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NUMERICAL ANALYSIS OF A FINITE ELEMENT/VOLUME
PENALTY METHOD∗

BERTRAND MAURY†

Abstract. We present here some contributions to the numerical analysis of the penalty method
in the finite element context. We are especially interested in the ability provided by this approach
to use Cartesian, non boundary-fitted meshes to solve elliptic problems in complicated domain. In
the spirit of fictitious domains, the initial problem is replaced by a penalized one, posed over a
simply shaped domain which covers the original one. This method relies on two parameters, namely
h (space-discretization parameter) and ε (penalty parameter). We propose here a general strategy to
estimate the error in both parameters, and we present how it can be applied to various situations.
We pay special attention to a scalar version of the rigid motion constraint for fluid-particle flows.
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1. Introduction. Because of its conceptual simplicity and the fact that it is
straightforward to implement, the penalty method has been widely used to incorporate
constraints in numerical optimization. The general principle can been seen as a relaxed
version of the following fact: given a proper functional J over a set X , and K a subset
of X , minimizing J over K is equivalent to minimizing JK = J + IK over X , where
IK is the indicatrix of K:

IK(x) =

∣∣∣∣∣ 0 if x ∈ K,

+∞ if x /∈ K.

Assume now that K is defined as K = {x ∈ X , Ψ(x) = 0}, where Ψ is a nonnegative
function; the penalty method consists in considering relaxed functionals Jε defined as

Jε = J +
1
ε
Ψ , ε > 0.

By definition of K, the function Ψ/ε approaches IK pointwisely:

1
ε
Ψ(x) −→ IK(x) as ε goes to 0 ∀x ∈ X.

If Jε admits a minimum uε, for any ε, one can expect uε to approach a (or the)
minimizer of J over K, if it exists.

In the finite element context, some uε
h is computed as the solution to a finite di-

mensional problem, where h is a space-discretization parameter. The work we present
here is motivated by the fact that, even if the penalty method for the continuous prob-
lem is convergent and the discretization procedure is sound, the rate of convergence
of uε

h toward the exact solution is not straightforward to obtain. A huge literature is
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dedicated to the situation where the constraint is distributed over the domain, like
the divergence-free constraint for incompressible Stokes flows (see [BF91, GR79]).
In this context, the penalty approach makes it possible to use mixed finite element
methods which do not fulfill the so-called Babuska–Brezzi–Ladyzhenskaya (or inf-
sup) condition. The penalty approach is also commonly used to prescribe (possibly
nonhomogeneous) Dirichlet boundary conditions on a boundary. The pioneering pa-
pers [Nit71] and [Bab73] already addressed in the early 70’s the problem of error
estimation with respect to both parameters h and ε. Those works have been widely
used since then, and this area has recently experienced a regain of interest, triggered by
problems arising in domain decomposition (see, e.g., [BHS03]), discontinuous Galerkin
methods [BE07], or handling of discontinuities for elliptic problems with discontinuous
coefficients [HH02].

We will focus here on another type of constraints, namely geometrical ones: we
are interested in solving an elliptic problem on a domain Ω \ O, where Ω is a simply
shaped domain (e.g., a rectangle) and O a set of holes, and we aim at replacing it
by a new problem posed over the global domain Ω. The simplest situation one may
consider consists in solving a Poisson problem in a perforated, rectangular domain Ω,
with homogeneous Dirichlet boundary conditions on the holes and over the external
boundary. In the purpose of using a Cartesian mesh which covers the whole domain
(which can be of great interest if the holes are intended to move), it is natural to
consider the penalized version of the problem, which consists in minimizing (O designs
the subdomain covered by the holes)

1
2

∫
Ω

|∇v|2 −
∫

Ω

fv +
1
2ε

∫
O

(
v2 + |∇v|2

)
over H1

0 (Ω). Another situation where the penalty approach has already proved to be
quite efficient is the modeling of fluid-particle flows (see [RPVC05] or [JLM05]). The
scalar version of this problem, which we shall address in detail in the following pages,
consists in minimizing the standard functional

J(v) =
1
2

∫
Ω

|∇v|2 −
∫

Ω

fv

over all those functions which are constant on each connected component of the set of
holes O. Again, the constraint is easily relaxed by adding to J a term which penalizes
the H1 seminorm of v over O.

Two points advocate for the use of this approach:
1. The use of a Cartesian mesh makes this approach quite easy to implement:

both cases reduce to a few lines of instructions within user-friendly finite
element solvers like Freefem++ [FFp] for two-dimensional problems, or
Freefem3D [FFp] for three-dimensional ones. Note that the penalty terms do
not preserve the spectrum of the discrete Laplacian matrix, which prevents us
from using standard fast solvers like fast Fourier transform (to the contrary of
Lagrange multiplier based fictitious domain methods [PG02, GG95], which do
preserve the structure of the matrix, at the price of an iterative algorithm on
the Lagrange multipliers). A harmful effect upon the condition number of the
solution matrix is furthermore to be expected. Yet, as the penalty parameter
does not need to be taken too small, the method remains quite competitive
for reasonably sized problems.



1128 BERTRAND MAURY

2. This method provides, with no extra computational cost, an approximation
of the Lagrange multiplier associated with the constraint, which is of great
significance from the modeling standpoint in many situations. For example,
in the first situation we considered, which can be seen as the stationary heat
equation, it is quite straightforward that, if we denote by uε the solution to
the discretized problem, ξε ∈ H−1 defined as

〈ξε , v〉 =
1
ε

∫
O

(uεv + ∇uε · ∇v)

approximates the heat source which is necessary to fulfill the constraint. We
shall establish that this natural outcome of the method is still provided by
the discretized/penalized version. Note that this property has already been
used to handle numerically the motion of a three-dimensional turbine in a
Navier–Stokes fluid (see [DPM07]).

As for the theoretical analysis of the method, the error due to the fact that the
mesh is not boundary fitted is analyzed in [AR08, RAB07]. See also [SMSTT05] for
similar estimates used to establish the convergence of a method to handle the motion
of a rigid motion in the limit ε = 0. Yet, to the best of our knowledge, a full error
estimate (simultaneous convergence of h and ε toward 0) has not yet been provided
for the type of volume penalty approach we propose here. We aim here at showing
that the global error can be controlled, as expected, by the sum of the penalty error
and the space-discretization error, under quite general assumptions.

This paper is organized as follows: in section 2, we recall some standard properties
of the penalty method in the framework of constrained quadratic minimization, in-
cluding some general facts about the space discretization of those problems. Section 3
is devoted to the main result: an abstract estimate for the primal and the dual parts
of the discretized/penalized problem. The next section is concerned with a model
problem, in the spirit of fluid-particle flows, for which we present in detail how the
abstract estimate can be applied. Finally, we present in section 5 some other typical
situations where the abstract estimate can be used.

2. Preliminaries, abstract framework.

2.1. Continuous problem. We recall here some standard properties concerning
the penalty method applied to infinite dimensional problems. Most of those properties
are established in [BF91], with a slightly different formalism. We consider the following
set of assumptions:

(2.1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V is a Hilbert space, ϕ ∈ V ′,

a(·, ·) bilinear, symmetric, continuous, elliptic (a(v, v) ≥ α |v|2),
b(·, ·) bilinear, symmetric, continuous, nonnegative,
K = {u ∈ V , b(u, u) = 0} = ker b,

J(v) =
1
2
a(v, v) − 〈ϕ , v〉, u = arg min

K
J,

Jε(v) =
1
2
a(v, v) +

1
2ε

b(v, v) − 〈ϕ , v〉, uε = arg min
V

Jε.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Proposition 2.1. Under assumptions (2.1), the solution uε to the penalized prob-
lem converges to u.
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Proof. As the family (Jε) is uniformly elliptic, |uε| is bounded. We extract a
subsequence, still denoted by (uε), which converges weakly to some z ∈ V . As Jε ≥ J
and b(u, u) = 0, we have

(2.2) J(uε) ≤ Jε(uε) ≤ Jε(u) = J(u) ∀ε > 0,

so that (J is convex and continuous) J(z) ≤ lim inf J(uε) ≤ J(u). As

J(uε) +
1
2ε

b(uε, uε) ≤ J(u),

b(uε, uε)/ε is bounded, so that b(uε, uε) goes to 0 with ε. Consequently, it holds that
0 ≤ b(z, z) ≤ lim inf b(uε, uε) = 0, which implies z ∈ K, so that z = u.

