrival time may turn out to be different since the actual
time of arrival is subject to independent random shocks. The paper
gives conditions for equilibrium scheduling as well as conditions for
socially optimal scheduling. The social planner can achieve a decen-
tralized implementation of the optimal arrival schedule by imposing
a congestion fee equal to the externality cost. If customers’ declared
scheduled times of arrival cannot be trusted, the fees depend on the
actual times of arrival. Daniel presented an algorithm for computing
an equilibrium solution based on the observation that the expected
cost must be identical in each point of time used to schedule an ar-
rival.

The paper was motivated by the regulation of aircraft schedules and
also deals with the case in which many of the arrivals belong to the
same airline, which then internalizes some of the external costs.

Rapoport, Stein, Parco, and Seale [144] considered a model in which
customers choose their arrival times to a service facility. The facility
is open during a given time interval. It is not possible to queue
before opening and a customer whose service is not completed before
closing time is not served. The queue is unobservable so that an
arriving customer always joins and then stays until either his service
is completed or the facility closes, whichever comes first. The paper
contains numerical solutions for the arrival pattern in equilibrium for
selected sets of parameters, and reports on an experimental study
with 20 players.



Chapter 7

COMPETITION AMONG SERVERS

This chapter deals with markets in which servers compete over the
customers, usually by posting prices. Most of the models consider a
game with two stages; servers act as leaders by announcing prices, and
customers follow by selecting servers accordingly. Thus, the model com-
putes customers’ equilibrium for any given set of prices, so that each
customer optimizes his own welfare by choosing a server. Then, an equi-
librium among the servers is computed, where each server sets a price
that maximizes its profits, given the prices of the others. At this stage,
the servers assume that for each set of prices, the arrival rates are de-
termined by the corresponding customers’ equilibrium.

Competition in models with congestion has a unique feature which
Reitman [146] points out: firms that sell the same product still have
positive profits. The reason is that by cutting its price below the mar-
ket price, a server is still unable to attract all of the customers from its
competitors: as its demand increases, waiting times increase and thus
the quality of the service it offers decreases. The number of customers
who switch to a server that cuts its price is limited by the accompany-
ing deterioration in its quality. In equilibrium, if the price is reduced
then the gain from new customers equals the revenues lost from existing
customers.

139
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1. Unobservable queues with heterogeneous time
values

1.1. Continuous distribution of time values
The earliest works on competition between servers in a queueing

model are Luski [113] and Levhari and Luski [104]. The two papers
deal with the same model and introduce complementary results.

Consider two identical exponential servers with separate unobservable
queues. The joint arrival process is Poisson with intensity λ. Customers
differ by their time value C which has a continuous distribution function
F (C).1 The value of service, R, is identical for all customers.

Suppose that server i charges an admission fee of pi, i = 1, 2. Without
loss of generality, assume that p1 ≥ p2. Also assume that each server
serves a positive fraction of the population. This situation is possible in
equilibrium only if the corresponding expected waiting times, W1 and
W2, satisfy W1 ≤ W2. In this case, customers with lower C values join
server 2, those with higher C values join server 1, and those with highest
C values may balk. In particular, a customer with time value C joins
server 2 if CW2 + p2 ≤ CW1 + p1 (equivalently, C < p1−p2

W2−W1
), balks if

C > R−p1

W1
, and joins server 1 if p1−p2

W2−W1
< C < R−p1

W1
.

This means that the arrival rates to the servers satisfy

λ2 = λF

(

p1 − p2

W2 − W1

)

,

and

λ1 = λ

[

F

(

R − p1

W1

)

− F

(

p1 − p2

W2 − W1

)]

= λF

(

R − p1

W1

)

− λ2.

Substituting Wi = 1
µ−λi

, we obtain for any given pair of prices p1 and
p2 a system of two nonlinear equations with variables λ1 and λ2,

Each server wishes to maximize profits, piλi i = 1, 2. Levhari and
Luski [104] solved several instances. In each case they computed the
reaction curve which describes the profit-maximizing price of a server
given the price set by the other server. From the reaction curve one can
deduce the equilibrium solutions. Their main results are:

1This assumption implies that there is no C value common to a positive fraction of the
population of customers or, put differently, no two customers share the same cost parameter
C. The other extreme, in which the value of C is common to all customers, was treated by
Chen and Wan [35]. The case of only two possible values for C was treated by Armony and
Haviv [11]. See Section 1.2.
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In some cases an equilibrium comes with equal prices, in others the
prices differ. However, the social welfare maximizing prices are always
different. The latter result was proved analytically.2

Whenever the prices differ in equilibrium, the profits also differ.

Luski and Levhari also computed the profit-maximizing prices set by
a monopoly that owns both servers, and the social welfare maximizing
prices. They report that in numerous examples the prices set at the
two servers differ, and are higher than those obtained in the case of
competing servers.

The social welfare maximizing prices are lower than the equilibrium
prices.

Reitman [146] generalized the results of Luski and Levhari, by con-
sidering a multi-server model with identical servers and heterogeneous
customers. Server i, i = 1, . . . , n, chooses an admission fee pi and a
service capacity µi, and consequently faces an arrival process with rate
λi. The waiting time at the server is some strictly increasing function of
λi

µi
. Customers differ by their time value.
Reitman proved that when n ≥ 3 only asymmetric equilibria are pos-

sible. In equilibrium, customers with lower time values choose lower
priced and higher congested servers. Therefore, there exist thresholds
C0 = 0 < C1 < · · · < Cn−1 < Cn = ∞ such that customers with time
values Ci−1 ≤ C < Ci choose server i, i = 1, . . . , n.3 Since the servers’
profits are positive, if no fixed costs are entailed, new firms join the
market and the number of servers become infinite. In this case, all firms
charge different prices in equilibrium.

1.2. Two time values
Armony and Haviv [11] considered a model that differs from the model

of Levhari and Luski [104] by one key distinction: a customer’s time
value is either C1 or C2, where C1 < C2.

Consider two identical exponential servers with separate unobservable
queues. The joint arrival process is Poisson with intensity λ. Customers
are homogeneous with respect to their value of service. Their cost pa-
rameters are C1 or C2 with probabilities q1 and q2 = 1−q1, respectively.
Joining queue i, comes with a charge of pi, i = 1, 2.

2Loch [111] proved that when the time values of all customers are identical, the equilibrium
prices are symmetric.
3Compare with §4.4.1.
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The game has two levels. In the first level, there is a game among cus-
tomers who observe the prices set by the servers. Each customer chooses
between joining one of the servers or balking. Armony and Haviv ob-
served that unless the prices are equal, there exists a unique equilibrium.
An equilibrium comes with a joining/balking pattern, namely the set of
actions that have positive probabilities, for each of the two customer
types.

Armony and Haviv suggested an algorithm for computing an equilib-
rium for a given set of prices. It initiates with a particular equilibrium
for the case in which the two prices are equal to the lower of the two
given prices, and increases one of the prices until the higher of the given
prices is reached. At certain values the equilibrium pattern changes.
Armony and Haviv showed how to compute the resulting pattern pro-
gression. They observed a surprising possibility: the total arrival rate
to the system may increase when the prices increase.

At the second level, there is a game between the servers. For any
given price of one of the servers, Armony and Haviv used the above-
mentioned algorithm to compute the best response price for the other.
This leads to a reaction curve which is the function of a server’s best
response price. This curve is used to determine equilibrium prices. By
running numerical examples, Armony and Haviv concluded that the fol-
lowing four cases are possible: a unique symmetric equilibrium, multiple
asymmetric equilibria, a continuum of non-symmetric equilibrium, or no
(pure) equilibrium exists.

2. Unobservable queues with heterogeneous
values of service

Loch [111] considered price competition between two identical M/G/1
servers of unobservable queues who serve customers with heterogeneous
service values. We describe Loch’s result for the case of two identi-
cal servers. The assumptions concerning the customers are similar to
those postulated by Mendelson and Whang [124] (§4.4.3): there exists
an increasing concave utility function V (λ) which represents the total
customers’ expected rate of utility from service when the arrival rate is
λ. Denote V ′(λ) by P (λ). To avoid trivialities, i.e., an analysis which
ends up with no arrivals, assume that P (0) is sufficiently large. Un-
der the equilibrium arrival rate λ, the marginal utility P (λ) equals the
expected full price at any active server.
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2.1. Single class of customers
Loch considered several models with two types of equilibria and two

types of optimization problems.

