
RIP: Run-based Intra-query Parallelism for
Scalable Complex Event Processing

Cagri Balkesen, Nihal Dindar, Matthias Wetter, Nesime Tatbul

ETH Zurich, Switzerland

{cagri.balkesen, dindarn, wetterma, tatbul}@inf.ethz.ch

ABSTRACT
Recognition of patterns in event streams has become im-
portant in many application areas of Complex Event Pro-
cessing (CEP) including financial markets, electronic health-
care systems, and security monitoring systems. In most ap-
plications, patterns have to be detected continuously and in
real-time over streams that are generated at very high rates,
imposing high-performance requirements on the underlying
CEP system. For scaling CEP systems to increasing work-
loads, parallel pattern matching techniques that can exploit
multi-core processing opportunities are needed. In this pa-
per, we propose RIP - a Run-based Intra-query Parallelism
technique for scalable pattern matching over event streams.
RIP distributes input events that belong to individual run
instances of a pattern’s Finite State Machine (FSM) to dif-
ferent processing units, thereby providing fine-grained par-
titioned data parallelism. We compare RIP to a state-based
alternative which partitions individual FSM states to dif-
ferent processing units instead. Our experiments demon-
strate that RIP’s partitioned parallelism approach outper-
forms the pipelined parallelism approach of this state-based
alternative, achieving near-linear scalability that is indepen-
dent from the query pattern definition.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query Pro-
cessing

Keywords
CEP; Pattern Matching; Stream Processing; Parallelism

1. INTRODUCTION
Complex Event Processing (CEP) has become a critical

technology with a wide range of well-known application do-
mains from financial trading to health care. An essential
capability for CEP systems is the ability to match patterns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA.
Copyright 2013 ACM 978-1-4503-1758-0/13/06 ...$15.00.

over sequences of events. These patterns are typically speci-
fied as regular expressions with event variables that are then
used to define predicates over individual event occurrences
as well as correlations across them. As such, pattern queries
can be arbitrarily complex, imposing high computational
complexity over the CEP systems that are executing them.

In real-time CEP applications, there is an additional need
to detect patterns continuously over streaming event se-
quences. The time-sensitive nature of events as well as the
need to keep up with potentially very high event arrival rates
in such settings further exacerbate the performance chal-
lenges faced by CEP systems.

For CEP systems to be able to cope with ever-increasing
input and query workloads, they must be equipped with
techniques that can use modern computing technologies to
their advantage. In particular, over the past several years,
we have seen an uprising trend in multi-core processing tech-
nologies, which presents a ripe opportunity for ensuring high-
throughput CEP.

In this paper, the research question we aim to answer
is how to exploit inherent parallelism in modern multi-core
CPU architectures for scalable processing of CEP queries
over event streams. We focus on a common subset of contin-
uous MATCH-RECOGNIZE queries [18] and follow a query exe-
cution model based on Finite State Machines (FSMs). Given
a query, our goal is to map its FSM execution onto parallel
processing units in a multi-core machine. Furthermore, this
should be done in a way that scales processing throughput
(i.e., the number of input events that can be processed per
unit time) with the increasing number of cores, as close to
the ideal linear scale-up target as possible.

We propose a novel solution, RIP - a Run-based Intra-
query Parallelism technique. RIP distributes input events
that belong to individual run instances of a query’s FSM
to different processing units, thereby providing fine-grained
partitioned data parallelism that is independent from the
query pattern definition. As we show with a detailed ex-
perimental study that is also verified with real-world data
workloads, RIP achieves throughput scalability that is very
close to the ideal. Furthermore, we compare RIP to a se-
quential baseline as well as an alternative parallel approach
that partitions individual FSM states (as opposed to whole
FSM instances in RIP) to different processing units. RIP
outperforms this state-based approach under all workload
scenarios. In addition to its inferior performance, the state-
based approach also has other undesirable limitations such
as being query-dependent and bounding scalability by the
number of FSM states in the query. In essence, our RIP ap-

proach represents partitioned parallelism whereas the state-
based approach represents pipelined parallelism. Thus, a
significant outcome of this paper is that it clearly shows
that partitioned parallelism is a better fit for multi-core CEP
than pipelined parallelism.

Partitioned data parallelism for CEP itself is not a new
idea [13]. However, previous approaches partition input
events directly based on the “PARTITION BY” clause, not at
the FSM instance level. Thus, our RIP approach is orthogo-
nal/complementary to these previous approaches in the fol-
lowing ways: (i) Not all CEP queries have “PARTITION BY”
clauses, in which case RIP is the only possible approach for
data parallelism, (ii) Even in the presence of “PARTITION
BY”, RIP provides a way to parallelize individual data parti-
tions further, which enables finer-grained partitioning across
processing cores. Furthermore, RIP does not suffer from
the data skew problem, which is an inherent problem in
approaches that are solely based on “PARTITION BY” paral-
lelism.

The rest of this paper is organized as follows: Section 2
describes the data and query models that underlie this work.
In Section 3, we describe our basic sequential query process-
ing algorithm and architecture, which sets a baseline for our
work. We present out parallel query processing techniques in
Section 4. Section 5 provides our experimental results. We
summarize the related work in Section 6 and finally conclude
the paper in Section 7.

2. DATA AND QUERY MODEL
In this section, we present main assumptions and defini-

tions regarding the data and query model of RIP.
We start with the time domain. We assume that the time

domain is a discrete, linearly ordered, countably infinite set
of time instants. It is bounded in the past, but not necessar-
ily in the future. Each event has a timestamp and consists
of a relational tuple conforming to a schema. Furthermore,
we assume that a stream is a totally ordered, countably in-
finite sequence of events, such that the total order is defined
by the timestamps. The CEP annotates each event in the
ordered stream by a unique id such that the difference of the
ids of two subsequent events is 1. In Example 1 we provide
a sample stream specification.

Example 1 A stream of events that consists of stock market
ticks can be specified as follows:

StockTrade(tradeId Long, symbol Char(8), price Float,
timestamp Long)={

(1, A, 34.52, <01/19/2006 9:34:01>),
(2, A, 34.54, <01/19/2006 9:34:01>), ...}

Next, we explain how pattern matching queries are spec-
ified over a given input stream. Different languages are
proposed for pattern matching queries [10, 7, 9, 18]. We
use a subset of the MATCH-RECOGNIZE clause [18] to express
pattern matching queries. MATCH-RECOGNIZE is originally a
proposal for a SQL extension that performs pattern match-
ing on rows. Nevertheless, such queries can also be applied
to streams of events which have already supported by some
CEP engines [2, 6]. We will briefly discuss a subset of MATCH-
RECOGNIZE syntax, our semantics, and then provide an ex-
ample. By default, contiguous matches are searched in a
given stream. However, pattern matching can also be per-
formed in a subset of data, when optional PARTITION BY

Figure 1: Head and shoulders patterns in a stock
trade stream [1]

clause is used, such as looking for patterns for each stock
symbol separately. Patterns are specified with regular ex-
pressions using pattern variables (PATTERN clause). Each
pattern variable is accompanied by a definition in the DE-

FINE clause. This definition consists of a conjunction of
boolean predicates. If an event meets this definition, it can
be classified with the corresponding variable. The absence
of a definition of a certain variable means that any event can
be classified with that variable name. Furthermore, events
can be correlated by specifying predicates over pattern vari-
ables, such that price of a StockTrade event annotated as
B must have a price value greater than the event just before
itself (B.price > PREV(B.price)). For example, a pattern
specification PATTERN(AB ∗ C) states that we are looking
for an event (classified as A) that is followed by zero ore
more events that satisfy the definition of B and by exactly
one event that satisfies the definition of C. We call pattern
specifications which contain Kleene *,+ variable-length pat-
terns, whereas we call patterns containing neither Kleene
* nor Kleene + fixed-length patterns. Please note that
search for variable-length patterns might never terminate,
such as when predicate of each pattern variable is true. In
order to avoid that, we assume that the maximum length
(MAXLENGTH) of a match is specified in the query. MAXLENGTH
clause is an extension to the original proposal. Next, we
provide a sample pattern specification from finance domain.

