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Abstract

We report on two experiments challenging the common assump-
tion that events with objective probabilities constitute a unique
source of uncertainty. We �nd that, similar to the domain of am-
biguity (Abdellaoui et al. 2011), the domain of risk is rich in
the sense that behavior is systematically di¤erent when subjects
face risky bets based on simple or more complex events. Further,
we �nd a tight association between attitudes toward complex risky
bets and attitudes toward both ambiguity and compound lotteries.
These results raise questions about the characterization of ambi-
guity aversion and the modeling of decisions under uncertainty.
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The question then is not �Are there uncertainties that are not risks?�, as posed

by Ellsberg, but �Are there risks that are not risks?�� V. Smith (1969, p 329)

1. Introduction

The literature on uncertainty generally distinguishes decisions made under

risk (with objective probabilities) from decisions made under ambiguity (with

unknown probabilities).1 Recently, Abdellaoui, Baillon, Placido and Wakker

(2011) (ABPW hereafter) showed that the domain of ambiguity is rich, in

the sense that a decision maker may have di¤erent attitudes toward di¤erent

sources of ambiguity. As is usual, however, events with objective probabilities

are assumed to constitute a unique source. This assumption is important as

ambiguity aversion is typically measured in contrast with attitude toward risk.

In this paper, we conduct two within subjects experiments to test the

common assumption of a unique source of risk. The �rst is an urn experiment

which replicates ABPW�s Ellsberg experiment under risk and ambiguity. The

second is a dice experiment with simple and compound risks. In both experi-

ments, we add a new risky treatment with less trivial events whose objective

probabilities are arguably more di¢ cult to calculate.

We �nd that the domain of risk is rich in the sense that subjects have

systematically di¤erent attitudes toward risks depending on whether the events

are simple or more complex. Further, we �nd that aversion to nontrivial risky

events is tightly related to aversion to ambiguity and compound lotteries.

These results have implications for the characterization and the modeling

of ambiguity attitudes. In particular, ambiguity attitudes cannot be unequivo-

cally characterized in contrast to attitudes toward risk. Further, most models

of choices under risk and ambiguity are incomplete as they fail to explain at-

1In this paper, the term uncertainty captures both risk and ambiguity.
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titudes toward complex risk. In contrast, our results are consistent with a

modi�ed version of ABPW�s �source method�under which the many kinds of

uncertainties are di¤erentiated by their degree of subjective complexity.

2. The Source Method � The Binary Case

ABPW�s source method combines Chew and Sagi�s (2008) concept of source

preference with Tversky and Kahneman�s (1992) (cumulative) prospect theory.

A decision maker (DM hereafter) faces a binary bet xEx, i.e. wins x when

event E realizes and x � x otherwise. A source S is loosely de�ned as �a

group of events that is generated by a common mechanism of uncertainty.�

Formally, ABPW assume that sources are algebras of events. A source is said

to be �uniform�if probabilistic sophistication holds within the source. If S is

uniform, the DM�s utility can be written

U (xEx) = wS (p)u (x) + (1� wS (p))u (x) (2.1)

where p is the subjective probability of E and wS is a weighting function,

called �source function,�associated with S. The utility function u is assumed

to be the same regardless of the source S.

In the case of risk, E has an objective probability P and p = P . Further,

every source of risk S is assumed to have the same source function: wS(P ) �

wR(P ). In contrast, wS can di¤er depending on the source of ambiguity S.

Hence, the DM has the same attitude toward every source of risk, but he may

have di¤erent attitudes toward di¤erent sources of ambiguity. The di¤erence

between wR and wS characterizes the DM�s ambiguity attitude toward S.
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3. Experiment 1: The Urns Experiment

3.1. The Design

The within subject experiment (described in Appendix A) consists of three

treatments, the two treatments in ABPW�s Ellsberg experiment and a new

treatment. Subjects face a series of binary bets xEx for which they report a

certainty equivalent using ABPW�s computerized iterative choice list method.