Bertrand equilibrium (price competition) Suppose that the
servers first select prices p1 and p2, and then the arrival rates λ1 and
λ2 are determined. Server 1 (and similarly for server 2) takes p2 as
given and sets p1 to maximize λ1p1 under the customers’ equilibrium
conditions

P (λ1 + λ2) = p1 + CW (λ1) = p2 + CW (λ2), (7.1)

where W denotes the expected waiting time. Loch showed that in
equilibrium p1 = p2 and hence λ1 = λ2 = λ, where the common
arrival rate λ satisfies

P (2λ) + λP ′(2λ)
CW ′(λ)

CW ′(λ) − P ′(2λ)
= C[W (λ) + λW ′(λ)].

Cournot equilibrium (rate competition) Suppose now that the
servers choose arrival rates λ1 and λ2, and prices are determined by
the equilibrium conditions (7.1). Loch showed that in equilibrium
λ1 = λ2 = λ, where the common rate λ satisfies

P (2λ) + λP ′(2λ) = C[W (λ) + λW ′(λ)].

Monopoly Suppose that the two servers are owned by a monopoly.
The monopoly selects prices p1 and p2 to maximize λ1p1 + λ2p2,
subject to the equilibrium condition (7.1). This is equivalent to

max
λ1,λ2≥0

2
∑

i=1

λi[P (λ1 + λ2) − CW (λi)]

subject to
P (λ1 + λ2) − CW (λi) ≥ 0, i = 1, 2. (7.2)

Since W is a convex function, the objective function is concave and
only first-order conditions need to be considered. Assuming an in-
terior solution, i.e., positive arrival rates and equality in (7.2), for
i = 1, 2,

P (λ1 + λ2) + (λ1 + λ2)P
′(λ1 + λ2) − C[W (λi) + λiW

′(λi)] = 0.

Since W (λi) + λiW
′(λi) is strictly monotone in λi, it follows that

λ1 = λ2.
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Maximization of social welfare The objective is to maximize
V (λ1 + λ2) −

∑2
i=1 CλiW (λi). This is a concave function as in the

previous case. The first-order conditions are

P (λ1 + λ2) = C[W (λi) + λiW
′(λi)], i = 1, 2.

Again, in the optimal solution, λ1 = λ2 = λ. These arrival rates can
be induced by imposing prices p1 = p2 = CλW ′(λ).

Loch proved the following theorem:

Theorem 7.1 Let λB be the total arrival rate under Bertrand equilib-
rium, λC under Cournot equilibrium, λM under monopoly optimization,
and λS under social optimization. Then,

λS > λB > λC > λM .

2.2. Multiple classes of customers
Loch also investigated the Cournot equilibrium in a model with two

identical servers and n classes of customers. Class k is characterized by a
time value Ck, a service rate µk, a function Vk of aggregate benefit from
service, and a marginal utility function Pk = V ′

k with a sufficiently large
values of Pk(0), 1 ≤ k ≤ n, to guarantee that λk > 0 in equilibrium.
Customers receive priority according to the Cµ-rule.

Suppose that for i = 1, 2 and k = 1, . . . , n, the arrival rate of k-
customers to server i is λik > 0, and let pik be the corresponding ad-
mission fee. Given (λj1, . . . , λjn), for j 6= i, server i selects nonnegative
rates (λi1, . . . , λin) that maximize

∑n
k=1 λikpik subject to the equilibrium

conditions

Pk(λ1k + λ2k) = pik + CkWk(λi1, . . . , λin), i = 1, 2, k = 1, . . . , n,

where Wk(λ1, . . . , λn) is the expected waiting time of a k-customer who
joins a queue when the arrival rates to this server are (λ1, . . . , λn).

Loch proved that there exists an equilibrium such that λ1k = λ2k

for k = 1, . . . , n. Denoting this common rate by λk, the first-order
optimality conditions are: for k = 1, . . . , n,

Pk(2λk) + λkP ′
k(2λk) = CkWk(λ1, . . . , λn) +

n
∑

l=1

Clλl

∂Wl(λ1, . . . , λn)

∂λk

. (7.3)

Under social optimization, the objective is to set λ1, . . . , λn to max-
imize

∑n
k=1[V (2λk) − 2CkλkWk(λ1, . . . , λn)]. This objective function is

based on the fact that under social optimization each class evenly splits
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its arrival rates among the two servers. The first-order optimality con-
ditions are: for k = 1, . . . , n,

Pk(2λk) − CkWk(λ1, . . . , λn) −
n
∑

l=1

Clλl
∂Wl(λ1, . . . , λn)

∂λk
= 0.

Combining with (7.3), the prices which induce social optimality are

pk =
n
∑

l=1

Clλl
∂Wl(λ1, . . . , λn)

∂λk
− λkP

′
k(2λk), 1 ≤ k ≤ n, (7.4)

where λ1, . . . , λn are the socially optimal arrival rates.
As in §4.4.3, Loch showed that also in this model, the pricing scheme

(7.4) is not incentive compatible and customers may have an incentive
to lie about their type. However, it is possible to impose incentive-
compatible prices which depend on the actual service requirement and
the customer claimed type.

3. Observable queues
When servers compete over identical customers and the queues are

observable, there is no price equilibrium. Suppose that there are two
servers, server 1 and server 2, who set admission fees p1 and p2, respec-
tively, such that p2 ≥ p1 ≥ 0. Suppose, for simplicity, that balking and
jockeying are not possible, and therefore only the difference δ = p2 − p1

matters. Consider first the case where δ = m C
µ for some integer m. With

positive probability, a customer observes upon arrival that the queue at
server 1 is longer than the queue at server 2 by exactly m customers.
In this case, the customer is indifferent between the servers and selects
one of them by some tie-breaking rule. This situation is not sustainable
in equilibrium since at least one of the servers can increase profits by
an infinitesimal price reduction.4 Consider now the other case, where
δ 6= mC

µ for every nonnegative integer m. This situation is also not
sustainable since each of the servers can now increase profits by a small
price increase that does not alter the selection strategy of the customers.
Therefore, no equilibrium exists. A similar argument shows that there
is no equilibrium also when servers can set state-dependent fees.

There are several ways to resolve the issue of non-existence of an
equilibrium. One option is to use weaker concepts of equilibrium such

4The exception is when the tie-breaking rule prescribes one of the servers with probability
1, while the price of the other server is already 0. However, in such a case the latter server
can increase profits by a small price increase that will not affect the selection strategy of the
customers.
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as “ε-equilibrium” (see for example, §5.1). Another option is to modify
the model by assuming that customers are heterogeneous or by making
restrictive assumptions on the customers’ behavior, as we now describe.

Li and Lee [107] considered two competing servers with observable
queues and exponential service distributions with parameters µi, i =
1, 2. The joint arrival process is Poisson with rate λ. Customers are
identical, with time value C and no balking allowed. They continuously
monitor the queue lengths and have the option of jockeying, that is,
instantaneously and costlessly moving from one queue to the (rear of
the) other.5 Server i sets a price pi to maximize its average rate of
profit. The payment is made upon completion of service to the server
who completes the service.

We assume that µ1, µ2 > λ. The other cases are less interesting since
with the no-balk assumption, if one of the servers is incapable of serving
the whole population of customers, the other server can set an infinitely
large price and gain an infinite profit rate by serving a positive fraction
of the arrivals.6

As in the previous sections, the game has two stages. For a given value
of δ = p2−p1, customers’ equilibrium consists of a (possibly mixed) strat-
egy that prescribes which of the servers to select for each state. Given
these strategies, the servers’ price equilibrium should be determined. As
we observe below, the customers’ equilibrium solution is not as simple as
in the case where jockeying is not permitted. In particular, the server’s
selection of a new arrival does not depend solely on the difference be-
tween the queue lengths.

Similar to the model without jockeying, also here no equilibrium ex-
ists. To verify this assertion, suppose that an equilibrium does exist.
Consider a customer who observes upon arrival i customers at server 1
and j customers at server 2. Since the customer prefers a lower payment,
there exists a unique value δ = δij such that the customer is indifferent
between the two queues, assuming that the others follow the equilibrium
strategy. As explained earlier, such a value of δ cannot define an equi-
librium since a server can increase profits, generally by an infinitesimal
price reduction. If δ is different from δij for all possible i and j, then
again this is not an equilibrium as a server can increase profits by a small
price increase.

Li and Lee concentrated therefore on a restricted model, assuming
that:

5Jockeying is possible also for a customer currently in service.
6In the paper, Li and Lee assumed that there is an upper bound on the allowed price so that
the other cases are also meaningful.



Competition among servers 147

1 For some nonnegative integer m

p1 + (m + 1)
C

µ1
= p2 +

C

µ2
.

