
COMPUTATIONAL DISCOVERY IN EVOLVING COMPLEX NETWORKS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Yongqin Gao, M.S.

Greg Madey, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

February 2007

c© Copyright by

Yongqin Gao

2007

All Rights Reserved

COMPUTATIONAL DISCOVERY IN EVOLVING COMPLEX NETWORKS

Abstract

by

Yongqin Gao

The field of study in evolving complex networks has more and more researchers

working using various methods. We designed and developed a computational dis-

covery methodology to study these evolving complex networks. This methodology

is a cyclic procedure involving four different processes: data mining, network analy-

sis, computer simulation and collaboration. The data mining process is responsible

for discovering potential associations and patterns. The network analysis process

is responsible for assessing the discovery found in the data mining process and an-

alyzing the network measures in the network. The computer simulation process is

responsible for generating a validated model to simulate the evolution of the com-

plex network based on the discoveries and measures used in the previous processes.

Finally, the collaboration process is responsible for designing and maintaining a re-

search collaboratory to host our research and support any possible similar research.

To demonstrate the methodology, we applied this methodology in the study of

Open Source Software movement, in particular, a study of the SourceForge.net devel-

opment community. Through applying the methodology, we generated a distribution-

based predictor to predict the “popularity” of a project, had more insights about the

structure and evolution of the SourceForge.net community network, generated a val-

idated model to simulate the evolution of the community, and finally implemented

Yongqin Gao

and maintained a research collaboratory for the Open Source Software related re-

search.

Dedicated to my beloved wife,

Ye Sun

and my dear parents,

Chuanshan Gao and Xiuzheng Wang,

from whom I have received enormous

support, encouragement, and love.

ii

CONTENTS

FIGURES . vi

TABLES . ix

ACKNOWLEDGMENTS . x

CHAPTER 1: INTRODUCTION . 1
1.1 Evolving Complex Networks . 1
1.2 Computational Discovery . 2
1.3 Open Source Software Research . 3
1.4 Our Methodology and Contribution 7
1.5 Layout . 10

CHAPTER 2: CASE STUDY AND RELATED WORK 11
2.1 Case Study . 11

2.1.1 About SourceForge.net . 11
2.1.2 Case Study Setup . 13

2.2 Literature Research . 14
2.2.1 Open Source Software Research 15
2.2.2 Data Mining . 17
2.2.3 Network Analysis . 19
2.2.4 Computer Simulation . 20
2.2.5 Research Collaboratory . 22

CHAPTER 3: DATA MINING . 24
3.1 Data Mining Process . 25

3.1.1 Data Preparation . 25
3.1.2 Data Purging . 28
3.1.3 Feature Selection . 30
3.1.4 Algorithm Application . 31

3.2 Case Study . 31
3.2.1 Data Preparation . 32
3.2.2 Data Purging . 40

iii

3.2.3 Feature selection . 41
3.2.4 Algorithm application . 43

3.3 Summary . 50

CHAPTER 4: NETWORK ANALYSIS . 51
4.1 Network analysis . 51

4.1.1 Structure Analysis . 52
4.1.2 Centrality Analysis . 55
4.1.3 Path Analysis . 56

4.2 Case Study . 57
4.2.1 Structure Analysis . 59
4.2.2 Centrality Analysis . 61
4.2.3 Path Analysis . 67

4.3 Summary . 83

CHAPTER 5: COMPUTER SIMULATION 86
5.1 Simulation . 86

5.1.1 Simulation Methodology . 86
5.1.2 Verification Strategy . 87

5.2 Case Study Setup . 89
5.2.1 Experiment Environment . 89
5.2.2 Model Description . 90
5.2.3 Simulation Iterations . 93

5.3 Summary . 111

CHAPTER 6: RESEARCH COLLABORATORY 115
6.1 Collaboratory Design . 115

6.1.1 Data Tier . 116
6.1.2 Presentation Tier . 117
6.1.3 Logic Tier . 118

6.2 Case Study . 118
6.2.1 Data Tier . 120
6.2.2 Presentation Tier . 123
6.2.3 Logic Tier . 126

6.3 Summary . 128

CHAPTER 7: CONCLUSION . 129
7.1 Summary of Results . 129
7.2 Limitations and Future Work . 130

APPENDIX A: SUPPLEMENTS FOR NETWORK ANALYSIS 132

APPENDIX B: SUPPLEMENTS FOR SIMULATIONS 134

iv

APPENDIX C: SUPPLEMENTS FOR COLLABORATORY 136
C.1 Timeline Database . 136

C.1.1 Database . 136
C.1.2 Schema . 137
C.1.3 Table . 137
C.1.4 Comments . 138

C.2 Statistics about the Repository . 140
C.2.1 April 2006 Report . 140
C.2.2 May 2006 Report . 141
C.2.3 June 2006 Report . 142

BIBLIOGRAPHY . 144

v

FIGURES

1.1 Web Server Market Share Survey about Apache (survey results by
NetCraft.com) . 6

1.2 Our Proposed Computational Discovery Methodology for Studying
the Evolving Complex Networks . 8

3.1 Data Mining Procedures . 26

3.2 User Categorization Procedure . 37

3.3 Active Developer Role Distribution 38

3.4 Network Transformation (adapted from Newman, Strogatz and Watts,
2001) . 40

3.5 Sample Activity Distributions for Cluster 3 and 1 50

4.1 Project Network Component Distribution 60

4.2 Developer Size Distribution . 63

4.3 Project Size Distribution . 64

4.4 Developer Network Degree Distribution 65

4.5 Project Network Degree Distribution 66

4.6 Active Developer or Project vs. Community Size. The X coordinate
represents the number of months after January 2005. 68

4.7 Average Developer Degree in the C-NET 70

4.8 Average Project Degree in the C-NET 71

4.9 Average Developer Degree in the D-NET 72

4.10 Average Project Degree in the P-NET 73

4.11 Developer Network Diameter . 75

4.12 Project Network Diameter . 77

vi

4.13 Developer Network Clustering Coefficient 78

4.14 Project Network Clustering Coefficient 79

4.15 Project Network Betweenness . 81

4.16 Project Network Closeness . 82

5.1 Conceptual Framework for Agent-based Modeling and Simulation . . 88

5.2 Program Flow for the Model . 92

5.3 Probability Density Function for Log-normal Distribution with Differ-
ent Variance σ2 (http://en.wikipedia.org/wiki/Log-normal distribution) 97

5.4 Average Degrees Comparison: the left upper figure shows the de-
veloper degree in the C-NET, the right upper figure is the project
degree in the C-NET, the left lower figure is the developer degree in
the D-NET and the right lower figure is the project degree in the P-
NET. All the figures share the same coordinate configurations. The
X coordinate is the time and the Y coordinate is the value of the
corresponding average degree. ‘x’ represents the empirical data and
‘+’ represents the simulated data. 102

5.5 Diameter and Clustering Coefficient Comparison: The left figure is
the diameter development trends in the P-NET and the right figure
is the clustering coefficient development trends in the P-NET. Both
figures share the same coordinate configuration, where X is the time
and the Y coordinate is the value of the corresponding measures. ‘x’
represents the empirical data and ‘+’ represents the simulated data. . 104

5.6 Betweenness and Closeness Comparison: The left figure is the average
betweenness development trends in the P-NET and the right figure is
the average closeness development trends in the P-NET. Both figures
share the same coordinate configuration, where X is the time and
the Y coordinate is the value of the corresponding measures. ‘x’
represents the empirical data and ‘+’ represents the simulated data. . 106

5.7 Degree Distributions Comparison: The left upper figure is the devel-
oper degree distribution in normal coordinates, the left lower figure
is developer degree distribution in log-log coordinates, the right up-
per figure is project degree distribution in normal coordinates and the
right lower figure is project degree distribution in log-log coordinates.
All figures share the same coordinate configuration, where X is the
time and the Y coordinate is the value of the corresponding measures.
‘x’ represents the empirical data and ‘o’ represents the simulated data.107

vii

5.8 Degree Distributions Comparison: The left upper figure is the devel-
oper degree distribution in normal coordinates, the left lower figure
is developer degree distribution in log-log coordinates, the right up-
per figure is project degree distribution in normal coordinates and the
right lower figure is project degree distribution in log-log coordinates.
All figures share the same coordinate configuration, where X is the
time and the Y coordinate is the value of the corresponding measures.
‘x’ represents the empirical data and ‘o’ represents the simulated data.110

5.9 Degree Distributions Comparison: The left upper figure is the devel-
oper degree distribution in normal coordinates, the left lower figure
is developer degree distribution in log-log coordinates, the right up-
per figure is project degree distribution in normal coordinates and the
right lower figure is project degree distribution in log-log coordinates.
All figures share the same coordinate configuration, where X is the
time and the Y coordinate is the value of the corresponding measures.
‘x’ represents the empirical data and ‘o’ represents the simulated data.112

6.1 Three-tier Hierarchy for Our Collaboratory 119

6.2 Data Schema for the Repository . 121

6.3 Connection Pool Design . 122

6.4 Screenshot of the Wiki Interface for “SourceForge Research Data
Archive: A Repository of FLOSS Research Data” [1]. 125

B.1 Screenshot of the Running Simulation 135

viii

TABLES

1.1 SOFTWARE LICENSING TAXONOMY 5

3.1 POPULARITY FEATURES . 32

3.2 ACTIVITY FEATURES . 34

3.3 NETWORK FEATURES . 35

3.4 SELECTED FEATURES BY USING THE FEATURE SELEC-
TION. ACTIVITY FEATURES AND NETWORK FEATURES ARE
THE MOST SIGNIFICANT FEATURES. 43

3.5 K-MEANS CLUSTERING RESULT. SINCE WE PRESET THE K
AS 10, THERE ARE 10 CLUSTERS IN THE RESULT. 45

3.6 CLUSTERING RESULT USING THE STATISTICAL HYPOTHE-
SIS TEST BASED CLUSTERING. 49

4.1 SUMMARY OF MEASURES . 85

5.1 SUMMARY OF SIMULATION RESULTS 114

ix

ACKNOWLEDGMENTS

I would like to express my great appreciation and gratitude to my advisor, Dr.

Greg Madey, for his patient guidance and constant encouragement throughout this

research. All the suggestions, technically and nontechnically, will be valuable assets

to me in the future. Without his supervision, the dissertation would have been

impossible.

I am grateful to Dr. Flynn, Dr. Striegel and Dr. Wood for serving on my defense

committee and for their many insightful suggestions.

I am also grateful to my colleagues, Scott Christley, Yingping Huang, Tim

Schoenharl, Matt Van Antwerp, Ryan Kennedy, Alec Pawling and Jin Xu for helpful

discussions.

I also acknowledge the assistance of Jeff Bates, Vice President of OSTG Inc.,

and Jay Seirmarco, General Manager of SourceForge.net, and the contributions of

University of Notre Dame undergraduate students Chris Hoffman, Carlos Siu and

Nadir Kiyanclar for their assistance with data collection for this project.

Finally, this research was partially supported by the US National Science Foun-

dation, CISE/IIS-Digital Society & Technology, under Grant No. 0222829. The

project web site can be found at: http://www.nd.edu/˜oss.

x

CHAPTER 1

INTRODUCTION

1.1 Evolving Complex Networks

Network research is a subject frequently found within applied mathematics and

physics, with the same general subject matter as graph theory. Network research

itself is the study of graphs as a representation of symmetric relations or, more

generally, of asymmetric relations between discrete objects [85]. Network research

can improve our understanding of many real systems such as communication net-

works and social networks. Many well-studied networks have apparent generating

principles, which means the topology of the network is determined by a given gen-

erating principle, such as the physic network of a LAN (star shape or bus shape).

These kinds of networks are called “simple networks”. However, there are large-scale

networks to which we cannot attribute apparent generating principles, such as the

Internet [73], the gene regulatory networks and the social networks. These networks

have a mixture of randomness and structure and are called “complex networks”.

Usually, these complex networks are decentralized and self-organized. The control

and order in this kind of networks is emergent rather than predetermined.

Evolution is another complication of these networks. Many of the real networks

are evolving networks, and the structure of the network is changing continuously

with respect to the time. This complication made these networks even more difficult

to study. However, the knowledge of the principles of the evolution and structure

1

of networks are of vital practical importance, like efficient indexing and searching of

the Internet [97]; stability analysis for biological and communication networks [57];

epidemic threshold studies for social science [87] and networking influence in software

engineering practice [18].

Because of the potential importance of the study of evolving complex network,

there is much research related to the evolving complex networks. Complex network

research began with the foundation of random network theory by Erdös and Rényi

in 1959 [38]. The construction and evolution of a random network is determined by

each individual node deciding its own connection based on the local knowledge it

has. The topology of this kind of decentralized and self-organized network is unclear.

Several important studies [82, 83, 84, 17] on complex networks have been conducted

and provided methods of analyzing and understanding the underlying mechanisms

of their topology, especially the Random Network Theory (proposed by Erdös and

Rényi) [38], the Small World Networks (proposed by Watts and Strongatz) [101] and

the Scale Free Networks (proposed by Albert and Barabási) [7]. In this dissertation,

we applied techniques of computational discovery to study the evolving complex

networks.

1.2 Computational Discovery

The study of computational scientific discovery emerged from the view that

science is a problem-solving activity, that heuristics from problem solving can be

applied to the study of scientific discovery in either historical or contemporary

cases, and that methods in artificial intelligence provide techniques for building

computational systems. Much of the current work in computational discovery is

occurring within applications to particular sciences, especially bioinformation sci-

ence [34, 95, 16, 64]. There are gradients from computational discoveries that are not

2

based on AI methods, to computational discoveries that are based on AI methods,

to methods with a “cognitive flavor.”

Becuase of the inherent computational complexity of the evolving complex net-

work, we used computational discovery methodology to study the evolving complex

networks, such as the community networks of the Open Source Software community.

1.3 Open Source Software Research

In this dissertation, we proposed a computational discovery methodology to

study the evolving complex networks. Meanwhile, we also applied the methodology

on a real, evolving complex network. The case study we studied in this dissertation

is the community network in the Open Source Software (OSS) developer commu-

nity [25, 98]. By applying the method on the OSS community network, we were able

to get more insights about the OSS community. In this section, a brief introduction

about the research on the Open Source Software development phenomenon will be

provided.

Software is central to the functioning of modern computer-based society. The

OSS (Open Source Software1) phenomenon is a novel, widely growing approach to

develop both applications and infrastructure software. It exhibits many counter-

intuitive properties and is not well understood [37]. Open Source Software devel-

opment, despite often consisting of volunteers dispersed worldwide, now competes

with commercial software firms.

In 1984, Richard Stallman founded the Free Software Foundation2, the first of-

ficial organization dedicated to OSS. OSS should not be confused, however, with

“freeware,” “shareware,” “use-restricted” software or “royalty-free” software. Ta-

1“Open source” is a certification mark owned by the Open Source Initiative
(http://www.opensource.org).

2http://www.fsf.org/fsf/fsf.html.

3

ble 1.1 [45]3 summarizes the differences between these various categories of software.

The purpose of Open Source Software was not to ensure distributing software to

the end user without cost, but to ensure that the end user could use the software

freely (no cost, no limitation, source code available and modifiable). Essentially,

OSS exists in countless varieties today, each with its own unique history [36].

Linux, perhaps the best-known Open Source Software, began modestly in 1991,

seven years after the founding of the Free Software Foundation. A recent survey

was carried out by the IDC4. It shows robust growth in revenue and market share

of the operating system and subsystems market for 2003-2005 period. “Although

Linux server only accounts for 1.4% of the overall operating systems and subsystems

in 2005,” said Al Gillenn, research vice president, System Software at IDC, “it

continues to show robust growth and demonstrates that Linux servers are taking on

important roles in IT customers’ computing infrastructure” [24].

Another notable OSS product is the Apache web-server, begun in February 1995.

As of November 2006, Apache had achieved 60.32% of the web-server market, while

market share of Microsoft has accounted only for 31.04% of the market5 as shown

in Figure 1.1.

Meanwhile, many OSS hosting sites emerged to support OSS development, such

as Savannah6, Freshmeat7, SourceForge8 and so on. SourceForge.net, as one of the

largest and most famous OSS hosting web sites, offers features like bug tracking,

project management, forum service, mailing list distribution, CVS and much more.

3This is adapted from “The Halloween Documents,” which refer to a set of confidential internal
Microsoft memos, leaked to the OSS community at the end of October 1998, which discuss the
concerns of Microsoft at the threat posed by OSS.

4IDC is a premier global market intelligence and advisory firm in the information technology
and telecommunications industries.

5http://www.netcraft.com/survey/.
6http://savannah.gnu.org.
7http://freshmeat.net.
8http://sourceforge.net.

4

TABLE 1.1

SOFTWARE LICENSING TAXONOMY

Software Type Zero
Price

Redistributable Unlimited
Users and
Usage

Source
Code
Available

Source Code
Modifiable

Commercial (e.g.,
typical Microsoft
products)
Trial Software (e.g.,
time-bounded eval-
uation products)

X X

User-Restricted
(e.g., Netscape
Navigator, freely
available and redis-
tributable only to
non-profit-making
entities)

X X

Shareware (e.g.,
WinZip, which has
a license that even-
tually mandates
purchase)

X X

Freeware (e.g.,
Leap Frog, released
in binary form
only and in public
domain)

X X X

Royalty-free bi-
naries (e.g., Mi-
crosoft’s Internet
Explorer and
NetMeeting, dis-
tributed in binary
form only)

X X X

Royalty-free li-
braries (e.g., class
libraries)

X X X X

Open Source (e.g.,
Linux, Apache)

X X X X X

5

Webserver

Figure 1.1. Web Server Market Share Survey about Apache (survey results by
NetCraft.com)

As of November 2006, SourceForge hosted 1,439,773 registered users and 134,751

projects.

With the great and growing market share of several successful Open Source Soft-

ware and fast expansion of the OSS communities, understanding the Open Source

Software movement came into the focus of many researchers. For computer science

researchers, understanding the Open Source Software movement can help us not

only gain better understanding of evolving complex networks, but also help improve

the current software engineering practices in quality, productivity and security.

Our research about Open Source Software movement focuses on the influence of

the network structure evolution to the whole community and, thus, the individual

entities (developer and project) in the community.

6

1.4 Our Methodology and Contribution

We proposed a methodology to study the evolving complex networks on a cyclic

procedure: data mining was used to uncover potential discovery, then network anal-

ysis was used to assess the discovery from data mining and possibly find more

characteristics of the network structure and evolution. After that, modeling and

simulation were used to verify and validate the discovery from previous steps, and

in this step, we generated a “fit” model to simulate the evolution of the complex net-

works. Finally, a research collaboratory was designed and implemented to provide

the research data and some of the computational toolkits to the research community.

Eventually, by sharing the research in the collaboratory, further research could be

initialized. The methodology is displayed in Figure 1.2. During the study, we also

applied this methodology in a real-world problem – Open Source Software research

and had multiple discoveries during the procedure.

We will discuss the four major processes and our contributions in the procedure

one by one.

Data mining is the first process. Data mining, also called knowledge discovery

in databases, is the process of automatically searching large volumes of data for

patterns, such as association rules, and discovery, such as classification and clus-

tering. In our iterative methodology, data mining is used to discover interesting

patterns about the evolving complex network. In addition to applying traditional

data mining methods, we used a novel data mining method based on hypothesis

tests to do the data mining. By engaging the data mining process in the case study,

we found the most important features to define the popularity of a project, and a

novel activity-distribution-based method to predict the “popularity” of a project.

Network analysis is the second process. This is the analysis of networks through

statistical methods on selected network measures. In our iterative methodology,

7

Research
Collaboratory

Data Mining

Network
Analysis

Computer
Simulation

Discovery Assessment

RevisionFeedback

Researcher

Community Members

Contribution Reference

Initialization

Figure 1.2. Our Proposed Computational Discovery Methodology for Studying the
Evolving Complex Networks

network analysis was used to assess the discovery we uncovered in the data mining

process and to discover more information about the network structure and its evo-

lution. We introduced new sets of network analyses (centrality analysis and path

analysis) into the network analysis, comparing them to the master thesis, and also

used statistical hypothesis tests to verify the discovery in the network analysis. In

the case study, we applied the network analysis on the more complete data set we

got from SourceForge.net and gained more insights about the network structure

and evolutions of the designated OSS community network and individuals in the

network.

Modeling and simulation are the third process. Simulation is an imitation of

8

some real process (for example, the evolution of complex networks). Normally,

simulation entails certain key characteristics or behaviors of a selected complex

network. In our iterative methodology, simulation is used to revise the results from

previous steps and develop a model to imitate the evolution of the complex network.

We introduced three new models in the simulation iterations, comparing them to

the master thesis. By applying these new models in our case study, we generated

a “fit” model to simulate the community and possibly predict the future of the

SourceForge.net community by extending the simulations.

Designing and maintaining the research collaboratory is the last process. A

collaboratory is a virtual community, where all the researchers can perform their

research, interact with colleagues, access instruments, share data and computational

resource, and access information in the repository, without regard to their physical

location. In our iterative methodology, the research collaboratory is used to share

the information and possible computational resources among researchers and possi-

bly invoke further research from current research. We designed, implemented and

maintained the research collaboratory, including the back-end database, the appli-

cation layer and the web interface, for the Open Source Software research, based

on the accumulated data sets downloaded from SourceForge.net. The collaboratory

has been up and running for over a year with good utilization (details about the

utilization statistics can be found in Appendix C.2).

Every process in the methodology is a stand-alone research topic in computer

science research. Grouping them altogether with new methods or new algorithms in

every process can help us conduct computational discovery methodology to study

the evolving complex networks. More details about every process will be discussed,

respectively, in the following chapters.

9

1.5 Layout

The remainder of the dissertation is structured as follows: Chapter 2 explains

the case study and the state-of-the-art related research, focusing especially on their

limitations. The following four chapters discuss the four major processes in the

proposed computation discovery methodology for studying the evolving complex

networks. Chapter 3 focuses on the first process – data mining. In that chapter,

we discuss the new data mining method we applied on the SourceForge.net data set

and the discovery by using data mining on the SourceForge.net data set. Chapter 4

discusses the second process – network statistics. In that chapter, we provide a more

completed network analysis and apply it on the SourceForge.net data set. Chapter

5 delves into the third process – simulation iteration. In that chapter, we discuss the

framework for simulation iterations and our modeling and simulation experiments

on the SourceForge.net community. Chapter 6 explains the last process – research

collaboratory. Design and implementation of our collaboratory about Open Source

Software research are explained in this chapter. Finally, we give a summary and

conclusion of our work in Chapter 7.

10

CHAPTER 2

CASE STUDY AND RELATED WORK

In order to better explain the computational discovery methodology we proposed,

we applied the methodology on a real-world problem – Open Source Software re-

search – and used this problem as the case study for the dissertation. In this chapter,

we will explain the case study first, then discuss the related work of our research.

2.1 Case Study

The case study is the Open Source Software research. In particular, the Open

Source Software community we inspected is the SourceForge.net development com-

munity. We will introduce the SourceForge.net first, then we will explain the setup

of our case study.