In finance, recognition of chart patterns within stock prices
is a common method which is used to predict the future
development of stock prices. A well-known pattern is the
so-called head and shoulders pattern, which belongs to the
family of reversal patterns [4]. If an uptrend of the price is
accompanied by the observation of the head and shoulders
pattern for a stock, a drop of the price can be forecast for
that stock.

Example 2 Head and shoulders pattern consists of three
peaks: (i) the left shoulder that is formed after an uptrend,
(ii) the highest peak called the head and (iii) the right shoul-
der that shows an increase but fails to take out the previous
high (head) [3]. The pattern is complete when the price falls
below the neckline that is formed by connecting the two low
points next to the head [3, 1]. Figure 1 depicts the pattern. A
simplified head and shoulders pattern in StockTrade stream
can be expressed with MATCH-RECOGNIZE (see Query 1).

SELECT symbol , l e f t s h ou l d e r t o p , head top ,
r i gh t shou ld e r t op , p o i n t o f r e v e r s a l

FROM StockTrade MATCHRECOGNIZE (
PARTITION BY symbol
MEASURES symbol AS s symbol ,

C. p r i c e AS l e f t s h ou l d e r t o p ,
G. p r i c e AS head top ,
K. p r i c e AS r i gh t shou ld e r t op ,
M. p r i c e AS p o i n t o f r e v e r s a l

PATTERN (A B∗ C D∗ E F∗ G H∗ I J∗ K L∗ M)
DEFINE

B AS (B. p r i c e ≥ PREV(B. p r i c e)) ,
C AS (C. p r i c e > PREV(C. p r i c e)) ,
D AS (D. p r i c e ≤ PREV(D. p r i c e)) ,
E AS (E. p r i c e < PREV(E. p r i c e)

AND E. p r i c e > A. p r i c e) ,
F AS (F . p r i c e ≥ PREV(F . p r i c e)) ,
G AS (G. p r i c e ≥ PREV(G. p r i c e)

AND G. p r i c e > C. p r i c e) ,
H AS (H. p r i c e ≤ PREV(H. p r i c e)) ,
I AS (I . p r i c e < PREV(I . p r i c e)

AND I . p r i c e > A. p r i c e) ,
J AS (J . p r i c e ≥ PREV(J . p r i c e)) ,
K AS (K. p r i c e > PREV(K. p r i c e)

AND K. p r i c e < G. p r i c e) ,
L AS (L . p r i c e ≤ PREV(L . p r i c e)) ,
M AS (M. p r i c e ≤ PREV(M. p r i c e)

ANDM. p r i c e < E. p r i c e
ANDM. p r i c e < I . p r i c e)

MAXLENGTH 100
)

Query 1: Head and shoulders pattern

After specifying a pattern matching query, next we focus
on its result tuples. Output of the query is a sequence of
matches, where each match contains a sequence of events.
Each event in that sequence is classified by a variable such
that the sequence of variables conform to the pattern of
a given query and the predicates are fulfilled accordingly.
Figure 2 depicts a match of Query 1.

Figure 2: A sample head and shoulders match

Matches can have arbitrary relations depending on the
predicates and the input stream, such as a match can in-
clude events of another match partially or fully. Some lan-
guage proposals enable to specify certain match behaviors
in the query such as non-overlapping only, or the longest
matches [9, 18, 13]. We focus on outputting all matches
that can be found, as it is more general and computation-
ally more expensive. Please note that even in the case of
non- overlapping match search, all events must be processed
as overlapping can only be detected after a match is found,
and matches can have arbitrary starts and sizes. Further-
more, we assume that a single event per match is reported
which summarizes the events belonging to the match. MEA-

SURES clause is used to specify the fields of a match event in
the MATCH-RECOGNIZE proposal such as head top is the high-

est price of the stock in Query 1. Next, we give a sample
output event to Query 1.

HeadShoulders(Id Float, s_symbol Char(8), left_shoulder_top Float,
head_top Float, right_shoulder_top Float,
point_of_reversal Float)={

(1, A, 35.0, 37.5, 35.5, 32.1), ...}

We use FSM to model pattern matching queries. Since
patterns are specified with regular expressions, FSM is a
natural choice. Furthermore, It is widely used by other pat-
tern matching engines [16, 10, 11]. Every pattern is trans-
formed into a non-deterministic FSM. Each pattern variable
is represented by states in the FSM. An FSM has always a
start state (indicated by s0). The predicates are represented
by edges (indicated by pi). Next, we provide a sample FSM.

Example 3 FSM of Query 1 is as follows:

s0 A B C D E F G H I J K L M

pA ε

pB

pC ε

pD

pE ε

pF

pG ε pI

pH

ε pK

pJ

ε pM

pL

Figure 3: FSM for Query 1

We presented our main assumptions and definitions re-
garding pattern matching in general. A CEP engine is re-
quired to find all possible matches over a given input stream
according to a given query regardless of its processing strat-
egy. In the following sections, we discuss how pattern match-
ing queries can be processed sequentially and in parallel.

3. QUERY PROCESSING
This section describes a basic sequential query processing

algorithm and architecture for pattern matching.
Figure 4 depicts a simple model of a sequential pattern

matching engine. In the figure, the client program feeds
the engine with input events and receives the match results.
The engine performs three main tasks: receive events, eval-
uate events, control matches. Next, we discuss each of these
tasks.

Input handler is a simple interface that provides event
streams to the engine. If PARTITION BY is specified in the
query, the input can be partitioned at the input handler.
Similarly, match output handler deals with outputting the
detected matches, such that it formats the found matches
with regard to the output specifications given in the MEA-

SURES clause and sends them to the client. Pattern evaluator
performs the main task, which is evaluating events and find-
ing all matches.

Pattern evaluator uses the FSM of the query to evaluate
patterns. Each event might contribute to a match and must
be evaluated with the FSM. In order to move from one state
of the FSM to another state, an event has to be consumed.
Furthermore, the movement is only allowed if the event ful-
fills the predicates of the edge. An exception is the edges
that are labeled by an epsilon. These edges do not consume
an event and thus it is possible to move to another state
without classifying an event. Arriving at a final state means
that a match is found. However, finding no edges to move
means that the search ended with non-match.

Example 4 We illustrate execution of part of the head and
shoulders query (Query 1), more specifically until the head is

Input
Handler

Match
Output
Handler

CEP Client

Pattern Evaluator

Match Listener

A B . . . C

Events Matches

Receive Events Evaluate Events Control Matches

CEP Server

Figure 4: Basic Query Processing Architecture

detected. FSM of the query can be found in Figure 5. Please
note that Figure 5 depicts the first half of the FSM shown in
Figure 3, with explicit predicate definitions.

We call an execution instance of an FSM a “run”. Each
run holds a pointer to the current state of the FSM (denoted
as curr state) and a set of events which conformed to the
predicates till the current state (partial match denoted as
PM). A run might or might not lead to a match. For each
incoming event, pattern evaluator creates a new run having
the start state of the FSM as its current state and an empty
partial match. After that, each run is updated regarding to
the incoming event (see Algorithm 1). In Example 5, we
illustrate the execution of Algorithm 1.