In the �rst risky (known) treatment (denoted K), the bet is settled by

drawing a ball from a transparent urn containing eight balls of di¤erent colors.

Elementary events are thus equally likely with probability 1=8. In treatment

K, the bets are based on simple events (e.g. �the ball is red�).

In the ambiguous treatment (denoted U), the bet is settled by drawing a

ball from an opaque urn containing eight balls. The balls�possible colors are

the same as in treatment K, but the composition of the opaque urn is unknown.

The bets in treatment U involve the same events as in treatment K.

For the new risky treatment (denoted K2), there are two transparent urns

each containing eight balls of di¤erent colors (as in treatment K). The bet is

settled by the simultaneous draw of two balls, one from each urn. Elementary

events (i.e. a pair of colored balls) are equally likely (as in treatment K) but

with probability 1=64. The bets in treatment K2 are based on what may be

considered more complex events than in treatment K (e.g. �the two balls are

of di¤erent colors�).2 To simplify, we will often refer to the risky bets in

treatments K and K2 as �simple�and �complex,�respectively.

Following ABPW, subjects face 13, 19 and 19 bets in treatments K, U and

K2, respectively. Within each treatment, the bets are presented in the same

2The events in treatment K2 were speci�cally constructed to avoid systematic judgement
biases due to e.g. anchoring (Bar-Hillel 1973), framing (Tversky and Kahneman 1981), the
use of ratios (Pacini and Epstein 1999) and frequencies (Gigerenzer 1991).
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order as ABPW. In particular, in treatments K and U, the �rst bets have events

that combine from 1 to 7 colors while fx; xg is �xed at f0; 25g; the last six

bets are based on a 4 colors event, while x and x vary from 0 to 25. Subjects

could take as long as they wanted to complete the experiment and they did not

have access to calculators. At the beginning of the experiment, each subject

is told that one of his choices will be randomly selected for payment.

The implementation of the experiment is similar to ABPW with �ve no-

table exceptions: i) Bets are settled by having the subject draw ball(s) from

physical urn(s); ii) the experiment was not conducted individually but in ses-

sions with 17 to 21 subjects; iii) a show-up fee of e5 was paid to every subject;

iv) the 77 subjects in our experiment were university students in Toulouse

(France), not students at elite graduate engineering schools; v) treatment K2

was conducted between treatments K and U.

3.2. Raw Results

Figure 1 shows that the average certainty equivalents (divided by 25) for the

bets 25P0 are close to the diagonal for any P in treatment K. In contrast, they

are below the diagonal for P > 1=4 in treatments U and K2.3 As shown in

Table E1,4 a series of Wilcoxon signed-rank tests con�rms statistically (at the

5% level) that, for any P > 1=4, simple risky bets in treatment K are valued

di¤erently than corresponding bets in treatments U and K2. In contrast, the

valuation of ambiguous and complex risky bets cannot be di¤erentiated at

standard signi�cance levels for any P . These raw results suggest that i) risky

bets are valued di¤erently depending on whether they are based on simple or

3As shown in Appendix B, we fail to reject the hypothesis of a uniform source in treat-
ments U and K2 at any usual signi�cance level. Thus, we follow ABPW and assume that
objective and subjective probabilities are equal (i.e. p = P ) in each treatment.

4Tables and �gures with numbers preceded by �E�can be found in Appendix E.
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more complex events, ii) the value of an ambiguous bet relative to a risky bet

depends on the complexity of the events on which the risky bet is based on.

3.3. Structural Econometric Approach

We now estimate the subjects�source and utility functions. Following ABPW,

we assume that subject i in treatment t 2 fK; K2; Ug has a power utility function

uit (x) = xrit and a source function wit (p) = exp
�
ln(ait) [ln (p) = ln(ait)]

bit
�

where ait 2 (0; 1) and bit > 0. Observe that under the parametrization

f�it = bit; �it = (� ln ait)
1�bitg we get the source function proposed by Prelec

(1998) and used by ABPW: wit (p) = exp (��it [� ln p]
�it). The speci�cation

in fait; bitg was preferred to Prelec�s because the parameters are easier to in-

terpret. Indeed, ait is the �xed point of wit, while bit is the slope of wit at

this �xed point (w0it (ait) = bit). As a result, in the spirit of ABPW, bit can be

interpreted as a likelihood sensitivity index and ait as a pessimism (optimism)

index when wit is (inverse) S-shaped, that is when bit > 1 (bit < 1).