To establish the strong character of the convergence, we show that uε converges
toward u for the norm associated with a(·, ·), which is equivalent to the original norm.
As uε converges weakly to u for this scalar product (a(uε, v) → a(u, v) for any v ∈ V ),
it is sufficient to establish the convergence of |uε|a = a(uε, uε)1/2 toward |u|a. First,
|u|a ≤ lim inf |uε|a, and the other inequality comes from (2.2):

1
2
a(uε, uε) − 〈ϕ , uε〉 ≤ 1

2
a(u, u) − 〈ϕ , u〉,

so that lim sup |uε|a ≤ |u|a.
The proposition does not say anything about the rate of convergence, and it can

be very poor, as the following example illustrates.
Example 2.1. Consider I =]0, 1[, V = H1(I), and the problem which consists in

minimizing the functional

J(v) =
1
2

∫
I

|u′|2

over K = {v ∈ V , v(x) = 0 a.e. in O =]0, 1/2[} . The solution to that problem is ob-
viously u = max(0, 2(x−1/2)). Now let us denote by uε the minimum of the penalized
functional

Jε =
1
2

∫
I

|u′|2 +
1
2ε

∫
O

|u|2 .

The solution to the penalized problem can be computed exactly:

uε = kε(x) sh
(

x√
ε

)
in ]0, 1/2[ with kε(x) =

(
sh

(
x√
ε

)
+

1
2
√

ε
ch

(
x√
ε

))−1

,

and uε affine in ]1/2, 1[, continuous at 1/2. This makes it possible to estimate |uε − u|,
which turns out to behave like ε1/4.

Yet, in many situations, convergence can be shown to be of order 1, given some
assumptions are fulfilled. Let us introduce ξ ∈ V ′ as the unique linear functional such
that

(2.3) a(u, v) + 〈ξ , v〉 = 〈ϕ , v〉 ∀v ∈ V.

Before stating the first order convergence result, we show here that the penalty method
provides an approximation of ξ.



1130 BERTRAND MAURY

Proposition 2.2. Let ξε ∈ V ′ be defined by

v ∈ V �−→ 〈ξε , v〉 =
1
ε
b(uε, v).

Then ξε converges (strongly) to ξ in V ′, at least as fast as uε converges to u.
Proof. The variational formulation of the penalized problem reads

(2.4) a(uε, v) +
1
ε
b(uε, v) = 〈ϕ , v〉 ∀v ∈ V.

The result is then a direct consequence of the identity which we obtain by substract-
ing (2.3) and (2.4):

〈ξ , v〉 − 1
ε
b(uε, v) = a(u − uε, v) ∀v ∈ V,

which yields ‖ξ − ξε‖V ′ ≤ C |u − uε|.
Let us now establish the first order convergence, provided an extra compatibility

condition between b(·, ·) and ξ is met.
Proposition 2.3. Under assumptions (2.1), we assume in addition that there

exists ξ̃ ∈ V such that b(ξ̃, v) = 〈ξ , v〉 for all v ∈ V . Then |uε − u| = O(ε).
Proof. First of all, notice that it is possible to pick ξ̃ in K⊥ (if not, we project it

onto K⊥). Now following the idea which is proposed in [Bab73] in a slightly different
context (see the proof of Thm. 3.2 therein), we introduce

Rε(v) =
1
2
a(u − v, u − v) +

1
2ε

b(εξ̃ − v, εξ̃ − v),

which can be written

Rε(v) =
1
2
a(u, u) +

ε

2
b(ξ̃, ξ̃) +

1
2
a(v, v) +

1
2ε

b(v, v) − a(u, v) − b(ξ̃, v).

As b(ξ̃, v) = 〈ξ , v〉 and −a(u, v) − 〈ξ , v〉 = −〈ϕ , v〉, the functional Rε is equal to Jε

up to a constant. Therefore minimizing Rε amounts to minimizing Jε. Let us now
introduce w = εξ̃ + u. We have

Rε(w) =
ε2

2
a(ξ̃, ξ̃) + 0 because u ∈ K = ker b,

so that |Rε(w)| ≤ Cε2. As uε minimizes Rε,

0 ≤ Rε(uε) =
1
2
a(u − uε, u − uε) +

1
2ε

b(εξ̃ − uε, εξ̃ − uε) ≤ Cε2,

from which we deduce, as a(·, ·) is elliptic, |u − uε| = O(ε).
Corollary 2.4. Under assumptions (2.1), we assume in addition that b(·, ·) can

be written b(u, v) = (Bu, Bv), where B is a linear continuous operator onto a Hilbert
space Λ, with closed range. Then |uε − u| = O(ε).

Proof. Let us show that the assumption of Proposition 2.3 is met. It is sufficient
to prove that any ξ ∈ V ′ which vanishes over K identifies through b(·, ·) with some
ξ̃ ∈ V ; i.e., there exists ξ̃ ∈ V such that

〈ξ , v〉 = b(ξ̃, v) ∀v ∈ V.
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Note that, as ξ vanishes over K, it can be seen as a linear functional defined on K⊥,
so that it is equivalent to establish that T : V −→ (K⊥)′ defined by

ξ̃ �−→ ξ : 〈ξ , v〉 = b(ξ̃, v) ∀v ∈ K⊥

is surjective. We denote by T � ∈ L (K⊥, V ) the adjoint of T . For all w ∈ K⊥,

|T �w| = sup
v �=0

(T �w, v)
|v| = sup

v �=0

b(w, v)
|v| = sup

v �=0

(Bw, Bv)
|v| ≥ |Bw|2

|w| .

As B has closed range, |Bw| ≥ C |w| for all w in (kerB)⊥ = K⊥, so that

|T �w| ≥ C2 |w| ∀w ∈ K⊥,

from which we conclude that T is surjective.
Remark 2.1. Note that Proposition 2.3 is strictly stronger than its corollary. In-

deed, consider the handling of homogeneous Dirichlet boundary conditions by penalty:
V = H1(Ω), where Ω is a smooth, bounded domain, a(u, v) =

∫ ∇u · ∇v, and
〈ϕ , v〉 =

∫
fv, where f is in L2(Ω), and b(v, v) =

∫
∂Ω

v2. In this situation the corollary
cannot be used, because the trace operator from H1(Ω) onto L2(∂Ω) does not have a
close range. On the other hand one can establish that

〈ξ , v〉 =
∫

∂Ω

∂u

∂n
v,

and, as the solution u is regular (u ∈ H2(Ω)), its normal derivative (in H1/2(∂Ω)) can
be built as the trace of a function ξ̃ in H1(Ω), so that Proposition 2.3 holds true.

We conclude this section by some considerations concerning the saddle-point for-
mulation of the constrained problem, which will be useful in the following. We consider
again the closed situation.

Proposition 2.5. Under the assumptions of Corollary 2.4, there exists λ ∈ Λ
such that

(2.5) a(u, v) + (λ, Bv) = 〈ϕ , v〉 ∀v ∈ V.