Algorithm 1: Sequential pattern matching

Input: e : event, R : set of runs, fsm : FSM of the query
Result: R′: updated set of runs

1 begin
2 R′ ← ∅; // create an empty set of runs

3 ri ← create a new run;
4 ri.current-state ← fsm.start-state;
5 ri.partial-match ← ∅;
6 R.add(ri); // add ri to R
7 foreach run r in R do
8 S← computeReachableStates(r.current-state, e);
9 foreach state s in S do

10 if s.evalPredicates(r.partial-match, e) = true
then

11 add e to r.partial-match;
12 r.current-state ← s;
13 if s is a final-state then
14 report the r.partial-match;
15 if s has outgoing edges then
16 rj ← make a copy of r;
17 R′.add(rj);

18 else
19 rj ← make a copy of r;
20 R′.add(rj);

21 R ← R′;
22 return R′;

Example 5 A StockTrade input stream is given with the
following price values for a certain stock symbol:

StockTrade(tradeId Long, price Float)= {(1,33.1),(2,34.0),
(3,33.2),(4,35.0), ...}

s0 A B C D E F G

true ε

price≥PREV(price)

price>PREV(price)

ε

price≤PREV(price)

price<PREV(price)

and

price>A.price

ε

price≥PREV(price)

price≥PREV(price)

and

price>C.price

Figure 5: FSM for Example 5

event run rid:<curr state, PM> → Prd
(price) <curr state’, PM’>

e1(33.1) r1 :< s0, ∅ >→< A, (a1) > pA

e2(34.0) r2 :< s0, ∅ >→< A, (a2) > pA

e2(34.0) r1 :< A, (e1) >→< B, (a1, b2) > pB

e2(34.0) r′1 :< A, (e1) >→< C, (a1, c2) > pC

e3(33.2) r3 :< s0, ∅ >→ < A, (a3) > pA

e3(33.2) r2 :< A, (a2) >→ − pB

e3(33.2) r2 :< A, (a2) >→ − pC

e3(33.2) r1 :< B, (a1, b2) >→ − pB

e3(33.2) r1 :< B, (a1, b2) >→ − pC

e3(33.2) r′1 :< C, (a1, c2) >→< D, (a1, c2, d3) > pD

e3(33.2) r′′1 :< C, (a1, c2) >→< E, (a1, c2, e3) > pE

e4(35.0) r4 :< s0, ∅ >→< A, (a4) > pA

e4(35.0) r3 :< A, (a3) >→< B, (a3, b4) > pB

e4(35.0) r′3 :< A, (a3) >→< C, (a3, c4) > pC

e4(35.0) r′1 :< D, (a1, c2, d3) >→ − pD

e4(35.0) r′1 :< D, (a1, c2, d3) >→ − pE

e4(35.0) r′′1 :< E, (a1, c2, e3) >→ pF

< F, (a1, c2, e3, f4) >
e4(35.0) r′′′1 :< E, (a1, c2, e3) >→ pG

< G, (a1, c2, e3, g4) >

...

Table 1: Event evaluation sequence for Example 5

Other attributes of StockTrade are avoided for brevity. The
query having the FSM shown in Figure 5 is executed over
StockTrade stream by a sequential pattern matching engine
according to Algorithm 1. The evaluation sequence can be
found in Table 1. Table 1 shows new runs created with each
incoming event and changes in the states of both the exist-
ing and new runs when the corresponding predicate (prd) is
executed. pX denotes the predicate of state X. Dashes(−)
mean that the run is finalized with a non-match. Please note
that, reachable states from a given state are the set of states
which can be reached by consuming one event. For example,
in the FSM shown in Figure 5 reachable states from state A
are both state B and C. If multiple edges can be followed, a
run is created for each (e.g., r1 and r′1 in Table 1). a1 de-
notes that the event e1 was classified by A. In the example,
r′′′1 reaches final state G and thus reports a match including
events from e1 to e4.

We will use the architecture in Figure 4 as a basis for
further parallelization approaches. Next, we discuss how
the work done by Pattern Evaluator can be parallelized.

4. PARALLEL QUERY PROCESSING
In order to parallelize the basic query processing architec-

ture of Figure 4, the first step is to divide the CEP server
thread into three threads, one for each task (i.e., Input Han-
dler, Pattern Evaluator, and Match Output Handler), and
to replace method calls between task boundaries with queues
accordingly. Of these three threads, Pattern Evaluator has
the highest computational cost and therefore is likely to be

In
p
u
t
H
a
n
d
le
r

M
a
tc
h
O
u
tp

u
t
H
a
n
d
le
r

CEP Client

Pattern Evaluator

Match Listener

A
buffer

B
buffer

C
buffer

Events Matches

Receive Events Evaluate Events Control Matches

CEP Server

Figure 6: State-based Parallelization

the bottleneck in the face of fast input event arrival and a
complex pattern to evaluate. How can the Pattern Evalua-
tor thread be further parallelized?

Given the event evaluation sequence (e.g., Table 1) gen-
erated by the sequential pattern matching algorithm (i.e.,
Algorithm 1), there can be three possibilities:

• Parallelize by input events: Each processing unit is as-
signed a thread that is responsible for a certain partition
or a sub-stream of events from the input. For example,
approaches that parallelize based on the PARTITION BY

attributes of the query implement this possibility [13].

• Parallelize by state predicates: Each processing unit is
assigned a thread that is responsible for a certain FSM
state. This possibility corresponds to the pipelined par-
allelization approach.

• Parallelize by runs: Each processing unit is assigned
a thread that is responsible for a certain FSM run in-
stance. This corresponds to the RIP approach that we
are proposing in this paper.

Next, we describe two approaches: state- and run-based.

4.1 State-based Parallelization
The idea is to represent each FSM state corresponding

to a pattern variable as a processing unit that can run on
a dedicated core in parallel. In other words, in the event
evaluation sequence, we parallelize the evaluation of each
state predicate.

Figure 6 illustrates the basic processing model of our state-
based parallelization approach for a pattern that consists of
three variables or FSM states (A, B, C). There is exactly
one processing unit for each variable in the pattern. Each
processing unit has an input queue receiving events of the
complete input stream. Except the processing unit of the
first pattern variable, all other processing units have a sec-
ond input queue that contains partial matches from the pre-
vious state. The job of a given processing unit (e.g., the one
representing variable C) is to evaluate each incoming partial
match (e.g., ai−1bi) from the second queue together with the
succeeding input event ei+1 from the first queue according to
all predicates of the corresponding pattern variable (e.g., C).
For positive evaluations, the input event is appended to the
partial match and the updated partial match is forwarded
to the outgoing queue. Note that a processing unit evalu-
ates an event from its first input queue only if it succeeds

events of a partial match that is forwarded from its second
input queue. This way, redundant evaluations are avoided.
In fact, in total there will exactly be the same number of
predicate evaluations as in the sequential case illustrated in
Table 1.

For variable-length patterns, a processing unit that rep-
resents a pattern variable that is optional (i.e., quantified
with * or ?) has to forward each incoming partial match
to its output queue in addition to the task described above.
Furthermore, a processing unit that represents a pattern
variable that allows multiple occurrences of itself (i.e., quan-
tified with * or +) has to keep copies of the partial matches
that are put into its output queue in an internal buffer. The
partial matches in this buffer have to be evaluated together
with the subsequent event. Thus, the processing unit has to
work off both its input queues and the internal buffer.