2 The customers’ strategy upon arrival when there are i customers at
server 1 and j at server 2 is: join queue 1 if i < j + m; join queue
2 if i > j + m; randomly select each server with probability 0.5 if
i = j + m. A customer jockeys similarly, with the exception that
when he is indifferent between doing it or not, he does not jockey.

We note that rule 2 is not a tie-breaking rule. Indeed, when i =
j +m a customer is not indifferent between the two queues. To see this,
consider a situation in which λ ≈ 0 so that the possibility of a new arrival
during the stay of the current arrival in the system is negligible. Assume
further that i = m and j = 0. In this case, the selection rule prescribes
a random choice. However, joining queue 2 is clearly a better choice
since the customer immediately starts service, without giving up the
option of jockeying to the faster server if that server becomes idle while
the customer is still in the system. Similarly, the assumed customers’
strategy may not be a best response in other states. Therefore, the
model is about servers’ equilibrium but not customers’ equilibrium.

Li and Lee justify this model as follows:

Though the restriction is artificial, the model still captures the essential trade-
offs in time competition. Also, we always have in mind a continuous approx-
imation of the restricted market shares which retains the essential properties
of time competition.

Consequently, using n to denote the total number of customers in the
system:

If n > m + 1, both servers are busy.

If n < m + 1, server 1 is busy and server 2 is idle.

If n = m + 1, either all customers are in queue 1, or m are in queue
1 and one is in queue 2.

The resulting system becomes essentially one dimensional with the
state variable n, except for when n = m + 1 which corresponds to two
possibilities. The latter case has to be “broken” into two states to get
a Markov process with this state space. Consequently, it is possible
to obtain explicit formulas for the proportion, γ(m), of the customers
whose service is completed by server 1.
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In equilibrium, server 1 maximizes p1γ(m) over p1, taking p2 as given,
and server 2 maximizes p2[1 − γ(m)] over p2, taking p1 as fixed, both

under the constraint m =
[

p2−p1

C + 1
µ2

]

µ1−1. Note that if, for example,

server 1 selects a very high price then the roles of 1 and 2 may interchange
according to the definition.

Theorem 7.2 (Li and Lee [107]) There are numbers p
1

and p̄1 such

that (p1, p2) is an equilibrium if and only if p
1
≤ p1 ≤ p̄1 and p1 + C

µ1
=

p2 + C
µ2

.7

Thus, in equilibrium, m = 0. Another result that follows from the
theorem is that

the faster server sets a higher price and still gets a higher share of
the market.

4. Price and priority competition
Lederer and Li [101] considered a competitive multi-server extension

of the model of Mendelson and Whang [124] (§4.4.3). In their model, cus-
tomers belong to classes. Service of customers of class z (“z-customers”),
is done at a rate of µz, and their time value is Cz. Servers can discrimi-
nate among customers by their class. Server i selects a priority rule fi,
and charges z-customers a price pi(z). Denote by λi = (λi(z)) the vector
of arrival rates to queue i whose priority rule is fi. A z-customer selects a
server to minimize his expected full price Pi(z) = pi(z)+CzWi(z, λi, fi),
where Wi(z, λi, fi) is the expected waiting time of a z-customer who
joins queue i. Denote the server’s cost when serving the arrival rates of
λi by ci(λi).

Lederer and Li assumed that the number of servers is large so that
each server’s influence on the equilibrium full prices is negligible. They
also assumed that entry of new servers is not possible (a short-term
model).

In equilibrium, the servers with λi(z) > 0 have the same expected full
price Pz for z-customers:

Pz = pi(z) + CzWi(z, λi, fi).

Therefore, the profit that server i gets from serving z-customers can be
written as

λi(z)pi(z) = λi(z)[Pz − CzWi(z, λi, fi)].

7The two conditions also imply lower and upper bounds on p2.
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This equation also holds when λi(z) = 0, since in this case both its sides
are 0. Hence, the total profit of server i is

Πi(P , λi, fi) =
∑

z

λi(z)[Pz − CzWi(z, λi, fi)] − ci(λi), (7.5)

where P = (Pz).
Following [124], Lederer and Li considered the server’s problem as

that of maximizing Πi(P , λi, fi) by selecting a vector of arrival rates λi

and queue disciplines fi.
Applying Little’s formula to (7.5) we obtain that for server i, i =

1, . . . , n,

Πi(P , λi, fi) =
∑

z

[Pzλi(z) − CzLi(z, λi, fi)] − ci(λi), (7.6)

where Li(z, λi, fi) is the expected number of z-customers at the i-th
queue.

For any given λi, (7.6) is maximized when the service discipline min-
imizes

∑

z CzLi(z, λi, fi). It is well known that under fairly general
conditions, the minimizing discipline is that which gives higher prior-
ity to customer classes with higher Czµz values (the Cµ-rule) (see [52]).
Therefore, this rule will be adopted by all servers. The variable fi can
now be omitted, and the i-th server’s problem is to choose λi to maximize
Πi(P , λi) as in (7.5), for any given P .

Suppose that class z has a demand function d so that given the full
price Pz, the arrival process of z-customers is Poisson with rate d(z, P ).
An equilibrium is a set of vectors P and λi for every server i, such that
λi solves server i’s profit-maximizing problem, given P and d(z, P ) =
∑

i λi(z) for every class z.
Lederer and Li proved the following results:

If
∑

z CzLi(z, λi) + ci(λi) is strictly convex in λi for every i, then an
equilibrium exists.

Equilibria are incentive-compatible.

If there is just one class of customers then there exists a unique
equilibrium.

Suppose that the service requirements of all classes have an identical
exponential distribution, and that for every i, ci(λi) = ci[

∑

z λi(z)].
Then there exists a unique equilibrium.
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5. Search among competing servers
Davidson’s [40] model is a combination of the generic models of ob-

servable and unobservable queues. Davidson considered a large number
of servers so that the queue lengths at these servers are assumed to
be independent. Customers have heterogeneous time values and every
customer knows his own value. Balking is not allowed, and customers
search among the servers until they decide to join.

The arrival rate is λ per server. The cost incurred by a customer
with time value C (a “C-customer”) due to an inspection of a queue is
b + wC, where b and w are constant across customers (w is interpreted
as the search time). The goal of a customer is to minimize his expected
costs due to search, admission, and waiting.

A C-customer’s strategy is defined by a threshold B(C) on his full
price. He joins a server who charges p and whose queue size is n if and
only if his expected full price is at most B(C), that is, if and only if
p + C n+1

µ ≤ B(C).

Incomplete information Assume that customers are uninformed
on the prices charged by the servers. Thus, by visiting a server the
customer learns both its price and its queue length.

Since customers do not know the prices in advance, the arrival rate
to a server is independent of its price. After learning the price and
observing the queue, an arriving customer decides whether to join or
to continue searching. Being aware of the customers’ decision process,
each server selects a price that optimizes its expected profits. The
arrival rate to a server is independent of its price, and we are looking
for a symmetric equilibrium under which all servers select the same
price.

Davidson didn’t specify how to compute the equilibrium threshold
function B(C). We now briefly outline this process. Note that since
balking is not allowed in this model, the customers only optimize
their search and waiting costs, and the equilibrium search strategies
are independent of the prices. If a price p is required by all servers,
this is a fixed cost that every customer must pay, and the equilib-
rium threshold full price will be increased by p. Let B0(C) be the
equilibrium threshold function, given that p = 0. Let qi denote the
steady state probability of i customers at a random server, when
B0(C) is adopted by all customers. Let AC(β) denote the expected
cost incurred by a C-customer who chooses a threshold β, given that
everybody else follows B0(C). Let i(β,C) = max{i : C(i + 1) ≤ βµ}
denote the largest queue size such that a C-customer with threshold
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β still joins, given that the admission fee is 0. Then,

AC(β) = b + wC +
∑

i≤i(β,C)

qiC
i + 1

µ
+ AC(β)Pr[i > i(β,C)],

or

AC(β) =
b + wC +

∑

i≤i(β,C) qiC
i+1
µ

Pr[i ≤ i(β,C)]
.

One should find from this relation the best response, and then the
equilibrium function B0(C). In the next stage, the equilibrium price
can be found by

pe = arg max
p

{p
∫

C
Pr[i ≤ i(B0(C) + pe − p,C)]dC}.