The solution is unique in B(V ) (which identifies with Λ/ kerB�).
Proof. The proof of this standard property can be found in [BF91]. In fact, it

has just been established in the proof of Corollary 2.4: λ is simply Bξ̃. Uniqueness is
straightforward.

Proposition 2.6. Under the assumptions of Proposition 2.5 (assumptions (2.1)
and B(V ) is closed), we introduce

λε =
1
ε
Buε.

Then |λε − λ| = O(ε), where λ is the unique solution of (2.5) in B(V ).
Proof. Substracting the variational formulations for u and uε, we get

(λε − λ, Bv) = a(uε − u, v) ∀v ∈ V.

Now, as the range of B is closed, and λε −λ ∈ B(V ) = (kerB�)⊥, we have the inf-sup
condition (see, e.g., [BF91])

sup
v∈V

(λε − λ, Bv)
|v| ≥ β |λε − λ| ,
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so that

β |λε − λ| ≤ sup
(λε − λ, Bv)

|v| = sup
a(uε − u, v)

|v| ≤ ‖a‖ |uε − u| ,

which ensures the first order convergence thanks to Corollary 2.4.
Corollary 2.7. For any z ∈ V such that Bz = λ, there exists a sequence (vε)

in kerB such that ∣∣∣∣uε

ε
− vε − z

∣∣∣∣ = O(ε).

Proof. This is a direct consequence of the fact that, B(V ) being closed, the re-
striction of B to kerB⊥ is a bicontinuous bijection between kerB⊥ and B(V ). The
convergence is therefore obtained by taking vε = Pker B(uε/ε − z).

2.2. Discretized problem. We consider now a family (Vh)h of inner approxi-
mation spaces (Vh ⊂ V ) and the associated penalized/discretized problems

(2.6)

⎧⎪⎨
⎪⎩

Find uε
h ∈ Vh such that Jε(uε

h) = inf
vh∈Vh

Jε(vh) ,

Jε(vh) =
1
2
a(vh, vh) +

1
2ε

b(vh, vh) − 〈ϕ , vh〉.

As far as we know, there does not exist any general theory which would give an
upper bound for the error |u − uε

h| as the sum of a discretization error (typically h of
h1/2 for volume penalty, depending on whether the mesh is boundary-fitted or not),
and a penalty error (typically ε for closed-range penalty terms, possibly poorer in
general situations, as in Example 2.1). We propose here two general properties which
are direct consequences of standard arguments. They are suboptimal in the sense that
neither of them is optimal from both standpoints (discretization and penalty), but,
at least, they make it possible to recover the behavior in extreme situations (when ε
goes to 0 much quicker than h, and the opposite).

The first proposition uses the following lemma.
Lemma 2.8. Under assumptions (2.1), there exists C > 0 such that

b(uε, uε) ≤ Cε |u − uε| .
Proof. By definition of uε,

Jε(uε) =
1
2
a(uε, uε) − 〈ϕ , uε〉 +

1
2ε

b(uε, uε) ≤ Jε(u) =
1
2
a(u, u)− 〈ϕ , u〉,

so that

0 ≤ 1
2ε

b(uε, uε) ≤ 1
2
a(u, u) − 1

2
a(uε, uε) + 〈ϕ , uε − u〉

≤ 1
2
a(u + uε, u − uε) + 〈ϕ , uε − u〉,

which yields the estimate by continuity of a(·, ·) and ϕ.
Proposition 2.9. Under assumptions (2.1), we denote by uε

h the solution to
problem (2.6). Then

|uε
h − u| ≤ C

(
min

vh∈Vh∩K
|vh − u| +

√
|uε − u|

)
.
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Proof. As uε
h minimizes a(v − uε, v − uε) + b(v − uε, v − uε)/ε over Vh,

α |uε
h − uε|2 ≤ a(uε

h − uε, uε
h − uε)

≤ a(uε
h − uε, uε

h − uε) +
1
ε
b(uε

h − uε, uε
h − uε)

≤ min
vh∈Vh

(
a(vh − uε, vh − uε) +

1
ε
b(vh − uε, vh − uε)

)

≤ min
vh∈Vh∩K

(
a(vh − uε, vh − uε) +

1
ε
b(vh − uε, vh − uε)

)
.

As vh is in K, the second term is b(uε, uε)/ε, which is bounded by C |uε − u| (by
Lemma 2.8). Finally, we get

|uε
h − uε| ≤ C

(
min

vh∈Vh∩K
|vh − uε| +

√
|uε − u|

)
,

from which we conclude.
Proposition 2.10. Under assumptions (2.1), Vh ⊂ V , and uε

h being the solution
to (2.6), it holds that

|uε
h − u| ≤ C√

ε
inf

vh∈Vh

|uε − vh| + |uε − u| .

Proof. One has

|uε
h − u| ≤ |uε

h − uε| + |uε − u| ,
and we control the first term by Céa’s lemma applied to the bilinear form a + b/ε,
whose ellipticity constant behaves like 1/ε.

The following example illustrates how those estimates can be used in practice.
Example 2.2. The simplest example of penalty formulation one may think about

is the following: the constraint to vanish on the boundary of a subdomain O ⊂⊂ Ω is
handled by minimizing the functional

(2.7) Jε(v) =
1
2

∫
Ω

|∇v|2 −
∫

Ω

fv +
1
2ε

∫
O

u2.

Now considering the L2 penalty method in O, if we admit the ε1/4 convergence of
|uε − u|, Proposition 2.9 provides an estimate in h1/2 + ε1/8. This estimate is optimal
in h: the natural space discretization order is obtained if ε is small enough (ε = h4 in
the present case).

Symmetrically, the natural order in ε can be recovered if h is small enough: Indeed,
if we admit that uε can be approximated at the same order as u over Ω, which is 1/2,
then the choice ε = h4/3 in Proposition 2.10 gives

|uε
h − u| ≤ C

ε1/2
ε3/4 + ε1/4 = O(ε1/4).

Note that if we replace u2 by u2+|∇u|2 in the integral over O in (2.7), assumptions
of Corollary 2.4 are fulfilled, so that convergence holds at the first order in ε. As
a consequence, |u − uε

h| is bounded by C(h1/2 + ε1/2) (by Proposition 2.9), which
suggests the choice ε = h.
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3. Full error estimate. As shall be made clear below, a full and optimal error
estimate calls for a uniform discrete inf-sup condition. In the case of a nonconforming
mesh, it appears immediately that the penalty term has to be modified. To anticipate
this difficulty, we introduce a modified version of B, namely Bh, in this abstract
approach. No assumption is made a priori on Bh in terms of approximation properties,
but the estimate we establish below will not express any convergence property unless
Bh approaches B in some sense.

Besides (2.1), we consider the following set of additional assumptions and
notation:

(3.1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b(v, v) = (Bv, Bv), where B ∈ L (V, Λ) has a closed range,
(Vh)h family of approximation spaces , Vh ⊂ V,

Bh ∈ L (V, Λ) , kerB ⊂ kerBh , ‖Bh‖ bounded , Λh = Bh(Vh),

Jε
h(vh) = J(vh) +

1
ε
(Bhvh, Bhvh),

uε
h = arg min

Vh

Jε
h , λε

h =
1
ε
Bhuε

h ∈ Λh,

sup
vh∈Vh

(Bhvh, λh)
|vh| ≥ β |λh|Λh

∀λh ∈ Λh.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Theorem 3.1 (primal/dual error estimate). Under assumptions (2.1) and (3.1),
we have the following error estimate:

|u − uε
h| + |λ − λε

h|(3.2)

≤ C

(
ε + inf

ũh∈Vh

|ũh − u| + inf
λ̃h∈Λh

∣∣∣λ̃h − λ
∣∣∣ + |(B�

h − B�)λ| + |(Bh − B)z|
)

,

where z is such that λ = Bz.
Proof. The proof relies on some general properties of the continuous penalty

method which we established in the beginning of this section, and an abstract stability
estimate for saddle-point-like problems with stabilization (see Proposition 3.2 below).