While state-based parallelization is intuitive and can be
implemented in practice, we see several potential problems
with this approach:

• Communication overhead: Partial matches have to be
forwarded among consecutive processing units, causing
communication overhead among threads running on dif-
ferent cores. This problem would be even more pro-
nounced in variable-length patterns, which are likely to
maintain a higher number of partial matches.

• Replication of input stream: The complete input event
stream has to be replicated to each processing unit, since
each event has the potential to participate in any of the
state predicates depending on the partial matches com-
ing from the preceding processing units. Fortunately, not
all of them need to be blindly evaluated at each process-
ing unit, since the processing unit can skip the ones that
are earlier than the last event of a partial match.

• Query dependence: The number of processing units, and
thus the degree of parallelism is restricted by the number
of pattern variables or FSM states in the query. There-
fore, this approach would not scale beyond a certain
number of cores.

• Load imbalance: It is likely that in a pattern matching
query certain states may take longer to evaluate their
predicates. This would lead to load imbalance across the
processing units, such that processing the state predi-
cates with the most loaded node will create a bottleneck.
The load imbalance can be due to several factors, includ-
ing: selectivity of preceding states, number of predicates
for a given state, type of predicates for a given state, and
the presence of expensive operators such as Kleene Star.

One solution to query dependence and load imbalance
problems of the state-based approach could be state repli-
cation. Bottleneck states can be good candidates for repli-
cation. Load of a state depends on the number of events
it processes and the cost of its predicate. Since the first
state of the FSM has to evaluate all the incoming events
and likely to filter some of them, we enabled replication of
it as an optimization to state-based approach. As a result,
we implemented both state-based parallelism approach and
its optimized version where the first state of the FSM is
replicated.

4.2 Run-based Parallelization
As discussed above, the degree of parallelism in state-

based approach is dependent on the number of variables in

a query. Loads assigned to each processing unit might be
unbalanced; therefore, available resources can not be fully
exploited. Moreover, transfer of partial matches between
states and thus between processing units seem to have a big
overhead. These drawbacks lead to the idea to arrange the
evaluations of (event, partial match, state)-triples such that
all evaluations of a given run are performed on the same pro-
cessing unit. We call this approach run-based parallelism.
In other words, a partial match remains on a single process-
ing unit until it constitutes a match or it is removed because
it cannot end in a match anymore.

In run-based parallelism, each processing unit has an iden-
tical task: performing pattern matching on a given sequence
of input events. Therefore, the degree of parallelism is in-
dependent of the query, unlike state-based approach. In
addition to that, since events belonging to the same match
stay in a single processing unit, the cost of carrying partial
matches around is avoided. However, an important question
with this approach is the scheduling of the runs, in other
words: “which processing unit will start a run for a given
event?”. A straight-forward approach could be assigning the
processing units in a round-robin manner to the incoming
events. For instance, if there are X processing units avail-
able, a processing unit i evaluates all runs that start with
an event having an id which is congruent to i in modulo X.
With the round-robin approach, the input events must be
replicated to each processing unit, as pattern matching is
sequential by nature such that each processing unit will also
need other events. Instead of each incoming event starting a
run on another processing unit in a round-robin manner, we
took a different approach: we could let n subsequent events
start a run on the same processing unit. In other words
batches of n events are created and a particular processing
unit tries to find all matches that start with events from
that batch. Figure 7 depicts the architecture of a pattern
matching engine that supports run-based intra-query paral-
lelism (RIP). We can observe that each processing unit has
the same task. Besides, each has an input queue for events
and an output queue for matches. The event receiver is re-
sponsible for forwarding events to the processing units and
a match controller collects the matches from the processing
units.

With batching, we forward a certain batch only to one
processing unit. This way we avoid the replication of events.
But how about matches that overlap batches? Beside the
batch size n we define another parameter s (size of the shared
part of a batch). A processing unit which performs pattern
matching on a batch having events with ids [j; j+n] searches
for all matches starting between jth and (j+n−s)th events.
s events are replicated (i.e., they form the first events of the
subsequent batch), so that matches having tail in (j + n −
s; j + n] can also be reported. The next question is how to
choose a value for the shared part of a batch such that the
correctness of the result of a pattern matching query is not
violated. For fixed-length patterns with k variables and for
variable-length patterns with an upper bound for the match
length (MAXLENGTH = k) we simply define: s = k − 1. For
variable-length patterns where matches can have any length
it is more difficult to find an adequate value. The length of
the shared part s has to be chosen such that the probability
of an occurrence of a match with length > s+ 1 is almost 0.
Furthermore, it is required that n > s and in order to avoid
that events belong to more than two batches it should hold

In
p
u
t

H
a
n
d
le

r

M
a
tc

h
O

u
tp

u
t

H
a
n
d
le

r

CEP Client

Pattern Evaluator

Match Listener

A B . . . C

A B . . . C

..
.

A B . . . CEvents Matches

Receive Events Evaluate Events Control Matches

CEP Server

Figure 7: Run-based Parallelization

that n
2
≥ s. As a result, s events are replicated twice and

every event starts exactly one run on exactly one processing
unit, but it can contribute to the runs that have started in
the previous batch. Shared parts of the batches are shown
as shaded boxes in Figure 7.

Due to the reduction of event replication and query inde-
pendence run-based parallelism approach looks promising.
Furthermore, RB+ enables fair scheduling policy. Although
different processing units will require different amounts of
times, idle processing unit can be assigned to the next batch,
and all processing units will be busy at a given time. Thus,
different processing times do not create load imbalance across
the processing units.

4.3 Discussion
We described two techniques for parallelization of pat-

tern matching: state-based and run-based. In this section,
we will analytically compare the performance of these two
techniques, focusing on processing time required for event
evaluation in each technique.

We start with the processing time of each pattern vari-
able, because in state-based approach each processing unit
performs event evaluation for a dedicated pattern variable.
The processing time of pattern variable Ai is the number of
its incoming events (Mi) multiplied with the time required
to evaluate Ai’s predicate (pi) over an event.

Ci =Mi ∗ pi (1)

The number of incoming events for pattern variable Ai

depends on the selectivity of the pattern variables before
Ai. For our purpose, we assume that the number of incom-
ing events (Mi) for each pattern variable is known. Then,
processing time of pattern matching in a sequential pattern
matching engine is the sum of processing time of its pattern
variables. Assume that there are N pattern variables, total
processing time of sequential pattern matching is as follows:

C =
N∑
i=1

Ci (2)

Under these assumptions, the processing time in the case
of state-based parallelism is the processing time of the pro-
cessing unit with the maximum cost. Remember that state-
based parallelism performs pattern matching for each state
in parallel.

CSB = max
i
Ci (3)

Assuming there are X processing units available, in run-
based approach the overall processing time of each process-
ing unit is the total cost of sequential processing divided by
X. The reason is that in run-based parallelism input is di-
vided into X batches and pattern matching is performed in
parallel for each batch.

CRB = C/X (4)

If we compare the two approaches with an equal number of
processing units (N=X), we can conclude that CRB ≤ CSB .
The state-based approach can only achieve the same perfor-
mance as run-based approach, if each processing unit has
the same load (C1=...=Ci=...=CN). In all other cases, run-
based approach outperforms state-based approach in terms
of event evaluation cost.

5. EXPERIMENTS
In this section, we present an experimental study over

our parallel pattern matching techniques discussed in this
paper. The goal of the experiments is three fold: (i) to
demonstrate the performance characteristics of each individ-
ual parallelization technique in comparison to a sequential
execution strategy (ii) to study the effects of certain param-
eters on the performance of corresponding parallelization
technique; and finally (iii) to quantitatively compare both
of the parallelization techniques side-by-side and present the
performance superiority of our novel run-based paralleliza-
tion technique.