Complete information In this case the prices are advertised by
the servers, and customers search among them to reveal their queue
lengths. Davidson considered a simplified model in which a propor-
tion α of the customers has C = 0, and the rest have C = 1. Note
that the assumption that one of the cost values is 0, is part of the
model, whereas the assumption that the other cost value is 1, is with-
out loss of generality. The respective thresholds are denoted by B0

and B1. 0-customers are indifferent to the queue length, and hence
join only those servers that offer the lowest price, p0. 1-customers
may join servers with different prices, as long as the expected full
price at these servers is the same. Davidson concluded that: “Since
consumers do not care which type of server they end up at, it seems
logical to assume that they will choose the server randomly, and all
servers will face the same arrival rate.” This conclusion is problem-
atic since the fact that customers are indifferent in regard to a set of
servers, does not mean that their arrival rates are arbitrary (see Re-
mark 1.1). The rates should be set at those levels which make their
expected full prices equal. It is an open problem to continue David-
son’s research. Another seemingly harder open problem is a model
that assumes a small number of servers so that the queue lengths are
not independent.

6. Information based competition
Hassin [68] raised the question of whether a server can profit by con-

cealing the information on the length of the queue. We next describe
Hassin’s model.

There are two servers with separate queues denoted by Q1 and Q2.
The servers are identical except that the length of Q1 can be observed,
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whereas the length of Q2 cannot be observed.8 The input to the system
consists of a Poisson stream of customers with rate λ. Each customer
wishes to minimize his expected waiting time. The service is exponen-
tially distributed with rate µ. Upon arrival, a customer observes Q1,
and decides which of the two queues to join. The decision is irrevocable.
An arriving customer bases his choice on the actual state at Q1, and
on the expected length of Q2 conditioned on the length of Q1. Clearly,
this conditional expectation is a function of the choice strategies of the
others customers.

Hassin investigated threshold strategies (§1.2). As we show below, the
individual’s best response threshold is monotone non-increasing with the
threshold of the others in the population: the higher their tendency to
enter Q1, the lower the tendency for the individual to do so. Thus, this
is an ATC model with a unique equilibrium threshold strategy.

For a positive number x, let n = bxc and let r = x − n.9 Under a
threshold strategy with threshold x, a customer joins Q1 if its size is at
most n − 1, joins Q2 if Q1 has more than n customers, and selects Q1
with probability r (and Q2 with probability 1− r) when Q1 has exactly
n customers.

Note that under a pure strategy (r = 0) with a threshold n, a customer
enters Q2 whenever he observes n customers in Q1. Thus, in this case,
n is the maximum length of Q1. In general, if all the customers in
the population follow a threshold strategy with threshold x then the
maximum possible number of customers in Q1 is dxe.

6.1. Existence of an equilibrium
Let f(L, x) denote the expected length of Q2, given that the length

of Q1 is L, and everyone follows the threshold strategy x. Let g(L, x) =
f(L, x)−L denote the expected difference between the lengths of Q2 and
Q1, given the length L of Q1 and that the threshold x is used by all.
Hassin constructed the function g for various values of the utilization
factor ρ = λ

2µ and found that it is monotone decreasing both in L and
in x.

Consider a customer who assumes that others follow the threshold
strategy x. His best response is to enter Q1 if g(L, x) > 0, and to
enter Q2 if g(L, x) < 0. He is indifferent between the two options if

8Hassin illustrated the model by considering two gas stations located one after the other on
a main road. A driver who needs to fill his tank sees the queue at the first station, but not
at the second one.
9bxc is the largest integer which is less than or equal to x. Therefore, 0 ≤ r < 1. Similarly,
dxe is the smallest integer which is greater than or equal to x.
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g(L, x) = 0. By the monotonicity of g(L, x) with respect to L, it follows
that for a given value x, there is a maximal size of L such that entering
Q1 is a best action.

Specifically, the customer’s best response is of the threshold type:
let k(x) = min{L : g(L, x) ≤ 0}; if L ∈ {0, . . . , k(x) − 1} join Q1,
otherwise join Q2. By the monotonicity of g(L, x) with respect to x,
it follows that k(x) is a non-increasing step function. Hence, this is an
ATC situation and, in particular, a unique equilibrium exists.10 The
discontinuity points of k(x) correspond to thresholds x such that the
individual is indifferent between two consecutive thresholds.

Denote by pij the steady state probability of i customers at Q1 and j
customers at Q2, when all use the threshold strategy x. For simplicity,
we suppress the reference to x in this notation.

Consider first equilibria in pure strategies. In order for the integer
n to describe a best response for an individual, given that all follow
this strategy, two conditions are necessary: (1) if a customer arrives and
observes n − 1 customers in Q1 his optimal choice is to join this queue,
and (2) if he observes n customers, his optimal choice is to join Q2.
Moreover, by the monotonicity of g(L, x) in L, these conditions are also
sufficient: if it is optimal to join Q1 when n− 1 customers are observed,
then it is also optimal to do so when fewer customers are observed;
similarly, if it is optimal to join Q2 when n are observed, then this is
also the optimal choice when more than n are observed.

Let pij be the steady-state joint probability of having i customers in
Q1 and j customers in Q2. Let qj|i =

pij
∑∞

k=0
pik

be the probability that

the length of Q2 is j given that the length of Q1 is i. To simplify notation
we have suppressed the reference to x in these probabilities, but clearly
they are function of the strategy adopted by all. Thus, n describes an
equilibrium if and only if

∞
∑

j=0

jqj|n ≤ n ≤ 1 +
∞
∑

j=0

jqj|n−1.

In particular, the threshold n = 1 is an equilibrium if and only if
∑∞

j=0 jqj|1 ≤ 1.
Consider now conditions for an equilibrium in mixed strategies. In

order for the threshold x = n + r, 0 < r < 1, to define an equilibrium
when all follow it, an arrival who observes n customers in Q1 must be

10Yechiali, Altman, Jimenez, and Núñez-Queija [180] showed that this result does not hold
when the servers have different service rates, and it may be then that there is no equilibrium
threshold strategy.
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indifferent between joining Q1 or Q2. Thus, the threshold x = n + r,
0 < r < 1, specifies an equilibrium if and only if

n =
∞
∑

j=0

jqj|n.

6.2. Solution of the model
Let I denote the indicator function, so that I(R) = 1 if the relation R

is satisfied, and I(R) = 0 otherwise. Let x = n + r be as before. Then,
the steady state probabilities satisfy the following equations:

λpij + µpijI(i > 0) + µpijI(j > 0) = µpi,j+1

+µpi+1,jI(i ≤ n − 1, or i = n and r > 0)
+λpi−1,jI(0 < i < n)
+λrpi−1,jI(i = n + 1 and r > 0)
+(1 − r)λpi,j−1I(i = n and j > 0)
+λpi,j−1I(i = n + 1 and j > 0).

Hassin solved numerically for the equilibrium x and found the follow-
ing results:

x is a nondecreasing function of ρ. This can be explained in view of
Figure 1.2: a change in ρ shifts the function k(x) and the intersection
with the identity function is obtained at the same integer value in a
non-degenerate interval of ρ.

Let λi denote the equilibrium arrival rate to server i, i = 1, 2. Then,
λ1
λ2

is not a monotone function of ρ, though its general trend is de-
creasing in ρ.

λ1
λ2

> 1 for all values of ρ, so that the equilibrium arrival rate to Q1
is larger than that of Q2: the server that reveals the queue length
information gets a higher share of the demand.

Clearly, if both queues can be observed the demand is split equally
between the two servers. Thus, the server of Q2 has an incentive to
supply the queue size information to the customers. The demand is
also split equally if none of the two queues can be observed. However,
this situation is not an equilibrium with respect to the servers’ behav-
ior: each of them has an incentive to reveal the size of his queue and
increase the fraction of the demand directed to his facility.11 We thus

11The situation corresponds to a two-person constant-sum game, where each server chooses
between two strategies: to reveal or not its queue lengths. In this game, the strategy of
revealing the queue length is a dominant strategy.
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expect to find observable queues whenever this is technically possible
and costless.12

7. Related literature
Chen and Wan [35] considered an unobservable model similar to the
one described in Sections 1 and 2, but assumed that the servers may
differ in their service rates. They obtained the following results:

– There may be a unique equilibrium, no equilibrium, or a contin-
uum of equilibria.

– In the case of a unique equilibrium, three cases are possible: one
server takes the whole market; both servers charge their monopoly
optimal prices; both servers charge non-monopolistic prices that
leave positive consumer surplus.

– If the service rates of the two servers are equal, an equilibrium
always exists. It may be unique or there may be a continuum of
equilibria.

Tapiero and Zuckerman [167] presented a model of competition be-
tween two transport servers. Server i operates a vehicle of capacity
Mi. The vehicle is dispatched after Ti time units or when the number
of waiting customers is Mi, whichever occurs first. The customers’
arrival process is Poisson with rate λ. Thus, customers are not aware
of the schedule.13 The probability that a customer joins queue i is a
function of the prices p1, p2 and the expected waiting times W1,W2.
Unlike most of the other models in this chapter, Tapiero and Zucker-
man did not assume that the full price in equilibrium is identical at
the two servers.