First of all, note that, as the range of B is closed, the convergence of uε toward
u holds at the first order (by Corollary 2.4). As another consequence, λε = Buε/ε is
such that |λ − λε| = O(ε) (by Proposition 2.6).

We write the continuous penalized problem{
a(uε, v) + (λε, Bv) = 〈ϕ , v〉 ∀v ∈ V,

(Buε, μ) − ε(λε, μ) = 0 ∀μ ∈ Λ

and the discrete penalized problem in a saddle-point form{
a(uε

h, vh) + (λε
h, Bhvh) = 〈ϕ , vh〉 ∀vh ∈ Vh,

(Bhuε
h, μh) − ε(λε

h, μh) = 0 ∀μh ∈ Λh.

As Λh is exactly Bh(Vh), this problem admits a unique solution (uε
h, λε

h) (see Propo-
sition 2.5). For any (ũh, λ̃h) ∈ Vh × Λh, vh ∈ Vh, μh ∈ Λh,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a(ũh − uε

h, vh) + (λ̃h − λε
h, Bhvh) = a(ũh − uε, vh) + (λ̃h − λε, Bhvh)

+ 〈(B�
h − B�)λε , vh〉,

(Bh(ũh − uε
h), μh) − ε(λ̃h − λε

h, μh) = (Bh(ũh − uε), μh) − ε(λ̃h − λε, μh)
+ 〈(Bh − B)uε , μh〉.
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Our purpose is to use Proposition 3.2 (Vh and Λh play the role of V and Λ in the
proposition, respectively) with

〈ϕ , vh〉 = a(ũh − uε, vh) + (λ̃h − λε, Bhvh) + 〈(B�
h − B�)λε , vh〉,(3.3)

〈Ψ , μh〉 = (Bh(ũh − uε), μh) − ε(λ̃h − λε, μh) + ((Bh − B)uε, μh).(3.4)

The last term of (3.3) is transformed as follows:

(B�
h − B�)λε = (B�

h − B�)λ + (B�
h − B�)(λε − λ),

where λ ∈ B(V ) is the exact Lagrange multiplier defined by Proposition 2.5. So,
defining

c(μ, μ′) = ε(μ, μ′) , w = ũh − uε , γ = −(λ̃h − λε) + (Bh − B)
uε

ε

(see (3.7) for the meaning of w and γ), Proposition 3.2 ensures existence of a constant
C > 0 (which does not depend on h) such that |ũh − uε

h| + |λ̃h − λε
h| is less than

C
(
|ũh − uε| +

∣∣∣λ̃h − λε
∣∣∣ + ‖(B�

h − B�)λ‖ + |γ|
)

.

The second contribution to γ can be written, thanks to Corollary 2.7 and the fact
that kerB ⊂ kerBh,

(Bh − B)
uε

ε
= (Bh − B)

(
uε

ε
− vε − z

)
+ (Bh − B) z,

where vε ⊂ kerB, and z is such that Bz = λ, which yields

|γ| ≤
∣∣∣λ̃h − λε

∣∣∣ + O(ε) + |(Bh − B) z| .

We finally obtain that |uε − uε
h| + |λε − λε

h| is less than

C

(
inf

ũh∈Vh

|ũh − uε| + inf
λ̃h∈Λh

∣∣∣λ̃h − λε
∣∣∣ + |(B�

h − B�)λ| + ε + |(Bh − B)z|
)

,

so that, by eliminating uε in the left-hand side, and again using |uε − u| = O(ε)
and |λε − λ| = O(ε) (see Corollary 2.4 and Proposition 2.6), we obtain the error
estimate.

Proposition 3.2 (abstract stability estimate). Let V and Λ be two Hilbert spaces,
B ∈ L (V, Λ), a(·, ·) and c(·, ·) bilinear continuous functionals, which we suppose el-
liptic. Then the problem

(3.5)

{
a(u, v) + (λ, Bv) = 〈ϕ , v〉 ∀v ∈ V,

(Bu, μ) − c(λ, μ) = 〈Ψ , μ〉 ∀μ ∈ Λ

admits a unique solution (u, λ) ∈ V × Λ. We assume furthermore that there exists a
constant β > 0 such that1

(3.6) β
∣∣P(ker B)⊥v

∣∣ ≤ |Bv| , sup
v∈V

(μ, Bv)
|v| ≥ β ‖μ‖Λ/ ker B� ,

1As the second inequality of (3.6) is a direct consequence of the first one, it could be suppressed.
We keep both assumptions for clarity reasons.
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that Ψ can be written

(3.7) 〈Ψ , μ〉 = (Bw, μ) + c(γ, μ),

and finally that c(·, ·) verifies

(3.8) μ1⊥μ2 −→ c(μ1, μ2) = 0.

Then we have the following estimate:

(3.9) |u| + |λ| ≤ C(‖ϕ‖ + |w| + |γ|),
where C is a locally bounded expression of ‖a‖, 1/α, 1/β, ‖B‖, ‖c‖ (α is the coercivity
constant of a(·, ·)). Note that C does not depend upon the coercivity constant of c(·, ·).

Proof. The first part of the proposition is trivial. With obvious notation, prob-
lem (3.5) can be written

(3.10)

{
Au + B�λ = ϕ,

Bu − Mλ = Ψ,

so that (u, λ) is uniquely determined as

u = (A + B�M−1B)−1
(
ϕ + B�M−1Ψ

)
, λ = M−1 (Bu − Ψ) .

In order to get an upper bound of |u| which does not degenerate with c(·, ·), we
introduce, following [BF91],

(3.11) u = u0︸︷︷︸
∈kerB

+ u⊥︸︷︷︸
∈(kerB)⊥

, λ = λ0︸︷︷︸
∈kerB�

+ λ⊥︸︷︷︸
∈(kerB�)⊥

.

From (3.6) and the first line of (3.5), we have

(3.12) β
∣∣λ⊥∣∣ = β ‖λ‖Λ/ ker B� ≤ sup

(λ, Bv)
|v| ≤ ‖a‖ |u| + ‖ϕ‖ .

From (3.6) again and the second line of (3.5), we get

(3.13) β
∣∣u⊥∣∣ = β

∣∣P(ker B)⊥u
∣∣ ≤ |Bu| = sup

(Bu, μ)
|μ| ≤ ‖Ψ‖ + ‖c‖1/2 c(λ, λ)1/2.