Under the source method, the indi¤erence of subject i between bet j and

his elicited certainty equivalent CEijt implies:

(CEijt)
rit = exp

�
ln (ait) [ln (Pj) = ln (ait)]

bit
� �
(xj)

rit �
�
xj
�rit�+ �xj�rit (3.1)

As explained in Appendix C, we prefer to adopt a di¤erent econometric

approach than ABPW. Using (3.1), we estimate the structural parameters

frit; ait; bitg jointly by NLLS with all the data collected for subject i in treat-

ment t. To test for di¤erences across treatments we de�ne:

r
it
= 1+riK+riK2K2+riU(K2+U); ait = aiK+aiK2K2+aiU(K2+U); bit = biK+biK2K2+biU(K2+U)
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where K2 (U) is a dummy variable equal to 1 when t =K2 (t =U). As a result, riU

(riK2) captures the di¤erence in the utility function of subject i when he faces

ambiguous instead of simple (complex) risky bets.5

To assess the robustness of the results we estimate both a fully heteroge-

nous model as in ABPW (i.e. frit; ait; bitg di¤ers across subjects) and a ho-

mogenous model in which frit; ait; bitg = frt; at; btg. Each approach has ad-

vantages and drawbacks. Estimates from the homogenous model are severely

constrained but easy to interpret. Estimates from the heterogenous model

are unrestricted across subjects but rely on small samples (for subject i in

treatment t, frit; ait; bitg is estimated with 13 or 19 observations depending on

t). Finally, to account for the small sample size, the standard deviations of

estimates and the p-values of tests are calculated by nonparametric bootstrap.

3.4. Results from the Structural Estimation

The estimation results reported in Table 1 indicate that the subjects�utility

functions in treatment K are nearly linear on average (as in ABPW) but highly

heterogenous across subjects. Indeed, rK is not signi�cantly di¤erent from 0

in the homogenous model, and the average estimated riK is close to 0 in the

heterogenous model. Further, the large standard deviation of the estimated

riK (0.496) indicates important di¤erences in utility across subjects. In fact,

we can reject the linearity of ui for about half of the subjects in treatment K.

The parameter rU (rK2) is insigni�cant in the homogenous model, and riU (riK2)

is signi�cant for only 14% (9%) of the subjects in the heterogenous model.

Thus, a subject generally exhibits the same utility in treatments K, K2 and U.

Similarly, ABPW found the same ui in treatment K and U.

5Note that the nature of the results presented next does not change when we use for the
left hand side of (3.1) (CEijt)

riK instead of (CEijt)
rit when t 2 fK2; Ug.
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We now turn to the estimation of the source functions. The homogenous

model in Table 1 reveals that, similar to ABPW, the optimism and likelihood

sensitivity indexes are close to 0:5 and 0:8 in treatment K, and signi�cantly

larger in treatment K than in treatment U (since aU and bU are both signi�cantly

lower than 0). The heterogenous model con�rms these results and shows that

we can reject the equality of the likelihood sensitivity index (optimism index)

in treatment K and U for 57% (31%) of the subjects. In contrast, aK2 and bK2 are

negative but insigni�cant in the homogenous model and insigni�cant for most

subjects in the heterogenous model. Thus, as seen in Figure 2, the optimism

and likelihood sensitivity indexes in treatment K2 are signi�cantly lower than

in treatment K, but statistically indistinguishable from those in treatment U.

