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a b s t r a c t

The κ coefficient is a popular descriptive statistic for summarizing
an agreement table. It is sometimes desirable to combine some of
the categories, for example, when categories are easily confused,
and then calculate κ for the collapsed table. Since the categories
of an agreement table are nominal and the order in which the
categories of a table are listed is irrelevant, combining categories
of an agreement table is identical to partitioning the categories in
subsets.

In this paper we prove that given a partition type of the
categories, the overall κ-value of the original table is a weighted
average of the κ-values of the collapsed tables corresponding to
all partitions of that type. The weights are the denominators of the
kappas of the subtables. An immediate consequence is that Cohen’s
κ can be interpreted as a weighted average of the κ-values of the
agreement tables corresponding to all non-trivial partitions.

The κ-value of the 2× 2 table that is obtained by combining all
categories other than the one of current interest into a single ‘‘all
others’’ category, reflects the reliability of the individual category.
Since the overall κ-value is a weighted average of these 2 × 2 κ-
values the category reliability indicates how a category contributes
to the overall κ-value. It would be good practice to report both the
overall κ-value and the category reliabilities of an agreement table.

© 2011 Elsevier B.V. All rights reserved.

1. Cohen’s kappa

The κ coefficient [4,7,3,16,34,11,25–29,31,33] is a popular descriptive statistic for summarizing
the cross classification of two nominal variables with n ∈ N≥2 identical categories. Originally
proposed as ameasure of agreement between two observerswho each rate the same sample of objects
(individuals, observations) on anominal (unordered) scalewith the samenumber ofn categories,κ has
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Table 1
Table of relative frequencies corresponding to Table 8.7 in [2, p. 269].

Affiliation at age 16 Affiliation in 2004 Totals
1 2 3 4

1 0.477 0.015 0.001 0.061 0.554
2 0.039 0.252 0.000 0.042 0.333
3 0.000 0.000 0.021 0.003 0.025
4 0.028 0.005 0.002 0.053 0.088
Totals 0.545 0.272 0.024 0.160 1.000

been applied to square cross-classifications encountered in psychometrics, educationalmeasurement,
epidemiology, diagnostic imaging [15],map comparison [24] and content analysis [14]. The popularity
of κ has led to the development of many extensions [17,13], including multi-rater kappas [6,32],
kappas for groups of raters [21,22] and weighted kappas [5,23,30,33]. The value of κ is 1 when perfect
agreement between the two observers occurs, 0 when agreement is equal to that expected under
independence, and negative when agreement is less than expected by chance.

Suppose that two observers each independently distribute u ∈ N≥1 objects (individuals, things)
among a set of nmutually exclusive categories that are defined in advance. Tomeasure the agreement
among the two observers, a first step is to obtain a square contingency table F = {fjk} where fjk
indicates the number of objects placed in category j by the first observer and in category k by the
second observer (j, k ∈ {1, 2, . . . , n}). We assume that the categories of the observers are in the same
order, so that the diagonal elements fjj of F reflect the number of objects put in the same categories
by both observers (the agreements). For notational convenience, let P = {pjk} be the corresponding
table of proportions with relative frequencies pjk = fjk/u. Row and column totals

pj =

n−
k=1

pjk and qj =

n−
k=1

pkj

are the marginal totals of P. The κ coefficient is defined as

κ =
P − E
1 − E

=

n∑
j=1

pjj −
n∑

j=1
pjqj

1 −

n∑
j=1

pjqj
,

where

P =

n−
j=1

pjj and E =

n−
j=1

pjqj

are, respectively, the proportion of observed agreement and the proportion of agreement expected by
chance alone.

As an example we consider Table 8.12 in [2, p. 269] which reports the religious affiliation in
2004 and at age 16 of 2574 subjects for categories (1) Protestant, (2) Catholic, (3) Jewish, and (4)
None or other. Table 1 contains the corresponding relative frequencies of this 4 × 4 table. We have
P = 0.477+0.252+0.021+0.053 = 0.803, E = (0.554)(0.545)+(0.333)(0.272)+(0.025)(0.024)+
(0.088)(0.160) = 0.407 and κ = 0.668.