The decision variables are the price pi, the capacity Mi, and the
dispatching interval Ti. Attention is given to special cases in which
either Ti = ∞ or Mi = ∞.

There are no closed-form formulas for the equilibrium solution, and
further research is required to reach a better understanding of the
model.

Other models of competition, which also involve the long-run decision
of determining the service capacity, are described in §8.

12In the application to the case of two gas stations located on the same road, the first one
has a higher profit. A natural outcome is that the second station tries to attract demand by
reducing prices or offering other benefits. Equilibrium prices can then be computed. This is
an open problem.
13See §6.3 for a model in which customers react to the schedule.





Chapter 8

SERVICE RATE DECISIONS

This chapter is concerned with models in which the service rate is
a decision variable. In most cases, it is the server who determines the
service rate, but we also deal with models where this is done by the
customers. We also consider in this chapter models where the customer
determines the amount of service he obtains.

The problem of determining optimal prices to regulate the arrival
process to a queueing system is considered by several authors as a short-
run problem. In contrast, in the long-run problem, the facility manager
also controls the service capacity. The long-run problem is considered
in this chapter.

As shown by Edelson and Hildebrand (§3.1), in an unobservable sys-
tem with homogeneous customers, the social and profit-maximizing ob-
jectives are identical. Consequently, the service rate chosen by a profit
maximizing server in the long-term problem is also socially optimal. This
is not necessarily true in other models, as will be discussed below.1

We denote by c(µ) the cost per unit of time associated with operating
service at the rate of µ. In most models it is assumed that this operating
cost is independent of the utilization of the server.

All the models described in this chapter assume unobservable queues,
with the exception of Section 5 where the basic observable and unob-
servable models are compared, under the assumption that the cost of
operating a server is independent of its utilization.

1The service rate can be viewed as a quality parameter for the product supplied by the firm.
See Spence [159] for a general discussion on the profit-maximizing price and quality set by a
monopoly.

157
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1. Heterogeneous service values
We first describe the results of Mendelson [123] for the long-run ver-

sion of the unobservable queueing model given in §3.3. The social plan-
ner’s problem in this model is

max
λ,µ≥0

{V (λ) − CL(λ, µ) − c(µ)}, (8.1)

where L, the expected number of customers in the system, has the form
L(λ, µ) = f(ρ) for some function f , where ρ = λ

µ . For example, in

the M/M/1 model f(ρ) = ρ
1−ρ . A natural assumption is that c(µ) is

monotone increasing and convex, whereas V (λ) is monotone increasing
and concave. It is assumed further that V ′(0) is sufficiently large, since
otherwise λ = µ = 0 would have been the optimal solution. Moreover,
limλ→∞ V ′(λ) ≤ limµ→∞ c′(µ). This assumption guarantees that the ob-
jective function in (8.1) is bounded.

The first-order conditions for social optimality are

V ′(λ) =
C

µ
f ′(ρ) (8.2)

and
Cλ

µ2
f ′(ρ) = c′(µ). (8.3)

These conditions imply that

λV ′(λ) = µc′(µ). (8.4)

An admission fee p induces an equilibrium arrival rate λ which equates
the marginal value V ′(λ) and the expected full price p + CW (λ, µ).
Hence, given the optimal service rate µ∗, the optimal arrival rate λ∗ can
be induced by an admission fee p∗ such that

V ′(λ∗) = p∗ + CW (λ∗, µ∗). (8.5)

Assume that c(µ) = a + bµ for some a, b > 0, then by (8.4) and (8.5),

λ∗p∗ = λ∗V ′(λ∗) − λ∗CW (λ∗, µ∗) = bµ∗ − λ∗CW (λ∗, µ∗).

Thus, the profit is equal to the variable production costs minus the
waiting costs:

With linear operating costs, and under a social welfare maximizing
fee, the service facility fully bears the waiting expenses of its cus-
tomers.
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Unlike the short-run case, comparison to the profit-maximizing so-
lution does not yield conclusive results. Mendelson concludes that the
outcome depends on the model’s parameters. In particular:

In some cases the profit maximizer selects a solution in which the
utilization factor ρ is smaller than the socially optimal value. In such
cases, the quality of service supplied by the monopoly, as reflected by
ρ, is higher than the socially optimal one, since this allows an increase
in price and profits (while decreasing the number of customers who
enjoy service).

Finally, Mendelson demonstrated through an example that

A low utilization factor is not an indication for inefficiency, but it
may be a consequence of the need to shorten the waiting time.

Dewan and Mendelson [44] found the following interesting relation-
ship.2 Assume an M/M/1 model with linear operating costs, c(µ) =
a+bµ. Then, substituting f(ρ) = ρ

1−ρ , (8.2) and (8.3) give, respectively,

V ′(λ) =
Cµ

(µ − λ)2
=

C

µ − λ
+

Cλ

(µ − λ)2
,

and

b =
Cλ

(µ − λ)2
.

Together, these equations imply that

V ′(λ) =
C

µ − λ
+ b

which coupled with (8.5) lead to

p∗ = b.

In words:

In an M/M/1 system with linear operating costs, the optimal admis-
sion price equals the marginal cost of increasing the service rate.

This result also extends to a model with several distinguishable cus-
tomer classes, each having its own utility function and (nonlinear) wait-
ing cost function. Yet, the service requirement has to be exponential
with a common rate to all classes.

2A similar result was established by Balachandran and Radhakrishnan [19].
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Mendelson’s model was extended by Stidham [165] in several aspects.
Stidham showed that the long-run problem typically has multiple so-
lutions. This may happen even in an M/M/1 model with linear delay
costs.3

2. Service rate at a fixed price
Stenbacka and Tombak [162] considered a model of an unobservable

queue in which an admission fee p is exogenously regulated and cannot
be altered by the server. The server can maximizes profits by varying
the service rate. Customers differ by their time values C that are dis-
tributed according to a differentiable distribution function F (C) with
density f(C). All customers value service by R. Customers have the op-
tion of balking and the effective arrival rate is therefore affected by the
expected waiting time. Stenbacka and Tombak compared the socially
optimal solution with the profit-maximizing one. They gave conditions
under which the monopoly provides worse service (i.e., with a rate slower
than the optimal rate) and discussed the effect of these findings on pri-
vatization of public services.

The model of Stenbacka and Tombak is more general than the one
described below. We modify their model by assuming an M/M/1 queue.
We then get simpler and more intuitive sufficient conditions guaranteeing
their results. Recall that c(µ) denotes the cost (per unit of time) of
operating service at rate µ, and let W (µ) denote the expected waiting
time when the service rate is µ. In our case W (µ) = 1

µ−λ .

A C-customer chooses to join the queue if p + CW (µ) ≤ R. Thus,
only customers whose time value C is at most some threshold value Ce

join, where Ce is determined by4

Ce =
R − p

W (µ)
= (R − p)[µ − λF (Ce)].

Note that Ce is a function of µ but to simplify notation we use Ce instead
of Ce(µ). We also denote the derivative of Ce with respect to µ by C ′

e.
Social welfare is

S(µ) = λ

∫

C≤Ce

(

R − C

µ − λF (Ce)

)

f(C) dC − c(µ).

3Recall that in the short-run problem, where µ is fixed, there is a unique equilibrium under
these conditions. See Figure 3.4.
4We deviate here from the model of Stenbacka and Tombak in which it is implicitly assumed
that the waiting time is independent of the arrival rate. See Equation (4) and the definition
of the threshold in [162].
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The first-order condition for social optimality is

dS(µ)

dµ
= λpf(Ce)C

′
e+λ

∫

C≤Ce

λCf(Ce)C
′
e

[µ − λF (Ce)]2
f(C) dC−c′(µ) = 0. (8.6)

The server’s profit is

Z(µ) = λpF (Ce) − c(µ).

The first-order condition for maximizing profit is

dZ(µ)

dµ
= λpf(Ce)C

′
e − c′(µ) = 0. (8.7)

The two conditions (8.6) and (8.7) differ by the nonnegative term

∫

C≤Ce

λCf(Ce)C
′
e

[µ − λF (Ce)]2
f(C) dC.

This term is nonnegative since C ′
e ≥ 0. Thus, under the socially optimal

service rate the term λpf(Ce)C
′
e − c′(µ) is smaller than the correspond-

ing value under the profit maximizing service rate. If the distribution
function F and the operation cost function c are such that this term is
monotone increasing in µ, then the service rate chosen by the monopoly
is smaller than the socially optimal one. However, this property does
not necessarily hold in general.