5.1 Experimental Setup
We have implemented a prototype pattern matching en-

gine from scratch in Java using Java SE SDK 1.6 and ran
all the experiments using the OpenJDK runtime environ-
ment. Our prototype contains implementations of the par-
allel pattern matching techniques, namely state-based and
run-based, along with the serial pattern matching implemen-
tation as a reference point. Our implementation supports a
subset of the MATCH-RECOGNIZE query specification as de-
scribed in Section 2.

In order to replicate a real-world setting, we have con-
ducted all the experiments using a client/server architecture.
Basically, the client program is run on a separate machine
and sends a continuous stream of events over a Gigabit Eth-
ernet to the server machine which runs our multi-core aware
pattern matching engine in isolation. Our implementation
uses the Java NIO sockets for efficient communication be-
tween the client and the engine where events are sent as
byte-streams.

We have used a recent high-end multi-core machine as our
experiment platform. The machine comes with 4 processor
sockets, each of which is an AMD Opteron 6174 CPU with
12 cores and a clock speed of 2.3 Ghz. The machine uses
a Non-Uniform Memory Architecture (NUMA) for memory
accesses with a total size of 128 GB main memory. Each core
in the socket has private 64 KB L1 and 512 KB L2 caches
where the 6 MB L3 cache is shared by all the cores in the
socket. We relied on local memory allocations, and due to
the first-touch memory allocation policy of Linux, all the
allocated memory was local to threads. The machine runs a
Debian Linux with kernel version 3.2.16-7.

5.1.1 Datasets
As the workload for our experimental evaluation, we have

used two sets of data. The first set of data is generated syn-
thetically to evaluate the performance by changing certain
parameters such as selectivity of predicates. The first work-
load simulates an event stream from a stock market, where
each event is a stock trade event as follows:

StockTrade(tradeId Long, symbol Char(8), price Float,
timestamp Long)

The size of each event is 24-bytes. Without loss of gener-
ality, the queries we have used only use the price attribute
for predicate evaluation which is synthetically generated uni-
formly in the range between 50.0 and 150.0. Using this fixed
range serves the purpose of controlling predicate selectivity
in queries. In all the experiments, the client generates a
fixed number of events (≈ 1.5 Billion) and pushes them to
the server with highest possible rate that the pattern match-
ing engine variant running in the server can handle. In the
fastest case, the experiment runs for ≈ 30 minutes and gives
sufficient data to observe the performance. In addition, to
get reliable results, we start the performance measurements
after first ≈ 10 % of the events are sent and stop it before
the final 1 % of the events are sent.

As the second workload, we have used real-world stock
market data to assess the performance under realistic con-
ditions. As a result, experiments with this workload val-
idate the applicability and performance of our techniques.
Data we have used comes from a snapshot of real stock ex-
change trade and quote (NYSE TAQ [5]) collected from sev-
eral stock exchanges in the U.S.A. over 3 days between Jan-
uary 3, 2006 and January 5, 2006. In order to use a higher
volume event stream, we have explicitly used the quote data
which consists of bid/ask prices given by customers as shown
below:

StockQuote(symbol Char(8), timestamp Int, bid Float,
bidSize Int, offer Float, offerSize Int)

5.1.2 Queries
In our experimental evaluation, we have used a broad

number of queries with diverse properties. Here, we briefly
summarize the properties of different class of queries that we
considered. The first dimension that queries differ is the pat-
tern variables. If a query contains just singleton variables,
then it is called a fixed-length query (i.e., Q5). Otherwise,
it is called a variable-length query (i.e., Q1). The second
dimension that queries differ is the predicates. If a query
contains predicate evaluation against only static values, such
as A.price > 100, then it is called static-predicate query
(i.e., Q11). Otherwise, it contains predicates with correla-
tion among values of two different events and/or previous
values of those values (i.e., A.price > B.price or A.price

> PREV(A.price)). This type of queries are called dynamic-
predicate queries. For the interested reader, we provide all
the queries used in this paper in Appendix A.

5.1.3 Implementation Variants
We have experimented with the following variants of our

pattern matching engine:
• SEQ: Sequential (i.e. single-threaded) pattern match-

ing engine.
• SB: State-based parallel pattern matching engine that

uses pipelining.

1 2 3 4 5 6 7 8 9 10

number of processing units

1

2

3

4

5

6

7
av

g
.

th
ro

u
g
h
p
u
t

[M
ev

en
ts

/
se

c] RB+

RB+ w/ narrower events

RB SEQ Max Arrival

Figure 8: Comparison of run-based techniques

• SB+: Optimized version of SB where the first state is
duplicated to overcome its certain limitations.
• RB: Run-based parallel pattern matching engine where

events are distributed in round-robin to all processing
units.
• RB+: Optimized version of RB. Batches of events of

size n = 5000 are distributed to processing units. Two
subsequent batches, accordingly processing units, have
a shared part of size s. A processing unit starts a run
for the first (n− s) events in a batch.

In all our experiments, each processing unit is a separate
thread.

5.2 Performance of Run-Based Techniques
In this section, we compare the performance of different

run-based techniques, RB and RB+ using the synthetic
workload and query 8 (Q8). The throughput achieved by
these techniques with varying number of processing units
are shown in Figure 8. To a certain degree, increasing num-
ber of processing units (i.e. threads) results in a higher
throughput. As shown in Figure 8, our optimized version of
the run-based, RB+ scales much faster than RB up to a
certain point. Surprisingly, the performance of RB+ stays
limited from there on. We have investigated the reason for
this result and found out that the execution quickly becomes
network-bound in our setup. Using events of size 24-bytes,
the Gigabit Ethernet allows only a maximum of ≈ 5 Million
events per second connection bandwidth between our client
and server. As a result, input path becomes the bottleneck
of our evaluation and we are not able to show scalability of
our system beyond 10 processing units for this query. In
order to prove this situation, we have run the same experi-
ment with narrower events (i.e., 16-byte events by dropping
attributes not used in predicates). As can be seen in Fig-
ure 8, the performance with narrower events scales better
but at some point network becomes the bottleneck again.

On the other hand, although RB seems to scale, it does
not reach this upper bound even with 10 processing units.
The main problem in this technique is the high cost of check-
ing/starting of runs for each event. Based on this experi-
ment, the batching idea clearly shows its benefit over plain
RB. In the rest of the experiments, we will use RB+ as it
is superior to RB.

1 2 3 4 5 6 7 8 9 10

number of processing units

1

3

5

7

9

sp
ee

d
u
p

Q1 Q6 Q8 Q10

Figure 9: Speedup of RB+ to SEQ for different
queries

5.3 Evaluation of Optimized Run-Based Par-
allelism

In this section, we present the results achieved for our op-
timized run-based parallelization technique RB+ with the
synthetic workload. Figure 9 shows the speedups attained
for four different queries. The four different queries shown
in Figure 9 are a representative set of the ones from the en-
tire set of queries we have experimented with, hence only
they are shown. We also show the results up to 10 process-
ing units due to the network bandwidth limitation issue as
mentioned in Section 5.2. Besides that, our results show
a general trend of linear scaling behavior for most of the
queries. However, for queries 6 and 8, the maximum speedup
is achieved at a low number of processing units and the per-
formance does not further improve. This is mainly due to the
reason that per event computation cost of these queries are
rather cheaper in comparison to the others. Hence, the input
path of the processing, namely the network, becomes a bot-
tleneck earlier in this case. Overall, these experiments show
that RB+ scales well as long as the network is not a limita-
tion. Additionally, it is highly effective independent of the
query (i.e. run-based parallelism is query-independent).