The number of categories used in various classification schemes varies from theminimumnumber
of two to five inmany practical applications. Cohen’s κ can be seen as an overallmeasure of agreement
across all categories. It is sometimes desirable to combine some of the n ∈ N≥3 categories [29], for
example, when categories are easily confused [18] or if one is interested in the degree of agreement
for a particular category [7,8]. In the latter case, the n × n agreement table can be collapsed into a
2× 2 table by combining all categories other than the one of current interest into a single ‘‘all others’’
category. The κ-value of the collapsed 2 × 2 table is then an indicator of the degree of agreement
for the individual category [7]. It turns out that, if we consider the collapsed 2 × 2 tables for all n
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Table 2
The four collapsed 2 × 2 tables that are obtained by combining three of the four categories of Table 1.

{1} {2, 3, 4} Totals {2} {1, 3, 4} Totals

{1} 0.477 0.077 0.554 {2} 0.252 0.081 0.333
{2, 3, 4} 0.068 0.378 0.446 {1, 3, 4} 0.020 0.647 0.667
Totals 0.545 0.455 1.00 Totals 0.272 0.728 1.00

{3} {1, 2, 4} Totals {4} {1, 2, 3} Totals

{3} 0.021 0.004 0.025 {4} 0.053 0.035 0.088
{1, 2, 4} 0.003 0.972 0.975 {1, 2, 3} 0.106 0.806 0.912
Totals 0.024 0.976 1.00 Totals 0.160 0.840 1.00

categories, the κ-value of the original n×n table is a weighted average of the individual kappas of the
2 × 2 tables, where the weights are the denominators of the individual kappas [12,21].

In this paper we show that the interpretation of the κ-value as an ‘‘average’’ value is much broader
than a weighted average of 2 × 2 kappas. It turns out that the overall κ-value is a weighted average
of κ-values corresponding to all sorts of subtables. Since the categories of an agreement table are
nominal and the order in which the categories of a table are listed is irrelevant, combining categories
of an agreement table is identical to partitioning the categories in subsets. In this paper we prove
that given a partition type of the categories, the κ-value of the n × n table is a weighted average of
the κ-values of the collapsed tables corresponding to all partitions of that type. The weights are the
denominators of the kappas of the collapsed tables.

The paper is organized as follows. The implications of the main result are first illustrated in the
next section for the case n = 4. The main result is presented in Section 3. In Section 4 we consider
two kappa-like statistics, namely, Scott’s [19] π and Goodman and Kruskal’s [9] λ. Similar to κ , the
descriptive statistics π and λ are of the form (P − EĎ)/(1 − EĎ) where the definition of EĎ is different
for each statistic. We investigate whether results analogous to the main result in Section 3 may be
derived for these agreement measures. Section 5 contains a discussion.

2. Numerical illustration

In this section we give an illustration of Theorem 1 presented in the next section. As an example
we consider the 4× 4 agreement table presented in Table 1. There are five ways of collapsing a 4× 4
table. Apart from keeping the agreement table intact or combining all categories into a single ‘‘all
others’’ category, there are three non-trivial ways of collapsing a 4 × 4 table, namely, combining all
categories except one into a single category (for example {{1, 2, 3}, {4}}), combining 2 categories into
one new category and combining the 2 other categories into a second new category (for example
{{1, 2}, {3, 4}}), and combining 2 categories into a new category while leaving the others intact (for
example {{1, 2}, {3}, {4}}). For each collapsed table there is a corresponding κ-value. In the following
it is discussed how the κ-values of the collapsed tables are related to the κ-value of the original 4× 4
table.

Fleiss [7] and Fleiss et al. [8] pointed out that an agreement table can be collapsed into a 2 × 2
table by combining all categories other than the one of current interest into a single category. For
an individual category the κ-value of the corresponding 2 × 2 table is an indicator of the degree of
agreement of the category [7]. Hence, with n categories an agreement table can be collapsed into n
different 2×2 tables. The four collapsed 2×2 tables that are obtained by combining three of the four
categories of Table 1 are presented in Table 2.