Stenbacka and Tombak considered another model of unobservable
queues which they call time-based competition, where again, prices are
fixed and the decision variable is the service rate. They compared the
waiting time obtained when there is one private and one public server,
possibly with different cost functions, to that obtained when the public
firm is privatized. They show that privatization often decreases the equi-
librium service rates. It should be emphasized that the model assumes
that prices do not change as a result of the change of ownership. Also,
the authors assume that payments to a private firm are real costs and
not merely transfer payments (as are payments to the public firm).

3. Bribes and auctions
Several papers ask whether bribes and auctions (§4.5) may cause the

server to slow down service so that customers will be induced to offer
higher payments. Myrdal [131] claimed that corrupt officials may de-
liberately cause administrative delays so as to attract more bribes. Lui
[112] referred to this claim as Myrdal’s hypothesis, and argued that the
hypothesis is not always true. For example, if increasing the rate of
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service is costly to the server, then without a bribe the server has no
incentive to supply service, and bribes induce faster service. In contrast
to this point of view, Hassin [67] compared the service rate chosen by
a profit maximizer to the socially optimal rate, showing that from this
point of view Myrdal’s hypothesis is correct:

Theorem 8.1 In an unobservable GI/M/1 system in which priorities
are determined by customers’ payments, the service rate chosen by a
profit maximizing server is smaller than or equal to the socially optimal
rate.

Hassin proved the theorem also when customers are heterogeneous in
their service values and time costs. We will only describe the simpler
case of homogeneous customers.

If the server is slow, then in equilibrium, a fraction of the potential
demand will choose not to join the queue. If, on the other hand, the
server is fast, then all of the potential demand (with rate Λ) is served.
Thus, there exists a cutoff value, µ0, such that λ = Λ if and only if the
service rate is at least µ0.

In this section, we denote by Z and S the profit and social welfare,
excluding costs associated with operating the service.

Consider first the case where µ < µ0. An increase in µ has two
opposing effects on the average waiting time: each customer’s service
is made shorter, but more customers are attracted to join the queue.
However, since customer behavior is socially optimal (§4.5), social wel-
fare increases when the service is made faster (it will increase even if λ
remains unchanged, all the more so when it changes to its new optimal
value). In this range, Z = S (see (4.22)). Therefore, for µ < µ0

dZ

dµ
=

dS

dµ
> 0.

Consider now the case where µ > µ0. An increase in µ will not
affect the arrival rate, which already consists of the whole potential
demand. Thus, average waiting time must decrease, thereby increasing
social welfare. By (4.21) the server’s profit decreases, because faster
service reduces the difference between the expected waiting time of a
low priority customer and that of a random customer. Thus the same
number of customers is served but customers pay less. We conclude that
for µ > µ0

dZ

dµ
< 0,

dS

dµ
> 0.

When µ approaches infinity the expected waiting time, even of the cus-
tomer with the lowest priority, as well as the expected service time,
decrease to 0. Therefore,
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lim
µ→∞

S = ΛR, lim
µ→∞

Z = 0.

Figure 8.1 illustrates these conclusions. We observe that if the ser-
vice rate can be controlled costlessly, then µ0 is the rate chosen by the
profit maximizer; all of the potential demand arrives to the queue, and
customer’s welfare is 0. Clearly, the socially optimal rate is infinite.

Recall that operating a facility with a service rate of µ involves a cost
of c(µ) per unit time. The following two cases are possible:

The socially optimal rate is larger than µ0. For example, when c(µ)
is represented by the function c1 in Figure 8.1, the optimal rate is
µ1. In this case the profit maximizing server chooses a slower service
rate (frequently this will be exactly µ0, as in Figure 8.1).

The socially optimal rate is smaller than or equal to µ0. For example,
when c(µ) is given by the function c2 in Figure 8.1. In this case the
server voluntarily chooses this optimal rate (µ2 in Figure 8.1), because
it also maximizes profits.

4. Asymmetric information
This section describes long-run decisions in models where the cus-

tomers are heterogeneous, having different time or service values, but
this private information is not available to the server who cannot use it
to discriminate among customers.

4.1. Heterogeneous service values
The model of Whang [173] resembles the unobservable model of §3.3,

except that the queue manager and the customers do not know the
marginal value function V ′(λ). Thus, the service value of a customer is
his private information.

Whang modeled the situation as a non-cooperative game. The game
proceeds in several stages:

Customers anonymously report their service values. The meaning of
anonymity is that these reports cannot be used to discriminate among
customers. Denote the resulting reported marginal value function by
m(λ).

Using these reports, the server makes the long-run decision of choos-
ing a capacity µ(m). This comes at a linear cost c(µ) = bµ.

The actual function V ′ is realized and observed and the server uses
it for the short-run decision of the service fee p(V ′, µ). It is assumed
that the server can commit to fixed rules µ(m) and p(V ′, µ).



164 TO QUEUE OR NOT TO QUEUE

c1

c2

µ

µ1

ΛR
S

S = Z

Z

µ0µ2

Figure 8.1. Optimal service rates in a system with bribery

Lastly, the equilibrium arrival rate, given µ and p, is obtained, as in
§3.3.

Whang observed that those customers who choose to arrive have the
same objective with respect to the server’s long- and short-run decisions,
namely, they all wish to minimize CW (λ, µ)+p. Therefore, it is assumed
that customers cooperate in their reports so that a customer with service
value R reports a value σ(R) so that the resulting rate, m, solves

min
m

[CW (λ, µ(m)) + p(V ′, µ(m))]

subject to the equilibrium condition

V ′(λ) = CW (λ, µ(m)) + p(V ′, µ(m)).

The rule σ may depend on the customers’ service value, but not on the
unknown function V ′.
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Whang observed that if according to the rule µ(m) higher reports
lead to a higher service rate, then customers will report increasingly
high values so that a higher than social optimal µ is set by the server.
Therefore, an optimal rule for the server is not monotone.

A strategy (µ(m), p(V ′, µ)) that achieves a solution which is socially
optimal under full information is said to be a full-information-efficient
strategy. Whang’s main claim is that if W = W (ρ), then the follow-
ing strategy is full-information-efficient and motivates each customer to
reveal his true service value:

On receiving the reports m, the manager should solve the system’s
problem assuming that the reports are true, and fully allocate the
capacity cost bµ∗(m) to the customers.

Note that the assumption W = W (ρ) does not hold in most queueing
models, in particular M/M/1.

4.2. Heterogeneous time values
Balachandran and Radhakrishnan [19] analyzed a model of class de-

cision with asymmetric information. In this model, the demand for
service consists of a finite number of classes of customers each of which
with given rates of demand. The cost of operating the server is a con-
vex monotone increasing function c(µ). The time values, Ci, are private
information of the controllers of the classes. The sequence of events is
as follows:

The server announces a rule by which the server’s capacity is deter-
mined and the operating costs are divided among the classes.

Classes report their time values, C r
i (that may be different from the

true values, Ci).

The server decides on the service rate µ.

Classes pay for the operating costs according to the rule.

Balachandran and Radhakrishnan observed that if the server deter-
mines the overall optimal µ assuming that the time values are as re-
ported, then classes have incentives to overstate their time values and
by doing so induce higher service rates and shorter waiting costs. It
is assumed therefore that the server can obtain measures, Xi, of the
true values Ci. These measures are required to be unbiased estimators
for Ci (that is, E(Xi) = Ci). Balachandran and Radhakrishnan show
that such measures make it possible to determine a rule for allocating
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the operating costs so that classes are induced to report their true time
values.

It should be emphasized that the purpose of the pricing scheme here
is not to control the arrival rates (these are considered to be fixed) but to
induce truthful reports of the time costs in order to determine optimal
service capacity.