5.4 Effect of Shared Events between Batches

0 2 12 50 100 500 1000 2000 2500
0

1

2

3

4

s – shared batch size (in number of events)th
ro
u
g
h
p
u
t
[M

ev
en

ts
/
se
c] RB+ with Q1 and 16 processing units

Figure 10: Effect of shared batch size in RB+

The optimized run-based technique RB+ has a config-
uration parameter s which is the number of shared events
between consecutive batches of different processing units.
In this experiment, we investigated whether s has an im-
pact on achievable throughput. Figure 10 shows the results
of the experiment where we varied s for evaluation of query
1 (Q1) using 16 processing units. Our results mainly show
that the size of shared part between batches does not effect

3 6 13
0

2

4

6

8

10

12

14

number of states (= number of processing units)

sp
ee

d
u
p

Q12 Q11 Q10Q2
Q8 Q9

Q7
Q6 Q5Q4

Q3

Q1

ideal speedup

Figure 11: Performance of SB

Throughput (M Events/sec) Speedup # Processing Units

SB 3.34 M 2.32 6
SB+ 4.31 M 2.99 7
SEQ 1.44 M 1 1

Table 2: Optimized state-based parallelism (SB+)

the achievable throughput (similar results are observed for
different queries).

5.5 Performance of State-Based Parallelism
In this section, we present the results achieved for our

state-based parallelization technique SB with the synthetic
workload. Figure 11 presents the throughput speedups a-
chieved for a representative set of queries. The number of
finite automata states in each query corresponds to the par-
allelism level used for that query (i.e., the number of pro-
cessing units). In an ideal case, we would normally expect
the speedup achieved for a query to be in line with the num-
ber of states. Unfortunately, the results in Figure 11 do not
correspond to the expectations. For queries with three state
variables, the speedup achieved is close to what we would ex-
pect. However, as number of states in a query increase, the
speedup achieved does not increase further. The reason for
this observation is as follows. State-based parallelism mainly
builds up on pipelined parallelism. In the pipelined paral-
lelism model, the slowest stage in the pipeline determines
the maximum throughput that can be achieved. In a pat-
tern matching query, usually different states in a query have
different per event costs due to the probability of matches
and selectivity of predicates. As a result, unless a query
is artificially constructed to have balanced set of states in
terms of execution time, it is not possible to achieve a par-
allelism speedup proportional to the number of states.

In general, state-based parallelism helps to improve the
performance to a certain degree but does not scale with the
number of states. As a result, state-based approach is rather
query dependent where the number of states and the dis-
tribution of the workload among the states determine the
achievable speedup.

5.6 Evaluation of Optimized State-Based Par-
allelism

In state-based technique SB, the first state of the au-
tomata might constitute the bottleneck when it has a high
predicate selectivity with expensive predicates. To reduce its
impact on the overall performance, we have implemented an

Figure 12: Impact of event distribution batch size

optimized version of the state-based technique called SB+.
Basically, SB+ duplicates the first state. For queries where
the first state is a bottleneck, this optimization in SB+ be-
comes marginally effective. Table 2 shows the results of an
experiment for such a query (Q11). However, the general-
ity of this optimization is also query dependent and rather
limited. Due to this reason, it is not possible to apply this
optimization in all the queries of our experiments. Thus, we
use SB in the rest of the experiments.

5.7 Impact of Batching on Event Distribution
In this section, we investigate the impact of batching on

event distribution to processing units. The discussion ap-
plies to both of the parallelization techniques and should
not be confused with the batching in run-based parallelism.

In all the implementations, the events and partial matches
are collected into batches before they are transferred among
processing units. The other extreme alternative is event-
by-event distribution, which we found out to be a severe
performance limitation. The batch-based distribution tech-
nique avoids the communication overheads among process-
ing units. However, the batch-size of events for distribu-
tion becomes a configuration parameter. In the experiment
shown in Figure 12, we have varied the event distribution
batch size to observe its impact. First of all, we have ob-
served a similar behavior for different queries (i.e. query
independent) and we present the results for query 7 (Q7).
Secondly, in general there is a slight trade-off between a
small batch size and a large batch size. Usually, there is a
fixed cost for creating a batch and putting it into a queue.
With small batch sizes, the frequency of accesses to the
queue becomes higher, which means increased synchroniza-
tion among processing units. On the other hand, a larger
batch size means that an event will reside in the memory for
a longer time and in case of Java, would stress the garbage
collector more. All in all, regardless of the query, a batch
size between 5,000 and 10,000 achieves the best performance
in the existence of these trade-offs.

5.8 Comparison of Run-Based and State-Based
Techniques

In this section, we quantitatively compare our best run-
based parallel pattern matching engine RB+ and the state-
based parallel pattern matching engine SB. State-based par-
allelism works best when the execution time of different

3 4 5 6 7 8 9 10
0

2

4

6

8

10

number of states (= number of processing units)

sp
ee

d
u
p

SB RB+ ideal speedup

Figure 13: Comparison of parallelization techniques
with a balanced query

states are balanced. Although such queries are not com-
mon in real-world applications, we also include measure-
ments with such a query in our results. The results of the
comparison are shown in Figure 13. Essentially, the results
show that even for balanced queries, run-based techniques
outperform state-based techniques.

1 5 9 13 17 21 25

number of processing units

1

2

3

4

5

av
g
.

th
ro

u
g
h
p
u
t

[M
ev

en
ts

/
se

c] RB+ SB-13 SEQ Max Arrival

Figure 14: Comparison of parallelization techniques

In order to compare the techniques with a more realistic
scenario, we have repeated the comparison experiment using
the classic “head and shoulders” pattern. The query (Q1) is
a rather costly query with 13 pattern variables. Figure 14
shows the achievable throughput for each technique. Note
that state-based technique SB must use 13 fixed processing
units for this query. Despite having sufficient number of
states, the state-based parallel pattern matching engine can
only achieve a speedup of 2.64. Using the same number of
processing units, RB+ achieves a much better performance.
Furthermore, as shown previously, our run-based technique
RB+ has a scaling behavior (i.e. ≈ 15X) up to the point
where the network becomes a bottleneck.

5.9 Performance with a Real-World Workload
In this section, we present the performance of our run-

based parallelism technique under a real-world workload sce-
nario. The data we used comes from NYSE TAQ [5] as de-
scribed in Section 5.1.1. We have used the query 1 (Q1)
which is a classic “head and shoulders” pattern query, and
has been discussed throughout the paper. The results of this
experiment are shown in Figure 15. The results clearly in-
dicate the performance and the scalability of our run-based

1 6 11 16 21 26 31

number of processing units

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

av
g
.

th
ro

u
g
h
p
u
t

[M
ev

en
ts

/
se

c] RB+

Figure 15: Performance of RB+ with a real-world
workload

parallelization technique RB+. The performance of our
technique is better pronounced under this setting for the
following reasons: (i) cost of query: even the serial evalua-
tion of this query on the real-world data is expensive, which
makes it computation-bound rather than network-bound.
As an indication, our serial implementation can handle only
up to 68K events per second. (ii) nature of real-world data:
real-world market data contains a lot of repetitions in val-
ues (i.e., in price) due to clustered market activity and once
something matches to our pattern, it is likely that many
things will match at once (which is not the case with syn-
thetic data). Overall, these reasons make our parallelization
technique shine under the real-world dataset and it shows
almost a perfect linear scalability.