To sum up, the structural estimations suggest that subjects have i) similar

utility functions across treatments, ii) di¤erent source functions when fac-

ing simple and complex risky bets, iii) similar source functions when facing

ambiguous and complex risky bets. Naturally, one may wonder whether re-

sult ii) is due to calibration errors subjects made when calculating objective

probabilities for complex events. In Appendix D, we estimate a structural

model accounting for treatment speci�c calibration errors and �nd that, while

subjects make larger calibration errors for complex risky bets, there is still a

signi�cant di¤erence between the source functions in treatment K and K2.

3.5. Aversion to Ambiguity and Aversion to Complex Risky Events

Is there a link between aversion to ambiguity and aversion to complex risky

events? To address this question, we follow Abdellaoui et al. (2013) and de�ne

for each subject i and each P=1=8; :::; 7=8 the ambiguity and �complex risk�

premium as CEipK�CEipU and CEipK�CEipK2 , respectively. These individual
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premia (averaged across P=1=8; :::; 7=8) are plotted in Figure 3. Observe that

there is a strong positive correlation (� = 0:714) between a subject�s ambiguity

and complex risk premia (as indicated by the positive trend line).6

To explore the link between neutrality to ambiguity and neutrality to com-

plex risky bets, we calculate for each subject the absolute value of the ambi-

guity and complex risk premia averaged across P=1=8; :::; 7=8. If a subject is

perfectly neutral to ambiguity (complex risk), then his average absolute am-

biguity (complex risk) premium is 0. As shown in Figure 3, no subject was

perfectly neutral to ambiguity or complex risk for every P=1=8; :::; 7=8. If we

de�ne a subject with an average absolute premium lower than e1 as �nearly

neutral,�then, out of the 77 subjects, 10 are nearly neutral to both ambiguity

and complex risk, 4 are nearly neutral to ambiguity only, and 3 are nearly

neutral to complex risk only. Thus, 77% of the subjects with similar attitudes

toward simple and complex risky bets are ambiguity nearly neutral. A Fisher

exact test con�rms (p-value=2:2 10�7) that near neutrality to ambiguity and

near neutrality to complex risk can be considered tightly associated.

4. Experiment 2: The Dice Experiment

We conduct a second experiment to con�rm that the domain of risk is rich

and to study the link between attitudes toward compound and complex risks.

To assess the robustness of the results, the second experiment di¤ers from

the �rst in several dimensions: Uncertainty is generated with dice, the acts

are generated with a quadratic scoring rule (as in Andersen et al. 2009), the

6As shown in Figure E1, this positive relationship holds for each P=1=8; :::; 7=8. It also
holds when the ambiguity and complex risk premia are calculated with respect to expected
value (computed with P ) instead of simple risk (� = 0:698), and when we compare the
source functions wiU (P ) and wiK2 (P ) for P=1=8; :::; 7=8 (� = 0:659).
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experiment is conducted with pen and paper, the subject pool comes from a

developing country, and incentives are substantially higher.

4.1. The Design

The within subject experiment (described in Appendix F ) also consists of

three treatments. In each treatment of experiment 2, subjects predict the

probability of 10 risky events for which they are rewarded with a quadratic

scoring rule. Each event describes the outcome of the roll of two 10-sided dice

(one black, one red). For comparison, the 10 events have the same objective

probabilities in each treatment (3, 5, 15, 25, 35, 45, 61, 70, 80, and 90%).

In treatment K; the red (black) die determines the �rst (second) digit of a

number between 1 and 100. Elementary events thus follow a uniform distribu-

tion. The events in treatment K have objective probabilities that are simple to

calculate (e.g. the 25% probability event is described as �the number drawn

is between 1 (included) and 25 (included)�).7

In treatment K2, the two dice are added to form a number between 0 and 18.

Elementary events thus follow a triangular shaped distribution. The events in

treatment K2 have objective probabilities that are arguably more di¢ cult to

calculate than those in treatment K (e.g. the 25% probability event is described

as �the sum is between 2 (included) and 6 (included)�). Note, however, that

the same mechanism (i.e., the roll of two 10-sided dice) generates uncertainty

in both treatments. Only the construction of the events di¤ers.