Let κ{2, 3, 4} denote the κ-value of the 2 × 2 table that is obtained by combining categories 2, 3
and 4. Furthermore, let E{2, 3, 4} denote the proportion of chance-expected agreement of the same
2 × 2 table. For the data in Table 1 we have

κ1 = κ{2, 3, 4} = 0.707, w1 = 1 − E{2, 3, 4} = 1 − 0.505 = 0.495,
κ2 = κ{1, 3, 4} = 0.763, w2 = 1 − E{1, 3, 4} = 1 − 0.576 = 0.424,
κ3 = κ{1, 2, 4} = 0.861, w3 = 1 − E{1, 2, 4} = 1 − 0.953 = 0.047,
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κ4 = κ{1, 2, 3} = 0.357, w4 = 1 − E{1, 2, 3} = 1 − 0.781 = 0.219.

Note that weightsw1, w2, w3 andw4 are the denominators of κ1, κ2, κ3 and κ4. Fleiss [7, p. 218] noted
that the original κ-value (=0.668) is identical to the weighted arithmetic mean of κ1, κ2, κ3 and κ4
using the weights w1, w2, w3 and w4. We have

4∑
i=1

wiκi

4∑
i=1

wi

=
(0.495)(0.707) + (0.424)(0.763) + (0.047)(0.861) + (0.219)(0.357)

0.495 + 0.424 + 0.047 + 0.219

=
0.793
1.186

= 0.668 = κ.

Thus, the overall κ-value is equivalent to a weighted average of the κ-values of the 4 collapsed 2 × 2
tables that are obtained by combining all categories except one into a single category. A proof of this
property of Cohen’s κ for agreement tables with n ∈ N≥3 categories can be found in Kraemer [12] and
Vanbelle and Albert [21].

There are two other non-trivial ways of collapsing a 4×4 table. For example, instead of combining
3 categories into a single category, the 4 × 4 table can be collapsed into a 2 × 2 table by combining
2 categories into one new category and combining the 2 other categories into a second new category.
This can be done in three different ways. Let κ{1, 2}{3, 4} denote the κ-value of the 2 × 2 table that
is obtained by combining categories 1 and 2, and 3 and 4. Furthermore, let E{1, 2}{3, 4} denote the
proportion of chance-expected agreement of the same 2 × 2 table. For the data in Table 1 we have

κ5 = κ{1, 2}{3, 4} = 0.460, w5 = 1 − E{1, 2}{3, 4} = 1 − 0.745 = 0.255,
κ6 = κ{1, 3}{2, 4} = 0.695, w6 = 1 − E{1, 3}{2, 4} = 1 − 0.511 = 0.489,
κ7 = κ{1, 4}{2, 3} = 0.759, w7 = 1 − E{1, 4}{2, 3} = 1 − 0.558 = 0.442.

Again, note that the weights w5, w6 and w7 are the denominators of κ5, κ6 and κ7. We have

7∑
i=5

wiκi

7∑
i=5

wi

=
(0.255)(0.460) + (0.489)(0.695) + (0.442)(0.759)

0.255 + 0.489 + 0.442

=
0.793
1.186

= 0.668 = κ,

which shows that the weighted average of κ5, κ6 and κ7, with weightsw5, w6 andw7, is equivalent to
the κ-value of the original 4 × 4 table.