5.10 Summary of Experiments
In the experiments, we showed the performance charac-

teristics of our parallel pattern matching techniques. The
results showed that state-based parallelism is usually query
dependent and ideal speedups from parallelism could not
be achieved easily. On the other hand, we showed that run-
based parallelism is more robust to different queries and is
query independent. Also our quantitative comparison
of the techniques concluded that run-based parallelization
achieves a superior performance to that of state-based par-
allelism.

6. RELATED WORK
Recently, there have been many systems proposed for se-

quential pattern matching on data streams [2, 7, 10, 11, 14,
12]. Each of these systems follows a different approach to
optimize high cost of sequential pattern matching. Since
our focus is parallelization of pattern matching processing,
our work is orthogonal to them. Except ZStream [14], all
other systems use some variant of a non-deterministic FSM
to detect patterns. ZStream uses tree-based plans to model
pattern matching queries. For a given pattern, there exist
multiple plans with different costs [14]. ZStream presents
a cost-based adaptive optimization where it is possible to
adjust the order of evaluations on-the-fly [14]. ZStream can
benefit from run-based parallelism, such that multiple query
plans can run in parallel. On the other hand, SASE+[7]
proposed a shared match buffer to share partial matches
across different runs efficiently. Similarly, SASE+ can also

use run-based parallelism and use its shared match buffer to
maintain partial matches on a single processing unit.

There has been also a few recent works focusing on par-
allelization of pattern matching processing. Pattern match-
ing can be seen as a stateful operator in a general-purpose
streaming system [13]. Hirzel et al. [13] exploit the parti-
tioning constructs provided by the queries (i.e., PARTITION
BY). Despite being an effective solution, this approach be-
comes insufficient at times when queries do not contain such
constructs. Wu et al. [17] propose a parallelization frame-
work for stateful stream processing operators. Their model
splits events in round-robin to different replicas of an oper-
ator that are assumed to have an access to a shared state.
Their assumption is not feasible for pattern matching, since
in this case shared state would consist of set of pointers to
an FSM. Additionally, events must be evaluated in a deter-
mined order for each active state. Therefore, our approach
considers creating parallel tasks from an operator as much
independent as possible.

Schneider et al. [15] also consider intra-operator paral-
lelism through data-partitioning. They introduce a com-
piler and a run time system that automatically extract data
parallelism from queries. Additionally, they introduce the
concept of safety conditions for automatic parallelization.
Given an operator, if one can assign a key to each partition
out of the attributes of events, then state of an operator
can be partitioned. In this manner, the approach becomes
effective without requiring any shared state among replicas.

In a similar effort, Brenna et al. [8] take a different ap-
proach and distribute an event processing system across a
cluster of machines. They implemented a distributed event
pattern matching system based on Cayuga. As a first step,
they also apply data parallelism. In contrast to other related
work, their focus is also running multiple queries in parallel.
In their FSM-based evaluation approach, FSM is decom-
posed into separate states running on different machines.
In this regard, pipelined parallelism of states is achieved.
Our state-based parallelization approach also works simi-
larly, where the pipelining is achieved within a machine.

In this paper, our focus is parallelization within a sin-
gle partition of an event stream. Our approach is compli-
mentary to key-based (i.e., PARTITION-BY) parallelization
techniques and can be further applied for fine-granular par-
allelization, especially on multi-core CPUs. We consider
two main techniques, run-based and state-based. Lastly,
we present an experimental evaluation over both approaches
and conclude with the superiority of our run-based paral-
lelization technique.

7. CONCLUSIONS
In this paper, we investigated parallel pattern matching

techniques for scaling a CEP query on multi-core architec-
tures. We proposed RIP - a run-based intra-query paral-
lelization approach that achieves linear scale-up, while be-
ing query-independent and skew-tolerant. RIP complements
previous partitioned parallelism approaches and outperforms
its pipelined parallelism alternative. Our focus in this work
was throughput, we would like consider other performance
criteria such as response time in the future. Further future
work directions include analyzing and handling network-
bound use cases, extending RIP to be fault-tolerant and
to apply in cluster settings, and investigating inter-query
parallelism for CEP.

8. REFERENCES
[1] Day trading technical analysis.

http://www.daytradingcoach.com/

daytrading-technicalanalysis-course.htm.
Accessed: 03/11/2012.

[2] Esper. http://www.espertech.com. Accessed:
02/12/2012.

[3] Head and shoulders. http:
//www.chartpatterns.com/headandshoulders.htm.
Accessed: 03/02/2013.

[4] Head and shoulders (chart pattern).
http://en.wikipedia.org/wiki/Head_and_

shoulders_(chart_pattern). Accessed: 10/11/2012.

[5] NYSE Data Solutions.
http://www.nyxdata.com/nysedata/.

[6] Oracle CEP. http://www.oracle.com/technetwork/
middleware/complex-event-processing/index.html.

[7] J. Agrawal et al. Efficient Pattern Matching over
Event Streams. In ACM SIGMOD Conference,
Vancouver, Canada, 2008.

[8] L. Brenna et al. Distributed Event Stream Processing
with Non-deterministic Finite Automata. In ACM
DEBS Conference, Nashville, Tennessee, July 2009.

[9] G. Cugola et al. Tesla: a formally defined event
specification language. In Proceedings of the Fourth
ACM International Conference on Distributed
Event-Based Systems, DEBS ’10, pages 50–61, New
York, NY, USA, 2010. ACM.

[10] A. Demers et al. Cayuga: A General Purpose Event
Monitoring System. In CIDR Conference, Asilomar,
CA, 2007.

[11] N. Dindar et al. DejaVu: Declarative Pattern
Matching over Live and Archived Streams of Events
(Demo). In ACM SIGMOD Conference, Providence,
RI, 2009.

[12] N. Dindar et al. Efficiently Correlating Complex
Events over Live and Archived Data Streams. In ACM
International Conference on Distributed Event-Based
Systems (DEBS’11), New York, NY, USA, July 2011.

[13] M. Hirzel. Partition and Compose: Parallel Complex
Event Processing. In ACM DEBS Conference, Berlin,
Germany, July 2012.

[14] Y. Mei et al. ZStream: A Cost-based Query Processor
for Adaptively Detecting Composite Events. In ACM
SIGMOD Conference, Providence, RI, June 2009.

[15] S. Schneider et al. Auto-Parallelizing Stateful
Distributed Streaming Applications. In ACM PACT
Conference, Minneapolis, MN, September 2012.

[16] E. Wu et al. High-Performance Complex Event
Processing over Streams. In ACM SIGMOD
Conference, Chicago, IL, June 2006.

[17] S. Wu et al. Parallelizing Stateful Operators in a
Distributed Stream Processing System: How, Should
you and How much? In ACM DEBS Conference,
Berlin, Germany, July 2012.

[18] F. Zemke et al. Pattern Matching in Sequences of
Rows. Technical Report ANSI Standard Proposal,
2007.

APPENDIX
A. QUERIES
This appendix shows the pattern declara-
tions of all the queries used in our paper.