In treatment C, the subjects face compound lotteries, i.e. lotteries whose

prizes are other lotteries. Speci�cally, they have to make a single prediction

not for one but for two possible events. After predictions are made, a fair coin

7This treatment comes from Armantier and Treich (2013).
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determines which of the two possible events matters for payments. The events

in treatment C are similar to those in treatment K, i.e. the roll of the dice

produces a number between 1 and 100.

Experiment 2 took place in Ouagadougou, the capital of Burkina Faso.

The subjects were recruited by a local recruiting �rm (Opty-RH) by placing

�iers around the city. To be eligible, subjects had to be at least 18 years old

and be current or former university students. Two sessions with 21 and 22

subjects were conducted, each taking around 90minutes to complete. Subjects

were familiar with probabilities. In particular, 65% reported having taken a

college level course in probability or statistics. Subjects earned 3,000 FCFA

on average which corresponds to a 3-day wage for a university graduate.

4.2. Experimental Results

It is well known that the quadratic scoring rule is incentive compatible only

when subjects maximize expected payo¤s. Under model (2.1), the relation-

ship between objective and reported probabilities is expected to be inverse

S-Shaped (Armantier and Treich 2013). Nevertheless, if the source of risk is

unique, a subject�s should report the same probabilities for the three treat-

ments. As in experiment 1, we �nd evidence against this hypothesis. Indeed,

Figure 4 displays systematic di¤erences: Treatment K (with trivial events)

yields the smallest biases for virtually all objective probabilities (i.e. reported

probabilities are consistently closest to the diagonal), while treatment K2 (with

complex events) generates the largest biases. This ranking across treatments

is con�rmed statistically by nonparametric Friedman tests (see Table E2).

As in experiment 1, we estimate the structural parameters frit; ait; bitg

characterizing subject i utility and source functions in treatment t 2 fK,K2,Cg.8

8The parameters are estimated by NLLS by comparing for every event j subject i�s
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The results are presented in the right panel of Table 1. Similar to experiment

1, we cannot reject the hypothesis that the subjects have the same utility

function across treatments. In contrast to experiment 1 however, the subjects�

average utility function is concave (which may be due to the higher earnings at

stakes). With respect to the source functions, we �nd no statistical di¤erence

across treatments in the pessimism index ait. In contrast, bC and bK2 are both

signi�cantly smaller than 0 in the homogenous model. Thus, as shown in Fig-

ure 5, the curvature of the source function is more pronounced for compound

than simple events, and the most pronounced for complex risky events.

Finally, we calculate the complex (compound) risk premium as �ipK� �ipK2
(�ipK � �ipC), where �ipt is the expected payo¤ corresponding to subject i

prediction for the event with probability P in treatment t 2 fK,K2,Cg. Figure

6, where the individual premia averaged across all P are plotted, reveals a

strong positive correlation (� = 0:688) between complex and compound risk

premia. Further, out of the 43 subjects in experiment 2, 8 are nearly neutral

to both compound and complex risks, 3 are nearly neutral to compound risk

only, and 2 are nearly neutral to complex risk only.9 Thus, 80% of the subjects

with similar attitudes toward simple and complex risks are nearly neutral to

compound risk. A Fisher exact test con�rms (p-value=4:4 10�5) that near

neutrality to compound and complex risks can be considered tightly associated.

To sum up, experiment 2 provides further evidence that the domain of risk

is rich in the sense that subjects have di¤erent attitudes toward risks based

on simple, complex or compound events. Further, aversions to complex and

compound risks are found to be highly correlated.

reported probability bPijt with P �j (rit; ait; bit) the optimal report under a quadratic scoring
rule by an agent with utility and source functions characterized by frit; ait; bitg.