From the ellipticity of a(·, ·) and the first line of (3.5),

α |u0| ≤ a

(
u0,

u0

|u0|
)

≤ sup
v0∈kerB

a(u0, v0)
|v0| = sup

v0∈ker B

a(u, v0) − a(u⊥, v0)
|v0|

≤ ‖ϕ‖ + ‖a‖ ∣∣u⊥∣∣ .(3.14)

From (3.13) and (3.14), we have

|u| ≤ ∣∣u⊥∣∣ + |u0| ≤ 1
β

(
‖Ψ‖ + ‖c‖1/2 c(λ, λ)1/2

)
+

1
α

(‖ϕ‖ + ‖a‖ ∣∣u⊥∣∣)

≤ 1
β

(
‖Ψ‖ + ‖c‖1/2

c(λ, λ)1/2
) (

1 +
‖a‖
α

)
+

‖ϕ‖
α

.(3.15)
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Now substracting the two lines of (3.5) with v = u and μ = λ, we obtain

a(u, u) + c(λ, λ) = 〈ϕ , u〉 − 〈Ψ , λ〉 = 〈ϕ , u〉 − (Bw, λ) − c(γ, λ)

≤ ‖ϕ‖ |u| + ‖B‖ |w| ∣∣λ⊥∣∣ + c(γ, γ)1/2c(λ, λ)1/2,

so that, from (3.15) and (3.12),

a(u, u) + c(λ, λ) ≤
(
‖ϕ‖ +

‖B‖
β

|w| ‖a‖
) (‖Ψ‖

β

(
1 +

‖a‖
α

)
+

‖ϕ‖
α

)

+ c(λ, λ)1/2

(
c(γ, γ)1/2 +

1
β
‖c‖1/2

(
1 +

‖a‖
α

) (
‖ϕ‖ +

‖B‖
β

|w| ‖a‖
α

))
,(3.16)

which can be written

a(u, u) + c(λ, λ) ≤ P0(‖ϕ‖ , ‖Ψ‖ , |w| , |γ|c) + c(λ, λ)1/2P1(‖ϕ‖ , ‖Ψ‖ , |w| , |γ|c),
where P0 (resp., P1) is an homogeneous polynomial of degree 2 (resp., 1) in its four
variables. The coefficients of those polynomials are polynomial in ‖B‖, ‖a‖, 1/β, 1/α,
‖c‖1/2 with positive coefficients. We write X = c(λ, λ)1/2, so that X2 ≤ P1X + P0,
which implies |X | ≤ P1 +

√
P0, and finally

c(λ, λ) = X2 ≤ 2P 2
1 + 2P0 = P2(‖ϕ‖ , ‖Ψ‖ , |w| , |γ|c),

where P2 is an homogeneous polynomial of degree 2. It is dominated by the square of
the sum of the modulus of its variables, so that

c(λ, λ)1/2 ≤ C(‖ϕ‖ + ‖Ψ‖ + |w| + |γ|c).
Again using (3.16) (we keep C to design a generic constant, or more precisely a
polynomial in ‖B‖, ‖a‖, 1/β, 1/α, ‖c‖1/2), we obtain immediately

|u| ≤ C(‖ϕ‖ + ‖Ψ‖ + |w| + |γ|c).
Finally, we write the second line of (3.5) with μ ∈ kerB�. As c(·, ·) verifies (3.8), it
yields λ0 = Pker B�γ, so that |λ0| ≤ |γ|. As |γ|c ≤ ‖c‖1/2 |γ|, and ‖Ψ‖ ≤ |w| + |γ|,
estimate (3.9) is obtained.

4. Application. This section is dedicated to the application of Theorem 3.1 to a
particular problem, namely a scalar version of the rigidity constraint for fluid-particle
flows.

4.1. Model problem. In order to present explicit constructions when needed,
we consider a particular situation. We introduce Ω =]− 2, 2[2, and O = B(0, 1) ⊂⊂ Ω
(see Figure 4.1). The case of more general situations is addressed in Remark 4.2, at
the end of this paper. We consider the following problem:

(4.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�u = f in Ω \ O,

u = 0 on ∂Ω,

u = U on ∂O,∫
∂O

∂u

∂n
= 0,
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where U is an unknown constant, and f ∈ L2(Ω \ O). The scalar field u can be seen
as a temperature and O as a zone with infinite conductivity.

Definition 4.1. We say that u is a weak solution to (4.1) if u ∈ V = H1
0 (Ω),

there exists U ∈ R such that u = U a.e. in O, and∫
Ω

∇u · ∇v =
∫

Ω

fv ∀v ∈ DO(Ω),

where DO(Ω) is the set of all those functions which are compactly supported, C∞ on
Ω, and which are constant over O.

Proposition 4.2. Problem (4.1) admits a unique weak solution u ∈ V = H1
0 (Ω),

which is characterized as the solution to the minimization problem

(4.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find u ∈ K such that

J(u) = inf
v∈K

J(v) , with J(v) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

fv,

K =
{
v ∈ H1

0 (Ω),∇v = 0 a.e. in O
}

,

where f has been extended by 0 inside O. Furthermore the restriction of u to the
domain Ω \ O is in H2(Ω \ O).

Proof. Existence and uniqueness are direct consequences of the Lax–Milgram
theorem applied in K = {v ∈ V , ∇v = 0 a.e. in O}, which gives in addition the
characterization of u as the solution to (4.2). Now u|Ω\O satisfies −�u = f , with
regular Dirichlet boundary conditions on the boundary of Ω \O which decomposes as
∂O ∪ ∂Ω. As Ω is a convex polygon and ∂O is smooth, standard theory ensures that
u|Ω\O ∈ H2(Ω \ O).

Proposition 4.3 (saddle-point formulation). Let u be the weak solution to (4.1).
There exists a unique λ ∈ Λ = L2(O)2 such that λ is a gradient, and∫

Ω

∇u · ∇v +
∫

O

λ · ∇v =
∫

Ω

fv ∀v ∈ V.

In addition λ is in H1(O)2.
Proof. The first part is a consequence of Proposition 2.5, where B is defined by

B : v ∈ H1
0 (Ω) �−→ ∇v ∈ L2(O)2.

Let us prove that B has a closed range. Considering μ ∈ Λ with μ = ∇v, we define
w ∈ H1

0 (O) as w = v − m(v), where m(v) is the mean value of v over O. By the
Poincaré–Wirtinger inequality, one has

‖w‖H1(O) ≤ C ‖μ‖L2(O)2 .

Now, as O ⊂⊂ Ω, there exists a continuous extension operator from H1(O) to H1
0 (Ω),

so that we can extend w to obtain w̃ ∈ H1
0 (Ω) with a norm controlled by ‖μ‖L2(O)2 ,

which proves the closed character of B(V ), and consequently the existence of λ ∈ Λ,
and its uniqueness in B(V ).

Let us now describe λ. We have∫
Ω

∇u · ∇v +
∫

O

λ · ∇v =
∫

Ω

fv,
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so that, by taking test functions in D(O), we get λ ∈ Hdiv(O) with ∇ · λ = 0. Taking
now test functions which do not vanish on the boundary of O, we identify the normal
trace of λ with ∂u/∂n ∈ H1/2(∂O). Therefore λ is defined as the unique divergence-
free vector field in O, with normal derivative equal to ∂u/∂n on ∂O, which, in addition,
is a gradient. In other words λ = ∇Φ, with⎧⎨

⎩
�Φ = 0 in O,

∂Φ
∂n

=
∂u

∂n
on ∂O.

As O is smooth, Φ ∈ H2(O), so that λ = ∇Φ ∈ H1(O)2.
We introduce the penalized version of problem (4.2)

(4.3)

⎧⎪⎨
⎪⎩

Find uε ∈ V such that Jε(uε) = inf
v∈V

Jε(v) ,

Jε(v) =
1
2

∫
Ω

|∇v|2 +
1
2ε

∫
O

|∇v|2 −
∫

Ω

fv.

Now we consider the family of Cartesian triangulations (Th) of the square Ω (see
Figure 4.1), and we denote by Vh the standard finite element space of continuous,
piecewise affine function with respect to Th:

Vh =
{
vh ∈ V , V|T is affine ∀T ∈ Th

}
.