2.1.1 About SourceForge.net

The goal of the case study is to understand the Open Source Software movement

by studying the Open Source Software community, especially the structure and evo-

lution of the community networks. SourceForge.net, one of the largest Open Source

Software developer communities (as of November 2006, SourceForge.net hosted

134,751 projects and over 1,439,773 registered users with a centralized resource),

is the designated Open Source Software community in our study, since we have

monthly database dumps from them for over two years. In the study, we achieved

11

the goal of the case study by inspecting the available information in the database

dumps and the information about the networks constructed from the information

stored in the database dumps.

SourceForge.net uses the back-end database to store the data supporting its web

site and log the various activities happening in the community. There is ample

information about the SourceForge.net community existing in the database dumps.

We are most interested in the following information:

• user activities such as feature requests, bug reports, tasks and so on;

• project activities such as project initialization, project change and so on;

• project statistics such as monthly pageview, downloads, releases and so on;

• the community statistics such as project count, user count, project ratings and
so on.

That information can provide us insights about the whole community and individ-

uals (users or projects) in the community, which will help us understand how the

SourceForge.net community works.

Another important piece of information stored in the database is its history,

since we have collected the monthly database dumps over years and we saved all

the database images for every month. With these images stored together, we can

reconstruct the evolution history of the community and every individual entities in

the community. This information related to community or individual evolution will

be used in our study, too.

In addition to the information stored directly in the database, we can also collect

information about the community networks by constructing the networks based on

the information stored in the database. The Open Source Software community can

be described as a collaboration network. In these networks, the nodes are developers

and projects. There is a link between a developer and a project if the developer joins

12

the project. This network is similar to some well-studied collaboration networks

(movie actor and scientist collaboration network) because of common features, such

as the bipartite property, small-world phenomenon and high-clustering coefficient.

But the SourceForge.net community network also differs from these traditional net-

works. In those two traditional collaboration networks, the edge (link, relationship)

is persistent, which means it will never be removed from the network after it has

been added. This is not the case in the Open Source Software community, where

the edge can be removed if the developer (node) quits the project (node). Thus, the

collaboration network in OSS is based on active relationships instead of once-present

relationships found in many collaboration networks. The detachment property is

one way that makes the community network for SourceForge.net different.

Our case study about the SourceForge.net development community is based on

these three types of information. Study of this community (SourceForge.net) can

let us understand more about the Open Source Software movement. By obtaining

more insights and, we hope, discovering the mechanisms producing the topology

and evolution of the individual project and the OSS collaboration network, we may

predict the future of the OSS through modeling and simulation. Furthermore, by

studying the OSS community networks, we are able to find a method to study

similar evolving complex networks and, possibly, get insights about similar evolving

networks like the Internet and other social networks.

2.1.2 Case Study Setup

Before the discussion about the processes, we will explain the details of the

dataset, hardware and software environment of the research.

First of all, we will explain the dataset (database dumps) we have. Every month,

we downloaded the database dump that SourceForge.net provided. The database

13

dump contains the most recent image of the database at SourceForge.net. For

every single database dump, there is a full image of the database. There are over

100 relations (tables) in the data dumps provided to us. SourceForge.net cleanses

the data by removing personal information and striping out all OSTG-specific and

site functionality-specific information. We built a data warehouse comprised of

these monthly dumps, with each stored in a separate schema. Thus, each monthly

dump is a snapshot of the status of all the SourceForge.net projects at that point in

time. And by storing these database dumps together without overwriting each other

in our collaboratory, we have a complete evolution history of the SourceForge.net

community. As of November 2006, the data warehouse was almost 460 GBytes in

size, and is growing at about 25 GBytes per month. In every database dump, there

are three major types of tables:

• The tables storing the data used to support the SourceForge.net web site; for
example, the tables storing the information about user or group, etc.

• The tables storing the statistics of the whole community, including daily page
access, downloads, etc.

• The tables storing the history information of the other tables.

We hosted this collaboratory using all open source softwares. Linux and Apache

are used as the operating system and the web server, PostgreSQL, is used as the

database server. The computers are all Intel-based computers. Details about the

software and hardware environment can be found in Chapter 5.

2.2 Literature Research

Our study involves several different domains in computer science. We will discuss

the related works and our contributions, respectively.

14

2.2.1 Open Source Software Research

There are a variety of fields related to Open Source Software research, including

economics, law, social-psychology, anthropology and computer science. Although

their interests may be different from our research interests, their methods or results

may be helpful in our research. We will briefly introduce and summarize this research

in this section.

We believe that the reason for the success of the Open Source Software is due

to the complex structure and evolving properties of the community. The following

researches in social and organizational science also support this belief.

Alessandra and Alessandra [11] provided a sufficiently comprehensive account

of the contributions from current research to draw some general conclusions on the

state of understanding of the Open Source Software phenomenon and identified

directions for future research. Their report suggested that what is puzzling about

Open Source Software is not so much the fact that people freely contribute to a

good they make available to all but, rather, the complexity of its structure and its

ability to organizationally evolve over time.

Jens [61] presented results of modeling the Open Source Software production

process as a contest network, where similar vertices compete with each other and the

winner gets some rewards. They suggested several possible individual motivations

in the network: the active developers gain a reputation, and investors searching for

highly talented applicants profit from the selection mechanism of the Open Source

Software production process and finance it to receive inside information.

Moreno and Faldani [81] used complex adaptive system theory to understand

and analyze the Open Source Software community. Their paper concluded that

the Open Source Software community is distinctive because it is neither controlled

by a central authority that defines strategy and organization nor totally chaotic,

15

and it should be placed at a middle position between a planned community and a

chaotic one. Their paper presented a description of the main characteristics of the

functioning of the Open Source Software community regarding its organizational

structure and development process. The concept of complex adaptive system was

then introduced to simulate the OSS community. Using complex adaptive system

theory, they interpreted the characteristics of the Open Source community.

There are also active researches in information science about OSS. Their focus

is on the success of the information systems, often referencing the collaboration

networks in the OSS community.

Information systems’ success is one of the most widely used dependent variables

in information systems research. Kevin, Hala and James [68] identified a range of

measures that can be used to assess the success of Open Source Software projects.

They identified measures based on a review of the literature, a consideration of the

Open Source Software development process and an analysis of the opinions of Open

Source Software developers. For each measure, they also provided examples of how

they might be used in a study of Open Source Software development.

Software engineering is another research field related to OSS research. The

following research focused on the study of the continuous design/redesign property

of the OSS.

Open Source Software is widely used in supporting critical applications and

infrastructure, including the Internet and World Wide Web themselves. The deep

engagement of users and developers, coupled with the openness of systems, lead to

community-based system design and re-design activities that are continuous. Gasser

and Scacchi [52] presented their research into continuous, open, community-based

design practices in OSS. They discussed the importance of community knowledge to

software development and the construction procedure of community knowledge by

16

studying their qualitative empirical studies of large repositories of problem-report

data, primarily from the Mozilla project.

Scacchi [93] concluded that OSS projects rely on electronic communication me-

dia, virtual project management and version management mechanisms to coordinate

globally dispersed software development efforts. He observed that OSS projects

co-evolve with their development communities that reinvent and transfer software

technologies as part of their community and project team-building process.

These researches all confirmed the importance of complex structures and evolv-

ing properties in the OSS community. The limitations of their research are that their

studies are all based on non-automatic methods (e.g., statistical analysis) only. Since

the data in the OSS community is huge, incomplete and noisy, non-automatic meth-

ods will become intractable to apply unaided. So we propose to develop and apply

a complete cyclic methodology, including automatic and non-automatic processes,

to help analyze and understand the OSS movement.

2.2.2 Data Mining

Data mining is a new and promising method recently used to study the OSS-

related research.

Chawla, Arunasalam and Davis [30] reported their results of mining data ac-

quired from SourceForge.net, the largest Open Source Software hosting web site. In

the process, they introduced Association Rules Network (ARN), a (hyper-)graphical

model to represent a special class of association rules. Using ARNs, they discovered

important relationships between the attributes of successful Open Source Software

projects. They verified and validated those relationships using factor analysis, a

classical statistical technique related to Singular Value Decomposition (SVD). This

paper focused on the application of association rules method in the research of OSS.

17

Jensen and Scacchi [62] combined techniques from text analysis, link analysis

and of repository usage and update patterns to discover software processes from

OSS development web repositories. They believed that this discovery could help

with the understanding of the process techniques that have led to their success.

However, they used only classic feature-based data mining methods in the research,

which is inadequate in OSS research because of the lack of evolution information in

the OSS community.

As a data analysis technique, data mining was also used in social network re-

search. The following are two examples of this kind of research.

Jensen and Neville [63] proposed the cross-disciplinary efforts and joint research

efforts in machine learning, data mining and social network analysis. They argued

that older data mining algorithms were developed to analyze propositional data,

which are individual records that are assumed to be statistically independent to

each other. But recent data mining algorithms focused on relational data where the

relations among entities are central. Network data is typically relational data. So

they concluded that such joint research in data mining and social network analysis

would be very useful, especially in relational data.

Kempe, Kleinberg and Tardos [67] studied the models for the processes by which

ideas and influence propagate through a social network using data mining tech-

niques. They used clustering techniques in data mining to aid their algorithm to

discover the most influential nodes in the social network.

In these studies, only feature-based data mining techniques are involved. We

will study not only the feature-based data mining techniques, but also a novel data-

mining method based on statistical hypothesis testing in our study.

18

2.2.3 Network Analysis

Topology analysis is a method that can be used to understand the evolving com-

plex networks [78, 2, 40]. It can also be used to understand the OSS phenomenon.

This study also tried to understand the OSS phenomenon by studying the commu-

nity as a collaboration network where every user and project can be a single node

in the network.

Madey and Gao [48] analyzed the empirical data they collected from Source-

Forge to obtain statistics and topological information of the Open Source Software

developer collaboration network. They extracted the parameters of the evolution

by inspecting the network over time. They also generated a model that depicts

the evolution of this collaboration network. Degree distribution, diameter and clus-

tering coefficient are frequent attributes used to describe a network and have been

used since the beginning of small world network research [12]. They also used these

attributes to characterize the empirical data they collected from SourceForge, while

other research tended to look at the network as a single snapshot in its evolution,

which means they all based their observations on network, without respect to time.

They were able to inspect the network with consideration of time, using the empir-

ical data collected over more than two years.

Xu, Madey and Gao [104] presented the results of docking [26] a Repast [58]

simulation and a Java/Swarm [56] simulation of four social network models of the

Open Source Software community. They collected data about the SourceForge Open

Source Software developer site for more than two years. Developer membership in

projects was used to model the social network of developers. Social networks based

on random graphs, preferential attachment, preference attachment with constant

fitness, and preferential attachment with dynamic fitness were modeled and com-

pared to collected data. They described how properties of social networks such as

19

degree distribution, diameter and clustering coefficient were used to dock Repast

and Swarm simulations of four social network models. The simulations grew “ar-

tificial societies” representing the SourceForge developer/project community. As a

byproduct of the docking experiment, they provided observations on the advantages

and disadvantages of the two toolkits for modeling such systems.

Some previous analyses studied the OSS community based on the global topology

of the collaboration network. This method was not capable of revealing behaviors

of a single object such as a user or a project. Our study extended the understanding

of OSS to the study of individual behaviors and introduced a new measure set in

the study of the OSS community.

2.2.4 Computer Simulation

Computer simulation, which integrates scientific visualization, mathematical

modeling, knowledge-based design aids, intelligent user interface and many other

techniques for creating platforms for trying out new ideas and doing research, was

first developed in 1953 (by Enrico Fermi and his colleagues) and has gained increas-

ing attention ever since.

Modeling is always one of the most important parts of a simulation. Mathemati-

cal methods (ODE, PDE, statistical approaches) are traditional modeling methods,

but they are not sufficient enough in increasingly complex system simulations. These

methods can describe macroscopic properties of a system, but fail to explain the ori-

gin of those properties. These methods cannot be easily extrapolated into situations

where the assumptions behind the equations no longer hold. Also, these methods are

inadequate in handling discontinuous systems and heterogeneity in populations [53].

Agent-based modeling can complement and enhance these traditional approaches.

An agent is a self-contained entity with internal behavior and attributes. The typ-

20

ical components of an agent include internal data representations and methods of

modifying their internal data and environment.

Axelrod has done a good deal of work in simulation of social networks [14, 91].

Part of his research [15] included the replications of eight popular simulation models

using Swarm (a simulation toolkit that will be discussed later in this chapter) and

comparing the results to the original. These models include Conway’s game of

life [89], Schelling’s tipping model [94], Axelrod’s evolution of prisoners’ dilemma

strategies [13], March’s organizational code [77] and Riolo’s prisoners’ dilemma tag

model [92]. These models are selected for their simplicity, diversity and reasonable

run times. As a result, Axelrod concluded, “In most cases, the results were so

close that we probably attained distributional equivalence for all the models.” In

his paper, he also discussed the docking of simulation. (Docking is an alignment

process and experiment for verifying simulations. detailed definition can be found in

[15].) We also did the docking for our simulation, which is discussed in my master

thesis [45].

Prietula, Carley and Gasser [90] discussed the importance of computational mod-

eling and simulation in organizational design, analysis and reengineering, especially

in large-scale transnational organizations. They also discussed the existing methods

in modeling and simulation of social networks such as organizations.

Previous research involving the simulation of complex networks is based on snap-

shots [7, 101, 86], which focused on the topology of the network at a given point

in time. Since we collected data over a multiple-year period, we were able to look

into the evolution of the network. This helped us understand the evolution of the

network topology, the development patterns of any single object in the network and

the impact of the interaction among objects on the evolution of the overall net-

work system. Preliminary reports on this research were published in proceedings of

21

NAACSOS 2003 [48, 49].

2.2.5 Research Collaboratory

Problems of geographic separation are especially present in large research projects.

The time and cost for traveling, the difficulties in keeping contact with other sci-

entists, the control of experimental apparatus, the distribution of information, and

the large number of participants in a research project are just a few of the issues

scientists are faced with.

Therefore, collaboratories have been put into operation in response to these

concerns and restrictions. However, the development and implementation prove to

be not so inexpensive. From 1992 to 2000, financial budgets for scientific research

and development of collaboratories ranged from US$447,000 to US$10,890,000 and

the total use ranged from 17 to 215 users per collaboratory [96]. Particularly higher

costs occurred when software packages were not available for purchase and direct

integration into the collaboratory, or when requirements and expectations were not

met.

Chin and Lansing [65] state that the research and development of scientific col-

laboratories had, thus far, a tool-centric approach. The main goal was to provide

tools for shared access and manipulation of specific software systems or scientific

instruments. Such an emphasis on tools was necessary in the early development

years of scientific collaboratories because of the lack of basic collaboration tools

(e.g., text chat, synchronous audio or videoconferencing) to support rudimentary

levels of communication and interaction. Today, however, such tools are available

in off-the-shelf software packages such as Microsoft NetMeeting, IBM Lotus Same-

time, Mbone Videoconferencing [65]. Therefore, the design of collaboratories may

now move beyond developing general communication mechanisms to evaluating and

22

supporting the very nature of collaboration in the scientific context [65].

Because of the gigantic volume of information involved in the bioinformation

and genome researches, research collaboratories supporting these researches are the

most developed research collaboratories. There are many successful research collab-

oratories for biotechnology researches. NCBI 1 is one of them. Established in 1988

as a national resource for molecular biology information, NCBI hosts databases and

other computational resources like BLAST to support research of analyzing genome

data and disseminates biomedical information. Other successful collaboratories in-

clude FlyBase 2, VectorBase 3, EMBL 4 and GenomeNet 5.

Our collaboratory is one of the pioneers in supporting software-developing re-

search. This kind of collaboratory is different from the collaboratory supporting

bioinformation research in the following aspects:

• Data repository: Unlike the genome information, there is a lot of temporal in-
formation (e.g., monthly group statistics) in the software-developing research.
So we need to design a schema to better facilitate temporal-related query in
the database.

• Computational tools: The major tasks in the repositories of bioinformation
are about browsing the sequences and searching for special patterns in the
sequences. So powerful indexing, searching and presenting tools are most im-
portant. For our repositories, we are more interested in discovering potential
rules or patterns underneath the data set, so powerful data mining or knowl-
edge discovery tools are most important.

1http://www.ncbi.nlm.nih.gov.
2http://flybase.bio.indiana.edu.
3http://www.vectorbase.org.
4http://www.ebi.ac.uk/embl.
5http://www.genome.jp.

23

CHAPTER 3

DATA MINING

Computational discovery usually involves large amounts of data and fast data

accumulation. To uncover potential patterns, relationships or correlations in these

data, we need support from automatic methods like data mining 1.

Data mining can be defined as “a nontrivial extraction of implicit, previously

unknown, and potentially useful information from data” [44]. Data mining involves

the process of analyzing data, sorting through large amounts of data, and finding

interesting patterns or relationships; e.g., picking out association rules from a large

data set. A simple example of data mining is the recommendation system used

by Amazon.com. Basically, the system tracks every pageview and every purchase

of the users, generates shopping pattern for every user and clusters users based

on their shopping patterns. Then the system gives recommendations based on the

shopping patterns of similar users. For example, if a user bought a whole set of

Harry Potter books, the system will recommend Narnia to the user next time, since

other users sharing the similar shopping patterns bought Narnia, too. In this case,

data mining is used to discovery previously unknown information about the user.

Another widely used (though hypothetical) example is that of a very large North

American chain of supermarkets. Through intensive analysis of the transactions

and the goods bought over a period of time, analysts found that beer and diapers

1Materials in this chapter are partially reported in [51, 32].

24

were often bought together. Though explaining this interrelation might be difficult,

taking advantage of it, on the other hand, should not be hard (e.g., placing the

high-profit diapers next to the high-profit beers). This technique is often referred

to as Market Basket Analysis.

The study of evolving complex networks often involves sorting through large

amounts of data and picking out pieces of relative associations or interesting pat-

terns, so we used data mining in the computational discovery of evolving complex

networks.

3.1 Data Mining Process

Usually, preprocessing the data is needed before mining the data. Since data

mining processes large amounts of data, unrelated, corrupted or noisy data may

cause skewed or even error results. Preprocessing the data will guarantee that the

dataset is unambiguous, correct, and complete. The data preprocessing can be

further divided into data preparation and data purging, which will be discussed

later, respectively.

After that, we will discuss feature selection. Feature selection is another neces-

sary step before mining to improve the efficiency and reduce the complexity of the

mining procedure.

And finally, we will apply the data mining algorithms on the data set. The proce-

dures of data mining are illustrated in Figure 3.1 , which includes data preparation,

data purging, feature selection and algorithm application.

3.1.1 Data Preparation

A good set of data is a prerequisite for producing effective data mining of any

kind. However, since different research focuses on different aspects of the data

set, even different data sets, data preparation is used to prepare the raw data set

25

Raw data

Relevant data

Data Purging

Relevant data

Data Purging

Feature SelectionFeature Selection

Algorithm applicationAlgorithm application

Data IntegrationData Integration

Data Preparation

Database

Data Preparation

Database

Figure 3.1. Data Mining Procedures

26

according to the specific research. Data preparation can be accomplished in three

steps:

1. Data discovery consists of discovering and actually locating the data to be
used.

2. Data characterization describes the data in ways useful to the user.

3. Data set assembly builds a personalized representation for the incoming data
so that it can be actually mined correctly and efficiently.

Data discovery is normally a manual procedure, identifying the topic needed

to be studied and then locating the related data. The original data may be a

transaction processing system fed by an ATM machine or a POS terminal in a

store. It may be some other record-capturing transactions or events. For many

reasons, such as legal issues, data format, connectivity and so on, the raw data

might not be readily accessible. So after locating the raw data, we also need to deal

with some data access issues before we can proceed to next step in data preparation.

The next step is data characterization. Most raw data used in data mining is

stored in some structure or system to facilitate special usage, such as for transaction

systems or activity logs. Unfortunately, these structures or systems are not designed

to facilitate data mining tasks, so normally, restructuring, filtering and aggregating

are needed to prepare the data set to support data mining. Data characterization

is used to fulfill this task.

Most data mining algorithms always require the data set to be assembled in

the form of a single “flat table,” which is represented by row and column. In

the “flat table,” the row represents the records and the column represents features

for the records. This structure is different from the multiple-level structure of a

database, a data warehouse or a file system hierarchy where, normally, the raw data

is stored. The major task of the assembly step is to transform the raw data set,

the data set generated in data characterization and possible external data source

27

into the simple “flat table” for the data mining. These transformations may include

feature extraction, explanatory structure generation, data enhancement and data

enrichment. By these transformations, we thus generate the “flat table” required

by the data mining.

Most of the tasks in data preparation require domain knowledge. With proper

domain knowledge, we can extract related features and even invent more useful

features, which will benefit the data mining. It is difficult to fully automate the

data preparation, but we can use good methodology to guide the preparation to

achieve a more accurate and complete data set. We used a semi-automatic method

– schema-driven data preparation – which uses the data schema to guide the data

preparation. By describing the problem we want to solve or the topic we want to

study, we can get the original schema for the “flat table.” And then by repeatedly

comparing the schema with the schemas of the raw data, we can define the final

schema for the “flat table.” And using the schema and the schemas for the raw

data, we can do the data preparation accordingly.

The focus of data preparation is entirely on how to get the data and to preprocess

the data to fit the purpose of data mining.

3.1.2 Data Purging

Inconsistent or polluted data can defeat any techniques until the inconsistency

or pollution is discovered and corrected. Data purging is trying to discover and

correct these two problems before we apply the data mining algorithm on the data

set.

The first problem is data inconsistency. This problem is due to the fact that dif-

ferent things may be represented by the same name in different data sections/tables,

and even the same thing may be represented by different names in different sec-

28

tions/tables. The perspective with which a data section/table of variables is built

has a huge effect on what is intended by the labels attached to the data. Each data

section/table is built for a specific purpose, and mostly it is different from the pur-

poses of other data sections/tables. Variable content, however labeled, is defined by

the purpose of the data section/table of which it is a part. The clearest illustration

of this type of inconsistency comes from considering the definition of a user from the

perspective of different data sections/tables. To a software development community,

a user is anyone who has made a contribution to the community, then the user will

have a record of activity in the activity table. On the other hand, the personnel

table regards a user as anyone who has a user ID. However, there are anonymous

users, who do not have a user ID, but who have a record in the activity table. So

these two tables will give different answers for the query such as “How many users

are there?”

Another problem is data pollution. Data pollution can occur for a variety of

reasons. One of the most common is when a user attempts to expand a system

beyond its originally intended functionality. This problem is especially significant

for evolving systems, because we need to update the description of data storage fre-

quently to accommodate new data or features during system evolution. As long as

the system is evolving, we need to consistently update the data storage and the sys-

tem functionality, which will generate a lot of inaccurate or misleading information.