9Near neutrality is de�ned as having an average absolute premium lower than 75 FCFA
(1=40th of the 3,000 FCFA earned on average). Alternative de�nitions yield similar results.
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5. Discussion

Summary: We conducted two experiments to test the common assumption

of a unique source of risk. We �nd evidence against this hypothesis as sub-

jects display signi�cantly di¤erent attitudes when facing risks based on simple

events and risks based on more complex events. Further, these di¤erences ap-

pear to be systematic (i.e. the source function deviates more from linearity for

complex risky events) and not driven by calibration errors. Thus, we �nd that,

similar to the domain of ambiguity, the domain of risk is rich. We also identify

a tight link between attitudes toward complex risky bets and attitudes toward

ambiguity and compound risk. In particular, subjects are essentially neutral to

ambiguity and compound risk when those are measured in contrast to complex

risk. Finally, our experiment shows that complexity aversion can be empiri-

cally relevant as it a¤ected behavior as much as ambiguity and compound risk

aversions. We now discuss possible implications of these results.

Characterization of ambiguity aversion: Finding that the domain of risk

is rich raises questions about the characterization of ambiguity attitudes in

theory and in practice. In particular, an agent�s attitude toward an ambiguous

source S is de�ned under ABPW�s source method as the di¤erence between

the source function for S and the source function for risk. Thus, ambiguity

attitudes cannot be characterized uniquely if there are many sources of risk.

Moreover, the central �uncertainty aversion�axiom of Gilboa and Schmeidler

(1989) maxmin model implicitly relies on the assumption of a unique source

of risk. In practice, ambiguity aversion is almost exclusively measured in

Ellsberg like experiments by comparing attitudes toward known and unknown

probabilities (Trautmann and van de Kuilen 2013). Experimental measures of

ambiguity aversion are thus contingent on the source of risk considered.
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Modeling of ambiguity aversion: A variety of models have been proposed to

capture attitudes toward both risk and ambiguity. While the class of multiple

prior models considers that beliefs cannot be represented by a unique distrib-

ution (Wald 1950, Gilboa and Schmeidler 1989), the now popular multi-stage

approach induces ambiguity aversion through a failure to reduce compound

lotteries (Segal 1987, Klibano¤ et al. 2005, Seo 2009). The latter approach

recently found support in experiments showing an association between the

inability to reduce compound objective probabilities and ambiguity aversion

(Halevy 2007, Abdellaoui et al. 2013). Our results suggest that these ambigu-

ity (aversion) models are incomplete as they fail to capture attitudes toward

complex risk. Further, the tight association between attitudes toward com-

plex risk (with no obvious interpretation as compound lotteries), and attitudes

toward both ambiguity and compound risk suggests that ambiguity and com-

pound risk aversions may be special cases of complexity aversion.

Accounting for complexity: How complexity a¤ects decision making has

been modelled in various �elds of economics.10 Our results suggest that a

comprehensive model of choices under uncertainty should also account for com-

plexity aversion. To do so, one may follow one of the many bounded rationality

approaches proposed in economics. Alternatively, one may consider ABPW�s

source method under the assumption that the whole domain of uncertainty is

rich, regardless of whether probabilities are known or not. Consistent with our

results, the source function can be considered to re�ect the subjective degree

of �complexity�of the source: A source is more complex to an agent when its

source function deviates more from linearity. This descriptive approach o¤ers

several advantages: it is rooted in decision theory, it is based on an empirically

10E.g. macroeconomics (Sims 2006), game theory (Gale and Sabourian 2005), industrial
organization (Ellison and Ellison 2009), or �nance (Caballero and Simsek 2013).
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validated model (prospect theory), and changes in complexity (aversion) can

be studied by varying the shape of the source function.
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Table 1 
Structural Estimation of Utility and Source Functions 

 Experiment 1 (Urn) Experiment 2 (Dice) 

 
Homo-
genous 

Heterogenous 

 
Homo-
genous 

Heterogenous 
Average 
across 

Subjects 

Std 
across 

Subjects 

% of subjects 
 with significant 
parameter at 5% 

Average 
across 

Subjects 

Std 
across 

Subjects 

% of subjects 
 with significant 
parameter at 5%

 ௄ݎ
-0.012 
(0.025) 