Query 1 (Q1)
1 PATTERN
2 (A B∗ C D∗ E F∗ G H∗ I J∗ K L∗ M

)
3 DEFINE
4 B AS (B. p r i c e ≥ PREV(B. p r i c e)) ,
5 C AS (C. p r i c e > PREV(C. p r i c e)) ,
6 D AS (D. p r i c e ≤ PREV(D. p r i c e)) ,
7 E AS (E. p r i c e < PREV(E. p r i c e)
8 AND E. p r i c e > A. p r i c e) ,
9 F AS (F . p r i c e ≥ PREV(F . p r i c e)) ,

10 G AS (G. p r i c e ≥ PREV(G. p r i c e))
11 AND G. p r i c e > C. p r i c e) ,
12 H AS (H. p r i c e ≤ PREV(H. p r i c e)) ,
13 I AS (I . p r i c e < PREV(I . p r i c e)
14 AND I . p r i c e > A. p r i c e) ,
15 J AS (J . p r i c e ≥ PREV(J . p r i c e)) ,
16 K AS (K. p r i c e > PREV(K. p r i c e)
17 AND K. p r i c e < G. p r i c e) ,
18 L AS (L . p r i c e ≤ PREV(L . p r i c e) ,
19 M AS (M. p r i c e ≤ PREV(M. p r i c e)
20 ANDM. p r i c e < E. p r i c e
21 ANDM. p r i c e < I . p r i c e)

Query 2 (Q2)
1 PATTERN
2 (A B+ C)
3 DEFINE
4 A AS (A. p r i c e < 70) ,
5 B AS (B. p r i c e > 80
6 AND B. p r i c e < 120) ,
7 C AS (C. p r i c e > 130)

Query 3 (Q3)
1 PATTERN
2 (A B+ C+ D+ E+ F)
3 DEFINE
4 B AS (B. p r i c e > PREV(B. p r i c e)
5 AND B. p r i c e > A. p r i c e) ,
6 C AS (C. p r i c e < PREV(C. p r i c e)
7 AND C. p r i c e > A. p r i c e) ,
8 D AS (D. p r i c e > PREV(D. p r i c e)
9 AND D. p r i c e > A. p r i c e) ,

10 E AS (E. p r i c e < PREV(E. p r i c e)
11 AND E. p r i c e > A. p r i c e) ,
12 F AS (F . p r i c e < A. p r i c e)

Query 4 (Q4)
1 PATTERN
2 (A B∗ C)
3 DEFINE
4 A AS (A. p r i c e < 70) ,
5 B AS (B. p r i c e > PREV(B. p r i c e)
6 AND B. p r i c e > A. p r i c e) ,
7 C AS (C. p r i c e > PREV(C. p r i c e)
8 AND C. p r i c e > 130)

Query 5 (Q5)
1 PATTERN
2 (A B C D E F G H I J K L M)
3 DEFINE
4 B AS (B. p r i c e > PREV(B. p r i c e)) ,
5 C AS (C. p r i c e > PREV(C. p r i c e)) ,
6 D AS (D. p r i c e < PREV(D. p r i c e)) ,
7 E AS (E. p r i c e < PREV(E. p r i c e)
8 AND E. p r i c e > A. p r i c e) ,
9 F AS (F . p r i c e > PREV(F . p r i c e)) ,

10 G AS (G. p r i c e > PREV(G. p r i c e)
11 AND G. p r i c e > C. p r i c e) ,
12 H AS (H. p r i c e < PREV(H. p r i c e)) ,
13 I AS (I . p r i c e < PREV(I . p r i c e)
14 AND I . p r i c e > A. p r i c e) ,
15 J AS (J . p r i c e > PREV(J . p r i c e) ,
16 K AS (K. p r i c e > PREV(K. p r i c e)
17 AND K. p r i c e < G. p r i c e) ,
18 L AS (L . p r i c e < PREV(L . p r i c e)) ,
19 M AS (M. p r i c e < PREV(M. p r i c e)
20 ANDM. p r i c e < E. p r i c e
21 ANDM. p r i c e < I . p r i c e)

Query 6 (Q6)
1 PATTERN
2 (A B C D E F)
3 DEFINE
4 B AS (B. p r i c e > PREV(B. p r i c e)
5 AND B. p r i c e > A. p r i c e) ,
6 C AS (C. p r i c e < PREV(C. p r i c e)
7 AND (C. p r i c e > A. p r i c e) ,
8 D AS (D. p r i c e > PREV(D. p r i c e)
9 AND D. p r i c e > A. p r i c e) ,

10 E AS (E. p r i c e < PREV(E. p r i c e)
11 AND E. p r i c e > A. p r i c e) ,
12 F AS (F . p r i c e < A. p r i c e)

Query 7 (Q7)
1 PATTERN
2 (A B C)
3 DEFINE
4 A AS (A. p r i c e < 70) ,
5 B AS (B. p r i c e > A. p r i c e) ,
6 C AS (C. p r i c e < B. p r i c e
7 AND C. p r i c e < A. p r i c e)

Query 8 (Q8)
1 PATTERN
2 (A B∗ C+ D+ E+ F)
3 DEFINE
4 A AS (A. p r i c e < 80) ,
5 B AS (B. p r i c e > 80
6 AND B. p r i c e < 120) ,
7 C AS (C. p r i c e < 80) ,
8 D AS (D. p r i c e > 80
9 AND D. p r i c e < 120) ,

10 E AS (E. p r i c e > 120) ,
11 F AS (F . p r i c e > 130)

Query 9 (Q9)
1 PATTERN
2 (A B+ C D+ E F+ G H+ I J+ K L+ M)
3 DEFINE
4 A AS (A. p r i c e < 70) ,
5 B AS (B. p r i c e > 70
6 AND B. p r i c e < 130) ,
7 C AS (C. p r i c e > 130 ,
8 D AS (B. p r i c e > 70
9 AND D. p r i c e < 130) ,

10 E AS (E. p r i c e < 70) ,
11 F AS (F . p r i c e > 70
12 AND F. p r i c e < 130) ,
13 G AS (G. p r i c e > 130) ,
14 H AS (H. p r i c e > 70
15 AND H. p r i c e < 130) ,
16 I AS (I . p r i c e < 70) ,
17 J AS (J . p r i c e > 70
18 AND J . p r i c e < 130) ,
19 K AS (K. p r i c e > 130) ,
20 L AS (L . p r i c e > 70
21 AND L . p r i c e < 130) ,
22 M AS (M. p r i c e < 70)

Query 10 (Q10)
1 PATTERN
2 (A B C D E F G H I J K L M)
3 DEFINE
4 D AS (D. p r i c e < 100) ,
5 E AS (E. p r i c e > 100) ,
6 F AS (F . p r i c e < 100
7 AND F. p r i c e > 60) ,
8 G AS (G. p r i c e > 100
9 AND G. p r i c e < 140) ,

10 H AS (H. p r i c e < 100
11 AND H. p r i c e > 70) ,
12 I AS (I . p r i c e > 100
13 AND I . p r i c e < 130) ,
14 J AS (J . p r i c e < 100
15 AND J . p r i c e > 80) ,
16 K AS (K. p r i c e > 100
17 AND K. p r i c e < 120) ,
18 L AS (L . p r i c e < 120
19 AND L . p r i c e > 80) ,
20 M AS (M. p r i c e > 80
21 ANDM. p r i c e < 120)

Query 11 (Q11)
1 PATTERN
2 (A B C D E F)
3 DEFINE
4 A AS (A. p r i c e < 80) ,
5 B AS (B. p r i c e < 90
6 AND B. p r i c e > 60) ,
7 C AS (C. p r i c e < 100
8 AND C. p r i c e > 70) ,
9 D AS (D. p r i c e < 110

10 AND D. p r i c e > 80) ,
11 E AS (E. p r i c e < 120
12 AND E. p r i c e > 90) ,
13 F AS (F . p r i c e < 130
14 AND F. p r i c e > 100)

Query 12 (Q12)
1 PATTERN
2 (A B C)
3 DEFINE
4 A AS (A. p r i c e < 90) ,
5 B AS (B. p r i c e > 110) ,
6 C AS (C. p r i c e < 90)