It is tempting to define the fully discretized problem as the problem which consists
in minimizing Jε over Vh. But this straightforward approach (which does not corre-
spond to what is done in actual computations; see Remark 4.1) raises some problems
in relation to the discrete inf-sup condition which we need to establish the error es-
timate (see Proposition 4.7). It is related to the fact that we cannot control the size
of intersections of triangles with O (relative to the size of the whole triangle, which is
h2/2). To overcome this problem, many strategies can be adopted, all of them leading
to change B onto a new discrete operator Bh. We propose here a radical method,
which simply consists in removing in the penalty integral all squares (two-triangle
sets) which intersect the boundary of O. It will be made clear that the convergence

Ω

O
∂Oh

∂O

Fig. 4.1. Domains Ω, O, Oh, and the mesh Th.
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result is not sensitive to what is actually done in the neighborhood of ∂Ω. The proof
simply requires that the reduced obstacle is included in the exact one, and that the
difference set O \ Oh lies in a narrow band whose width goes to 0 like h.

Definition 4.4. The reduced obstacle Oh ⊂ O is defined as the union of the
triangles which belong to an elementary square which is contained in the disk O (see
Figure 4.1).

Definition 4.5. We recall that V = H1
0 (Ω), Λ is L2(O)2, and B ∈ L (V, Λ) is

the gradient operator (see Proposition 4.3). We define Bh ∈ L (V, Λ) as

v ∈ V �−→ μ = Bhv = �Oh
∇v,

where �Oh
is the characteristic function of Oh (see Definition 4.4). Finally, the dis-

cretization space Λh ⊂ Λ = L2(O)2 is the set of all those vector fields μh such that
their restriction to Oh is the gradient of a scalar field vh ∈ Vh, and which vanish a.e.
in O \ Oh, which we can express as

Λh = {μh ∈ Λ , ∃vh ∈ Vh , μh = Bhvh} = Bh(Vh).

The fully discretized problem reads

(4.4)

⎧⎪⎪⎨
⎪⎪⎩

Find uε
h ∈ Vh such that Jε

h(uε) = inf
vh∈Vh

Jε
h(vh) ,

Jε
h(vh) =

1
2

∫
Ω

|∇vh|2 +
1
2ε

∫
Oh

|∇vh|2 −
∫

Ω

fvh.

4.2. Error estimate for the model problem.
Proposition 4.6 (primal/dual error estimate for (4.1), nonconforming case). Let

u be the weak solution to (4.1), uε
h the solution to (4.4), and λ the Lagrange multiplier

(see Proposition 4.3), and let λε
h = Bhuε

h/ε (see Definition 4.5). We have the following
error estimate:

(4.5) |u − uε
h| + |λ − λε

h| ≤ C(h1/2 + ε).

Proof. The proof is based on the abstract estimate in Theorem 3.1. All technical
ingredients are put off until the end of the section. We shall simply refer here to the
corresponding properties. The crucial requirement is the discrete inf-sup condition,
which can be established for this choice of Bh (see Proposition 4.7). The terms

inf
ũh∈Vh

|ũh − u| and inf
λ̃h∈Λh

∣∣∣λ̃h − λ
∣∣∣

can be shown to behave like h1/2 (see Propositions 4.8 and 4.9, respectively). The last
two terms can be handled the same way as |λ̃h − λ|. Indeed,

|(B�
h − B�)λ| ≤ |λ|0,O\Oh

,

which is a O(h1/2) (it is the L2 norm of a function with H1 regularity, on a h-
neighborhood of ∂O). The very same argument holds for |(Bh − B)z| (in our case,
both quantities are the same).

Proposition 4.7 (discrete inf-sup condition). Let Ω and O be defined as in
the beginning of section 4. We introduce h = 1/N , N ∈ N, and Th is the regular
triangulation with step h, so that the center of O is a vertex of Th. According to
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Definitions 4.4 and 4.5, Oh is the reduced obstacle, and Λh ⊂ L2(O)2 = Λ is the set
of all those vector fields which are the gradient of a piecewise affine function in Oh,
and which vanish in O \ Oh.

There exists β > 0 such that, for all h (= 1/N),

(4.6) β
∣∣P(ker Bh)⊥vh

∣∣ ≤ |Bhvh| ∀vh ∈ Vh , sup
vh∈Vh

(Bhvh, λh)
|vh| ≥ β ‖λh‖Λh

.

Proof. Let vh ∈ Vh be given. If we are able to build wh ∈ Vh such that Bhwh =
Bhvh, with ‖wh‖ ≤ C ‖Bhvh‖, we obtain∣∣P(ker Bh)⊥vh

∣∣ = inf
ṽh∈kerBh

|vh − ṽh| ≤ |vh − (wh − vh)| = |wh| ≤ C |Bhvh| ,

and the first inequality is proven. Let us describe how this wh ∈ Vh can be built in five
steps. First, we introduce w1

h = vh−vh, where vh is the mean value of wh over Oh. Note
that w1

h is not in Vh (it does not vanish on ∂Ω), but we consider only its restriction
to Oh. We have Bhw1

h = Bhvh, and the norm of w1
h is controlled:

∥∥w1
h

∥∥
H1(Oh)

≤
C1 ‖Bhvh‖L2(Oh)2 by the Poincaré–Wirtinger inequality (with a constant which does
not depend on h, as can be checked easily).

We shall now describe how we plan to extend w1
h in the first quadrant, the three

others being done the same way. This construction is illustrated by Figure 4.2. The
first step consists in extending w1

h in the polygonal domain CA3A
′
2A1 on each hori-

zontal segment by symmetry (see Figure 4.2). A similar construction extends w1
h in

O

A1

A2

A′
1

A′
2B1

B2

B′
1

B′
2

A3

B3

C

Fig. 4.2. Construction of w2
h.
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u1 u2u2 u1u1

v3v3 v2v2 v3

Fig. 4.3. Stretching of w2
h (detail).

CB′
1B

′
2B3. Now the function is simply extended in the upper right zone by symme-

try around C. To show that the H1 seminorm of the newly defined function w2
h is

under control, we first remark that the shift between two consecutive lines does not
exceed one cell. Now consider the detail in Figure 4.3. On the left we represented
a detail of the triangulated domain in O where w2

h is already defined; the ui’s and
vi’s represent the values of w2

h at some vertices. Now by applying the “symmetry”
described previously, we obtain the stretched function which we represent on a single
element. To control the effect of this stretching, we use Lemma 4.10 in the following
way: The square of the H1 seminorm of the new function is a quadratic nonnegative
form q1 in the six variables, and the square of the H1 seminorm corresponding to
the left-hand situation itself is a scale invariant quadratic, nonnegative form q2 in the
same variables, so that Lemma 4.10 ensures the existence of a universal constant C
such that q1 ≤ Cq2. As a consequence, the H1 seminorm of the stretched function (in
CA3A

′
2A

′
1) is controlled by the H1 seminorm of the initial function (in CA1A2A3).

As the new function in CA′
1B

′
1 is obtained by standard symmetry, the H1 seminorm

identifies with the one of the initial function in CA1B1.
This leads to a new function w2

h defined on O2
h, subtriangulation of Th, with∣∣w2

h

∣∣
1,O4

h

≤ C2 ‖Bhvh‖L2(Ω)2 . As w2
h has zero mean value in B(0, 1/2), one has∥∥w2

h

∥∥
H1(O2

h
)
≤ C′

2 ‖Bhvh‖L2(Ω)2 .