Another source can be data copying. Data format can be incorrectly specified and

the content from one field may be accidentally transposed into another. One such

case involved a file specified as a comma-delimited file. Unfortunately, if one of the

fields occasionally contained commas (the delimiter), the field would be imported

into offset fields to introduce errors into the data. Since only a few of the fields might

contain embedded commas, visual inspection of parts of many thousands of records

29

can reveal no problem. Tracking down this kind of problem took considerable time

and effort. Human error is another source of data pollution. While data fields are

often optimistically included to capture what could be very valuable information,

they can be blank, incomplete, or just plain inaccurate.

Also, for data sets from an evolving system, not only the content of the data set

is changing from time to time, but also the schema of the data set. Without data

purging, there will be a lot of inconsistency and pollution in the data set. The actual

process of data purging involves removing typos, or validating and correcting values

against a known list of entities. This process will also be mainly done manually and

may be different for different data mining tasks.

3.1.3 Feature Selection

As we discussed before, a dataset in a “flat table” can be measured in two

dimensions, the number of features F and the number of records R. Both F and R

can be enormously large. This enormity may cause serious problems to many data

mining systems.

Feature selection is one of the long-existing methods that deal with this problem.

Its objective is to select a minimal subset of features according to some reasonable

criteria so that the original task can be achieved equally well, if not better. By

choosing a minimal subset of features, irrelevant and redundant features can be

removed and, in a sense, the data set is a better representative of the whole data

set. If necessary, the reduction of F can also give rise to the reduction of R by

eliminating duplicates, and normally, simpler data can lead to more concise results

and their better comprehensibility.

The problems of feature selection can be examined in many perspectives. The

four major ones are:

1. How should we search for the “best” features?

30

2. What should be used to determine best features, or what should be the criteria
for evaluation?

3. How should new features be generated for selection, adding or deleting one
feature to the existing subset or changing a subset of features? (That is,
feature generation is conducted sequentially or in parallel.)

4. How do applications determine feature selection? Applications have different
requirements in terms of time, results, etc.

Feature selection is considered as a problem of searching for an optimal subset,

which can usually be dealt with by some traversal algorithm. Common feature

selection algorithms can also be reviewed in the way that features are evaluated,

mainly univariate and multivariate evaluation. In the course of feature selection,

univariate evaluation considers adding the best feature among the unchosen features

to the set of chosen features, or deleting the least important features from the set

of chosen features; multivariate evaluation considers a subset of features instead of

a single feature in searching for the best subset. A feature selection component can

be used as a preprocessor or a performance booster for a data mining process.

3.1.4 Algorithm Application

The final step for data mining processing is the actual application of the data

mining algorithm. Different data mining algorithms can be used to deal with dif-

ferent data mining requests. Normally, association [4], clustering [60] and classifica-

tion [41] are the most popular data mining tasks.

3.2 Case Study

We have been collecting monthly database dumps from SourceForge.net since

February 2005, which includes information about users, projects and various activ-

ities in the community. In the rest of this section, we will discuss the data mining

process we applied on the SourceForge.net data set. The goal of the data min-

ing procedure in our study is to define the “popularity” of a project, identify the

31

TABLE 3.1

POPULARITY FEATURES

Feature Description

Developers Number of core developers in the group

Downloads Number of downloads

Site views Number of views of the website for the group

Subdomain views Number of views of the subdomain for the group

Page views Number of views of pages for the group

most important feature(s) for a project and, we hope, find a good prediction of the

“popularity” of a project.

3.2.1 Data Preparation

Data preparation is the first step in data mining. The major tasks in this step are

to identify and collect features we want to inspect. These features include statistics

describing the popularity of a project and statistics describing the user activities

in a project. We also introduced new features that can describe the network char-

acteristics of the community networks. The following three sets of features were

inspected in our study.

The first set of features describe the popularity of a project, which are listed in

Table 3.1. These features are the statistics stored in table stats project all in every

schema (each schema is a monthly database dump from SourceForge.net).

The second set of features describe the activities that occurred in a project,

which are listed in Table 3.2. There are a total of 21 possible activities in a project;

the original raw data about these features are stored in the tables: artifact, forum,

32

project history, frs release, doc data and people job.

The third set of features is introduced to describe the network characteristics

of a project in the project network, which are listed in Table 3.3. These fea-

tures can be generated from the project network constructed from the original table

“user project”.

These features are the ones used in the data mining procedure. We used different

unsupervised data mining methods to study the SourceForge.net community. Un-

supervised data mining is a method to find a categorization fitting the observations.

It is distinguished from supervised learning by the fact that there are no predefined

output categories. The data set used in unsupervised data mining has only input

features. To evaluate the result of unsupervised data mining, usually we will gener-

ate some evaluation criteria. In this study, we used the first set of features to define

the criteria used in evaluation and used the second and third sets of features as the

input features in the data mining.

After identifying the features, we collected these features. The first set of features

was collected by direct SQL queries in the repository database. Until September

2006, there are 17 continuous schemas existing in our database. Every schema stands

for a single monthly snapshot from SourceForge.net database since February 2005

and table stats project all is in all the schemas, each with a size of over 120,000

records.

The second set of features describe the activities in the project. We calculated

the summary of all activities in the project monthly. Since there are different kinds

of users existing in the community and the same activity taken by different kinds of

users has a different influence on the project, we calculated the activity summary as

a weighted summary, according to the user involved in the activity. We categorized

the users into five categories: administrator, core developer, co-developer, active

33

TABLE 3.2

ACTIVITY FEATURES

Feature Description

File releases Number of file releases for the group

New message Number of the new messages posted in the group forum

Followup message Number of the followup messages posted in the group forum

Bug submitted Number of bugs submitted for development

Bug assigned Number of bugs assigned to developer

Support submitted Number of support requests submitted

Support assigned Number of support requests assigned

Feature submitted Number of feature requests submitted

Feature assigned Number of feature requests assigned

Patches submitted Number of patches submitted

Patches assigned Number of patches assigned

Artifacts submitted Number of other artifacts submitted

Artifacts assigned Number of other artifacts assigned

Todo submitted Number of todo items submitted

Todo assigned Number of todo items assigned

Tasks generated Number of project tasks generated

Tasks assigned Number of project tasks assigned

Tasks modified Number of project tasks modified

Project modified Number of project modifications

Document created Number of documents created

Job assigned Number of jobs assigned

34

TABLE 3.3

NETWORK FEATURES

Feature Description

1st degree First order of degree of a project

2nd degree Second order of degree of a project

Betweenness Betweenness of a project in the project network

Closeness Closeness of a project in the project network

user and lurker. These categories are explained as:

• Administrator is the category of users with administration privileges on the
project. These users can be identified by checking the admin flags field in
the user group table.

• Core developer is the category of users with CVS privileges, but without ad-
ministration privileges on the project. These users can be identified by check-
ing both the admin flags field and the grantcvs field in the user group table.

• Co-developer is the category of users contributing to the project, but not ad-
ministrators and core developers. All the co-developers have assigned tasks,
including bugs, features, patches, supports, tasks, todos, jobs and other arti-
facts. They can be identified by querying the joint table of all activity tables,
like artifact, forum, people job, file releases, project tasks and doc data.

• Active user is the category of users having activities on the project, but not
belonging to the first three categories. The most popular activities of these
users are new forum message, followup forum message, bug submitted,
support submitted, artifacts submitted and feature submitted. They can
also be identified by querying the joint table we generated for identifying co-
developers.

• Lurker is the category of users solely registering on the project without tak-
ing any activities during the inspected time frame. Majority of users in the
SourceForge.net belong to this category. They can be identified by comparing
the joint table we generated before with the user project table, which records
all the registered user in the community.

We also illustrated the flow chart of the user categorizing procedure in Figure 3.2.

By using this procedure, we are able to categorize the users into these five categories.

35

We only inspected users existing in both user project table and user project act

table. This means that only users having at least one activity will be considered.

Our database schemas are month by month; every month there are a certain number

of users who do not have any activity. These users can be administrator, core devel-

oper, co-developer or active user (Lurkers do not have any activity, by definition).

Since our data mining is focused on user activities, introducing these users without

any activities will only introduce noise into the data mining. Moreover, as we will

explain in the next chapter, in any month, no more than 15% of the users have

activities, so removing these users without any activities can significantly improve

the data mining performance. Thus, by removing the users without any activities,

we can both increase the accuracy and reduce the complexity of the data mining

procedure.

Figure 3.3 shows the active developer role distribution in the data set of June

2006. Since role is only unique given both user and project, the role distribution is

based on every user-project pair instead of user only. For example, if user ui is an

administrator in project pi and an active user in project pj, ui will be counted twice

in the distribution. “Lurker” is not included in the distribution, although it is the

largest part of the developer community. The relation between the lurker and the

whole developer community is described in additional details in the next chapter.

After determining the user categories, we used these categories to weight the

activities. Certain activities, like file release and project modified, can only be

taken by an administrator, so we will not weight these activities. For the other

activities, we will assign the weight according to the user category of the user taking

the activity. Weights are used to differentiate the contribution of the activities by

different user categories. We assigned weights for administrator, core developer,

co-developer and active user as 4, 3, 2, 1. So given the activity as acti, the weight as

36

Admin_flags?

Administrator Core developer Co-developer Active user Lurker

Grantcvs?

Yes

No

Yes

User_group
table

Artifact
table

Forum
table

People_job
table

Project_task
table

Doc_data
table

UNION

Other
tables

User_project_act
table

Assigned?

Activities?

Yes

No

No

Yes

No

Figure 3.2. User Categorization Procedure

37

21%

8%

3%

67%

Active User Role Distribution

administrator
core developer
co−developer
active user

Figure 3.3. Active Developer Role Distribution

38

ωi, the corresponding activity feature (every activity feature represents an activity

category listed in 3.2), AF for a project can be calculated as

AF =
n∑

i=1

ωi × acti (3.1)

Thus, we can collect the second set of features – activity features – by applying this

equation on every feature category.

We also introduced some novel features into the data mining, which describe the

network characteristics of community networks.

The SourceForge.net community includes two major entities. One entity is the

developer or user in the community. The other entity is the project existing in the

OSS development community. Using different prospectives, the community can be

described as three different networks.

1. Bipartite network: The OSS community can be presented as a graph G(V, E),
where V = Vp + Vu, Vp = {vp|vp is a project in the community} and
Vu = {vu|vu is a user in the community};
E = {e|e is an edge between vp and vu, when user vu participates in project vp}.

2. User network: The OSS community can also be presented as a graph G(V, E, W),
where
V = {v|v is a user in the community},
E = {e|e is an edge of (v1, v2),
when v1 and v2 participate in one or more common project}

3. Project network: The OSS community can also be presented as the duel net-
work of part (2).

The project network and user network can be transformed from the bipartite net-

work as shown in Figure 3.4. More detailed explanation of these networks and

transformations can be found in the next chapter.

The last set of features are the network features. These features are all based on

the project network, since our focus is the networking characteristics of the projects.

The features we introduced are focused on the network measures of the project in

the project network, including first and second degree, betweenness and closeness.

39

Figure 3.4. Network Transformation (adapted from Newman, Strogatz and Watts,
2001)

First degree FDi is the number of projects that are only one link away from project

i in the project network, and second degree SDi is the number of projects that are

exactly two links away from project i in the project network. Note that FDi and

SDi are mutually exclusive by definition. Definitions of betweenness and closeness

can be found in Chapter 4.

We collected this set of network features by inspecting the project network con-

structed from the original “user group” table in every schema.

3.2.2 Data Purging

As we described in the previous section, we need to clean the data to improve

the accuracy and efficiency of the data mining procedure.

There are more than 17,000 active projects existing in the SourceForge.net com-

munity, according to the our database dump of September 2006. Some of the

projects are newly generated, some of the projects are very active and some of

40

the projects have limited activities. Meanwhile there are some projects that do not

have a single activity for a certain month, and we call these “inactive project” of the

month. Since project activity is the major focus we are inspecting in the projects,

we will remove those inactive projects. The numbers of inactive projects are differ-

ent from month to month. However, in the dataset we have, the majority of the

projects are active; for example, only 594 out of 108,947 projects were inactive in

December 2005.

SourceForge.net categorized the projects into 19 categories and the populations

of these categories vary considerably (for example, category “Internet” has 24520

projects while category “Sociology” has just 390 projects). By removing the inactive

projects, we may introduce bias into the dataset by changing the proportionate

category allocation of the projects, which may introduce error into the data mining.

In order to avoid this, we used stratified sampling to sample the projects, according

to the original proportionate category allocation.

By removing the “inactive projects” and stratified sampling, we cleaned the data

set for the next step in the data mining procedure.

3.2.3 Feature selection

As we explained in the previous section, we will use three sets of features in

the data mining procedure. According to the usage in the data mining procedure,

we group them into two groups. The first group is the first set of features. These

features are the popularity features, which are used to define the target categories

of the project – “popular” or “unpopular.” This group of features includes five

features. The second group is the second and the third sets of features. These

features are the input features in the data mining procedure. This group of features

includes 25 features from both the second and the third sets of features. We will

41

apply feature selection on both groups, respectively.

The algorithm we used in the feature selection is the NMF (Non-Negative Matrix

Factorization) method [71, 70]. NMF is a method used in multivariate analysis and

linear algebra where a matrix X, is factorized into (usually) two matrices W and H

nmf(X) → WH (3.2)

Factorization of matrices is generally non-unique, and a number of different methods

of doing so have been developed (e.g., principal component analysis and singular

value decomposition) by incorporating different constraints. Non-negative matrix

factorization differs from these methods in that it enforces the constraint that all

three matrices must be non-negative; i.e., all elements must be equal to or greater

than zero. This constraint is complied by many real-world problems like the Source-

Forge.net community, where negative values for a feature are not possible. By se-

lecting the number of columns of W and the number of rows of H in NMF, the

product WH will become an approximation to X. This method is used in data

mining to reduce the dimension of the data set (removing dependent or insignificant

features).

In our case study, matrix X(n, m) is the original dataset, where the rows repre-

sent the projects (n projects) and the columns represent the features (m features).

By factorizing into W (n, l) and H(l, m), where l is the number of independent and

significant features, the original dataset can be approximated as the product of

WH. Matrix W is the dataset with a reduced feature set and matrix H is the

weight matrix. Every row (project) in X can be approximated by the product of

the corresponding row in W and the corresponding column in H. By using NMF,

we can reduce the feature size from m to l.

By using NMF feature selection, we reduce the size of the feature set from 25

to 11, which significantly improves the program performance without sacrificing the

42

TABLE 3.4

SELECTED FEATURES BY USING THE FEATURE SELECTION. ACTIVITY

FEATURES AND NETWORK FEATURES ARE THE MOST SIGNIFICANT

FEATURES.

Feature

file releases

support submitted

feature submitted

followup message

tasks assigned

tasks submitted

tasks modified

1st degree

2nd degree

Betweenness

Closeness

accuracy. The most significant attributes include file releases, support submitted,

task-related activities and all the network features listed in Table 3.4.

3.2.4 Algorithm application

After data preparation, data purging and feature selection, we can start to apply

the data mining algorithms. In the previous sections, we already found a method

to identify the popular projects and found the independent and significant features

sets for every project. In this section, we will use data mining algorithm to predict

the popularity of a project based on the selected features in Table 3.4. Since the

average active lifespan (from the creation time of the project to the first time there

43

is no activity in the project) of a project in SourceForge.net is around six months,

we inspected the projects on this lifespan, predicting the popularity of a project

based on the features six months before. For example, we can inspect the feature

set of March 2005 to predict the popularity of the same project in September 2005.

The first task is using the first group of features to identify popular projects

and unpopular projects, which is used to evaluate the output of the data mining

algorithms. Because only the minority of the project population will be popular

projects, we used the outlier detection method to find the popular projects, based

on the first group of features.

Outliers are the rare or atypical data that do not comply with the general behav-

ior or model of the data. Outlier detection is widely used in fraud detection, network

intrusion detection and weather prediction. Many outlier detection algorithms are

byproducts of clustering [3]. For these, outliers are objects that do not belong to

any cluster. We used the outlier detection algorithm using k − d trees [20]. By

using this algorithm, we get 1911 popular projects out of more than 160,000 total

projects.

To get the prediction we wanted, we applied multiple data mining algorithms on

the data set, including unsupervised feature-based data mining and unsupervised

distribution-based data mining.

Unsupervised feature-based data mining [39, 79, 99], which is usually called

clustering, is the first algorithm we applied. The clustering algorithm we chose is

the K-means algorithm [59]. The K-means algorithm is an algorithm to cluster

objects based on attributes into K partitions. It is a variant of the expectation-

maximization algorithm in which the goal is to determine the K means of data

generated from gaussian distributions. It assumes that the object attributes form a

44

TABLE 3.5

K-MEANS CLUSTERING RESULT. SINCE WE PRESET THE K AS 10,

THERE ARE 10 CLUSTERS IN THE RESULT.

Cluster ID Size

1 6201

2 98

3 64824

4 2

5 4

6 29724

7 4

8 10

9 9

10 84

total 100960

vector space. It tries to minimize total intra-cluster variance, or, the function

V =

k∑

i=1

∑

j∈Si

|xj − µi|2 (3.3)

where there are k clusters Si, i = 1, 2, ..., k and µi is the centroid or mean point of

all the points xj ∈ Si.

We picked this algorithm since it converges extremely quickly in practice. By

giving k as 10, the result is a cluster tree and there are 10 leaf clusters, which

represent the fine-grained clusters of the projects. The size of these leaf clusters are

listed in Table 3.5.

From these clusters, we can summarize the representative feature sets of different

project clusters and generate the rules to describe these clusters. Here are two of

45

the rules for the two biggest clusters:

1. if file release in [1.050, 20.040] and followup message in [1.238, 211.590] and
1st degree in [1.385, 9.908] then 6

2. if 2nd degree in [20.040, 39.030] and followup message in [1.238, 211.590] and
betweenness in [2.35e-04, 2.44e-04] then 3

Where 3, 6 are cluster IDs as in Table 3.5.

To evaluate the correctness of these rules, we compared the clustering results with

the clusters (popular and unpopular) we got from the previous step. We calculated

the values of support and confidence for these rules. For the previous sample rules,

the support for rule 1 is 0.995 and confidence is 0.58; and the support for rule 2 is

0.112 and confidence is 1. After evaluation, we found no matter which type (popular

or unpopular) we assigned for those clusters, either the support or the confidence

would fall below reasonable thresholds as we explained for sample rule 1 (cluster

6) and rule 2 (cluster 3). The predictions generated by unsupervised feature-based

data mining are not accurate statistically.

In addition to using feature-based clustering in classic data mining, we also

applied another novel algorithm [31] to clustering the data set – clustering with a

statistical hypothesis test.

Unlike a distance metric that determines how close the entities are in an N-

dimensional space, a statistical hypothesis test compares the entities to determine

where they are similar, based on the similarity of underlying distribution of their

feature set. For our analysis, we assume that each entity has an underlying distribu-

tion of the feature set; however, this distribution is not known a priori. Therefore,

the task of determining the cluster of the entity is best done by making as few

assumptions as possible on the underlying distributions for each entity, while still

being able to determine if an entity does or does not have the same feature dis-

tribution as another entity. The non-parametric test we use for analyzing entities

46

(projects) in Open Source Software is Fisher’s contingency-table test for variables

with more than two categories [43]; however, our algorithm is independent of the

actual statistical test so other more appropriate non-parametric tests may be used

for different data sets.

The Fisher’s contingency-table test is defined as:

Given two independent samples (S1 and S2) of univariate measurements, the first

sample with n1 random variables and the second sample with n2 variables, where

n1 is not necessarily equal to n2, each random variable in each sample is placed into

one of C possible categories. The null and alternative hypotheses become:

• H0: The distributions of S1 and S2 do not differ.

• HA: The distributions S1 and S2 differ.

In a statistical hypothesis test, a significant result is interpreted as the null hy-

pothesis is rejected and the alternative hypothesis is accepted; while a non-significant

result indicates the null hypothesis is not rejected. This leads very naturally into

an algorithm for clustering that is based on unequivalence of data instead of equiv-

alence; in particular, if the null hypothesis is rejected, then two samples cannot be

from the same underlying distribution (with some level of confidence); therefore,

those samples cannot be the same social position, so they are put into separate clus-

ters. So the clustering procedure in our algorithm works like this. We do a pair-wise

statistical test between every pair of entities. We separate all of the entities that

are different, and we are left with a set of entities where we could not reject the

null hypothesis and that set them becoming one cluster. We continue this pair-wise

comparison process with the remaining unclustered entities; i.e., the entities that

got rejected or excluded from a cluster, until all of the entities have been placed into

a cluster. The pseudo code for the algorithm is given below.

While (still unclustered entities)

47

Put all unclustered entities into one cluster

While (some entities not yet pairwise compared)

A = Pick entity from cluster

For each other entity, B, in cluster not yet compared to A

Run statistical test on A and B

If significant result

Remove B from cluster

In the worst case, if each entity gets put into its own cluster, then each entity

will be pair-wise tested with each other entity, resulting in O(n2) computational

complexity. Also, the confidence level in the statistical hypothesis test is set at

α = 0.95.

For our study, we found that counts for individual activities are not a good

prediction for the popularity of the project in six months. By using the statistical

test in clustering, we inspected the mutual relationships between these activities

instead of any single activity.

By applying the algorithm, we got the cluster as in Table 3.6. After evaluating

using the same method in the previous study, we can associate cluster 1 and cluster 2

to “unpopular” project in six months, and associate cluster 3 to “popular” project in

six months. We called the rules used to define cluster 1 and cluster 2 as “unpopular”

rules, and the rules used to define cluster 3 as “popular” rules. These rules have

much better statistics than the rules generated in the previous study. The support

for the “unpopular” rules is 0.964 and the confidence for the “unpopular” rules

is 0.97. The support for the “popular” rules is 0.971 and the confidence for the

“popular” rules is 0.916.

We demonstrated two sample activity distributions in Figure 3.5 to have an

48

TABLE 3.6

CLUSTERING RESULT USING THE STATISTICAL HYPOTHESIS TEST

BASED CLUSTERING.

Cluster ID Size

1 89709

2 9191

3 2060

total 100960

intuitive look at the results of the clustering. There are two figures presenting

activity distributions for two projects. The left figure represents a project in cluster

3 and the right figure represents a project in cluster 1. We rearranged the activity

category on the X coordinate to better explain our discovery. Categories 1-3 are

file releases and message posts. Categories 4-9 are activities initialized by users,

and categories 10-15 are activities initialized by administrators. Although these two

projects have more activities than average projects in the community, the project in

the left figure has more symmetric activity distribution than the project in the right

figure, if we look at the activity categories 4-15 only. This means that the activity

distribution for “popular” projects is more balanced than the activity distribution

for “unpopular” projects. We can understand this phenomenon intuitively, because

if there are balanced activities from both user and administrator in a project, the

project is more likely to be popular. Recently, Charles M. Hannum, one of the

founders of NetBSD, also mentioned a similar idea in a recently published email [55].