A third possibility is that we combine only 2 categories into a single category while leaving the
other 2 categories intact. The 4 × 4 table is then collapsed into a 3 × 3 table. This can be done in
six different ways. Let κ{1, 2} denote the κ-value of the 3 × 3 table that is obtained by combining
categories 1 and 2, and let E{1, 2} denote the proportion of chance-expected agreement of the same
3 × 3 table. For the data in Table 1 we have

κ8 = κ{1, 2} = 0.453, w8 = 1 − E{1, 2} = 1 − 0.739 = 0.261,
κ9 = κ{1, 3} = 0.655, w9 = 1 − E{1, 3} = 1 − 0.434 = 0.566,
κ10 = κ{1, 4} = 0.766, w10 = 1 − E{1, 4} = 1 − 0.543 = 0.457,
κ11 = κ{2, 3} = 0.661, w11 = 1 − E{2, 3} = 1 − 0.422 = 0.578,
κ12 = κ{2, 4} = 0.709, w12 = 1 − E{2, 4} = 1 − 0.484 = 0.516,
κ13 = κ{3, 4} = 0.674, w13 = 1 − E{3, 4} = 1 − 0.413 = 0.587,
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and
13∑
i=8

wiκi

13∑
i=8

wi

=
(0.261)(0.453) + (0.566)(0.655) + (0.457)(0.766)
0.261 + 0.566 + 0.457 + 0.578 + 0.516 + 0.587

+
(0.578)(0.661) + (0.516)(0.709) + (0.587)(0.674)
0.261 + 0.566 + 0.457 + 0.578 + 0.516 + 0.587

=
1.982
2.964

= 0.668 = κ.

Hence, the κ-value of the original 4 × 4 table is equivalent to a weighted average of the κ-values of
all 3 × 3 tables that are obtained by combining 2 categories.

Summarizing, we have shown in this section that for the n = 4 case there are three types of
collapsing an agreement table. If we consider all collapsed tables corresponding to a particular type
and calculate the weighted average of the corresponding kappas, using the denominators of the
individual kappas as weights, then this mean value is identical to the κ-value of the original 4 × 4
table. Furthermore, if we consider all collapsed tables from several or all of the partition types, then
the weighted mean of the individual kappas is again equivalent to the original κ-value. For example,
we have

13∑
i=1

wiκi

13∑
i=1

wi

= κ.

These observations are formalized in the next section.

3. Main result

In this section we present the main result. We first discuss some terminology and notation. Let the
n ∈ N≥3 nominal categories of the agreement table be the elements of the set C = {c1, c2, . . . , cn}. A
partition of C is a set of nonempty subsets of C such that every element in C is in exactly one of these
subsets. Since the categories of an agreement table are nominal and the order in which the categories
of a table are listed is irrelevant, combining categories of a n × n table is identical to partitioning
C into m ∈ {2, 3, . . . , n} subsets. The n × n agreement table can be collapsed into a m × m table by
combining categories that are in the same subset of a given partition. For n = 4, examples of partitions
of C = {c1, c2, c3, c4} are {{c1, c2}, {c3, c4}} and {{c1, c4}, {c2}, {c3}}. The corresponding agreement
tables have, respectively, sizes 2 × 2 and 3 × 3.

For a given partition type let a1 denote the number of subsets of size 1, a2 the number of subsets
of size 2, . . . , and an the subsets of size n. We have the identities

n =

n−
i=1

iai = a1 + 2a2 + · · · + nan

and

m =

n−
i=1

ai = a1 + a2 + · · · + an.

In the following we are interested in all partitions of a certain type, that is, all partitions that there
are for fixed values of a1, a2, . . . , an. The type of a partition will be denoted by the (n − 1)-tuple
(a1, a2, . . . , an−1). Note that by defining the type of a partition by a (n − 1)-tuple instead of a
n-tuple, we avoid the trivial partition with element an = 1 that combines all elements of C into
a single subset. We discussed three types of partitions for the case n = 4 in the previous section,
namely, (1, 0, 1), (0, 2, 0) and (2, 1, 0). Furthermore, we define the quantities
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• d = the number of partitions of the type (a1, a2, . . . , an−1);
• e = the number of partitions of the type (a1, a2, . . . , an−1) in which two categories are in the same

subset.