5. Observable vs. unobservable queues
Hassin [66] compared the social welfare under the profit-maximizing

number of single server facilities, in the basic models of Naor [133] and
Edelson and Hildebrand [47]. Let c denote the cost per unit of time
associated with operating a facility, regardless of its utilization. Assume
that the potential arrival rate is large and that the queue organizer
determines the optimal arrival rate to each facility. If the gain from
a facility that serves an arrival process with rate λ is Z(λ), then the

optimal arrival rate per facility maximizes Z(λ)−c
λ , that is, maximizes

gain per unit of arrival rate.
Suppose that the service manager can choose between revealing the

queue length to the customers and operating an observable queue, or
concealing this information and operating an unobservable queue (§3.2).
Hassin showed that social welfare may, in some cases, be increased by
motivating the profit maximizing firm to reveal the queue length when
it otherwise prefers to conceal it. On the other hand, it never pays, from
the social point of view, to induce the firm to conceal the queue length
when it is willing to reveal it. To see this let the operating cost c be such
that the firm prefers to reveal the queue length. Let λ1 be the rate it
chooses in this case, and let λ2 be the rate it would choose had it been
impossible for it to reveal this information. Then,

SO − c

λ1
≥ ZO − c

λ1
>

ZU − c

λ2
=

SU − c

λ2
,

where Z denotes profit, S denotes social welfare, O denotes observable
queues and U denotes unobservable queues. The first inequality holds
since SO ≥ ZO, the second since the firm prefers an observable queue.
Thus, social welfare decreases when the firm operates an unobservable
queue at rate of λ2 .
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6. Co-production
Ha [62, 63] considered an unobservable system where each customer

chooses a service rate. The choice reflects the amount of service he
requests, and affects his utility from service. Cachon and Harker [31]
(see Section 7) made a similar assumption in their model. They refer
to it as an engagement of customers in co-production or outsourcing of
service to customers. Note that a high rate of service means that less
service is given by the server, whereas longer service is associated with
higher value to the customer.

The decrease in utility that a customer obtains from faster service is
reflected in a cost function h(µ) incurred by a customer if he chooses ser-
vice rate µ. The function h(µ) is continuously differentiable, monotone
increasing, and strictly convex.

Customers ignore the externalities of their choice of a service rate on
the delays incurred by others and choose a rate which is smaller than the
service rate a social planner would choose.5 Ha derived pricing schemes
under which customers make decisions that are compatible with social
optimality.

Ha’s approach distinguishes between two types of externalities in-
volved with the decision process of co-production models. Service exter-
nalities are associated with the individual’s optimization of his service
requirement. Specifically, the longer a customer’s service, the more wait-
ing time is added to others. When choosing a service rate, the customer
ignores these externalities and therefore his choice tends to be too small
from a social point of view. Admission externalities are involved with
the increase in arrival rate caused when more customers decide to join.
We note that this distinction is mainly semantic: The two types of ex-
ternalities are caused by the same action, that of joining the queue in
order to obtain service.

6.1. Single class FCFS model
The first model of Ha [62] assumes a GI/GI/1 FCFS queue with

customers who are identical in all parameters except for their willingness
to join the system at a given value of the expected full price. Note that
the full price in this model includes the cost h(µ) (see (8.11)).

5The following illustrative situation is described by Schelling [153]. An accident occurs in an
freeway. Drivers in the opposite lane slow down to watch, creating long lines of cars behind
them. Eventually, many commuters spend ten minutes extra driving for a ten-second look.
When they get to the scene, the ten minutes’ delay is a sunk cost, and they pay the extra ten
seconds for their own sightseeing. As a collective body, the drivers might vote to maintain
speed, each foregoing a ten-second look and saving ten minutes on the freeway.
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Let W (λ, µ) denote the expected waiting time and let Wq(λ, µ) denote
the expected queueing time, given the rates λ and µ.6 A customer’s
choice of service rate does not affect his queueing time. Therefore, his
decision amounts to selecting a service rate µe which minimizes C

µ +h(µ)
over µ > 0, and µe satisfies

h′(µe) =
C

µ2
e

.

Note that µe is not a function of λ. In contrast, the social objective
(given that the arrival rate is λ) is to set µ to minimize CW (λ, µ)+h(µ).
Given the assumption on the function h(µ), the optimal service rate,
µ∗(λ), is uniquely determined by the first-order condition

h′(µ∗(λ)) = −C
∂W (λ, µ∗(λ))

∂µ
. (8.8)

By the convexity of W (λ, µ) in µ, and the assumptions on the cost
function h:

µ∗(λ) increases in λ;

µ∗(λ) ≥ µe for λ ≥ 0.

To induce the socially optimal behavior in equilibrium, Ha suggested
a price scheme which consists of both a fixed admission fee α and a
variable service fee β proportional to the realized time of service. (If it
is possible to observe the service rate chosen by a customer, the variable
part of the price can be made proportional to the expected service time.)
The goal of these fees is to attain equilibrium with the optimal arrival
and service rates.

We first determine the variable cost, β. The customer’s choice of µ
minimizes h(µ) + C+β

µ . This is a strictly convex function of µ and the
unique minimizer satisfies

h′(µ) =
C + β

µ2
. (8.9)

Since the expected number of customers in the system, L(λ, µ), is a
function of λ and µ only through λ

µ , λ∂L
∂λ +µ∂L

∂µ = 0. With L = λW this
becomes

W + λ
∂W

∂λ
+ µ

∂W

∂µ
= 0. (8.10)

6A more formal approach would require to define the expected waiting time for any strategy
profile selected by the customers but these definitions are sufficient since we only consider
symmetric profiles.
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Let λ∗ and µ∗ be the arrival and service rates which jointly maximize
social welfare. By substituting (8.9) and (8.10) into (8.8) we obtain the
following theorem:

Theorem 8.2 Suppose that λ = λ∗ and that the service charge per unit
of actual service is

β = µ∗C
(

Wq(λ
∗, µ∗) + λ∗∂W (λ∗, µ∗)

∂λ

)

.

Then the resulting equilibrium service rate equals µ∗.

We now determine the optimal admission fee, α. The social objective
is to maximize V (λ) − CλW (λ, µ) − λh(µ). This function is strictly
concave in λ and hence its unique maximizer is determined by the first-
order condition

V ′(λ) = CW (λ, µ) + Cλ
∂W (λ, µ)

∂λ
+ h(µ).

In equilibrium, the arrival rate is such that V ′(λ) equals the expected
full price:

α +
β

µ
+ CW (λ, µ) + h(µ). (8.11)

Thus we obtain the following theorem:

Theorem 8.3 Suppose that an admission fee of α = −CWq(λ
∗, µ∗) and

a variable fee of β as stated in Theorem 8.2 are imposed. Then the
socially optimal solution (λ∗, µ∗) defines an equilibrium.

6.2. Multi-class extensions
Ha [63] extended the model of [62], assuming that the demand pro-

cess consists of m classes that differ by their aggregate utility functions
Vi(λi), cost functions hi(µi), and time values Ci, i = 1, . . . ,m. We will
assume that class identities are unobservable.7 It is assumed that for
each class i, the values of V ′

i (0) and hi(0) are sufficiently large to guar-
antee interior solutions. Let λ = (λ1, . . . , λm) and µ = (µ1, . . . , µm).
The social objective is to maximize

m
∑

i=1

[

Vi(λi) − λiCiWi(λ, µ) − λihi(µi)
]

(8.12)

7Ha also considers the case when class identities are observable.
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with respect to λ and µ, where Wi(λ, µ) is the expected waiting time of
an i-customer given the rates λ and µ.

Let λ∗ and µ∗ be the vectors of arrival and service rates which jointly
maximize (8.12). The first-order conditions are for i = 1, . . . ,m,

m
∑

j=1

Cjλ
∗
j

∂Wj(λ
∗, µ∗)

∂µi
+ λ∗

i h
′
i(µ

∗
i ) = 0, (8.13)

and

V ′
i (λ

∗
i ) = CiWi(λ

∗, µ∗) +
m
∑

j=1

Cjλ
∗
j

∂Wj(λ
∗, µ∗)

∂λi
+ hi(µ

∗
i ). (8.14)

Let t be an observable measure associated with a customer’s service
rate. Specifically, Ha considered two service disciplines, FCFS in which t
is the time in service, and EPS in which t is the time in the system. Let
τ be a random variable denoting the realization of t. Suppose that the
server charges customers a price p(t). Let Wi(λ, µ, µ) and E[p(τi)|λ, µ, µ]
denote the expected waiting time and price, respectively, incurred by an
i-customer who chose a service rate µ. The objective of an i-customer
is to choose a µ value that minimizes

E[p(τi)|λ, µ, µ] + CiWi(λ, µ, µ) + hi(µ).