The confidence for the “popular” rules is not as high as the confidence for the

“unpopular” rules. This is because we only inspected the relationship between

49

134

3781

8435

431
0

2179
2537

667

9169

7134

601

2411

1651

0399

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 101112131415

Activity Category

20

1641

3488

22 0

312

736

229

1510

534

8212128 0 4
0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 101112131415

Activity Category

Figure 3.5. Sample Activity Distributions for Cluster 3 and 1

activities, so for certain projects with very little activity but with balanced activity

distribution, those will be predicted as “popular” by our algorithm. We can improve

the performance by combining the unsupervised feature-based data mining and the

unsupervised distribution-based data mining.

3.3 Summary

In this chapter, we discussed the data mining part of computational discovery

and its application in our case study – Open Source Software Research. First, we

explained the processes needed in data mining as data preparation, data purging,

feature selection and algorithm application. After that, we applied the data mining

procedure in the Open Source Software Research. By applying the data mining

procedure, we are able to

1. identify the “popular” projects using the features extracted from the database.

2. find the independent and significant features to predict a “popular” project.

3. predict the “popular” project using novel, unsupervised distribution-based
data mining algorithm.

50

CHAPTER 4

NETWORK ANALYSIS

In recent research, network characteristics have received more and more atten-

tion, especially in evolving networks like the Internet, social networks and commu-

nication networks [88, 103, 72]. Analyzing these characteristics can reveal inter-

esting information. In the previous chapter, we used data mining to discover the

relationship between network characteristics and the individual project to generate

predictions about the success of an individual project. In this chapter, we will use

network analysis to further investigate the network characteristics in the evolution

of the complex network 1.

4.1 Network analysis

Complex network-related research became popular because of the random net-

work theory [38]. We promote network analysis in our methodology, since network

analysis can help us assess the discovery from the data mining process. The anal-

ysis we used includes structure analysis, centrality analysis and path analysis. We

conducted the analyses in the following manner. First, we conducted the struc-

tural analysis, including the following measures: diameter, clustering coefficient and

component distribution. Then we conducted the centrality analysis, including the

following measures: average degree, degree distribution, average betweenness and

1Materials in this chapter are partially reported in [46, 50, 48, 45].

51

average closeness. Finally, we conducted the path analysis on most of the previous

measures.

4.1.1 Structure Analysis

The first analysis is the structure analysis [80, 27]. Structure analysis is used to

inspect the macro-measures of the network structure. The measures inspected in the

structure analysis describe the network structure in a global view. Study of these

measures helps us understanding the influence of network structure to individual

nodes in the network.

The diameter of a network is the maximum distance (number of hops or edges)

between any pair of nodes. The diameter can also be defined as the average length

of the shortest paths between any pair of nodes in the network. In our research, we

are more interested in the measures that can describe the efficiency of information

propagation. So the average value is more suitable for our purpose, and we used the

second definition in our research. Strictly speaking, the diameter of a disconnected

graph (i.e., one containing isolated components) is infinite, but it is normally defined

as the maximum diameter of its sub-clusters or other approximate values. Random

graphs and other complex networks all tend to have small diameters. This is the

phenomenon scientists referred to as the “small world phenomenon” [100]. The

smaller the diameter of a network is, the better the network is connected.

The diameter is one of the important attributes in complex network research,

especially since the small world phenomenon2 was popularized. The diameter of a

network can be obtained by a modified breadth-first search of the whole network.

The complexity of the algorithm is bounded by O(MN + N 2logN), where N is

the number of vertices in the graph and M is the number of edges in the graph.

2“Six degrees of separation” is a famous claim by Ouisa, a popular character in John Guare’s
play (1990)

52

The complexity can be further approximated to O(N 3). But since most complex

networks are often disconnected and the actual sizes of these networks are huge and

dynamic, e.g., (the Internet), it is not feasible for us to obtain the diameter by such

a naive approach. Fortunately, we are still able to obtain the approximate diameter

using statistical methods.

We calculated the diameter measures using similar method used in the previous

study (the proof of this method can be found in Appendix A). The approximate

methods can generate fairly accurate results, especially when the network size is

huge (N > 10, 000), which was verified in the previous study (we used the naive

breadth-first search method to obtain the “exact” diameter of the network to verify

the correctness of the approximate methods). So we will use just the approximate

method in this study. More detailed explanation and discussion can be found in the

master thesis [45].

The equation we used to calculate the approximate diameter D is

D =
log(N/z1)

log(z2/z1)
+ 1 (4.1)

where N is the number of nodes in the network, z1 is the average degree of nodes

in the network, and z2 is the average number of nodes two steps away from a given

node as defined in [45].

The next measure is clustering coefficient. The neighborhood of a node consists

of the set of nodes to which it is connected. The clustering coefficient of a node

is the ratio of the number of links to the total possible number of links among the

nodes in its neighborhood. The clustering coefficient of a graph is the average of the

clustering coefficients of all the nodes. Recent research has found that real complex

networks typically have a high clustering coefficient, which means that they exhibit

a large degree of clustering [8].

The naive algorithm to get the clustering coefficient of a network requires three

53

nested scans of the whole network. The complexity of the algorithm is high for

networks of such a huge size. However, clustering coefficients of some real networks,

such as the network we studied in SourceForge, can be calculated more easily from

related bipartite graphs [86] by using the generating function method for bipartite

graphs. More detailed explanation of this method can be found in the master

thesis [45].

Using this method, the clustering coefficients of these kinds of bipartite structures

result in a non-vanishing value,

C =
1

1 + (µ2−µ1)(ν2−ν1)2

µ1ν1(2ν1−3ν2+ν3)

(4.2)

where µn =
∑

k knPd(k) and νn =
∑

k knPp(k). In the developer-project bipartite

network, Pd(k) represents the fraction of developers who joined k projects, while

Pp(k) means the fraction of projects that have k developers.

The result of equation 4.2 has been tested in several collaboration networks [86].

We also verified the approximate clustering coefficient method by measuring val-

ues that we had calculated directly from the network, using the naive algorithm

(complexity of the algorithm is O(N × Cz
2), where N is the number of nodes in the

network and z is the average degree of the network) in the previous study. Detailed

explanation and discussion can be found in the master thesis [45]. In this study, we

will use the approximate clustering coefficient to represent the clustering coefficient

measure.

The last measure in the structure analysis is the component distribution. A

component of a network is defined as the maximal subset of connected nodes. To

formalize the definition of a component, first we define a path in a network as:

• A path v1e1v2...en−1vn is a sequence of nodes such that from each of its nodes
vi there is an edge ei to the next node vi+1 in the sequence. Normally, the first
node v1 is called the start node and the last node vn is called the end node.

54

Then the component C of a network can be defined as:

• Component C is a subset of (V,E) of a network. For any pair of nodes vi and
vj, where vi, vj ∈ C, there exists a path viei...ej−1vj between these two nodes.
And for any any pair of nodes vk and vl, where vk ∈ C and vl /∈ C, there
doesn’t exist a path vkei...ej−1vl between these two nodes.

It is important to realize that many of the real networks are composed of many

components. We use the developer network as an example. First, there are devel-

opers that do not collaborate at all; i.e., each of them is the only developer of a

certain project. As defined, these developers are isolated nodes in the developer

network and are called isolated developers. The percentage of isolated developers

in our developer network is not negligible (around 30% of total developers in the

community). Second, there exists the biggest component in the developer network

where there is a path between any two developers in the component. Both the

biggest component and the isolated developers are important components in the

developer network. Since the network evolves over time, the components are not

static either. These component interact with each other by merging and splitting

to keep network evolving. Study of the component distribution can also help us

understand the structure of the complex network.

4.1.2 Centrality Analysis

The second analysis is the centrality analysis. Centrality analysis is used to

inspect the micro-measures of the network structure or the relative importance of a

node within a network. Study of these measures helped us understand the influence

of individual nodes to the global network structure.

The first measure is degree. The degree of a node, k, equals the total number of

other nodes to which it is connected, while P (k) is the distribution of the degree k

throughout the network. Degree distribution in real networks was believed to be a

normal distribution (when N → ∞), but recently, Albert and Barabási and others

55

found it fit a power law distribution in many real networks [10]. The other measure

related to degree is the average degree as
∑

P (k)/N , which is the average of the

node degrees in the network.

The next measure is betweenness. Betweenness is a centrality measure of a node

within a network. Nodes that occur on many shortest paths between other nodes

have higher betweenness than those that do not. For a graph G(V, E) with n nodes,

the betweenness B(v) for node v is

B(v) =
∑

s6=v 6=t∈V

σst(v)

σst
(4.3)

where σst is the number of shortest geodesic paths from s to t, and σst(v) the number

of shortest geodesic paths from s to t that pass through the vertex v. This may be

normalized by dividing through by the number of pairs of vertices not including v,

which is (n − 1)(n − 2).

The last measure is closeness. Closeness is also a centrality measure of a node

within a network. Nodes that are “shallow” to the other nodes (that is, those that

tend to have short geodesic distances to other nodes within the network) have higher

closeness. Closeness is preferred in centrality analysis to mean shortest-path length,

as it gives higher values to more central nodes, and so is usually positively associated

with other measures such as degree.

The closeness C(v) for a vertex v is the reciprocal of the sum of geodesic distances

to all other vertices in the graph:

C(v) =
1∑

t∈V dG(v, t)
. (4.4)

4.1.3 Path Analysis

All the previous analyses (structure analysis and centrality analysis) are based

on network snapshot topology. They depict the characteristics of a static network at

56

a given point of time. But these are not the only important analyses in a network,

especially an evolving network. With sequence of network snapshots instead of

just single snapshot of the networks, we are able to inspect not only the measures

(diameter, clustering coefficient, component, degree, betweenness and closeness) in

the previous analysis, but also the developing trends of these measures.

We conducted the path analysis on the diameter, clustering coefficient, average

degree, betweenness and closeness. By inspecting these developing measures, we

are looking forward to understanding more about the life cycle of the network and

individual nodes in the network.

4.2 Case Study

We used the SourceForge.net community as our case study. A similar study was

conducted on the SourceForge.net community in my master thesis. In that study,

I studied measures like degree distribution, component distribution, diameter and

clustering coefficient on the data set we collected from SourceForge.net. In this

study, we expanded the study in the following aspects:

1. More complete and accurate dataset : In the previous study, the data set was
collected by monthly web crawler. The data set is incomplete and inaccurate.
Since the data set was collected through HTTP access, unexpected network
error or server busy can cause connection failure, and then result in an in-
complete data set. Also web crawler could take from one day to one week to
finish a single execution and, meanwhile, SourceForge.net is updating itself,
too. This simultaneous updating and crawling made the collected date set
inaccurate. In this study, the data set is built from monthly database dump
directly from SourceForge.net. The monthly database dumps include January
2003, February 2005 and every month after. Every dump file is sized from 4G
to over 6G in GZIP format, except for the privacy information in the origi-
nal database. The data set built on these monthly database dumps are more
complete and more accurate than the data set we used in the previous study.

2. More analysis on network snapshots: In the previous study, we inspected only
degree distribution, cluster distribution, diameter and clustering coefficient.
Most of these analyses are focused on describing the structure of the complex
network. In this study, we are more interested in the interaction between a
single node (project) and the whole network. So in addition to more extensive

57

analysis on the network structure, we will inspect another group of analysis -
centrality analysis. Centrality of a node (project) within a network (project
network) that determines the relative importance of a node within the graph.
In other words, the centrality of a node in a network is a measure of structural
importance of the node. These measures attempt to quantify the prominence
of an individual project embedded in a network. A central project, presum-
ably, has a stronger influence on other network nodes. Normally, centrality
measures include degree, betweenness, closeness, eigenvector centrality and
flow centrality. In this study, we inspected the first three measures.

3. Path analysis: In statistics, path analysis is a type of multiple regression anal-
ysis. In the Internet website analysis, path analysis is a process of determining
a sequence of pages visited in a visitor session prior to some desired event, such
as the visitor purchasing an item or requesting a newsletter. In our study, path
analysis is a process of inspecting the temporal trends of certain measures in
the evolving complex network. By using path analysis, we can have more
insight into the influence and interaction of individual node (project) to the
other nodes in the network or the whole network.

Before discussing these analyses and measures, we need to explain the collabo-

ration network that we studied. From SourceForge.net, we got data on two major

entities – developers and projects. In this data, only one relationship existed – the

participation between developer and project. There were no direct links between de-

velopers and between projects. So, we looked at this network as a bipartite network,

where projects and developers were the two kinds of nodes, and edges could only

connect different kinds of nodes. There are two transformations from this network

– the developer network and the project network. In the developer network, there is

only one type of node representing the developer in the collaboration network, and

the edge in the network represents the relationship of collaboration. For every pair

of nodes i and j, there is an edge connecting i and j only if i and j are collaborating

on at least one project. The transformation of the bipartite network to a developer

network is shown in Figure 3.4 [45]. Through the same method, we generated the

project network, where a node represents a project in the collaboration network and

the edge in the network represents the relationship of sharing the same developer(s).

Formal definitions of these three networks can be found in Chapter 3. In the follow-

58

ing discussion, we will abbreviate these three networks as P-NET(project network),

D-NET(developer network) and C-NET(collaboration network).

Since these networks are generated from the dataset we used in the data mining,

none of the “lurker” developers and inactive projects are included in these networks.

The relationship between these developers or projects and the total developers or

projects will be discussed later. We used the data of June 2006 as an example. There

are 123,968 nodes in the D-NET, while there are totally 1,338,375 registered users

in the SourceForge.net community. There are 91,713 nodes in the P-NET, while

there are totally 124,393 registered projects in the SourceForge.net community.

4.2.1 Structure Analysis

The first analysis we applied is the structure analysis, including measures such

as diameter, clustering coefficient and component distribution. As discussed in

the previous section, the diameter is approximate on the whole network by the

equation 4.1. The resulting approximate diameters for the D-NET are between 5

and 7, while the number of developers in the D-NET ranged from 97,705 to 123,968.

Thus, the diameter of the network is quite small with regard to the overall network

size (the number of developers in the network). On the other hand, the approximate

diameters for the P-NET are between 6 and 8, while the number of projects in the

P-NET ranged from 70,089 to 91,713. In the previous study, we yielded similar

diameters for both D-NET and P-NET based on the monthly database dump on

January 2003, which had significantly smaller networks (D-NET had about 60,000

nodes and P-NET had about 40,000 nodes). So the diameter is relatively stable

compared to the significant increase of the network size.

The next measure is the clustering coefficient. We also used the approximate

clustering coefficient by applying the equation 4.2. The resulting approximate clus-

59

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

Component Size

C
om

po
ne

nt
s

Component Size Distribution

Data
Regression
95% confidence bound

0 5 10 15
0

5

10

15

Component Size (LOG10)

C
om

po
ne

nt
s

(L
O

G
10

)

Data
Regression
95% confidence bound

Isolated Projects

Major Component

Major Component

Figure 4.1. Project Network Component Distribution

tering coefficients for the D-NET are between 0.85 and 0.95. On the other hand, the

approximate clustering coefficients for the P-NET are between 0.65 and 0.75. High

clustering coefficients reveal the highly clustered property of both the D-NET and

the P-NET, which is similar to the results we got from our previous study conducted

in the master thesis, although the networks have been expanded significantly.

Both diameter and clustering coefficient are popular and efficient measures to

describe the structure property of a network, especially the cluster property. Highly

clustered networks are normally favored in real evolving complex networks like com-

munication networks or social networks for better information propagation.

60

From the previous measures, we understand that both D-NET and P-NET are

highly clustered networks. But these measures do not mean the networks are fully

connected. Actually, most of the real networks are not fully connected. There

will be connected parts in the network, which we called as “component”. The next

measure we inspected is the component distribution. In the SourceForge community,

power law exists in the component distribution of the networks. In Figure 4.1, the

component distribution for the P-NET for June 2006 is shown. There are two figures.

In the lower figure, after applying log transformation on both coordinates, we found

that the component distribution fits a straight line quite well without considering the

biggest component (which will be called the major component in latter discussion).

The R2 [35] of linear regression with the major component is 0.4023 and the R2

of linear regression without the major component is 0.9886. Also, in the lower

figure, we illustrated the 95% confident boundary for the linear regression as the

dot line. In the upper figure, where the coordinates are in normal scale, we made

another interesting discovery: almost all the components are quite close to each

other, except the two extremes. One extreme is the major component and the other

is the isolated components. Isolated components in the graph were generated from

the isolated developers we mentioned at the beginning of this subsection. This result

is similar to the result we yielded in previous study.

4.2.2 Centrality Analysis

The second analysis we conducted is the centrality analysis, which focus on the

following measures – degree, betweenness and closeness.

Degree is the simplest measure of the connectivity of a node in the network. We

also used the C-NET, D-NET and P-NET for June 2006 as examples in this section.

There are totally four degrees of developer and project in these three networks:

• Degree of developer in the C-NET is the number of projects in which a devel-

61

oper participated in the community.

• Degree of developer in the D-NET is the number of developers who have at
least one collaboration with the given developer in the community.

• Degree of project in the C-NET is the number of developers who participated
in the given project in the community.

• Degree of project in the P-NET is the number of projects share by at least
one common developer with the given project in the community.

In the June 2006 dataset, the average degree of developer in the C-NET is 1.4525; the

average degree of developer in the D-NET is 12.31; the average degree of project

in the C-NET is 1.7572; the average degree of project in the P-NET is 3.8059,

while the sizes of the C-NET, the D-NET and the P-NET are 215,681, 123,968 and

91,713. The average degree of developer and project in the C-NET is relatively low

since the isolated developer (developer with single project) and the isolated project

(project with only one developer) are big parts of the community. This result is also

correlated to the discovery we got in the component distribution.

Then we investigated the degree distributions of the SourceForge.net community.

Degree distribution is proven to have a normal distribution in the ER model when

N → ∞. This was believed to be a good model for the real complex network before

the power law was reported for many real network systems by Barabási et. al [9]. In

the SourceForge community, we found that the degree distributions (distributions

for all four degrees) also followed power law, as shown in Figure 4.2, Figure 4.3,

Figure 4.4 and Figure 4.5.

These figures are based on the dataset from SourceForge.net for June 2006.

The left figures are the degree distributions in normal coordinates. To verify the

existence of power law in these distributions, we applied log-log transformations on

the data to generate the right figures, which are the degree distributions on log-

log coordinates. The 95% confident boundaries for the linear regression also are

62

0 20 40 60
0

5

10

15
x 10

4

Project count

C
ou

nt

Developer project distribution

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

Project count

C
ou

nt

Developer project distribution

Data
Regression
95% confidence bound

Figure 4.2. Developer Size Distribution

63

0 100 200 300 400
0

2

4

6

8

10

12
x 10

4

Project count

C
ou

nt

project size distribution

0 2 4 6
0

2

4

6

8

10

12

14

16

Project size

C
ou

nt

Project size distribution

Data
Regression
95% confidence bound

Figure 4.3. Project Size Distribution

64

0 200 400 600
0

0.5

1

1.5

2

2.5

3
x 10

4

Developer degree

C
ou

nt

Developer degree distribution

0 2 4 6
0

2

4

6

8

10

12

14

16

18

Developer degree

C
ou

nt

Developer degree distribution

Data
Regression
95% confidence bound

Figure 4.4. Developer Network Degree Distribution

65

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Developer degree

C
ou

nt

Project degree distribution

0 2 4 6
0

2

4

6

8

10

12

14

16

Project degree

C
ou

nt

Project degree distribution

Data
Regression
95% confidence bound

Figure 4.5. Project Network Degree Distribution

66

provided on the figures for all the log-log transformed degree distributions. The R2

of linear regression for the developer degree distribution in the C-NET is 0.9577.

The R2 of linear regression for the developer degree distribution in the D-NET is

0.8132. The R2 of linear regression for the project degree distribution in the C-NET

is 0.9173. The R2 of linear regression for the project degree distribution in the

P-NET is 0.9375. Thus, these distributions all fit power law distributions very well.

Betweenness and closeness are also the common measures for centrality analysis.

Betweenness is a measure to describe the importance of the node in the network

according to shortest path, and closeness is a measure to describe how close the

node is to other nodes. Betweenness is a normalized value in [0, 1]. The higher the

measure is, the more central the node is to the network. Closeness is also bounded

by [0, 1], but it is not normalized. So closeness tends to decrease when the network

size is increasing. Normally, these measures yield very small value in large networks

(N > 10, 000), so comparison of these measures only makes sense when comparing

networks of similar size. Also, using the dataset from SourceForge.net for June 2006,

the average betweenness for the P-NET is 0.2669e-003 and the average closeness for

the P-NET is 0.4143e-005, which are relatively large for a network this size.

4.2.3 Path Analysis

All the measures in the previous sections (diameter, clustering coefficient, com-

ponent, degree, betweenness and closeness) are about the topology of the networks.

They depict the characteristics of a static network at a given point of time. These

are not the only important attributes in a network, especially an evolving net-

work [54, 5]. Since we had multiple monthly database dumps from SourceForge.net,

we were able to investigate the development patterns of these measures of the net-

works. By applying the path analysis, we can study the life cycle and the evolving

67

0 5 10 15 20
0

2

4

6

8

10

12

14
x 10

5

Time period

S
iz

e

Developer Body

Active
Total

0 5 10 15 20
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

5

Time period

S
iz

e

Project Body

Active
Total

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time period

P
er

ce
nt

ag
e

Active vs Total

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time period

P
er

ce
nt

ag
e

Active vs Total

Figure 4.6. Active Developer or Project vs. Community Size. The X coordinate
represents the number of months after January 2005.

patterns of the network and individuals in the network.

In the previous discussion, we realized that only a certain percentage of the

registered user were active (had at least one activity) during a certain month. Also,

the same situation can be discovered in projects; there was a certain percentage of

the registered project that were inactive (no activity at all) during a certain month.

In order to have an insight into this phenomenon, we inspected these users and

projects with activities and their relationship with the whole user and project body.

The result is in Figure 4.6.

68

The left two figures are related to the developer body and the right two figures

are related to the project body. The upper two figures show the actual size of

the active developer or project, compared to the whole developer or project body.

The X coordinate are the time period from February 2005 to June 2006; the Y

coordinate is the actual size. The sizes of active developer or project every month

are marked by ‘o’, and the sizes of the total developer or project body are marked

by ‘x’. There are significant recessions at month 11 (December 2005) and month 15

(April 2006). These can be caused by data error or other abnormities. Despite these

two recessions, the active developer or project have similar growth rates as the total

developer or project body. We included the percentages of active developer/total

developer and active project/total project in the lower two figures. We find that the

percentage of active developer/total developer is maintaining a similar percentage

throughout the 17 months of around 10%. And the percentage of active project/total

project has a jump at month three (April 2005) from 55% to 76%, and then maintains

the similar percentage throughout, except month 11 and month 15 at 76%.

Inactive developers and projects have no contribution to the community when

they are inactive. But they are very important as the reserved force to keep the

community running. The stable percentages in the active developer/total developer

and active project/total project suggest that the SourceForge.net community is in

a stable status. The initial jump in the active project percentage may suggest that

the community network has some life cycle behavior. We can further analyze this

when we have accumulated more data sets from SourceForge.net.