The quantity d gives the number of different m × m tables for the partition type (a1, a2, . . . , an−1).
For example, for n = 4 and partition types (1, 0, 1), (0, 2, 0) and (2, 1, 0) we have, respectively,
d = 4, d = 3 and d = 6 (see Section 2). Note that the quantity e is ‘‘well-defined’’ sincewe consider all
dpartitions of the type (a1, a2, . . . , an−1). For example, for n = 4 andpartition types (1, 0, 1), (0, 2, 0)
and (2, 1, 0), we have, respectively, e = 2, e = 1 and e = 1 (see Section 2). For the identity partition
we have e = 0. Furthermore, note that d > e sincewe ignore the partition that combines all categories
into a single category.

Theorem 1 shows that given a partition type (a1, a2, . . . , an−1) of n ∈ N≥3 categories, the κ-value
of the n × n table is a weighted average of the κ-values of the d collapsed m × m tables, where the
weights are the denominators of the individual kappas.

Theorem 1. Consider an agreement table with n ∈ N≥3 categories and consider all d partitions of the
type (a1, a2, . . . , an−1). Let κ denote the κ-value of the n × n table and let Pi and Ei for i ∈ {1, 2, . . . , d}
denote, respectively, the observed and chance–expected agreement of the m × m tables corresponding to
the d partitions. We have

κ =

d∑
i=1

wiκi

d∑
i=1

wi

,

where

κi =
Pi − Ei
1 − Ei

and wi = 1 − Ei,

for i ∈ {1, 2, . . . , d}.

Proof. We first determine the sum of the Pi. The proportion of observed agreement Pi of a m × m
table is equal to P , the proportion of observed agreement of the n × n table, plus a sum of the
disagreements between the categories that are combined. If we consider all d partitions and the Pi
of the corresponding collapsedm×m tables, a pair of categories is combined a total of e times. Hence,
if we sum the Pi we have

d−
i=1

Pi = dP + e
n−1−
j=1

n−
k=j+1

(pjk + pkj). (1)

Since
n−1−
j=1

n−
k=j+1

(pjk + pkj) =

n− −
j,k=1

pjk −

n−
j=1

pjj = 1 − P,

(1) is equal to

d−
i=1

Pi = dP + e(1 − P) = (d − e)P + e. (2)

Next we determine the sum of the Ei. Given a partition of the type (a1, a2, . . . , an−1), the row totals
of the m × m table are obtained by summing the pj of the categories that are combined, whereas the
column totals are obtained by summing the qj of the categories that are combined. The proportion of
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the chance–expected agreement Ei of a m × m table is then obtained by adding the products of the
row and column totals of the new categories. Since

(pj + pk)(qj + qk) = (pjqj + pkqk) + (pjqk + pkqj),

the quantity pjqj is exactly once in a partition. Furthermore, the proportion of the chance-expected
agreement Ei of am×m table is thus equal to E, the proportion of chance-expected agreement of the
n × n table, plus a sum of the pjqk + pkqj(j ≠ k) of the categories that are combined. If we consider
all d partitions and the Ei of the corresponding collapsedm × m tables, two categories j and k occur e
times together in some subset. Hence, if we sum the Ei we have

d−
i=1

Ei = dE + e
n−1−
j=1

n−
k=j+1

(pjqk + pkqj). (3)

Since
n−1−
j=1

n−
k=j+1

(pjqk + pkqj) =

n− −
j,k=1

pjqk −

n−
j=1

piqi

=

n−
j=1

pj
n−

k=1

qk − E = 1 − E,

(3) is equal to

d−
i=1

Ei = dE + e(1 − E) = (d − e)E + e. (4)

Finally, using (2) and (4) we have

d∑
i=1

wiκi

d∑
i=1

wi

=

d∑
i=1

Pi −
d∑

i=1
Ei

d∑
i=1

(1 − Ei)
=

(d − e)P − (d − e)E
(d − e) − (d − e)E

. (5)

Since d − e > 0, (5) is equal to (P − E)/(1 − E) = κ . This completes the proof. �

Since they cancel out, we did not require explicit formulas for the quantities d and e in the proof of
Theorem 1. For example, the number of set partitions of C of the type (a1, a2, . . . , an−1), that is, the
number of set partitions with a1 subsets of size 1, a2 subsets of size 2, and so on, is given by

d(a1, a2, . . . , an−1) =
n!