 ௄ݎ 49.4% 0.496 0.081
0.181** 
(0.082) 

0.090 0.643 58.1% 

 ௎ݎ
-0.031 
(0.039) 

 ஼ݎ 14.3% 0.534 0.056-
0.056 

(0.088) 
0.008 0.495 9.3% 

 ௄మ 0.013ݎ
(0.045) 

௄మݎ 9.1% 0.481 0.009
-0.099 
(0.113) 

-0.023 0.501 7.0% 

ܽ௄ 
0.491*** 
(0.035) 

0.462 0.336 __ ܽ௄
0.469*** 
(0.098) 

0.536 0.167 __ 

ܽ௎ 
-0.084** 
(0.042) 

-0.096 0.351 31.2% ܽ஼ 
-0.029 
(0.106) 

-0.043 0.228 16.3% 

ܽ௄మ
-0.022 
(0.039) 

-0.004 0.356 16.9% ܽ௄మ
-0.004 
(0.047) 

0.003 0.224 4.7% 

ܾ௄ 
0.789*** 
(0.019) 

0.819 0.208 __ ܾ௄ 
0.783*** 
(0.186) 

0.725 0.280 __ 

ܾ௎ 
-0.205*** 
(0.057) 

-0.231 0.388 57.1% ܾ஼ 
-0.184*** 
(0.043) 

-0.209 0.461 48.8% 

ܾ௄మ -0.069 
(0.065) 

-0.066 0.254 14.3% ܾ௄మ
-0.083** 
(0.036) 

-0.105 0.374 39.5% 

Estimates’ standard errors and test statistics’ distributions are estimated by bootstrap (size=10,000) to account for the finiteness of the sample.  
***, **, * represent parameters significant at respectively the 1%, 5% and 10% significance level. 
As a comparison, ሼݎ௄, ܽ௄, ܾ௄ሽ=ሼ0.05,0.54,0.85ሽ and ሼݎ௎, ܽ௎, ܾ௎ሽ=ሼ0.04,െ0.20,െ0.21ሽ in ABPW. 

 
 
  



 
 

 
Based on average estimated parameters from the heterogenous model (see Table 1). 
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Based on average estimated parameters from the heterogenous model (see Table 1). 
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Appendix A: The design of Experiment 1 
 
 

Description of the Events in Each Treatment of Experiment 1 

 

Treatment K [and U] Treatment K2 
An urn contains the following 8 
balls: 
 

● ● ● ● ● ● ● ● 
 

We draw one ball at random from 
the urn. 
 
[Treatment U: Identical except that 
the number of balls of each color in 
the urn is unknown] 

There are 2 urns. In each urn there are the following 
8 balls: 

● ● ● ● ● ● ● ● 
We draw one ball at random from each of the 2 urns. 
The order in which the balls are drawn does not 
matter. Only the color of the balls drawn matters. 
We denote with brackets the color of the balls 

drawn. For instance, {●,●} means that we drew one 
blue ball and one red ball. 

Probability The subject wins if The subject wins if 

1/8 The ball drawn is ●. 

One ball is ● or ●, the other ball is ● or ●. 
 

For instance, you win if we draw {●,●}, you lose if 

we draw {●,●} or {●,●}. 

2/8 The ball drawn is ● or ●. 

There is no ● ball, no ● ball, no ● ball, no ● ball.  

 

For instance, you win if we draw {●,●}, you lose if 

we draw {●,●}. 

3/8 The ball drawn is ● or ● or ●. 

One ball is ● or ●, the other ball is neither ● nor ●. 
 

For instance, you win if we draw {●,●}, you lose if 

we draw {●,●} or {●,●} 

4/8 The ball drawn is ● or ● or ● or ●.

One ball is ● or ● or ● or ●, the other ball is ● or 

● or ● or ●. 
 

For instance, you win if we draw {●,●}, you lose if 

we draw {●,●}. 

5/8 
The ball drawn is ● or ● or ● or ● 
                        or ●. 