Finally, O2
h contains a ball strictly larger than O, say B(0, 1+

√
2/4). Considering now

a smooth function ρ which is equal to 1 in B(0, (1 + r)/2), and 0 outside B(0, r), we
define w3

h as Ih(ρw2
h) on O2

h, and 0 in Ω \ O2
h, where Ih is the standard interpolation

operator. This function is in Vh ∩ H1
0 (Ω), and it verifies

Bhw3
h = λh,

∥∥w3
h

∥∥
H1(Ω)

≤ C3 ‖Bhvh‖L2(Ω)2 ,

so that the first inequality of (4.6) holds, with β = 1/C3.
The second one is a direct consequence of the first one: given λh = Bhuh, one

considers wh = P(ker Bh)⊥vh, so that

sup
vh∈Vh

(Bhvh, λh)
|vh| ≥ (Bhwh, λh)

|wh| =
|Bhwh|2
|wh| ≥ β |Bhwh| = β ‖λh‖Λh

,

which ends the proof.
Proposition 4.8 (approximation of u). We make the same assumptions as in

Proposition 4.7, and we consider u ∈ H1
0 (Ω) such that u = U ∈ R a.e. in O, uΩ\O ∈

H2(Ω \ O). There exists C > 0 such that

inf
ũh∈Vh

‖u − ũh‖H1(Ω) ≤ Ch1/2.
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Proof. We recall that Ih is the standard interpolation operator from C(Ω) onto
Vh. Let us assume here that the constant value U on O is O (which can be achieved
by substracting a smooth extension of this constant outside O). Now we define Õh as
the union of all those triangles of Th which have a nonempty intersection with O. We
define ũh as the function in Vh which is 0 in Õh and which identifies with Ihu at all
other vertices. We introduce a narrow band around O:

(4.7) ωh =
{
x ∈ Ω , x /∈ O , d(x, O) < 2

√
2h

}
.

As u|Ω\O ∈ H2(Ω \ O), standard finite element estimates give

|u − ũh|0,L2(Ω\(O∪ωh)) ≤ Ch2 |u|H2(Ω\O) ,(4.8)

|u − ũh|1,L2(Ω\(O∪ωh)) ≤ Ch |u|H2(Ω\O) .(4.9)

By construction, both L2 and H1 errors in O are zero. There remains to estimate the
error in the band ωh. The principle is the following: ũh is a poor approximation of
u in ωh, but it is not very harmful because ωh is small. Note that similar estimates
are proposed in [SMSTT05] or [AR08] . For the sake of completeness, and because it
is essential to understand why a better order than 1/2 cannot be expected, we shall
detail here the proof. First of all, we write

(4.10) ‖u − ũh‖ ≤ |u|0,ωh
+ |u|1,ωh

+ |uh|0,ωh
+ |uh|1,ωh

= A + B + C + D.

Lemma 4.13 ensures B ≤ Ch1/2, and A ≤ Ch3/2. As for ũh (terms C and D
in (4.10)), the proof is less trivial. It relies on the technical lemmas (Lemmas 4.11, 4.12,
and 4.14 (see section 4.3)) which can be used as follows. The problematic triangles
are those on which ũh identifies neither with 0, nor with Ihu. On such triangles, ũh

sticks to Ihu at 1 or 2 vertices, and vanishes at 2 or 1 vertices. As a consequence, the
L∞ norm of ũh is less than the L∞ norm of Ihu. Let T be such a triangle. We write
(using Lemma 4.11, the latter remark, the fact that Ih is a contraction from L∞ onto
L∞, Lemma 4.11 again, and Lemma 4.14)

|ũh|2L2(T ) ≤ C′ |T | ‖ũh‖2
L∞(T ) ≤ C′ |T | ‖Ihu‖2

L∞(T )

≤ C′

C
‖Ihu‖2

L2(T ) ≤ C′′
(
‖u‖2

L2(T ) + h4 |u|22,T

)
.

By summing up all these contributions over all triangles which intersect ωh, and using
the fact that the L2 norm of u on ωh behaves like h3/2 |u|2,T , we obtain

‖ũh‖2
L2(ωh) ≤

∑
T∩ωh �=∅

‖ũh‖2
L2(T ) ≤ h3 |u|22,T ,

which gives the expected h3/2 estimate for C. The last term of (4.10) is directly
obtained by the previous estimate combined with the inverse inequality expressed by
Lemma 4.12.

Proposition 4.9 (approximation of λ). Let λ ∈ H1(O)2 be given, with λ = ∇w,
w ∈ H2(O). There exists a constant C > 0 such that

inf
λ̃h∈Λh

∥∥∥λ − λ̃h

∥∥∥
L2(O)

≤ Ch1/2 |λ|1,O ,
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where Λh is defined in section 3 (see Definition 4.5).
Proof. First of all, we extend w on Ω \ O, to obtain a function (still denoted by

w) in H1
0 (Ω)∩H2(Ω). Let us define wh as the standard interpolate of w over Th. One

has |w − wh|1,O ≤ Ch. We define λ̃h ∈ Λh as the piecewise constant function which
identifies with ∇wh on Oh (see Definition 4.4), and which vanishes in O\Oh. One has∥∥∥∇wh − λ̃h

∥∥∥
L2(O)

=
∥∥∥∇wh − λ̃h

∥∥∥
L2(O\Oh)

= ‖∇wh‖L2(O\Oh) ≤ C ‖∇w‖L2(O\Oh) ,

which is the H1 seminorm of a function in H2, in a narrow domain. Therefore it
behaves like h1/2 times the H2 seminorm of u (see Lemma 4.13 and Remark 4.3),
which is the H1 seminorm of λ. Finally, one gets∥∥∥λ − λ̃h

∥∥∥
L2(O)

≤ |w − wh|1,O +
∥∥∥∇wh − λ̃h

∥∥∥
L2(O)

≤ C(h + h1/2) |λ|1,O ,

which ends the proof.
Remark 4.1 (boundary fitted meshes). Although it is somewhat in contradiction

with its original purpose, the penalty method can be used together with a discretiza-
tion based on a boundary fitted mesh. In that case, the approximation error behaves
no longer like h1/2 but like h.

Remark 4.2 (technical assumptions). Some assumptions we made are only techni-
cal and can surely be relaxed without changing the convergence results. For example
the inclusion, which we supposed circular, could be a collection of smooth domains.
Note that a convex polygon is not acceptable, as it is seen from the outside, so that
u may no longer be in H2, which rules out some of the approximation properties
we made. Concerning the mesh, we have good confidence in the fact that the result
generalizes to any kind of unstructured mesh, but the proof of Proposition 4.7 in the
general case can no longer be based on an explicit construction.

4.3. Technical lemmas. We gather here some elementary properties which are
used in the proofs of Propositions 4.6, 4.7, 4.8, and 4.9.

Lemma 4.10. Let E be a finite dimensional real vector space, with q1 and q2

two nonnegative quadratic forms with ker q2 ⊂ ker q1. There exists C > 0 such that
q1 ≤ Cq2.

Proof. As q2 is nonnegative, ṽ �→ |ṽ|q2(v) =
√

q2(v) is a norm for E/ ker q2. Now
we define

q̃1 : ṽ ∈ E/ ker q2 �−→ q̃1(ṽ) = q1(v) ∈ R.

As ker q1 contains ker q2, this functional is well defined. As it is quadratic over a finite
dimensional space, it is continuous for the norm

√
q2, so that

q1(v) = q̃1(ṽ) ≤ C |v|2q2
= q2(v),

which ends the proof.
Lemma 4.11. There exist constants C and C′ such that, for any nondegenerated

triangle T , for any function wh affine in T ,

(4.11) C |T | ‖wh‖2
L∞(T ) ≤ ‖wh‖2

L2(T ) ≤ C′ |T | ‖wh‖2
L∞(T ) .
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Proof. It is a consequence of the fact that, when deforming the supporting triangle
T , the L∞ norm is unchanged whereas the L2 norm scales like |T |1/2.