(1!)a1(a1!)(2!)a2 (a2!) · · · ((n − 1)!)an−1 (an−1!)

=
n!

n−1∏
i=1

(i!)ai
n−1∏
i=1

(ai!)
(6)

[1, p. 823]. Thus, the number of differentm×m tables given a partition type (a1, a2, . . . , an−1) of C is
given by the formula in (6).

Theorem 1 has some immediate consequences. For example, if we consider all partitions of two
partition types into m1 and m2 categories, then the κ-value of the original n × n table is a weighted
average of the κ-values of allm1 ×m1 tables andm2 ×m2 tables. Instead of focusing on two partitions
we could also consider all partitions of n categories. The number of partitions of a set with n elements
is given by the nth Bell number Bn [20] which is given by

Bn =

n−
h=0

S(n, h) =

n−
h=0

1
h!

h−
i=0

(−1)h−i

h
i


in. (7)



480 M.J. Warrens / Statistical Methodology 8 (2011) 473–484

In (7), S(n, h) is the Stirling number of the second kind, which is the number of ways to partition
a set with n elements into exactly h nonempty subsets [1, p. 824] [10, p. 243–253]. The first few
Bell numbers for n = 3, 4, 5, 6, 7, . . ., are 5, 15, 52, 203, 877, . . .. For example, for Table 1 with
n = 4, B4 = 15, and we have the 13 partitions presented in Section 2. The 2 remaining partitions are
the identity partition that leaves the original 4×4 table intact, and the trivial partition that combines
all elements into a single subset.

We have the following corollary.

Corollary 1. Consider an agreement table with n ∈ N≥3 categories and consider the Bn − 1 individual
kappas of the smaller agreement tables that are obtained by taking all nontrivial partitions and the identity
partition. The overall κ-value of the n × n table is a weighted average of the individual κ-values, where
the weights are the denominators of the individual kappas.

4. Kappa-like statistics

In this section we investigate whether results similar to Theorem 1 for Cohen’s κ hold for the
descriptive statistics Scott’s [19] π and Goodman and Kruskal’s [9] λ. Similar to κ , the latter statistics
are of the form (P − E∗)/(1 − E∗) where the definition of E∗ is different for each statistic. Reviews of
the rationales behind κ, π and λ can be found in Zwick [34], Hsu and Field [11] and Warrens [28].

The measure π is defined as

π =
P − E∗

1 − E∗
=

n∑
j=1

pjj −
n∑

j=1


pj+qj

2

2

1 −

n∑
j=1


pj+qj

2

2
,

where

E∗
=

n−
j=1


pj + qj

2

2

(8)

is the proportion of chance–expected agreement if it is assumed that the frequency distribution
underlying the two nominal variables is the same for both variables [34,11,28]. For the data in Table 1
we have E∗

= 0.409 and π = 0.667.
Using the quantity

rj =
pj + qj

2
the proportion of chance–expected agreement (8) can be written as

E∗
=

n−
j=1

r2j

from which it follows that π is a special case of κ . We therefore have the following consequence of
Theorem 1.

Corollary 2. Consider an agreement table with n ∈ N≥3 categories and consider all d partitions of the
type (a1, a2, . . . , an−1). Let π denote the π-value of the n×n table and let Pi and E∗

i for i ∈ {1, 2, . . . , d}
denote, respectively, the observed and chance–expected agreement of the m × m tables corresponding to
the d partitions. We have

π =

d∑
i=1

wiπi

d∑
i=1

wi

,
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where

πi =
Pi − E∗

i

1 − E∗

i
and wi = 1 − E∗

i ,

for i ∈ {1, 2, . . . , d}.

Corollary 2 shows that given a partition type (a1, a2, . . . , an−1) of n ∈ N≥3 categories, the π-value
of the n × n table is a weighted average of the π-values of the d collapsed m × m tables, where the
weights are the denominators of the dπ-values.

Analogous to Corollary 1 we have the following result.