The next path analysis is on the average degrees. Average degree < k >, which

gives the average number of links per node, is a good quantitative measurement for

the connectivity of a graph. The developing pattern of the four possible average

degrees is shown in Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10. The X

69

0 2 4 6 8 10 12 14 16 18 20
1

1.2

1.4

1.6

1.8

2

A
ve

ra
ge

 P
ro

je
ct

s

Developer Participated Projects Development

Data

0 2 4 6 8 10 12 14 16 18 20
1.2

1.3

1.4

1.5

1.6

Time period

A
ve

ra
ge

 P
ro

je
ct

s

Data
Regression

Figure 4.7. Average Developer Degree in the C-NET

coordinate in the figure is the number of months that passed after February 2005.

The average developer degree in the D-NET has increased by that time. The

increase of average degree may have come from two changing parts in the network.

First, the number of nodes in the network increased with time because of the arrival

of new developers. Second, the total number of edges also increased through collab-

orations made by new developers with old ones, and collaborations made between

old developers. These two changes worked together to increase the average degree.

This is an important feature to characterize a network in evolution. We show the

linear regression in the lower figure with a 95% error bar for every data point and

70

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

A
ve

ra
ge

 U
se

rs

Average Project Size Development

Data

0 2 4 6 8 10 12 14 16 18 20
1.2

1.4

1.6

1.8

2

2.2

Time period

A
ve

ra
ge

 U
se

rs

Data
Regression

Figure 4.8. Average Project Degree in the C-NET

71

0 2 4 6 8 10 12 14 16 18 20
10

11

12

13

14

A
ve

ra
ge

 D
eg

re
e

D−NET Average Degree Development

Data

0 2 4 6 8 10 12 14 16 18 20
11

11.5

12

12.5

13

Time period

A
ve

ra
ge

 D
eg

re
e

Data
Regression

Figure 4.9. Average Developer Degree in the D-NET

72

0 2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

A
ve

ra
ge

 D
eg

re
e

P−NET Average Degree

Data

0 2 4 6 8 10 12 14 16 18 20
3.5

3.6

3.7

3.8

3.9

4

Time period

A
ve

ra
ge

 D
eg

re
e

Data
Regression

Figure 4.10. Average Project Degree in the P-NET

73

the slope of the regression is 0.0461. For the average project degree in the P-NET,

it is very stable by this time. We observe the linear regression in the lower figure

with a 95% error bar for every data point, and the slope of the regression is 0.00001.

For the average degrees in the C-NET, we show the linear regression in the

lower figures with a 95% error bar for every data point. The slope of the regression

for developer degree is -0.0009 and the slope of the regression for project degree

is -0.0036. The average degrees are actually decreasing, which means the average

project size and average number of projects a single developer participated in are

decreasing. This may be explained by two reasons. First, there are more isolated

projects joining the community every month than big projects. At the begining of

the SourceForge.net, there are big projects elsewhere migrating to SourceForge.net,

which means the C-NET has a bigger project degree initially. As the community

develops, there are more small projects created in the community than migrated big

projects. This will bring down the project degree of the C-NET to a stable level.

The similar explanation can be applied on the developer degree in the C-NET. At

the beginning of the SourceForge.net, users were actively joining projects, doing

contributions which would generate an high initial developer degree. But as time

went by, new users were more focused on specific projects instead of random joining

and old users were also focused their interests on fewer projects. This brought down

the developer degree in the C-NET.

In these three networks, P-NET and D-NET are more connected than C-NET

and, thus, more robust to frequently underlying user and project changes. Study of

the average degrees in P-NET and D-NET can represent more long-term behaviors

of the overall community network structure than the average degrees in C-NET.

Diameter and clustering coefficient is closely related to average degree. We will

conduct path analysis on these two measures next.

74

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

D
ia

m
et

er

D−NET Diameter Development

Data

0 2 4 6 8 10 12 14 16 18 20

5.6

5.8

6

6.2

6.4

6.6

Time period

D
ia

m
et

er

Data
Regression

Figure 4.11. Developer Network Diameter

The diameter of the D-NET is a good measure of network communication ability.

A shorter diameter results in fewer average steps needed for one developer to spread

a message to another developer and less time needed for an idea to spread through

the network. The D-NET has a small diameter, which was calculated in a previous

section. Also, we investigated the evolution of the diameter of the D-NET, as shown

in Figure 4.11.

The figure indicates that D decreases with time, which is different from the

previous research [22] on random networks that reports that diameter increases

with network size. The lower figure shows the linear regression with 95% error bar

75

for the developing trend of diameter for the D-NET. The slope of the regresion is

-0.0072. This decreasing trend could be because of three reasons. First, preferential

attachment will cause a significant increase in the degree of hubs in the network

(the vertices with more links than average in the network), thus decreasing the

diameter. Second, the increasing arbitrary size of the major component means the

connected component may weight more in the overall system, thus increasing the

overall connectivity of the network. Finally, the diameter decreases as internal links

(for example, old developers joining projects that previously existed) increase the

interconnectivity of the network, thus decreasing the diameter.

Furthermore, we investigated the developing patterns of diameters in the P-

NET. The result is shown in Figure 4.12. The developing patterns of diameters in

the P-NET are different from the developing patterns of diameters in D-NET. The

diameter is relatively stable with a slightly increasing trend. The lower figure shows

the linear regression with 95% error bar for the developing trend of diameter for the

P-NET. The slope of the regresion is 0.0069. This may be because there are many

newly created isolated projects or small projects in the community to decrease the

connectivity of the P-NET.

Clustering coefficient is another important measures of the topology of real net-

works. So the clustering coefficient, a quantitative measure of clustering, CC, is also

a measure we investigated. The approximate clustering coefficient for the D-NET

as a function of time is shown in Figure 4.13.

In the figure, we can observe the increasing trend of the clustering coefficient.

The lower figure shows the linear regression with 95% error bar for the developing

trend of clustering coefficient for the D-NET. The slope of the regression is 0.0011.

The clustering coefficient for the D-NET tells us how much a node’s co-developers

are willing to collaborate with each other, and it represents the probability that two

76

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

D
ia

m
et

er

P−NET Diameter Development

Data

0 2 4 6 8 10 12 14 16 18 20
6

6.5

7

7.5

Time period

D
ia

m
et

er

Data
Regression

Figure 4.12. Project Network Diameter

77

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

C
C

D−NET Clustering Coefficient Development

Data

0 2 4 6 8 10 12 14 16 18 20
0.85

0.9

0.95

Time period

C
C

Data
Regression

Figure 4.13. Developer Network Clustering Coefficient

78

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

C
C

P−NET Clustering Coefficient Development

Data

0 2 4 6 8 10 12 14 16 18 20
0.65

0.7

0.75

Time period

C
C

Data
Regression

Figure 4.14. Project Network Clustering Coefficient

of its developers are collaborating on a project. Thus, with the evolution of the D-

NET, more edges (collaboration relations) are formed. This will lead to an increase

in the connectivity of the developer with the neighboring developers. Furthermore,

this leads to the increase in the clustering coefficient.

The approximate clustering coefficient in the P-NET, shown in Figure 4.14,

shares the same increasing trend with the approximate clustering coefficient in the

D-NET. The lower figure shows the linear regression with 95% error bar for the

developing trend of clustering coefficient for the P-NET. The slope of the regression

is 0.0004.

79

Increases on both clustering coefficients in P-NET and D-NET suggest the net-

work is evolving to improve its cluster property. The higher the clustering coefficient

is, the more connected the network is.

Now we will apply the path analysis on average betweenness and average close-

ness. Figure 4.15 shows the developing trend of average betweenness in the P-NET.

In the upper figure, we can observe the almost flat developing trend of the between-

ness, although the overall size of the network has increased significantly during the

same time period. This can suggest that the network is in a stable topology in its

own evolution. In the lower figure, we magnify the Y coordinate to have a close

look at the developing trend of the average betweenness. The average betweenness

has a slightly increasing trend. This observation can be explained by the “rich get

richer” phenomenon discovered in other complex networks such as the Internet. Al-

though the network is constantly expanding, the hub (the node with most links) will

keep gaining more connections than the others. Also, alternative hubs or regional

hubs will also emerge from the network, and these hubs will increase the average

betweenness of the network.

Average closeness is another measure of centrality. Figure 4.16 shows the de-

veloping trend of the average closeness in the P-NET. The upper figure is the de-

veloping trend in normal coordinates and the lower figure is the developing trend

in magnified Y coordinates. We can observe the similar developing behavior of the

average closeness to the average betweenness. But average closeness is more flat

than the average betweenness. This is because closeness for individual node is not

normalized like the betweenness for individual node. Thus, the significant increase

in the overall network size will have more influence on the closeness than on the

betweenness. Therefore the developing trend of the average closeness will be more

flat than the developing trend of the average betweenness.

80

2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

A
ve

. B
et

w
ee

nn
es

s

P−Net Average Betweenness

Average Betweenness

2 4 6 8 10 12 14 16
2.6

2.62

2.64

2.66

2.68

2.7
x 10

−4

Time period

A
ve

. B
et

w
ee

nn
es

s

Average Betweenness

Figure 4.15. Project Network Betweenness

81

2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

A
ve

. C
lo

se
ne

ss

P−Net Average Closeness

Average Closeness

2 4 6 8 10 12 14 16
4

4.05

4.1

4.15

4.2
x 10

−6

Time period

A
ve

. C
lo

se
ne

ss

Average Closeness

Figure 4.16. Project Network Closeness

82

By using path analysis, we are able to look at not only the topology of the

network at a given time, but also at the evolution of the network topology, and the

mutual inferences between a single entity in the network and the whole network.

One of the common discoveries in all the path analyses is life-cycle like behaviors.

Most of the measures have sustained a stable level throughout the inspected period of

time in this study and also have increased/decreased from the previous study carried

out in the master thesis [45]. This phenomenon suggests that we have witnessed

the beginning of the evolution of the SourceForge.net community and possibly the

mature (stable) era of the SourceForge.net community. By closely watching the

SourceForge.net community, we may have deeper insight into the evolution of the

OSS community. Also, similar analyses can be applied to other evolving complex

networks, such as communication networks or social networks to study the life cycle

of those networks.

We also have made another discovery about the network measures. In the data

mining part of this study, we observed that network measures have an important

influence on the prediction of popular projects. By using the network analysis, we

also observed a strong tie between the network measures and the evolution of the

community networks. This discovery suggests that the network measures can be

used not only as a predictor of the future of an individual entity in the network

or the whole network, but also the control measures to verify possible simulation

models, which we will discuss in the next chapter.

4.3 Summary

In this chapter, we studied multiple network measures of the data sets and

their evolution patterns by applying multiple analyses, including structure analysis,

centrality analysis and path analysis. In the structure analysis, we calculated the

83

diameter, clustering coefficient and component distribution. The two approximate

methods used to calculate the approximate diameter D and approximate clustering

coefficient CC are

D =
log(N/z1)

log(z2/z1)
+ 1

CC =
1

1 + (µ2−µ1)(ν2−ν1)2

µ1ν1(2ν1−3ν2+ν3)

.

In the centrality analysis, we calculated four different average degrees and four

different degree distributions. Also, we calculated average betweenness and average

closeness. The equations to calculate the betweenness B(v) and closeness C(v) for

individual nodes are

B(v) =
∑

s6=v 6=t∈V

σst(v)

σst

C(v) =
1∑

t∈V dG(v, t)
.

In the path analysis, we investigated developments of the multiple measures,

including average degrees, diameter, clustering coefficient, average betweenness and

average closeness. All the investigated measures are summarized in Table 4.1.

84

TABLE 4.1

SUMMARY OF MEASURES

Measures D-NET P-NET C-NET

Average degree Yes Yes Yes
Diameter Yes Yes N/A

Clustering coefficient Yes Yes N/A
Degree distribution Yes Yes Yes

Component distribution N/A Yes N/A
Major cluster N/A Yes N/A

Average betweenness Yes Yes N/A
Average closeness Yes Yes N/A

Active entity size development Yes Yes Yes
Average degree development Yes Yes Yes

Diameter development Yes Yes N/A
Clustering coefficient development Yes Yes N/A
Average betweenness development Yes Yes N/A

Average closeness development Yes Yes N/A

85

CHAPTER 5

COMPUTER SIMULATION

In the previous two chapters, we used two computational methods to study the

evolving complex networks. In this chapter, we will use another computational

method – computer modeling and simulation [69, 42] – to extend our study on

evolving complex networks. Simulation can be used to extend our study in the

following two ways. First of all, simulation can be used to revise the results we

get from previous processes. Secondly, simulation can be used to generate a “fit”

model to replicate the evolution of the evolving complex network and thus predict

the future development by carrying out the simulation. In our study, we defined a

model for the simulation, based on the inspected measures in the empirical system,

and then we used simulation to validate and improve the model 1.

5.1 Simulation

5.1.1 Simulation Methodology

We will use the same simulation procedure we proposed in the master thesis.

The conceptual framework used in our research for agent-based modeling and sim-

ulation [74, 75] is shown in Figure 5.1. In the figure, there are three entities in

the framework: empirical data collection, model and simulation. The model is the

definition of procedures and related parameters by which we could reproduce the

1Materials in this chapter are partially reported in [47, 76, 49, 45].

86

evolution of empirical data in simulation. The simulation is an implementation of

the model. We also had six relationships in the framework, each representing one

kind of process: characterization, description, generation, adjustment, verification

and validation. Characterization is a process of abstracting the characteristics of

empirical data and generating the procedures and parameters in the model. De-

scription manifests the underlying mechanisms of the evolution of the empirical

data. Generation builds a simulation based on the given model. Adjustment modi-

fies the model according to the feedback from the verification process. Verification

is used to test the simulation’s behaviors by comparing the simulation output with

the empirical data and the designed model behaviors. Validation is a process of

interpolating or extrapolating the simulation output and comparing the simulation

output with the empirical data by attributes not used to define the model. Valida-

tion may add more rules or attributes into the model for prospective improvement.

The main goal of the iterations is to get a “fit” model to describe the evolution of

a complex network by simulation.

5.1.2 Verification Strategy

Verification strategy is one of the important steps in the simulation iterations [19].

By comparing against the empirical data set repeatly, verification can make the

model converge to the empirical system. There are two important components in

the verification step – measures and methods. The measures are the criterion for

the verification and the methods are how the verification is carried out.

Statistical and network measures inspected in the previous chapters can be used

in the verification to model and simulate the evolving complex networks.

1. Network measures could be used in the verification if the focus of the study
is about network structure. The measures we inspected in the network anal-
ysis chapter belong to network measures: e.g., degree distribution, average
diameter, average betweenness and so on. These measures describe the char-
acteristics of the network structure and its evolution pattern.

87

Empirical
Data

Collection

Model

Simulation

Verification

Validation

C
ha

ra
ct

er
iz

at
io

n
A

djustm
ent

G
eneration

D
es

cr
ip

tio
n

Figure 5.1. Conceptual Framework for Agent-based Modeling and Simulation

88

2. Statistical measures could be used in the verification if the focus of the study
is about entity behaviors. The measures we inspected in the data mining
chapter belong to statistical measures: e.g., monthly pageviews, downloads,
number of developers in the group and so on. These measures describe the
characteristics of individual entity in the network and its evolution pattern.

Depending on the actual research topic, we can choose different set of measures or

even both sets in the verification step.

About the verification methods, we used two verification methods to verify –

visual inspection and statistical hypothesis test. Visual inspection is the method we

used in the previous study. In this study, we will also use the statistical hypothesis

test method, in addition to visual inspection to increase the accuracy.

5.2 Case Study Setup

As in the previous two chapters, we used the SourceForge.net community as our

case study. In the previous two chapters, we used data mining and network analysis

to study the SourceForge.net community, inspected important features for individual

projects and analyzed network measures about the community networks. In this

chapter, we will use modeling and simulation to generate a model and simulate

the evolution of the community networks, including D-NET, P-NET and C-NET.

Network measures are the measures we used in the verification step. The network

measures we used include:

• Degree distributions

• Average degrees

• Approximate diameter and approximate clustering coefficient

• Average betweenness and average closeness

5.2.1 Experiment Environment

Our simulations are executed on a small computer cluster, which includes mul-

tiple simulation servers and duplicate database servers. These machines were con-

89

nected by a 100M(bps) switched LAN (Local Area Network).

The simulation servers, which are used to run the simulations, are all dual Xeon

3.06GHz with 2G of memory and 2G of swap. The database servers are used to

host the repository database and working database. One (the repository database

server) is dual Xeon 3.06GHz with 4G of memory, 6G of swap and 1T storage and

the other (the working database server) is dual Xeon 3.06GHz with 2G of memory

and 2G of swap.

The operating systems of the cluster are as follows: The simulation servers are

Linux with 2.4.21-40.ELsmp kernel. The database servers are Linux with 2.4.21-

40.ELsmp kernel with PostgreSQL 7.4. The simulation toolkit we used was Swarm

and the programming language we used was Java.

5.2.2 Model Description

There are three networks in our study: C-NET, D-NET and P-NET. Since D-

NET and P-NET can be transformed from C-NET, we modeled only the C-NET of

the SourceForge.net community, which is the collaboration network including both

developer and project as node.

The model for simulation is like a procedure definition with related parameters.

We are using the same procedure definition as our previous study in my master

thesis. In the model, there were two kinds of entities – developer and project.

Developers, which are the active roles in real SourceForge network, will also be the

active entities (agents) in our model. Projects will stored in the simulation as an

accessory data structure. Our model is a time-step based simulation, which means

that every agent in the simulation is triggered to act at every time step. We define

the time step in our model as reflecting a single day in the real world.

At every time step, a given number of new developers, N(ND), will be generated

90

and added into the simulation. In our model, the actual number of new developers

at every time step was a random number meaned at N(ND). Then every existing

developer (existing and new developers) in the simulation was triggered to act one

by one. The procedure definitions for new developer and existing developer were

different, which we will discuss separately.

• New developer. Every new developer is triggered to act right after it is gener-
ated. There are two possible actions for a new developer – creating or joining.
Creating meant that the developer would create a new project and thus add
a link from this developer to a new project. Joining meant that the developer
would select an existing project according to some rules, and thus a link from
this developer to the project was added. P (CN) and P (JN) are the two
parameters that controlled the probability of creating and joining. The one
exemption was that the very first developer in the simulation had to create a
new project because there were no existing projects in the system yet.

• Existing developer. Every existing developer was triggered to act at every
time step. There were four possible actions for an existing developer – creat-
ing, joining, abandoning and idling. Creating and joining were similar to the
definitions for the new developer. Dropping meant that the developer would
drop a randomly selected project in which he had participated. Idling meant
that the developer did nothing, which is normally the most frequent action a
developer will take. P (CO), P (JO), P (DO) and P (IO) are the four param-
eters to control the probability of creating, joining, dropping and idling. The
probabilities that a developer would choose a certain action are different in
different models for simulations based on different considered attributes.

Figure 5.2 illustrates the procedure implemented in our simulation. A double

circle marks the start and end points of the simulation. The procedure will iterate for

the preset number of simulation steps. The cloud entities in the figure are the objects

used in the simulation, which include two object collections – users and projects. The

square entities in the figure are the accessory data structures used in the simulation,

which include the weighted project pool (user will select project in this project

pool) and the user project list (the list maintains all the user-project links in the

simulation). The ellipse entities in the figure are the common functions used in the

simulation, including function new user (creating new users at every time step),

function user action (picking action to take every user at every time step) and

91

Start

Stop

End of Simu?

Weighted
Project Pool

User Action

No

Yes

Project List
User List

Project Pool
Update

JoinCreateIdle Drop

User_Project
Links

New Users

Figure 5.2. Program Flow for the Model

92

function project pool update (updating the weighted project pool based on the

project list). The circle entities in the figure represent possible user actions, the

selection of user action will be decided by a stochastic function for every user. The

solid lines in the figure are the control flow in the simulation and the dotted lines

in the figure are the data flow in the simulation.

This is only the skeleton of the procedure definitions in our models. Different

simulation models may have different procedure definitions. Most of these differences

are related to the rules a developer used to choose an action and the rules a developer

used to decide which project to join. Also, the related parameters may be different

for different simulation iterations. All the procedure definitions are based on the

skeleton procedure described in this section. We will explain the detailed procedure

definitions and related parameters for every model when we discuss that specific

model.

5.2.3 Simulation Iterations

According to the proposed simulation methodology, we ran the simulations in an

iterative fashion. This means we started from a basic model, running a simulation

based on that model, and then verified and validated it using the empirical data.

After adjusting the model and related simulation parameters, we ran the simulations

again. We repeated the iterations until we got the “fit” model for the empirical data.

Now we will discuss the details of the iterated simulation models one by one.

We will start with a brief introduction about the models iterated in the previ-

ous study, including adapted ER model, BA model, BA with fitness and BA with

dynamic fitness. Then we will discuss new iterations in this study based on these

previous models.

ER model is the first well-known complex network model and was the basis of

93

the others. This is the first model that employed nonlinear dynamics and displays

some extraordinary properties caused by phase transition [66, 6]. The first iterated

model in the previous study is an adaptive ER model. The network in this model

is growing, which is different from the traditional ER model. So we call it an

adapted ER model. The result of the simulation yielded a network with approximate

normal distributions in all the degree distributions, small and decreasing clustering

coefficient, decreasing average degree and increasing diameter, which is significantly

different from the network measures of the empirical data set.

BA model is the second iterated model, which is based on the scale-free network

model [21, 23]. There is one improvement made in this model: preferential attach-

ment. Preference will influence both the rules that a developer used to choose an

action and the rules that a developer used to choose which project to join. The result

of the simulation yielded a network with decreasing diameter, large and decreasing

clustering coefficient and power laws in the degree distributions. These are similar

to the network measures of the empirical data set, except the “younger upcomer”

phenomenon.

BA model with constant fitness is the third iterated model. Fitness is introduced

in this model to depict the “young upcomer” phenomenon. The result of the sim-

ulation not only matches most of the network measures of the empirical data set,

but also is capable of explaining the “young upcomer” phenomenon.

BA model with dynamic fitness is the fourth iterated model. Instead of constant

fitness we used in the last model, the fitness in this model is dynamic – decaying with

time. The result of this model yielded a network matching the inspected network

measures better than the previous three models.

These four models are iterated in the previous study and details can be found

in the thesis [45]. Now we will start to discuss the models we iterated in this study.

94

The first model is an improved scale-free network model with dynamic fitness. The

simulation setup we used is similar to the setup we used in the previous study. The

simulation will run 1080 steps. Every 30 steps in the simulation is one simulated

month, so there are a total of 36 simulated months generated by the simulation.

We will compare the network measures of these 36 simulated months against the

network measures we calculated from the empirical data set from December 1999 to

November 2002.

As the starting point of the current study - model one, we improved the last

model in the previous study - BA model with dynamic fitness in the following

aspects.