The first-order conditions are that for i = 1, . . . ,m,

Ci
∂Wi(λ, µ, µ)

∂µ
+

∂E(p(τi)|λ, µ, µ)

∂µ
+ h′

i(µ) = 0. (8.15)

In a symmetric equilibrium, (8.15) holds with µ = µi for i = 1, . . . ,m.
The arrival rates λi are determined by

V ′
i (λi) = E[p(τi)|λ, µ, µi] + CiWi(λ, µ) + h(µi). (8.16)

Comparing (8.13), (8.14), (8.15), and (8.16), the price function p(t) will
induce optimal arrival and service rates in equilibrium if for i = 1, . . . ,m,

∂E[p(τi)|λ∗, µ∗, µ∗
i ]

∂µi

=
1

λ∗
i

m
∑

j=1

Cjλ
∗
j

∂Wj(λ
∗, µ∗)

∂µi

−Ci

∂Wi(λ
∗, µ∗, µ∗

i )

∂µi

≡ Es
i , (8.17)

and

E[p(τi)|λ∗, µ∗] =
m
∑

j=1

Cjλ
∗
j

∂Wj(λ
∗, µ∗)

∂λi
≡ Ea

i . (8.18)
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Ha interpreted Es
i and Ea

i as service and admission externalities, re-
spectively.

Ha applied (8.17) and (8.18) to the following two models:

Consider an M/G/s system with egalitarian processor sharing (EPS):
a server is dedicated to a customer if the number of customers does
not exceed s; otherwise, the service capacity is allocated equally
among the customers in the system.

Important features of the EPS model are:

– The service externalities are identical across all classes, that is,
Es

i = Es for i = 1, . . . ,m.

– The admission externalities equal the service externalities, that
is, Ea

i = Es

µ∗
i
, for i = 1, . . . ,m.

Consequently, a single undifferentiated price per unit of time in the
system can be applied to optimally regulate customers’ behavior in
this model of heterogeneous customer classes. For some constant
β, p(t) = βt induces an equilibrium in which customers in each class
make the systemwide optimal admission decisions and those who join
are induced to select the optimal service requirement intended for
their class.

Consider an M/G/1 FCFS system. In this case, Ha proved that there
are constants β and γ such that the pricing function p(t) = βt + γt2

induces the optimal behavior in equilibrium.

7. Competition among servers
Chen and Wan [35] considered a model of competition between two

identical servers who maximize their profits by choosing both prices and
service capacities. They assume that customers are homogeneous and
show that four cases are possible:

A unique equilibrium in which none of the firms operates in the mar-
ket.

Countable equilibria in which one of the firms captures the whole
market.

Countable equilibria in which each firm captures half of the market.

A continuum set of equilibria in which the firms divide the market
into different shares.
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Cachon and Harker [31] considered an unobservable queueing system
with two servers who differ by some parameter. Customers have prefer-
ences over the value of this parameter and incur a cost proportional to
the difference between their desired value and that offered by the firm
they selected. This is a variation of the classic Hotelling model [82]. It is
assumed that servers compete by offering prices and waiting cost guar-
antees (by controlling the service rate). When the servers have identical
cost parameters there is a unique equilibrium in which, in contrast to
the model of Levhari and Luski [113, 104] (see, §7.1), if the firm’s costs
are identical then the firms adopt identical strategies.

Kalai, Kamien and Rubinovitch [85] considered a model in which
servers choose their service rate in a competitive environment, in order
to capture a larger market share. The model assumes a single queue.
A customer who encounters free servers randomly chooses one, inde-
pendently of their service rates. Otherwise, he joins the queue. When
service ends and the queue is not empty, the first customer in the queue
moves to obtain service. This model makes the problematic assumption
that customers do not give priority to faster servers. One could argue
that this is a result of ignorance, but clearly the faster servers have an
incentive to advertise the distinction between themselves and the slower
servers.

Gilbert and Weng [57] built on Kalai, Kamien and Rubinovitch [85],
assuming that two servers are controlled by a coordinating agency. Each
server selects a profit maximizing service rate, but the agency allocates
customers to servers and compensates servers accordingly in order to
achieve given expected waiting times at a minimum cost. The anal-
ysis shows that the coordinating agency may prefer a separate queue
allocation scheme to a common queue.

8. Capacity expansion
Capacity expansion is an important subject of operations research

(see the survey by Luss [114]), but not much has been done on related
queueing models. We describe below examples of such models.

Consider an unobservable M/M/s system, and assume that the pop-
ulation of potential customers grows with time, so that at time t the
potential arrival rate is Λ(t) where Λ(t) is monotone increasing. The
facility manager has to decide on the admission fee and on a sequence of
instants t1, t2, . . . when it is worth adding a new server (which is associ-
ated with either increased operation costs or capacity expansion costs).
The objective of the manager is to maximize the discounted present
value of the system’s profits or social welfare.
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Alternatively, consider a class model of heterogeneous customers. The
arrival rate of i-customers at time t is determined by the equilibrium
condition V ′

i (λi) = Pi where Pi denote their full price. Suppose that the
population of potential customers grows uniformly with time, so that
at time t the marginal value function is Λ(t)V ′

i where Λ(t) is monotone
increasing. The facility manager has to decide on both the admission fees
imposed on each customer class and on a sequence of instants t1, t2, . . .
when it is worth adding a new server.

A variation of this model was considered by Oum and Zhang [137]. In
their model, the admission fee imposed on an i-customer is equal to the
externalities such a customer imposes on the system. They conducted
numerical experiments with specific data and growth function Λ(t) =
Λ[1 + (αt)β ]. They also applied a strong assumption that the total
arrival rate is a function of the average (over classes) expected full price.

9. Related literature
Balachandran and Radhakrishnan [19] considered an M/M/1 model
with fixed arrival rates λ1, . . . , λm of customer classes. The classes
jointly decide on µ and on an allocation of c(µ) among them, so that
class i pays a fraction γi of c(µ). The waiting cost parameter for i-
customers is Ci. Each class is considered an entity of its own, bearing
all the waiting costs of its customers and its fraction of c(µ).

The socially optimal service rate µ satisfies the first-order condition

∂

∂µ

(

∑

i

Ci
λi

µ −∑j λj
+ c(µ)

)

= −
∑

i Ciλi

(µ −∑j λj)2
+

∂c(µ)

∂µ
= 0.

Under individual class optimization, the service rate is determined
by

− Ciλi

(µ −∑j λj)2
+ γi

∂c(µ)

∂µ
= 0, 1 ≤ i ≤ m.

Consider an allocation with fractions

γi =
Ciλi

∑

j Cjλj
, 1 ≤ i ≤ m.

With these fractions, the socially optimal service rate is optimal for
every class.

Chen and Frank [33] considered a long-run model of a profit max-
imizing server in which the cost of maintaining a service rate µ is
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bµ per unit of time, and the cost of serving a customer is r. They
observed that in this model, if a positive profit is possible, then the
server will select a processing rate µ and an admission fee p such that
all the potential arrivals will be served. Since the maximum fee that
can be charged while maintaining the arrival rate Λ is p = R − C

µ−Λ ,
the problem becomes

max
r<p<R−C/µ

(p − r)Λ − b
(

Λ +
C

R − p

)

.

The solution is p∗ = R −
√

Cb
Λ and µ∗ = Λ +

√

CΛ
b . Chen and Frank

observed that:

– The solution does not vary with the cost, r, of serving a customer.
This cost only determines whether a positive profit is possible.

The condition for a positive profit is r < R−
√

Cb
Λ . Note that the

left-hand side is the optimal admission fee, p∗.

– The firm responds to an increase in Λ by increasing µ and p.

– As in the short-run model (§3.1), the profit-maximizing solution
is socially optimal.

Ittig [83] assumed a revenue function that depends on the arrival
rate and a cost function that depends on the number of servers in an
M/M/s queue or on the service rate in an M/M/1 queue. For several
demand functions, Ittig computed the optimal number of servers and
the service rate which maximize social welfare.

The model by So and Song [158] assumes that the demand for service
is a function of two parameters, the price and the α-percentile of the
waiting time distribution (the “delivery time guarantee”), for some
predetermined α. In particular, the demand function is λp−αx−β,
where p is the price of service, and the probability that the waiting
time is at most x equals α. The server has the option of increasing
the service rate at a linear cost. The paper characterizes the optimal
price and capacity selection for an M/M/1 system.

In §3.4 we described an interesting type of equilibrium inefficiency dis-
covered by Balachandran and Schaefer [20]: when the potential popu-
lation of customers consists of classes that differ by their cost/reward
ratios, a single class arrives (“dominates”) in equilibrium and it is not
necessarily the socially desired class. Balachandran and Radhakrish-
nan [19] proved that this inefficiency does not exist in the long-run
model when the cost of operating the server is linear in the service
rate.
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Balachandran and Srinidhi [25] considered an M/G/1 model in which
the cost of operating a server at rate µ given an arrival rate λ is pro-

portional to e
−λ

µ .8 They show that for this cost function, the short-
and long-run first-order optimality conditions for social optimality co-
incide. However, in the short-run model they ignored the dependence
of the operating costs on the arrival rate.

8They provide no justification for using this function.
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