Corollary 3. Consider an agreement table with n ∈ N≥3 categories and consider the Bn − 1 π-values
corresponding to the smaller agreement tables that are obtained by taking all nontrivial partitions and the
identity partition. The overall π-value of the n × n table is a weighted average of individual π-values,
where the weights are the denominators of the Bn − 1 individual statistics.

The measure λ is defined as

λ =
P − EĎ

1 − EĎ
=

n∑
j=1

pjj − max
j


pj+qj

2


1 − max

j


pj+qj

2

 ,

where

EĎ = max
j


pj + qj

2


is the arithmeticmean of themarginal totals of themost abundant category [9]. For the data in Table 1
we have EĎ = 0.550 and λ = 0.564.

Theorem 2 shows that a result analogous to Theorem 1 and Corollary 2 for κ and π does not hold
for λ. With regard to Theorem 2 we only consider the partition type (1, 0, . . . , 1), that is, we collapse
the n × n table into n different 2 × 2 tables by combining all categories other than the one of current
interest into a single ‘‘all others’’ category. Theorem 2 shows that λ can be interpreted as a weighted
average of the n 2 × 2 lambdas if EĎ ≥

1
2 for the n × n table, that is, if the popular category is used on

average in half or more than half of the ratings. This is the case, for example, for the data in Table 1,
where we have EĎ = (0.554 + 0.545)/2 = 0.550 > 1

2 .

Theorem 2. Consider an agreement tablewith n ∈ N≥3 categories and consider the n partitions of the type
(1, 0, . . . , 1). Let λ denote the λ-value of the n × n table and let Pi and EĎi for i ∈ {1, 2, . . . , n} denote,
respectively, the proportions of observed and chance-expected agreement of the 2×2 tables corresponding
to the n partitions. We have

n∑
i=1

wiλi

n∑
i=1

wi


= λ if EĎ ≥

1
2

< λ if EĎ <
1
2

and P < 1,

where

λi =
Pi − EĎi
1 − EĎi

and wi = 1 − EĎi

for i ∈ {1, 2, . . . , n}.
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Proof. Since λ is a function of P and has a similar form as κ , the proof is similar to the proof of
Theorem 1. We first determine the sum of the Pj. Using d = n and e = n − 2 in (2) we obtain

n−
i=1

Pi = 2P + (n − 2). (9)

Next we determine the sum of the Ei. If we combine all categories except category i, the marginal
totals corresponding to the ‘‘all others’’ category are given by

n−
j=1

pj − pi = 1 − pi, and
n−

j=1

qj − qi = 1 − qi. (10)

Using the identities in (10) we have

EĎi = max

pi + qi

2
,
2 − pi − qi

2


= max


pi + qi

2
, 1 −

pi + qi
2


.

Furthermore, let EĎ = (pj + qj)/2, so that pj + qj ≥ pi + qi for i ∈ {1, 2, . . . , n}. We have

EĎi = 1 −
pi + qi

2
for i ∈ {1, 2, . . . , n} and i ≠ j.

We distinguish two cases. If (pj + qj)/2 > 1
2 we have

n−
i=1

EĎi =

n−
i=1


1 −

pi + qi
2


−


1 −

pj + qj
2


+

pj + qj
2

= 2EĎ + (n − 2). (11)

Using (9) and (11) we have
n∑

i=1
wiλi

n∑
i=1

wi

=
P − EĎ

1 − EĎ
= λ.

Hence, λ is a weighted mean of λi if EĎ > 1
2 .

On the other hand, if (pj + qj)/2 ≤
1
2 we have

n−
i=1

EĎi =

n−
i=1


1 −

pi + qi
2


= n −

n−
i=1

pi + qi
2

= n − 1. (12)

Using (9) and (12) we have
n∑

i=1
wiλi

n∑
i=1

wi

=
2P + (n − 2) − (n − 1)

n − (n − 1)
= 2P − 1.