The first improvement is on the stochastic procedures. Since the networks we

are simulating are complex networks, we will utilize multiple stochastic procedures

in the model to replicate these complex characteristics. In our models, we have the

following stochastic procedures:

• Generating new developers every time step is a stochastic procedure. At every
time step, we will generate a certain number of new developers and put them
into the simulated “virtual” community. This number is a random number
decided by a stochastic function.

• Generating fitness for new projects is a stochastic procedure. Every time a
new project is created by a user, we will set some initial parameters of the
project. Fitness is one of the parameters. Instead of a uniform fitness for
every project, we will use a stochastic function to generate a random fitness
value for every project.

• Every user picks an action at every time step, which is also a stochastic pro-
cedure. At every time step, each user will pick an action (dropping, joining,
creating or idling) in turn. Which action the user will pick will be decided by
a stochastic function, too.

• Picking a project to join is a stochastic procedure. When a user decides to
take the “joining” action, the user will decide which project to join. This
decision will be made through a stochastic function, too.

The latter two stochastic procedures are well defined by developer preferential at-

tachment and project preferential attachment discussed in the master thesis [45].

95

On the other hand, the first two stochastic procedures are not well defined in the

previous models. Redefinition of these two stochastic procedures will be the first

improvement in our first iteration model.

The heart of the stochastic procedure is the random number generator. In the

previous models, the random number generators for the first two stochastic pro-

cedures are simple random number generators based on discrete uniform distribu-

tions [28]. The PDF (Probability Density Function) is

F (k; n) =
1

n
(5.1)

where k represents the discrete events and n is the number of events.

In real networks such as SourceForge.net community networks, this is not a rea-

sonable assumption. We will replace the underlying distributions for these random

number generators in the first two stochastic procedures.

For the first stochastic procedure – generating new developers every time step –

a Poisson distribution is a reasonable approximation for the underlying distribution.

Poisson distribution is a discrete probability distribution. Normally, it expresses the

probability of a number of events occurring in a fixed period of time if these events

occur with a known average rate, and are independent of the time since the last

event. The new developer procedure in our simulation can be described as a poisson

process. Thus, the underlying distribution of the stochastic procedure of generating

new developers should be poisson distribution. The probability density function for

the poisson distribution is

F (k; λ) =
e−λλk

k!
(5.2)

where e is the base of the natural logarithm, k! is the factorial of k and λ is the

expected number of occurrences that occur during the given interval. So we replaced

the underlying distribution for the random number generator in the first stochastic

96

Figure 5.3. Probability Density Function for Log-normal Distribution with Different
Variance σ2 (http://en.wikipedia.org/wiki/Log-normal distribution)

procedure with the poisson distribution with average λ at the average we inspected

in the empirical data – 122.

For the second stochastic procedure – initial fitness for new project – we used

log-normal distribution as the underlying distribution for the stochastic procedure.

Fitness is an artificial property added into the project. Without empirical features

as reference, it is difficult for us to get the exact distribution for the fitness. From

intuitive understanding of the project fitness, log-normal distribution should be a

good assumption of the project fitness, which should look like a skewed normal

distribution as in Figure 5.3.

97

The probability density function is

f(x; µ, σ) =
1

xσ
√

2π
e−(ln x−µ)2/2σ2

(5.3)

for x > 0, where µ and σ are the mean and standard deviation of the variable’s

logarithm. The actual mean and standard deviation used in our model are picked

according to the empirical data set to achieve a good “fit.”

The second improvement is applying a different update procedure for the weighted

project pool. In the previous models, we updated the project pool every time we

made a change to any of the projects in the community. This was based on the as-

sumption that global knowledge is always recent and available to every single user.

This assumption is not practical in real networks. Normally, users will have only

recent local knowledges (information about connected projects and users) and their

knowledge about the global network is based on the information published by the

system, which will only be updated at a preset interval. To better match the em-

pirical data set, we applied a different update procedure for the project pool. The

project pool will be updated only at certain intervals. An interval is set to be one

simulated day in our simulation.

By applying these two improvements, we got our first model in this study. As

we discussed before, we verified this model by comparing the network measures

calculated from the simulation data set with the network measures calculated from

the empirical data set. Our simulation starts from the very beginning of the C-NET

(the first node) and up to three simulated “virtual” years. The empirical data set

starts from January 2001 and intermittently after that. The comparison will be

taken in the overlapped time period, reflecting January 2001 to December 2003 for

empirical data and simulated month 13 to simulated month 36 in the simulation.

As mentioned before, we applied multiple verification methods. In addition to

visual inspection, which we used in the previous study, we will also use statistical

98

hypothesis testing 2 to verify the match of the network measures. This is because

it is usually difficult and easily misleading to use only the visual inspection in com-

parison. For example, power law distribution and log-normal distribution are both

asymptotic distributions. Without robust statistical methods, these two distribu-

tions can often look very similar. Even in a log-log plot, a log-normal distribution

can often look nearly straight for certain ranges of x and y, which is the fundamental

property of a power law distribution.

For a statistical hypothesis test, normally there are five important aspects:

1. Null hypothesis H0 is the assertion we made.

2. Alternative hypothesis HA is the alternative assertions about the problem.

3. Significance level α is the probability of incorrectly rejecting null when it is
true, which is usually called “Type I error.”

4. P-value p is the probability of observing the given sample result under the
assumption the null is true.

5. Confidence interval ci.

There are two kinds of statistics hypothesis tests. Parametric hypothesis testing

is the most popular hypothesis testing, including t-test and z-test. They are used to

analyze measures which, in theory, are continuous and comply to normal distribu-

tion. The assumption about underlying normal distribution gives parameters to the

hypothesis test, so it is called a parametric hypothesis test. Unfortunately, some-

times such an assumption is not warranted. To be less sensitive to these assumptions,

a non-parametric hypothesis test is introduced. A non-parametric hypothesis test

makes only mild assumptions about the data, and is appropriate when the distri-

bution of the data is not normal or cannot be guaranteed as normal. On the other

hand, non-parametric hypothesis tests are less powerful than the parametric hypoth-

esis testing for normally distributed data. In our case study, we cannot make the

2Hypothesis testing is a procedure for determining if an assertion about a characteristic of a
population is reasonable.

99

assumption that the data set is normally distributed, so we will use non-parametric

hypothesis testing to verify the similarity of the measures from the simulation and

the empirical data set.

One of the tests we used is Chi-squared χ2 test for categorized data. χ2 test

evaluates the results by reference to the χ2 distribution. It tests a null hypothesis

that the relative value of the observed events follow a specified distribution. The

categories must be mutually exclusive. In our case study, the null hypothesis could

be “the approximate diameters in certain months follows the diameters witnessed

in the corresponding months in the empirical data.” The statistics χ2 is calculated

by finding the difference between each observed and expected value, squaring them,

dividing each by the theoretical value, and taking the sum of the results:

χ2 =

n∑

i=1

(Oi − Ei)
2

Ei
(5.4)

where Oi is an observed value and Ei is an expected (empirical) value. Then we

will consult the χ2 distribution with df (degree of freedom) of the problem. Given

the statistical significance value, we can decide to reject or accept the null hypoth-

esis. We will use the χ2 test to verify the network measures like average degrees,

approximate diameter, approximate clustering coefficient, average betweenness and

average closeness.

The other test we used is the Kolmogorov-Smirnov K-S test for determining

whether two underlying distributions of two data sets differ, or whether an under-

lying distribution differs from a hypothesized distribution, in either case based on

finite samples. The two samples K-S test is one of the most useful and general

non-parametric hypothesis tests for comparing the underlying distributions of two

samples, as it is sensitive to differences in both location and shape of the underlying

distribution of the two samples. To show the K-S test mathematically, we will first

100

introduce the empirical distribution function Fn for n observations yi as

Fn(x) =
1

n

n∑

i=1

{
1 if yi≤x,

0 otherwise. (5.5)

Then the two one-sided Kolmogorov-Smirnov test statistics are given by

D+
n = max(Fn(x) − F (x)) (5.6)

D−
n = max(F (x) − Fn(x)) (5.7)

The details about K-S test can be found at [29]. In our case study, we used the

K-S test to verify the degree distributions in the simulated data set matching the

corresponding distributions in the empirical data.

The first network measure we inspected is the average degree and their devel-

opment through the interested time period. The results are shown in Figure 5.4.

As we discussed in the last chapter, there are four different degrees in the Source-

Forge.net community: developer degree in the C-NET, project degree in the C-NET,

developer degree in the D-NET and project degree in the P-NET. All the figures

share the same coordinate configuration. The X coordinate is the time and every

data point represent a single month. The time range is [1,24], which is reflects the

time range [January 2001, December 2003] in the empirical data set and time range

[month 13, month 36] for the simulated data set. Since we have no complete em-

pirical data during the time period, we are only comparing the simulation data set

against the existing empirical data set. There are a total of 15 eligible months in

which we can compare the simulation data against the empirical data, which are

the X coordinates of the data points in the figures. The Y coordinate is the average

degree value. All the four average degrees yield similar data points in empirical data

and simulated data.

In the figure, we zoomed in the Y coordinates for a detailed comparison. We

found that the developing trend of the average degrees of the simulated data is

101

0 5 10 15 20 25
7

7.5

8

8.5

9

Time

A
ve

ra
ge

 D
eg

re
e

Developer in D−NET

0 5 10 15 20 25
3.2

3.4

3.6

3.8

4

Time

A
ve

ra
ge

 D
eg

re
e

Project in P−NET

0 5 10 15 20 25
1.22

1.24

1.26

1.28

1.3

1.32

1.34

A
ve

ra
ge

 D
eg

re
e

Developer in C−NET

0 5 10 15 20 25
2

2.5

3

3.5

4

A
ve

ra
ge

 D
eg

re
e

Project in C−NET

Figure 5.4. Average Degrees Comparison: the left upper figure shows the developer
degree in the C-NET, the right upper figure is the project degree in the C-NET,
the left lower figure is the developer degree in the D-NET and the right lower
figure is the project degree in the P-NET. All the figures share the same coordinate
configurations. The X coordinate is the time and the Y coordinate is the value of the
corresponding average degree. ‘x’ represents the empirical data and ‘+’ represents
the simulated data.

102

smoother than that of the empirical data. This mismatch is expected since we

cannot include all the features that can influence the evolution of the real complex

network into our simulation models.

We verified the similarity of the average degrees and their developing trend using

visual inspection. We also verified this by using the statistical hypothesis test. The

hypothesis test is this:

• H0: The average degree developments share the same trends in the empirical
data and the simulated data.

• HA: The average degree developments do not share the same trends in the
empirical data and the simulated data.

We calculated the χ2 values for all the average degrees. The χ2 for the developer

degree in the C-NET is 0.0034, the χ2 for the project degree in the C-NET is

0.0723, the χ2 for the developer degree in the D-NET is 0.041 and the χ2 for the

project degree in the P-NET is 0.07. By choosing the significance level α at 0.01

and the df value at 14, the critical value is 4.66. These values are all well below the

critical value. Thus, the null hypotheses are accepted. So the average degrees in

the simulated “virtual” data set have no statistically significant difference from the

average degrees in the empirical data set.

Next, we verify the simulation results using the approximate diameter and ap-

proximate clustering coefficient. Figure 5.5 shows the diameter development in the

P-NET and the clustering coefficient development in the P-NET. Using visual in-

spection, we found the developments of diameter and clustering coefficient from the

simulated data to be similar to those of the empirical data, except that the measures

of the empirical data have more jagged trends than the simulated data.

We also used the χ2 test to verify the similarity of the developments in the

simulated data and the developments in the empirical data with α as 0.01 and df

as 14. The χ2 value for the diameter development in the P-NET is 0.0146 and

103

0 5 10 15 20 25
6.6

6.8

7

7.2

7.4

7.6

7.8

8

Time

A
pp

ro
xi

m
at

e
D

ia
m

et
er

Diameter

simulation data
empirical data

0 5 10 15 20 25
0.7

0.705

0.71

0.715

0.72

0.725

0.73

0.735

0.74

Time

A
pp

ro
xi

m
at

e
C

lu
st

er
in

g
C

oe
ffi

ci
en

t

CC

simulation data
empirical data

Figure 5.5. Diameter and Clustering Coefficient Comparison: The left figure is the
diameter development trends in the P-NET and the right figure is the clustering
coefficient development trends in the P-NET. Both figures share the same coordi-
nate configuration, where X is the time and the Y coordinate is the value of the
corresponding measures. ‘x’ represents the empirical data and ‘+’ represents the
simulated data.

104

the χ2 value for the clustering coefficient in the P-NET is 4.13e-04, which are well

below the critical value at 4.66. So the null hypotheses are accepted and, thus, the

simulated data yields similar diameter and clustering coefficient development trends

as the empirical data. We also verified the measures for the D-NET, which have the

same results.

The next network measures are the betweenness and closeness. We show the

measures for the P-NET in Figure 5.6. By using the χ2 test, we found the χ2 value

for the diameter development in the P-NET is 5.8e-08 and the χ2 value for the

clustering coefficient in the P-NET is 1.64e-09. Both of the χ2 values are well below

4.66, which is the critical value using α as 0.01 and df as 14. So the null hypotheses

are accepted and, thus, the simulated data yields similar average betweenness and

average closeness development trends as the empirical data.

Finally, we also verified the simulation model using the degree distributions. The

degree distributions for the C-NET are shown in Figure 5.7.

We used the K-S test to test whether the degree distributions in the simulated

data set are the same as the degree distributions in the empirical data. The hy-

pothesis is defined as:

• H0: The degree distribution in the simulated data is the same as the corre-
sponding degree distribution in the empirical data.

• HA: The degree distribution in the simulated data is not the same as the
corresponding degree distribution in the empirical data.

The p-value for the developer degree distribution is 0.3754 and the p-value for

the project degree distribution is 0.3979. Using the common significance level at

0.05, the hypotheses are accepted. Thus, both the developer degree distribution and

project degree distribution in the simulated data are the same as the corresponding

distributions in the empirical data.

105

0 5 10 15 20 25
1.6

1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

1.69
x 10

−4

Time

A
ve

ra
ge

 B
tw

ee
nn

es
s

Betweenness

simulation data
empirical data

0 5 10 15 20 25
2.1

2.11

2.12

2.13

2.14

2.15

2.16
x 10

−6

Time

A
ve

ra
ge

 C
lo

se
ne

ss

Closeness

simulation data
empirical data

Figure 5.6. Betweenness and Closeness Comparison: The left figure is the average
betweenness development trends in the P-NET and the right figure is the average
closeness development trends in the P-NET. Both figures share the same coordi-
nate configuration, where X is the time and the Y coordinate is the value of the
corresponding measures. ‘x’ represents the empirical data and ‘+’ represents the
simulated data.

106

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Participated Developers

P
ro

je
ct

s

Proj−Dist in C−NET

0 10 20 30 40 50
0

1

2

3

4

5

6
x 10

4

Participated projects

D
ev

el
op

er
s

Dev−Dist in C−NET

0 0.5 1 1.5 2
0

1

2

3

4

5

6

Participated projects(LOG10)

D
ev

el
op

er
s(

LO
G

10
)

0 1 2 3 4
0

1

2

3

4

5

6

Participated developers(LOG10)

P
ro

je
ct

s(
LO

G
10

)

Figure 5.7. Degree Distributions Comparison: The left upper figure is the developer
degree distribution in normal coordinates, the left lower figure is developer degree
distribution in log-log coordinates, the right upper figure is project degree distribu-
tion in normal coordinates and the right lower figure is project degree distribution
in log-log coordinates. All figures share the same coordinate configuration, where
X is the time and the Y coordinate is the value of the corresponding measures. ‘x’
represents the empirical data and ‘o’ represents the simulated data.

107

Until now, we have matched all of the network measures inspected, including

approximate diameter, approximate clustering coefficient, average degrees, average

betweenness and average closeness between the simulated data and the empirical

data by both the statistical hypothesis test and visual inspection. And we also

matched the degree distributions by the statistical hypothesis test. However, by vi-

sual inspection, we can still find differences between the degree distributions of the

empirical data set and the simulated data set. For the developer degree distribution

in the C-NET, the simulated data set has a significantly shorter tail than the em-

pirical data. For the project degree distribution in the C-NET, the simulated data

set has a significantly longer tail than the empirical data. These deficiencies (the

busiest developer in the simulated data set participated in just 11 projects instead

of 50 in the empirical data, and the biggest project in the simulated data set has

more than 1500 developers instead of 95 in the empirical data) are not reasonable

for the real-world community such as SourceForge.net. So we iterated more models

to make these deficiencies.

The second iterated model is trying to make up for the deficiencies discovered

in the previous model. To achieve this, we added a new parameter into the model

– user energy. In the previous models, we introduced the “fitness” factor into the

project preference. On the other hand, user preference is based only on the number

of projects he/she participated. The deficiency in the previous model could be the

result of lacking user “fitness,” so in this model we introduced a “fitness” factor for

user preference, which is called user energy.

In the real community such as SourceForge.net, different users have different

influences on the community. This difference is decided not only by the number of

projects in which he/she participated, but also by the ability of that user. Some new

user could have more contributions than some old user who participated in multiple

108

projects. We describe this using the user energy factor. We define the energy as

a constant parameter γi for every user. Thus every time a new user(say, user j) is

created, an energy γj was added to the system, where γi is chosen for a uniform

continuous distribution between (0, 1]. This energy level can be described as the

probability that a user will take an action instead of idling during every time step.

After simulating with this model, we also verified this model using the same

measures and methods as the previous model. This model yielded similar results

for most of the network measures, except the degree distributions. The degree

distributions of this model are shown in Figure 5.8.

The biggest project in the project distribution decreased from more than 1500

to below 500, which is improved, compared to the same measures in the empirical

data. However, the developer distribution still has significant deficiency at the tail,

compared to the same measures in the empirical data.

Further iteration on the modeling introduced dynamic user energy into the

model. Through the previous iterations, we still have some deficiencies in the degree

distributions in our simulated data. In this model, we proposed a dynamic energy

factor in the model, which allows the energy for every user to decay with respect to

time and adjusts according to the roles the user is taking in various projects. In the

model, we made the energy decay linearly by time and, meanwhile, it can be self-

adjusted by taking roles and responsibilities or giving up roles and responsibilities

in the community.

By using this dynamic energy, we expected to catch the details of the possible

influence of a user to the related project, even the whole community, and then gen-

erate better matches in both the developer distribution and the project distribution.

The results of the simulation of this model still have the similar average degrees,

approximate diameter and clustering coefficient, average betweenness and average

109

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Participated Developers

P
ro

je
ct

s

Proj−Dist in C−NET

0 10 20 30 40 50
0

1

2

3

4

5

6
x 10

4

Participated Projects

D
ev

el
op

er
s

Dev−Dist in C−NET

0 0.5 1 1.5 2
0

1

2

3

4

5

6

Participated Projects(LOG10)

D
ev

el
op

er
s(

LO
G

10
)

0 1 2 3 4
0

1

2

3

4

5

6

Participated Developers(LOG10)

P
ro

je
ct

s(
LO

G
10

)

Figure 5.8. Degree Distributions Comparison: The left upper figure is the developer
degree distribution in normal coordinates, the left lower figure is developer degree
distribution in log-log coordinates, the right upper figure is project degree distribu-
tion in normal coordinates and the right lower figure is project degree distribution
in log-log coordinates. All figures share the same coordinate configuration, where
X is the time and the Y coordinate is the value of the corresponding measures. ‘x’
represents the empirical data and ‘o’ represents the simulated data.

110

closeness as the empirical data. And the results of the simulation of this model

improve the matches of developer distribution and project distribution. These dis-

tributions comparison are shown in Figure 5.9.

In the figures, the busiest user is increased to 43 projects, which is more close to

the the empirical data, while the size of the largest project is kept below 200. This

is a more reasonable tail for the SourceForge.net and close to the empirical data

set. Thus, model three is able to replicate all the network measures we used in the

verification by both visual inspection and statistics hypothesis test methods.

Through the iterations, we discovered that degree distributions are the most

sensitive network measures in the model iterations. Other network measures such as

average degrees, approximate diameter, approximate clustering coefficient, average

betweenness and average closeness have similar values and behaviors in the models

we iterated from the BA model in the previous study to the third model in the

current study. This discovery can be used in other similar simulation iterations,

where degree distributions should be used as the most closely watched network

measures to verify a simulation result against an empirical data set.

After analyzing and iterating the models, our third model reproduced all the

inspected network measures we chose of the empirical data and captured all the

phenomenon we wanted to highlight in the community and can be used to simulate

the community and possibly predict the future of the SourceForge.net community

by extending the simulations.

5.3 Summary

In this chapter, we used simulation methods to assist in understanding the topol-

ogy and evolution of the SourceForge.net developer collaboration network. First,

we discussed a framework for simulation-related study. In the case study, we used

111

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Participated Developers

P
ro

je
ct

s

Proj−Dist in C−NET

0 10 20 30 40 50
0

1

2

3

4

5

6
x 10

4

Participated Projects

D
ev

el
op

er
s

Dev−Dist in C−NET

0 0.5 1 1.5 2
0

1

2

3

4

5

6

Participated Projects(LOG10)

D
ev

el
op

er
s(

LO
G

10
)

0 1 2 3 4
0

1

2

3

4

5

6

Participated Developers(LOG10)

P
ro

je
ct

s(
LO

G
10

)

Figure 5.9. Degree Distributions Comparison: The left upper figure is the developer
degree distribution in normal coordinates, the left lower figure is developer degree
distribution in log-log coordinates, the right upper figure is project degree distribu-
tion in normal coordinates and the right lower figure is project degree distribution
in log-log coordinates. All figures share the same coordinate configuration, where
X is the time and the Y coordinate is the value of the corresponding measures. ‘x’
represents the empirical data and ‘o’ represents the simulated data.

112

this framework to develop more models for the SourceForge.net community. We it-

erated three more models from our previous study to generate the “virtual” Source-

Forge.net. In the simulation iteration, we verified the result by comparing the

measures from the simulated data and measures from the empirical data using both

visual inspection and statistical hypothesis test. The final result of this chapter is a

model to simulate the SourceForge.net with matched network measures. Using this

model, we are able to simulate the SourceForge.net community and possibly predict

the future development of the community by simply extending the simulation time.

The inspected measures in this chapter are summarized in Table 5.1.