Lemma 4.12. There exists a constant C such that, for any nondegenerated triangle
T , for any function wh affine in T ,

|wh|21,K ≤ C
|T |
ρ2

K

‖wh‖2
L∞(T ) ,

where ρK is the diameter of the inscribed circle.
Proof. Again, it is a straightforward consequence of the fact that, when deforming

the supporting triangle T , the L∞ norm is unchanged whereas the gradient (which
is constant over the triangle) scales like 1/ρk, so that the H1 seminorm scales like
|T |1/2

/ρK .
The next lemma establishes some Poincaré-like inequalities in narrow domains.
Lemma 4.13. Let O ⊂ R

2 be the unit disk, strongly included in a domain Ω, and
let ωη be the narrow band (note that this definition differs slightly from (4.7), which
is of no consequence):

ωη =
{
x ∈ Ω , x /∈ O , d(x, O) < η

}
, with η > 0.

Denoting by |·|p,ω the Hp seminorm over ω, we have the following estimates:

|ϕ|0,ωη
≤ Cη1/2 |ϕ|1,Ω\O ∀ϕ ∈ H1(Ω \ O), ϕ|∂Ω = 0,

|ϕ|1,ωη
≤ Cη1/2 |ϕ|2,Ω\O ∀ϕ ∈ H2(Ω \ O), ϕ|∂Ω = 0,

|ϕ|0,ωη
≤ Cη3/2 |ϕ|2,Ω\O ∀ϕ ∈ H2(Ω \ O), ϕ|∂Ω = 0, ϕ|∂O = 0.

Proof. We assume here that ϕ is C1 in Ω \O (the general case is obtained imme-
diately by density). Using polar coordinates, we write u(r, θ) = u(1, θ) +

∫ r

1
∂rudr, so

that

|u|20,ωh
≤ 2

∫ 2π

0

∫ 1+η

1

|u(1, θ)|2 r dr dθ + 2
∫ 2π

0

∫ 1+η

1

∣∣∣∣
∫ r

1

∂rϕds

∣∣∣∣2 r dr dθ

≤ C
(
η |ϕ|20,∂O + η2 |ϕ|21,ωη

)
≤ Cη |ϕ|21,Ω\O ,

from which we deduce the first estimate.
This same approach can be applied to ∂iϕ for ϕ ∈ H2. As ϕ is supposed to vanish

over ∂Ω, one has

|∂iϕ| ≤ C ‖∇ϕ‖H1(Ω\O) ≤ C′ |ϕ|22,Ω\O ,

which leads to the second estimate. As for the third one, simply notice that the
boundary term (L2 norm over ∂O) vanishes in the equation above:

|ϕ|0,ωη
≤ η |ϕ|1,ωη

≤ η3/2 |ϕ|2,ωη
,

which ends the proof.
Remark 4.3. The previous lemma extends straightforwardly to the case of any

smooth inclusion (C2 regularity of the boundary is sufficient) strongly included in a
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domain Ω (for a detailed proof of a similar property, see [GLM06]) or to the case
where the function is defined within the subdomain (in that case, ωη is defined as an
inner narrow band).

The last lemma quantifies how one can control the L2 norm of the interpolate of
a regular function on a triangle, by means of the L2 norm and the H2 seminorm of
the function.

Lemma 4.14. There exists a constant C such that, for any regular triangle T (see
below), for any u ∈ H2(T ),

‖Ihu‖2
L2(T ) ≤ C

(
‖u‖2

L2(T ) + h4 |u|22,T

)
.

By regular we mean that T runs over a set of triangles such that the flatness diam(T )/
ρK is bounded.

Proof. The interpolation operator Ih : H2(T ) −→ L2(T ) is continuous, and
|u|2,T scales like h/ρ2

K ≈ 1/h whereas the L2 norms scale like h.

5. Additional examples, concluding remarks. The approach can be checked
to be applicable to some standard situations, like the constraint to vanish in an in-
clusion O ⊂⊂ Ω (see Example 2.2), as soon as H1-penalty is used. The functional to
minimize is then

Jε(v) =
1
2

∫
Ω

|∇v|2 −
∫

Ω

fv +
1
2ε

∫
O

(
u2 + |∇u|2

)
,

so that B identifies with the restriction operator from H1
0 (Ω) to H1(O). The discrete

inf-sup condition, as well as the approximation properties, are essentially the same as
in the case of an inclusion with infinite conductivity.

Another straightforward application of the abstract framework presented in sec-
tion 3 is the numerical modeling of a rigid inclusion in a material which obeys Lamé’s
equations of linear elasticity. The penalized functional is then

Jε(v) =
1
2

∫
Ω

μ |e(v)|2 +
1
2

∫
Ω

λ |∇ · v|2 −
∫

Ω

f · v +
1
2ε

∫
O

|e(v)|2 ,

where e(v) =
(∇v + (∇v)T

)
/2 is the strain tensor.

We conclude this section by some remarks on the proof itself and on possible
extensions of this approach.

Remark 5.1 (conditioning issues). The fact that there is no need to choose ε
too small (both errors balance for ε of the order of

√
h) is of particular importance

in terms of conditioning. Indeed, considering the matrix Aε
h resulting from the two-

dimensional discrete minimization problem (4.4), it can be checked easily that its
smallest eigenvalue scales like h2, whereas its largest eigenvalue behaves like 1/ε,
leading to a condition number of the order of 1/εh2. Following the ε-h balance sug-
gested by the error estimates, the condition number finally scales like 1/h5/2, which
compares reasonably to the standard 1/h2. Note also that some special fixed point
algorithms, recently proposed in [BFM08], can be used to circumvent the problem of
ill-conditioning.

Remark 5.2 (convergence in space). The poor rate of convergence in h is optimal
for a uniform mesh, at least if we consider the H1 error over all Ω. Indeed, as the so-
lution is constant inside O, nonconstant outside with a jump in the normal derivative,
the error within each element intersecting ∂O is a O(1) in this L∞ norm. By summing
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up over all those triangles, which cover a zone whose measure scales like h, we end up
with this h1/2 error. Note that a better convergence could be expected, in theory, if
one considers only the error in the domain of interest Ω \ O, the question now being
whether the bad convergence in the neighborhood of ∂O pollutes the overall approx-
imation. Our feeling is that this pollution actually occurs, because nothing is done
in the present approach to distinguish both sides of ∂O, so that the method tends to
balance the errors on both sides. An interesting way to give priority to the side of
interest is proposed in [DP02] for a boundary penalty method; it consists in having
the diffusion coefficient vanish within Ω. Note that other methods have been proposed
to reach the optimal convergence rate on nonboundary fitted mesh (see [Mau01]), but
they are less straightforward to implement.

The simplest way to improve the actual order of convergence is to carry out a
local refinement strategy in the neighborhood of ∂O, as proposed in [RAB07].

Remark 5.3 (nonregular domains). The method can be implemented straight-
forwardly to nonregular domains (e.g., with corners or cusps), but the numerical
analysis presented here is no longer valid. In particular, the inf-sup condition estab-
lished in Proposition 4.7 and approximation properties for u (see Proposition 4.8) may
no longer hold. Notice that Propositions 2.9 and 2.10 do not require any regularity
assumption, so that convergence can be established for some sequences (h, ε) tending
to (0, 0), but the optimal order of convergence is lost. Practical tests suggest a reason-
ably good behavior of the method is such situations, like in the case where O consists
of two tangent discs (this situation is of special interest for practical applications in
the context of fluid particle flows, when two particles are in contact; see, for example,
[Lef07]).

Remark 5.4. Note that having ε go to 0 for any h > 0 leads to an estimate
for a fictitious domain method (à la Glowinski, i.e., based on the use of Lagrange
multipliers). In [GG95], an error estimate is obtained for such a method; it relies on two
independent meshes for the primal and dual components of the solution (conditionally
to some compatibility conditions between the sizes of the two meshes). We recover
this estimate in the situation where the local mesh is simply the restriction of the
covering mesh to the obstacle (to the reduced obstacle Oh, to be more precise).
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maines décrits par géométrie constructive, Ph.D. thesis, Université Pierre et
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