Thus, if EĎ =
1
2 we have

n∑
i=1

wiλi

n∑
i=1

wi

= 2P − 1 =
P −

1
2

1 −
1
2

= λ.
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Finally, it must be shown that the inequality

P − EĎ

1 − EĎ
> 2P − 1 (13)

holds if EĎ < 1
2 and P < 1. Since 1 − EĎ > 0, multiplying both sides of (13) by 1 − EĎ gives

P − EĎ > (2P − 1)(1 − EĎ), which is equivalent to

(1 − P)(1 − 2EĎ) > 0. (14)

Since P < 1 and EĎ < 1
2 , inequality (14), and hence (13), holds. This completes the proof. �

5. Discussion

Cohen’s [4] κ is a popular descriptive statistic for summarizing the cross classification of two
nominal variables with identical categories. In the literature it has been frequently noted that Cohen’s
κ can be seen as an overallmeasure of agreement across all categories. This notion has been formalized
here in this paper. The main result of this paper is that given a partition type of the n ≥ 3 categories,
the κ-value of the n × n table is a weighted average of the κ-values of the tables corresponding to
all partitions of that type. The weights are the denominators of the individual kappas (Theorem 1). A
direct consequence of Theorem 1 is that Cohen’s κ is equivalent to a weighted average of the kappas
corresponding to the smaller agreement tables that are obtained by taking all nontrivial partitions.
Theorem 1 can also be formulated for the extensions of Cohen’s κ to groups of raters [21,22].

In the second part of the paper we considered two kappa-like statistics and investigated whether
results analogous to Theorem1 could be derived for these agreementmeasures. Corollary 2 shows that
Scott’s [19]π can, analogous to κ , be interpreted as a weighted average: given a partition type of the n
categories, the π-value of the n×n table is a weighted average of the π-values of the collapsed tables
corresponding to all partitions of that type. Theorem 2 shows that Goodman and Kruskal’s [9] λ can be
interpreted as aweighted average of 2×2 lambdas if the popular category is used on average in half or
more than half of the ratings. The latter result shows that not all measures of the form (P−E)/(1−E),
where the definition of E is different for each statistic, can be interpreted as a weighted average.

Theorem 1 provides an alternative proof to an existence theorem presented in Warrens [29]. In
this paper it was shown that for any nontrivial n× n agreement table, there exist two categories such
that, when combined, the κ-value of the collapsed (n − 1) × (n − 1) agreement table is higher than
the original κ-value. In addition, there exist two categories such that, when combined, the κ-value of
the collapsed table is smaller than the original κ-value. Theorem 1 shows that the κ-value of the n×n
table is a weighted average of the κ-values of all the (n − 1) × (n − 1) tables that can be obtained
by combining two categories. The result in Warrens [29] then follows from the fact that a weighted
average of a set of elements is bounded by the maximum and minimum value of the elements. More
generally, it follows from Theorem 1 that for any partition type there exists a partition for which the
κ-value of the collapsed agreement table is higher than the original κ-value. In addition, there exists
a partition of the same partition type for which the κ-value of the corresponding agreement table is
lower than the overallκ-value. An illustration of these properties of Cohen’sκ is presented in Section 2.

In Section 2 it was shown that a 4 × 4 agreement table can be collapsed into a variety of smaller
tables. In practice certain collapsed tables are more interesting than others. Tables that are especially
interesting are the 2 × 2 tables that are obtained by combining all categories other than the one of
current interest into a single ‘‘all others’’ category. For an individual category the κ-value of this 2× 2
table is an indicator of the degree of reliability of the category [7,8]. Using these 2 × 2 κ-values a
researcher can inspect how a category contributes to the overall κ-value. Consider for example the
reliabilities κ1 = 0.707, κ2 = 0.763, κ3 = 0.861 and κ4 = 0.357 of the four categories from the
numerical illustration in Section 2. Since the overall κ-value (κ = 0.668) is a weighted average of
κ1, κ2, κ3 and κ4, we immediately see that the ratings on category 4 contribute negatively to the overall
agreement. The remaining three categories have a positive contribution to the overall agreement.
Since the category reliabilities provide substantially more information on the nominal scale, it would
be good practice to report both the overall κ-value and the category reliabilities of an agreement table.
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