113

TABLE 5.1

SUMMARY OF SIMULATION RESULTS

Model Measure Expected Pattern Observed Pattern

ONE Developer Distribution Power law (large tail) Power law (small tail)
Project Distribution Power law (small tail) Power law (large tail)

Average Degrees Increasing Increasing
Clustering Coefficient Decreasing Decreasing

Diameter Decreasing Decreasing
Average Betweenness Decreasing Decreasing
Average Closeness Decreasing Decreasing

TWO Developer Distribution Power law (large tail) Power law (small tail)
Project Distribution Power law (small tail) Power law (reasonable tail)

Average Degrees Increasing Increasing
Clustering Coefficient Decreasing Decreasing

Diameter Decreasing Decreasing
Average Betweenness Decreasing Decreasing
Average Closeness Decreasing Decreasing

THREE Developer Distribution Power law (large tail) Power law (large tail)
Project Distribution Power law (small tail) Power law (small tail)

Average Degrees Increasing Increasing
Clustering Coefficient Decreasing Decreasing

Diameter Decreasing Decreasing
Average Betweenness Decreasing Decreasing
Average Closeness Decreasing Decreasing

114

CHAPTER 6

RESEARCH COLLABORATORY

Collaboratory is, as a commonly accepted definition by Cogburn [33], “more

than an elaborate collection of information and communications technologies; it is

a new networked organizational form that also includes social processes; collabo-

ration techniques; formal and informal communications; and agreement on norms,

principles, values, and rules.”

As described by Cogburn, we designed our collaboratory as not only a reposi-

tory, where the raw data set and related analytical toolkits are stored, but also a

community, where researchers sharing the same interest can work and discuss with

each other about the related research. Nowadays, there are many similar research

collaboratories existing to support various research. NCBI 1, a collaboratory for

molecular biology research, is one of them. Although these collaboratories have dif-

ferent requirements and support different research domains, they usually share the

similar structure. We will discuss the popular structures first of all.

6.1 Collaboratory Design

Common structures include two-tier, three-tier and four-tier hierarchies. We

will focus our introduction on the three-tier hierarchy, which is used in our research

collaboratory design. These three tiers are:

1http://www.ncbi.nlm.nih.gov/.

115

1. Data tier (back-end data storage): Since the research collaboratory is a data-
centrical system, a data repository is at the back end of the system to store
all the related information. Normally, database is the implementation of the
data repository at the back end. The design and implementation of this tier
define the reliability, integrity and performance of the collaboratory.

2. Presentation tier (front-end web interface): This tier is responsible for for-
matting the information and delivering it to the end user. It relieves the user
of concerns in regard to data representation within the logic tier or the data
tier. Web interface is one of the commonly used front-end tier. The design
and implementation of this tier define the availability and usability of the
collaboratory.

3. Logic tier (middle-layer service provider): This tier implements most of the
processes and functions provided in the presentation tier and usually these
processes and functions are based on the information stored in the data tier.
Most of the programming language supporting networking can be used in this
tier. The design and implementation of this tier define the functionality of the
collaboratory.

For each tier, there are several major tasks to be accomplished. We will discuss

these tasks for every tier in the following subsections.

6.1.1 Data Tier

As we discussed before, data tier includes the repository where the information

will be stored. To ensure the reliability, integrity and performance of the collabora-

tory, there are several tasks that should be fulfilled in this tier.

Designing an appropriate schema is the first task. Schema defines the structure,

content and, to some extent, the semantics of the information stored in the reposi-

tory. Different research collaboratories will have different requirements for the data

storage, thus different data schema. The first task of the data tier is designing and

maintaining a good schema for the repository to well-serve the collaboratory.

Designing an appropriate backup strategy is the second task. Backup is a method

to keep a copy of the data so that it could be restored after a data-loss event. For

the repository of a research collaboratory, the information stored in the repository is

vital to the collaboratory. So maintaining the reliability of the data is very important

116

to the collaboratory. Normally, at least periodic backups should be engaged to

improve the data recovery reliability. So the second task of the data tier is designing

a good backup strategy for the repository.

Designing an appropriate load-balancing technique is the third task. Load bal-

ancing is a technique to spread jobs across multiple computers, processes, disks or

other resources in order to get optimal resource utilization and decrease overall com-

puting time. Also, when the load of the system is getting heavy, load balancing is

also needed to limit the workload of the database to avoid overloading the database.

So the third task of the data tier is designing a load balancing technique to control

access to the back-end repositories.

6.1.2 Presentation Tier

The presentation tier is the interface interacting with the end user (developer).

Intuitive and rich interface can help users access and use the information stored

in the collaboratory and can also promote the availability and usability of the col-

laboratory. The following basic functions should be included in the presentation

tier.

First of all, various access methods to the data repository are the most important

functions the interface should provide to the user. Controlled query is one of the

common access methods, so that users can query the back-end repository directly

to retrieve information they want. Programmable access is another method that

should be provided for more sophisticated use of the back-end repository.

Secondly, documentation and reference are important functions of the interface.

Documentation is important for users to understand the background and context of

the information provided by the collaboratory, so users can use the information more

efficiently and wisely. Reference is also important to a collaboratory, especially a

117

research collaboratory. With sufficient knowledge of peer studies, users can improve

their own research.

Finally, community support is also another important function of the interface.

The collaboratory provides a “virtual” community for the users sharing the same

research interests to interact with each other around the world and thus promote

efficient teamwork.

6.1.3 Logic Tier

Logic tier is a set of applications and processes dealing with user requests from

the presentation tier, processing and generating relative queries to the database, and

formatting the returned result and sending it back to the presentation tier. This

tier can improve the scalability of the collaboratory by separating the logic tier from

the presentation tier and data tier.

The major functionality of this tier is implementing every function provided in

the presentation tier. So the design and implementation of this tier is closely related

to the functions the presentation tier provides to the user.

The three-tier hierarchy is a common structure for a research collaboratory. Two-

tier hierarchy and four-tier hierarchy are also available for collaboratories with less

or more complexity.

6.2 Case Study

As the previous chapters, we used the SourceForge.net as our case study. We

built a research collaboratory for the Open Source Software Research based on

the monthly database dumps we got from SouceForge.net. We used the three-tier

hierarchy to implement our collaboratory. Details about the hierarchy used in our

collaboratory are shown in Figure 6.1.

We will explain these three tiers in our collaboratory in the rest of this section.

118

Data Repository

Wiki Interface

Query

Researchers

RPC Browse

Researchers

Presentation Tier

This top tier is the user interface.
The main function of the interface is
to translate tasks and results to
something the user can understand.

Logic Tier

This tier coordinates the web
interface and the data storage,
moves and processes data between
the two surrounding tiers.

Data Tier

Here information is stored and
retrieved from a database. The
information will then be passed back
to user through the logic tier.

Figure 6.1. Three-tier Hierarchy for Our Collaboratory

119

6.2.1 Data Tier

First of all, we will explain the data tier design. As discussed in the previous

section, there are three major tasks in designing the data tier – repository schema,

backup strategy and load balancing.

Every month we get a database dump from SourceForge.net with privacy scrutiny.

The database dump is a SQL file with all the commands needed to restore the

database to the designated state.

This data repository in our collaboratory is different from common data reposi-

tory because of the following two reasons.

First of all, there are significant overlaps between two adjacent database dumps.

Each of the database dumps is a full database dump for the month, instead of an

incremental database dump. This means that part of the data replicated from the

previous month. So if we simply restore these database dumps over the previous

database dump, much information in the previous database dump will be overlapped

by the current database dump. Then we will lose the evolving history information

during monthly restoration.

Secondly, the pattern of updates is different from that in many commercial

database applications. For example, the ticketing database records information

about booking airline tickets. In the ticketing database, there is much record-

removing and record-changing because of cancellation and rebooking. In our database,

the situation is different. As new observations are made, they are added to the

database, and only if an observation is found to be incorrect will his/her entry be

changed or removed. Therefore, the database tends to grow monotonically. As well

as adding more instances of the same kind of data, new kinds of data items and

new properties are introduced and new kinds of relationships between data items

are added.

120

SF0205

SF0103

SF0405SF0305

SF0605

SF0705SF0805

SF0505

Every schema is a
database dump

from the
SourceForge.net

Timeline

Figure 6.2. Data Schema for the Repository

Therefore, it is to be expected that the database schema used to describe our

repository will itself develop as the database grows. Based on these, a multiple-layer

data schema is used in the data repository shown in Figure 6.2.

Timeline is the name of the top level – the database, where all the data dumps

from SourceForge.net are stored. In the database, there are multiple schemas 2. Ev-

ery schema represents a single month, and stores the database dump from Source-

Forge.net of the corresponding month. These schemas are named from the month

of the corresponding database dump. For example, schema “SF0103” stores the

database dump of January 2003. In every schema, we copy the intact table defini-

tions from the corresponding database dump as the table definitions.

Another important task of the data tier is the backup strategy. Since our reposi-

tory should expand only every month, a new database dump is restored. A periodic

2A logic level between database and table.

121

TimelineConnection Pool

Connection
Assigner

Logic
Tier

Connection
Request

Persistent
Link

Persistent
Link

Persistent
Link

Figure 6.3. Connection Pool Design

(monthly) full repository backup is good enough to keep the repository fully recov-

erable. This backup action can be initialized by cron job or manually. In addition

to this periodic full repository backup, we also keep a full backup of the database

dump files in case there is potential error during data loading.

As to load balancing, we applied connection management only for our collabora-

tory. This is because currently our back-end database is only a single server hosting

the “timeline” database and load balancing is not necessary. Instead, connection

management is needed to relieve the back-end server from a possible heavy load of

queries 3. In order to mitigate the possible overloading issue for the database server,

a connection pool mechanism is engaged. The connection pool mechanism is shown

in Figure 6.3.

The connection pool entity acts like a daemon running on the database server,

3According to our statistics, in June 2006, we received 16,947 queries, returned 13,343 files in
total size of over 26G from just 24 active users. Further information about the web site utilities
can be found in the Appendix C.2.

122

which keeps a predetermined number of persistent links to the database – “timeline.”

This predetermined number can be adjusted, according to the processing power of

the database server. From the logic tier point of view, this connection pool entity

works like a virtual back-end database. Every request to access the database will

be submitted to the connection assigner, and the assigner will assign an idle link to

the request procedure, if available, and recollect the link when the work is done. If

every link is busy, the request will be queued at the connection assigner for the next

available link to access the real back-end database. By engaging the connection pool

mechanism and setting the appropriate number of persistent links, it is guaranteed

that the database server won’t be swamped by connections and every requests will be

queued at the connection pool without suffering from bad performance or dropping.

Also, by adjusting the number of persistent links, we can tune up the performance

of the back-end database.

6.2.2 Presentation Tier

Presentation tier is the user interface of the research collaboratory. As we dis-

cussed in the last section, community support and repository access are two of the

major functions of the presentation tier. However, normally these two functions

have different requirements for authorizations. For the repository access, tight au-

thorization is needed to avoid information abuse. On the other hand, community

support needs relatively loose authorization and, actually, sometimes anonymous

users’ contributions are vital to a “virtual” community (e.g., online bulletin board

service). Thus, in our presentation tier, public community service and restricted

repository access should be provided with layered authorization. All users, includ-

ing anonymous users, can access the community; registered users are allowed to

post on the community and only specially authorized users can access the back-end

123

repository through the web interface or programmable interface.

For the public community service, we used wiki technology 4. The wiki engine

(the collaborative software) we are using is MediaWiki, which is also the wiki engine

used by wikipedia 5. We chose wiki to implement our public community service for

the following reasons:

1. Good content management: wiki has shared, and encouraged, several features
with generalized content management systems that are used by enterprises
and communities-of-practice. These features include articles that are editable
through the web browser; each article has one-click access to a discussion page
and the name of the article is embedded in the hyperlink.

2. Easy to use: A defining characteristic of wiki technology is the ease with which
pages can be created and updated. Each article in the wiki can be created
or edited at anytime by anyone. Also, the wiki engine provides linking and
searching functions to locate an article easily. By far, the most common wiki
systems are server-side wiki systems. In essence, the edit, display and control
functions are provided on the server through the wiki engine that renders the
content into an HTML-based page for display in a web browser. The client of
the wiki does not need special support to browse a wiki site.

3. Complete change control: Wiki is generally designed with the philosophy of
making it easy to correct mistakes, rather than making it difficult to make
them. Thus, while wiki is very open, it provides a means to verify and validate
recent additions to the body of the pages by changing logs. And each article
provides one-click access to the history/versioning page, which also support
version differencing and retrieving prior versions.

For these reasons, we implemented our user interface using wiki technology.

Figure 6.4 is a screen shot of the user interface of the collaboratory using the wiki

technology.

Another major function of the presentation tier is the restricted repository ac-

cess. The web interface module is implemented using Perl script and ODBC. There

are two sub-interfaces provided in the web interface – database query interface and

the schema browser interface. Authorized users can submit queries directly to the

4A wiki is a type of website that allows visitors to easily add, remove, or otherwise edit and
change some available content, sometimes without the need for registration. The ease of interaction
and operation make a wiki an effective tool for collaborative authoring.

5http://www.wikipedia.org.

124

Figure 6.4. Screenshot of the Wiki Interface for “SourceForge Research Data
Archive: A Repository of FLOSS Research Data” [1].

125

backed repository through the database query interface. And the schema browser

provides a dynamic interface to browse the database schema of the repository, in-

cluding available schemas and table definitions. Details about the implementation

of these functions will be discussed in the next subsection about logic tier.

As we discussed before, authorization is required before a user can submit a query

to the back-end repository. In our implementation, we used a single-user database to

provide uniformed user authorization for both the public wiki site and the restricted

repository access. This uniformed user authorization is easy to manage and is more

secure.

6.2.3 Logic Tier

Logic tier includes all the processes implementing every function in the presen-

tation tier. In our implementation, access to the data repository is one of the major

functions needed to be implemented in the logic tier. There are two kinds of access

methods to the back-end repository provided in our collaboratory – web access and

programmable access.

Web access is the simple method to access the back-end repository and it is used

to implement the database query interface discussed before. In case the query can

be described as a single query and submitted through a web page, web access is

the preferred access method. In our implementation, authorized users can submit

queries through a provided web page; the result will be saved in the user directory

and be made available for download by the user. We use files instead of returning the

result directly to the user to avoid unexpected network delays and other problems.

Also, by saving the result in a file, we can avoid duplicate requests to mitigate the

burden on the back-end repository.

In our previous discuss, we mentioned that the schema of the data repository is

126

evolving. It is difficult for us to keep publishing up-to-date schema on the wiki site

and it is impossible for the user to query the data repository without the current

knowledge about the schemas. To solve this problem, we provided a dynamic schema

browser, which is simply another web query system about the data schemas only.

By using the schema browser, users can pull the current schema directly from the

back-end repository and then query the back-end repository according to the current

schema.

With the schema browser, a typical user query can be divided into two steps.

The first step is to retrieve the related table names and attribute names. The next

step is to generate the query using the information retrieved in the first step and

submit the query. This two-step approach provides a complete solution for users for

submitting queries to access the dynamic evolving back-end repository.

For the result file, multiple formats are provided for different usages of the results.

Delimited plain text is one of the available formats and users can pick the different

delimiters. The other format provided is XML format for seamless integration with

other information-exchange services.

Although most of the query for the data repository can be completed through the

simple web access, there are some situations where simple web access is not enough.

For example, if the user has a sophisticated request than cannot be described using

single query or the user needs use procedures (queries with control structure like

loop and condition) in the query, programmable access is needed. Currently only

web access is implemented, but web service functionality is proposed to implement

the programmable access to the back-end repository.

This collaboratory is implemented for the Open Source Software Research com-

munity. We provided access to the data repository of the SourceForge.net database

dump and published our research about SourceForge.net in the collaboratory. Al-

127

though it is a fairly new community, the statistics show that the usage of the collab-

oratory is promising (Appendix C.2). We expect this collaboratory could contribute

to the research of Open Source Software.

6.3 Summary

In this chapter, we discussed the design and implementation of a research collab-

oratory. The collaboratory includes a repository for the research-related information

and a community for the researchers to cooperate with each other in the research.

The collaboratory provides a method to share information, publish the research

results, discuss it with peer researchers and promote future research in the domain.

We implemented our research collaboratory for OSSR (Open Source Software

Research) using three-tier hierarchy.

For the data tier, we designed a self-evolving data schema, periodic backup

strategy and a connection control mechanism to ensure the reliability, integrity and

performance of the collaboratory.

For the presentation tier, we built a community service for the collaboratory us-

ing wiki technology and a web access module (restricted query and dynamic schema

browser). We also proposed to use web service to implement the programmable

access module.

For the logic tier, we implemented the functions in the web access module,

including restricted query and the dynamic schema browser, using Perl and ODBC.

128

CHAPTER 7

CONCLUSION

7.1 Summary of Results

Study of the evolving complex networks has vital practical importance. It can

help in efficient indexing and searching of the Internet; stability analysis for biolog-

ical and communication networks; epidemic threshold studies for social science and

understanding the networking influence in software engineering practice. Because

of its practical importance, many research topics are proposed to study the evolving

complex network in computer science, physics and social science domain. Our re-

search is focused on using computational discovery methods to study the structure

and evolution of the evolving complex networks.

In this dissertation, we proposed a computational discovery methodology to

study the evolving complex networks. The methodology is a cyclic procedure with

four different processes: data mining, network analysis, computer simulation and

research collaboration. In the data mining process, we used traditional methods

such as feature selection and distance-based clustering to discover potential pat-

terns in the complex network. Meanwhile, we also applied novel distribution-based

clustering methods in the data mining process. In the network analysis process, we

applied multiple analyses, including structure analysis, centrality analysis and path

analysis, on the evolving networks. In the computer simulation process, we used

iterated simulation to generate a “fit” model to simulate the evolution of empirical

129

evolving complex networks. Finally, we proposed a design for research collaboratory

supporting research about evolving complex networks.

We also applied this proposed methodology on a real world problem – a study

of the Open Source Software community in the dissertation. SourceForge.net de-

velopment community is the designated community we studied. By applying the

methodology on the SourceForge.net community network, we gained many useful

insights into the structure and evolution of the community. In the data mining

process, we identified the important features that contributed to the success of a

project and generated a novel activity distribution-based predictor to predict the

“popularity” of a single project by applying the distribution based clustering algo-

rithm. In the network analysis process, we expanded our previous study by applying

more analysis on the more complete data set. By using the network analysis, we

had more discoveries about possible life cycle behaviors for both the whole net-

work and individual entities in the network. In the computer simulation process,

we iterated multiple models based on the network measures we inspected in the

network analysis process and generated a “fit” model to simulate the evolution of

the SourceForge.net community network to possibly predict the future development

of the SourceForge.net community by extending the simulation time. In the col-

laboration process, we designed and implemented a research collaboratory for the

OSS research, storing the accumulated database dumps from SourceForge.net and

providing access and analysis tools to the users through the collaboratory. This

collaboratory has had good utilization since it was established.

7.2 Limitations and Future Work

Our work has some limitations, but by overcoming these limitations, there are

several research topics that can be further studied. These limitations and possible

130

future topics are as follows:

1. By using the distribution-based data mining method, we had an activity
distribution-based predictor to foresee the “popularity” of a single project.
However, because of the limited computational resources, we did not perform
a larger scale (over the whole data set), longer-term (extended time span of the
inspected projects) analysis of the algorithm on the available data set. Such
an analysis could help in verifying and improving the method, and generate
more interesting predictors for the SourceForge.net community.

2. We had interesting discoveries about the network structures and evolutions,
especially the widely existing life cycle behaviors. Nevertheless, we still did
not observe the substantial evidence of the life cycle behavior – the complete
life cycle of the network evolution, because Sourceforge.net is still actively
evolving. By keeping monitoring, accumulating and analyzing the data set
from the SourceForge.net community, we could gain more insights about the
life cycle behaviors about the network evolution.

3. Our modeling and simulation yielded good results to model and simulate the
SourceForge.net community, but the modeling and simulation practice is lim-
ited to the SourceForge.net community because of the lack of information
from the other OSS communities. Applying similar modeling and simulation
practice on other OSS community could verify and expand our result.

4. As an experimental collaboratory, we hosted our collaboratory on a single
server. To avoid excessive load to the server, we engaged connection control
and deployed only the web query and schema browser modules. However, we
have witnessed large numbers of requests since the launch of the online collabo-
ratory (details about the utilization statistics can be found in Appendix C.2).
Redesigning the back-end repository as a server cluster, engaging load bal-
ancing in the application layer, deploying programmable access module (web
service) in the front-end interface could significantly improve the availability,
performance and functionality of the collaboratory.

131

APPENDIX A

SUPPLEMENTS FOR NETWORK ANALYSIS

In this appendix, we included the formal proof of the approximate method for

graph diameter [102].

Given

G0(x) =

k=0∑

∞

pkx
k (A.1)

as the generating function for pk, which is the probability of a vertex have k degree,

we have the following properties:

∑
pk = G0(1) = 1 (A.2)

pk =
1

k!

dkG0

dxk
|x=0 (A.3)

z1 =< k >=
∑

k

kpk = G′
0(1) (A.4)

(A.5)

We define p1
k as the probability of the degree of the vertices that we arrived at by

following a randomly chosen edge. So

P 1
k =

kpk∑
k kpk

(A.6)

Thus, we define the generating function for p1
k as

G1(x) =

∑
k kpkx

k−1

∑
k kpk

(A.7)

132

We have the similar properties for G1(x) as for G0(x):

∑
p1

k = G1(1) = 1 (A.8)

p1
k =

1

(k − 1)!

dkG1

dx(k − 1)
|x=0 (A.9)

(A.10)

Using power property of the generating function, we can get the generating function

for the distribution of the number of second neighbors of the original vertex as:

G2(x) =
∑

k

pk[G1(x)]k = G0(G1(x)) (A.11)

Thus, by the moment property of generating function, we get

z2 = [
d

dx
G0(G1(x))]x=1 = G′

0(1)G′
1(1) (A.12)

Furthermore, we can get every zm as

zm = G′
0(1)[G′

1(1)]m−1 = [
z2

z1
]m−1z1 (A.13)

The overall network size, N , is

N = 1 +
∑

m

zm (A.14)

when N � z2 � z1, we can get

N ≈ zm (A.15)

Combining the Equation A.13 and Equation A.15, when zm → N and m → D,

where D is the diameter of the network, we get

N = [
z2

z1
]D−1z1 (A.16)

So, we can get

D =
log N

z1

log z2

z1

+ 1 (A.17)

133

APPENDIX B

SUPPLEMENTS FOR SIMULATIONS

In this appendix, we included a screenshot of the simulation execution as shown

in Figure B.1. The lower two figures are the developing size of the developer body

and the project body. And the upper two distribution figures are the dynamically

generated distributions for developer size distribution and project size distribution.

They show power law properties.

134

Figure B.1. Screenshot of the Running Simulation

135

APPENDIX C

SUPPLEMENTS FOR COLLABORATORY

C.1 Timeline Database

This database is the repository of all the database dumps from SourceForge.net.

Since the database dump is monthly, there are always overlaps among the dumps.

We used the schemas to save the different database dumps. The hierarchy we used in

the repository is three levels. The highest level is the database, which is the timeline

database. The middle level is the schemas, which are used to store different monthly

database dumps. And inside the schema are the tables from a single database dump,

which is the lowest level in the hierarchy. We will explain the repository according

to this hierarchy.

C.1.1 Database

The first level is the database. We maintained two databases for the repository.

They are timeline and userinfo. The DBMS is PostgreSQL 7.4.3.6. The userinfo

database stores the information about the users authorized to access the repository.

Since we are still in the beta state, we handle the applications only manually. The

collected user information includes user name and user email. This database is

just an accessory database. The timeline database is the main database, where the

monthly database dumps from SourceForge.net are stored.

136

C.1.2 Schema

Since the monthly dumps we get from SourceForge.net are database dumps, we

utilized the schema feature to store multiple dumps in one single database – timeline

database. We use different schema to store database dumps for different months.

The name convention of the schema is sf(mm)(yy), (mm) and (yy) stands for the

month and year of the specified database dump. For example, the database dump

for January 2005 is stored in schema sf0105. The data schema inside each schema

is decided by the related database dump, respectively. Since SourceForge.net is

evolving itself, the data schemas in different schema may be different.

C.1.3 Table

As we discussed in the last section, the data schema for different schema is dif-

ferent, but they all include the general data schema. In this section, we will explain

the general data schema (table definitions) in the timeline database. Basically, there

are three types of tables in every schema. First, there are data tables, which pro-

vide all the information for their website. There are over 40 tables in this category.

Some of the tables have very intuitive names, like “groups” (stands for the projects

in SourceForge.net),“user” (stands for the users in SourceForge.net), “group type”

(stands for the group types existing in SourceForge.net) and “user group” (stands

for the user group relationships in the SourceForge). The other tables can be fur-

ther categorized. These tables normally have a name starting with a prefix. These

common prefixes will be explained one by one.

• The prefix “artifact” stands for the activities in a project. These activities
include bug reports, feature requests, file releases, file downloads, patches,
forum posts and CVS activities. The tables with this prefix store all the
information related to these artifacts in the specific project.

• The prefix “forum” stands for the discussions in a project. The tables with
this prefix store the information related to forum discussions.

137

• The prefix “foundry” stands for the Source Forge community. The tables with
this prefix store the information related to the global information of the Source
Forge community.

• The prefix “frs” stands for the file releases of a project. The tables with this
prefix store the information related to the file releases of the projects.

• The prefix “people” stands for the users in the community. The tables with
this prefix store the information used to describe the users.

• The prefix “project” stands for the groups in the community. The tables with
this prefix store the information related to the groups.

• The prefix “trove” stands for the software category used by SourceForge. The
tables with this prefix store the information related to this software category.
The related pages in the website are the software map section in the homepage
of SourceForge.net.

Statistics tables are another type of table. Normally, these tables have a name

starting with a “stats” prefix. SourceForge started to collect statistics for the com-

munity in 2003. There are several different statistics collected by SourceForge.

• Tables with names starting with “stats site” describe the site-wide statistics.
These tables are used to support the rating system of SourceForge.net.

• Tables with names starting with “stats project” describe the project statistics,
including message posted, bugs opened and closed, support opened and closed,
patches opened and closed, artifact opened and closed, tasks opened and closed
and help requested of a given project.

• There are also specific statistical stables for http and ftp downloads for the
SourceForge community.

There are also some temporary tables in the database, which are not important

to the whole system. Please refer to the schema map attached for further study.

C.1.4 Comments

Since our repository is still evolving, there are some things that are still not

precise. I have tried to clarify some common questions about the repository.

1. The coverage of the repository: Currently only the database dumps for
the following month are available and the corresponding schema names are
also given.

138

• January 2003 (sf0103)

• November 2004 (sf1104)

• December 2004 (sf1204)

• February 2005 (sf0205)

• March 2005 (sf0305)

• April 2005 (sf0405)

• May 2005 (sf0505)

• June 2005 (sf0605)

• July 2005 (sf0705)

• August 2005 (sf0805)

• September 2005 (sf0905)

The missing months will not added, and we will try to keep the data dump
continuous from now on.

2. The time expression: There are table columns (attributes) that represent
time values, such as add data for user table. All these values are given as inte-
ger, as the passing seconds to January 1, 1970. Most programming languages
have standard library support to transform these integers to human-readable
dates.

3. Current supported query: Currently, our query web interface only sup-
ports single simple queries, which are combined with three sections – “select”
clause, “from” clause and “where” clause.

“Select” clause includes the attribute names. Users can also format the
output in the “select” clause. Please refer to the attached documents for
complete attribute list.

• Example 1: select user id, user name from ...

• Example 2: select user id||′ :′ ||user name from ...

“from” clause includes the target tables of the query. Since we used
schema to store different database dumps, schema name must be included
before a table name is specified.

“where” clause includes the condition expression for the query. Here
are two examples for possible complicated queries.

• Example 3: select b.artifact id, b.summary
from sf1104.artifact a, sf1204.artifact b
where a.artifact id = b.artifact id AND a.status id ! = b.status id

• Example 4: select distinct project id from sf0505.user group
where user id in (select distinct user id from sf0505.user group
where project id = 100) and project id ! = 100

139

4. Expected query time: Expected query time for simple queries will take
seconds or minutes to finish. But some tables are huge in record size. For ex-
ample, artifact table includes 863,068 records in July 2005 dump; forum table
includes 1,723,458 records in July 2005 dump; users table includes 1,105,685
records in July 2005 dump; stats project table includes 1,064,812 records in
July 2005 dump. Joining some of these tables could easily create a view with
billions of records. In that case, query time can take hours or even days.

5. Possible usage of the repository: The data in the repository is sufficient
for researchers to study not only the snapshot of the SourceForge community,
but also the evolution of the SourceForge community.

C.2 Statistics about the Repository

C.2.1 April 2006 Report

Total queries submitted: 17861

Total query data files retrieved: 11647

Total bytes of query data: 29279517609

User bdhutche retrieved 2 query data files of total size 105662

User xiangl retrieved 294 query data files of total size 4455388394

User mgencer retrieved 22 query data files of total size 53978955

User roberta retrieved 4 query data files of total size 924161262

User srs retrieved 14 query data files of total size 2249650

User jwang2 retrieved 27 query data files of total size 655854988

User - retrieved 1884 query data files of total size 142540910

User jphahn retrieved 222 query data files of total size 17374078680

User claragar retrieved 8 query data files of total size 37382009

User jhoh retrieved 18 query data files of total size 176265228

User beechung retrieved 47 query data files of total size 1588946921

User pierce retrieved 130 query data files of total size 60905316

User zhoul retrieved 2 query data files of total size 6456

140

User sdaniel retrieved 8782 query data files of total size 80796425

User cconley retrieved 104 query data files of total size 298126886

User gzm108 retrieved 1 query data files of total size 147185

User aradroy retrieved 11 query data files of total size 37190828

User yoris.au retrieved 74 query data files of total size 3391391838

User psingh retrieved 1 query data files of total size 16

C.2.2 May 2006 Report

Total queries submitted: 6073

Total query data files retrieved: 5810

Total bytes of query data: 7015257746

User zhoul retrieved 1 query data files of total size 2423

User sdaniel retrieved 610 query data files of total size 737476

User crowston retrieved 28 query data files of total size 11833077

User xiangl retrieved 534 query data files of total size 1652175935

User jwang2 retrieved 2227 query data files of total size 325282296

User - retrieved 776 query data files of total size 142000206

User wrayb retrieved 1 query data files of total size 2423

User gangpeng retrieved 55 query data files of total size 3058225587

User claragar retrieved 733 query data files of total size 1201135135

User yoris.au retrieved 74 query data files of total size 496684130

User pierce retrieved 771 query data files of total size 127179058

141

C.2.3 June 2006 Report

Total queries submitted: 16947

Total query data files retrieved: 13343

Total bytes of query data: 26684556278

User srikanth retrieved 1 query data files of total size 134236978

User crowston retrieved 25 query data files of total size 72026072

User xiangl retrieved 187 query data files of total size 40117814

User tripathi retrieved 14 query data files of total size 20584

User jwang2 retrieved 419 query data files of total size 742040886

User pclay retrieved 1 query data files of total size 2423

User - retrieved 531 query data files of total size 1265097014

User u retrieved 1 query data files of total size 200

User jphahn retrieved 292 query data files of total size 13728867679

User jhoh retrieved 4 query data files of total size 157300985

User pierce retrieved 704 query data files of total size 53521142

User u stettner retrieved 86 query data files of total size 190908368

User ddzega retrieved 114 query data files of total size 8985433218

User jmoon retrieved 11 query data files of total size 17094636

User sdaniel retrieved 10787 query data files of total size 606513015

User newusertest retrieved 1 query data files of total size 27

User cconley retrieved 94 query data files of total size 410039214

User srikanth.mudigonda retrieved 1 query data files of total size 2423

User wrayb retrieved 1 query data files of total size 2423

User mvanantw retrieved 44 query data files of total size 238564242

User aradroy retrieved 2 query data files of total size 28012957

142

User yoris.au retrieved 1 query data files of total size 13891532

User cliche retrieved 18 query data files of total size 812797

User david.hinds retrieved 4 query data files of total size 49649

143

BIBLIOGRAPHY

[1] OSS research portal (http://zerlot.cse.nd.edu). 2006.

[2] L.A. Adamic and B.A. Huberman. Scaling behavior of the world wide web.
Science, 287(2115), 2000.

[3] Charu C. Aggarwal and Philip S. Yu. Outlier detection for high dimensional
data. SIGMOD Proceedings, 2001.

[4] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. Proceedings of ACM SIGMOD Int. Conf.
Management of Data, pages 207–216, 1993.

[5] J. Ahola. Mining sequential patterns. VTT research report TTE1-2001-10,
2001.

[6] W. Aiello, F. Chung and L. Lu. Random evolution in massive graphs. IEEE
Symposium of Foundations of Computer Science, 2001.

[7] R. Albert and A.L. Barabási. Emergence of scaling in random networks.
Science, 286:509–512, 1999.

[8] R. Albert and A.L. Barabási. Dynamics of complex systems: Scaling laws for
the period of boolean networks. Physics Review, 85(5234), 2000.

[9] R. Albert and A.L. Barabási. Statistical mechanics of compex networks. Re-
views of Modern Physics, 74(47), 2002.

[10] R. Albert, H. Jeong and A.L. Barabási. Diameter of world-wide web. Nature,
401(130), 1999.

[11] R. Alessandra and M. Alessandra. Decoding the “free/open source (f/oss)
puzzle” – a survey of theoretical and empirical contributions. EconPapers,
EFI, Italy, 2004.

[12] L.A.N. Amaral, A. Scala, M. Barthelemy and S. HE. Classes of small-world
networks. Proceedings of the National Academy of Sciences, 97(21), 2000.

[13] R. Axelrod. The evolution of strategies in the iterated prisoner dilemma.
Genetic algorithm and simulated annealing, pages 32–41, 1987.

[14] R. Axelrod. Advancing the art of simulation in the social sciences. Simulat-
ing Social Phenomena, ed. Rosaria Conte, Rainer Hegselm ann, and Pietro
Terna., pages 21–40, 1997.

144

[15] R. Axelrod. The complexity of Cooperation: Agent based models of competition
and collaboration. Princeton University Press, Princeton, NJ, 1997.

[16] Z. Bar-Joseph and G. Gerber. Computational discovery of gene modules and
regulatory networks. Nature Biotechnology, 10(1038), 2003.

[17] A.L. Barabási, H. Jeong, Z. Neda, E. Ravasz, A. Schubert and T. Vicsek.
Evolution of the social network of scientific collaborations. PhysicA, 311(590),
2002.

[18] J.M. Barrie and D.E. Presti. The world wide web as an instructional tool.
Science, 274(371), 1996.

[19] R. Bellman. Adaptive control processes: A guided tour. Princeton University
Press, Princeton, NJ, 1961.

[20] J. L. Bentley. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18(9), 1975.

[21] G. Bianconi and A.L. Barabási. Competition and multiscaling in evolving
networks. Europhys. Lett., 54(436), 2001.

[22] B. Bollobás. Random graphs. London:Academic, 1985.

[23] B. Bollobás, O. Riordan, J. Spencer and G. Tusnöady. The degree sequence
of a scale-free random process. Random structures and algorithm, 18(3):279–
290, 2001.

[24] J. Bozman. “linux server growth accelerates, topping 60% year-over-year”.
http : //www.idc.com/getdoc/jsp?containerId = pr2005 12 26 193650, 2005.

[25] F. Brooks. No silver bullet: essence and accidents of software engineering.
IEEE Computer Magazine, pages 10–19, 1987.

[26] R. Burton. Simulating Organizations: Computational Models of Institutions a
nd Groups, chapter Aligning Simulation Models: A Case Study and Results.
AAAI/MIT Press, Cambridge, Massachusetts, 1998.

[27] J. Camacho, R. Guimerà and L.A.N. Amaral. Preprint cond-mat/0102127.
2001.

[28] E. Castro and M. Houle. Fast randomized alogorithms for robust estimation
of location. Proc. International workshop on Temporal, Spatial and Spatio-
temporal Data Mining, Lyon, France, 2000.

[29] I. M. Chakravarti, R. G. Laha and J. Roy. Handbook of methods of applied
statistics. John Wiley and Sons, I, 1967.

[30] S. Chawla, B. Arunasalam and J. Davis. Mining open source software (oss)
data using association rules network. Proceeding of PAKDD conf., 2003.

[31] S. Christley. Analysis of activity in the open source software development
community. HICSS 40, 2007.

145

[32] S. Christley, Y. Gao, J. Xu and G. Madey. Public goods theory of the open
source software development community. Agent, Chicago, 2004.

[33] D. L. Cogburn. Hci in the so-called developing world: What’s in it for every-
one. Interactions, 10(2):80–87, 2003.

[34] L. Darden. Recent work in computational scientific discovery. Proceedings
of the Ninteenth Conference of the Cognitive Science Society, pages 161–166,
1997.

[35] Online document. Pearson’s r. http : //www.analytics.washington.edu/
rossini/courses/intro − nonpart/text/Pearson s l r l .html.

[36] G. Drummond. Open source software and documents: A literature and online
resource review. http : //www.omar.org/opensource/litreviewa, 1999.

[37] M. Elliott. The virtual organizational culture of a free software development
community. Proceeding of 3rd workshop on Open Source Software Engineering,
2003.

[38] P. Erdös and A. Rényi. On random graphs. Publicationes Mathematicae,
6:290–297, 1959.

[39] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. Proc. of 2nd inter-
national conference on knowledge discovery and data mining, 1996.

[40] M. Faloutsos, P. Faloutsos and C. Faloutsos. On power-law relationships of
the internet topology. Computer Communication Review, 29(251), 1999.

[41] A. Feelders, A. Loux, and J. Zand. A perspective on database and data mining.
Proc. of KDD, pages 150–155, 1995.

[42] J. Feller and B. Fitzgerald. A framework analysis of the open source software
development paradigm. 2000.

[43] R. A. Fisher. On the interpretation of χ2 from contingency tables, and the
calculation of p. Journal of the Royal Statistical Society, 85(1):87–94, 1922.

[44] W. Frawley, G. Piatetsky − Shapiro and C. Matheus. Knowledge discovery
in databases: an overview. AI Magazine, 1992.

[45] Y. Gao. Topology and evolution of the open source software community.
Master Thesis, 2003.

[46] Y. Gao and G. Madey. Project development analysis of the oss community
using ST mining. NAACSOS, Notre Dame, 2005.

[47] Y. Gao, G. Madey and V. Freeh. Modeling and simulation of the open source
software community. ADS’05, San Diego, 2005.

[48] Y. Gao, V. Freeh and G. Madey. Analysis and modeling of the open source
software community. NAACSOS, Pittsburgh, 2003.

146

[49] Y. Gao, V. Freeh and G. Madey. Conceptual framework for agent-based mod-
eling and simulation. NAACSOS, Pittsburgh, 2003.

[50] Y. Gao, V. Freeh and G. Madey. Topology and evolution of the open source
software community. SwarmFest, Notre Dame, 2003.

[51] Y. Gao, Y. Huang and G. Madey. Data mining project history in open source
software communities. NAACSOS, Pittsburgh, 2004.

[52] L. Gasser and W. Scacchi. Understanding continuous design in f/oos projects.
16th International Conference Software and Systems Engineering and Their
Applications, 2003.

[53] Swarm Development group. A tutorial introduction to swarm.
http : //www.swarm.org.

[54] J. Hamilton. Time series analysis. Princeton University Press, Princeton, NJ,
1994.

[55] C. M. Hannum. The future of netbase. http://mail-index.netbsd.org/netbsd-
users/2006/08/30/0016.html, 2006.

[56] D. Hiebeler. The swarm simulation system and individual-based modeling.
Advanced technology for natural resource management, 1994.

[57] W. Howe. When did internet start? A brief capsule history.
http://www.delphi.com/navnet/faq/history, May 1996.

[58] Repast Information. http://repast.sourceforge.net/. 2002.

[59] A. Jain and R. Dubes. Algorithms for clustering data. Princeton Hall, 1988.

[60] A. Jain, M. Murty, and P. Flynn. Data clustering: a review. ACM Computing
Surveys, 31(2), 1999.

[61] P. Jens. Network formation via contests: the production process of open
source software. Working paper, Johann-Wolfgan-Goethe University, Frank-
furt, Germany, 2004.

[62] C. Jensen and W. Scacchi. Data mining for software process discovery in open
source software development communities. Workshop on Mining Software
Repositories, Edinburgh, Scotland, 2004.

[63] D. Jensen and J. Neville. Data mining in social networks. Symposium on
Dynamic Social Network Modeling and Analysis, Washington, DC, USA, 2002.

[64] S. T. Jensen, X. S. Liu, Q. Zhou and J. S. Liu. Computational discovery of
gene regulatory binding motifs: A bayesian perspective. Statistical Science,
19(1):188–204, 2004.

[65] G. Chin Jr. and C. Lansing. The biological sciences collaboratory. Mathematics
and Engineering Techniques in Medicine and Biological Sciences, 2004.

147

[66] S. Kauffman. Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, Oxford, 1993.

[67] D. Kempe, J. Kleinberg and E. Tardos. Maximizing the spread of influence
through a social network. SIGKDD ’03, Washington, DC, USA, 2003.

[68] C. Kevin, A. Hala and H. James. Defining open source software project suc-
cess. 24th International conference on information systems, Seattle, USA,
2003.

[69] P.J. Kiviat. Simulation, technology, and the decision process. ACM Transac-
tions on Modeling and Computer Simulation, 1(2):89, 1991.

[70] D. Lee and H. Seung. Algorithms for non-negative matrix factorization. Bell
Lab. technical report, 2000.

[71] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization.
Advances in Neural Information Processing Systems, 2001.

[72] F. Liljeros, C. Edling, A. Lan, S. He and Y. Aberg. Hub caps could squash
STDs. Nature, 411(907), 2001.

[73] S. Lohr. Group of university researchers to make web science a field of study.
New York Times, 2006.

[74] G. Madey, V. Freeh and R. Tynan. Agent-based modeling of open source
using swarm. Eight Americas Conference of Information Systems, 2002.

[75] G. Madey, V. Freeh and R. Tynan. The open source software development
phenomenon: an analysis based on social network theory. Eight Americas
Conference of Information Systems, 2002.

[76] G. Madey, V. Freeh, R. Tynan and Y. Gao. Agent-based modeling and sim-
ulation of collaborative social networks. AMCIS, Tampa, USA, 2003.

[77] J. G. March. Exploration and exploitation in organizational learning. Orga-
nizational science, pages 71–87, 1991.

[78] A. Border, R. Kumar, F. Maghoul, P. Raghavan, S. Rajalopagan, R. Stata,
A. Tomkins and J. Wiener. Graph structure in the web: experiments and

models. Computer Networks, 33(309), 2000.

[79] H. Miller and J. Han. Spatial clustering methods in data mining: a survey.
Geographic data mining and knowledge discovery, Taylor and Francis, 2001.

[80] J.M. Montoya and R.V. Solé. Preprint cond-mat/0011195. 2000.

[81] M. Moreno and M. Faldani. Open source as a complex adaptive system.
Emergence, 5(3), 2003.

[82] M.E.J. Newman. Clustering and preferential attachment in growing networks.
Physics Review, 64(025102), 2001.

148

[83] M.E.J. Newman. Scientific collaboration networks: I. network construction
and fundamental results. Physics Review, 64(016131), 2001.

[84] M.E.J. Newman. Scientific collaboration networks: Ii. shortest paths, weighted
networks, and centrality. Physics Review, 64(016132), 2001.

[85] M.E.J. Newman. The structure of scientific collaboration networks. Proceed-
ings of National Academic Science, 98:404–409, 2001.

[86] M.E.J. Newman and D.J. Watts. Random graph models of social networks.
Physics Review, 64(026118), 2001.

[87] N.S. Padian. STD risks and latino adolescents’ sexual network.
http : //aidscience.org/Preventionproject.asp?ID = 661, 2002.

[88] S.L. Pimm. The Balance of Nature. University of Chicago Press, Chicago,
1991.

[89] W. Poundstone. The recursive universe. Contemporary Books, Chicago, IL,
1985.

[90] M. Prietula, K. Carley and L. Gasser. Simulating organizations: computa-
tional models of institutions and groups. MIT Press, Cambridge, MA, 1998.

[91] J. Epstein R. Axtell, R. Axelrod and M. Cohen. Aligning simulation models: A
case study and results. Computational and Mathematical Organization Theory,
1(2):123–141, 1996.

[92] R. Riolo. The effects of tag-mediated selection of partners in evolving pop-
ulations playing the iterated prisoner’s dilemma. Santa Fe Institute working
paper, (97-02-016), 1997.

[93] W. Scacchi. Free/open source software development practices in the computer
game community. IEEE Software, Special Issue on Open Source Software,
21:59–67, 2004.

[94] T. Schelling. On the ecology of micromotives. The corporate society, pages
19–64, 1974.

[95] J. Schendure and G. M. Church. Computational discovery of sense-antisense
transcription in the human and mouse genomes. Genome Biology, 3(9), 2002.

[96] D. H. Sonnenwald. The conceptual organization: an emergent collaborative
R&D organizational form. Science Public Policy, 30(4):261–272, 2003.

[97] L. Steve and C.L. Giles. Searching the world wide web. Science, 280(5360):98–
100, 1998.

[98] S. Thorsten. Open source software within organization – critical factors for
consulting. Working paper, 2004.

[99] H. Wang, W. Wang, J. Yang, and P. Yu. Clustering by pattern similarity in
large data sets. Proc. of ACM SIGMOD, Madison, WI, 2002.

149

[100] D.J. Watts. Small world. Princenton university press, NJ, 1999.

[101] D.J. Watts and S. H. Strogatz. Collective dynamics of small-world networks.
Nature, 393:440–442, 1998.

[102] H.S. Wilf and D. Zeilberger. Rational functions certify combinatorial identi-
ties. 3:147–158, 1990.

[103] R.J. Williams, N.D. Martinez, E.L. Berlow, J.A. Dunne and A.L. Barabási.
Two degrees of separation in complex food webs. Santa Fe Institute Working
Paper Series, (01-07-036), 2001.

[104] J. Xu, Y. Gao, J. Goett, and G. Madey. A multi-model docking experiment
of dynamic social network simulations. Agent conference, Chicago, IL, 2003.

150