There is no ● ball and no ● ball, or the 2 balls are ● 

and/or ●. 
 

For instance, you win if we draw {●,●} or {●,●} 

or {●,●}, you lose if we draw {●,●}. 

6/8 
The ball drawn is ● or ● or ● or ● 
                        or ● or ●. 

There is no ● ball, and the 2 balls are not both ●. 
 

For instance, you win if we draw {●,●} or {●,●}, 

you lose if we draw {●,●} or {●,●}. 

7/8 
The ball drawn is ● or ● or ● or ● 
                        or ● or ● or ●. 

The 2 balls drawn are not of the same color.
 

For instance, you win if we draw {●,●}, you lose if 

we draw {●,●}. 
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�������������������������������������������������������������������Instructions (screen shots translated from french) 

Start the Examples 

In the next screens, the subject went through two examples illustrating the three phases of the computerized
iterative choice list method. In Phase 1, the range of payments is divided into 5 categories. In Phase 2, the range
of payments corresponding to the choices in Phase 1 is subdivided into 10 categories. In the Confirmation
Phase the subject sees the choices she has made in Phase 1 and 2. She can then confirm or change her choices.
The three phases are illustrated with screen shots from the experiment over the next four pages. See ABPW for 
further details on the design. 
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  Which of these two options do you prefer? 

Phase 2 

  Back

Olivier
Text Box
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  Which of these two options do you prefer? 

Confirmation Phase 
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Appendix B: Uniform Source Test

Following ABPW, we verify that the sources in treatments U and K2 are uni-
form. That is, we test whether the bet 25E0 is valued equally when event E
is expressed using di¤erent colors. For instance, as explained in ABPW, if
the source in treatment U is uniform, then a subject should report the same
certainty equivalent for the events �the ball is blue� and �the ball is red,�
thereby indicating that he perceives the two events as equiprobable. Using
a nonparametric Friedman test, we fail to reject the hypothesis of a uniform
source in treatments U and K2 at any usual signi�cance level. Speci�cally, in
treatment U the P -values are 0:51, 0:37 and 0:66 for the events with 1, 2 and
3 colors, respectively, while in treatment K2 the P -values are 0:39, 0:45 and
0:28 for the events with probability 1=8, 2=8 and 3=8.

Appendix C: ABPW Empirical Approach

ABPW�s econometric approach to test whether the source function under risk
di¤ers from the source function under ambiguity consists of three steps.
In step 1, rit and an auxiliary parameters �it are estimated for subject i

in treatment t by NLLS using the certainty equivalents CEijt elicited for the
six bets j in which xj and xj vary from 0 to 25 while Pj is �xed at 1=2. The
equality used to implement the NLLS is based on the cumulative prospect
theory value function:

(CEijt)
rit = �it

�
(xj)

rit �
�
xj
�rit�+ �xj�rit

where �it = wit (1=2).
In step 2, using the parameter brit estimated in step 1, the parameters

f�it; �itg from the source function proposed by Prelec (1998) are estimated
by NLLS using the remaining 7 or 13 certainty equivalents elicited for the bets
in which Pj vary from 1=8 to 7=8 while

�
xj; xj

	
remain �xed at f0; 25g. The

equality used to implement the NLLS is based on subject i�s indi¤erence un-
der cumulative prospect theory between a prospect j and his elicited certainty
equivalent

(CEijt)
brit = exp (��it [� lnPj]�it)

h
(xj)

brit � �xj�briti+ �xj�brit
In step 3, the estimated parameters

nbait;bbito are used to calculate subject
i�s estimated source function value bwit (j=8) = exp

�
�b�it [� ln (j=8)]b�it� for

17



j = 1; :::; 7. To test for treatment e¤ects for each j = 1; :::; 7 the distributions
of bwit (j=8) are compared across treatments using a t test. Additionally, a like-
lihood sensitivity index and a pessimism index are calculated for each subject
and compared across treatments.
We believe ABPW�s empirical approach may be improved in three ways.

First, the t tests conducted in step 3 to compare the distributions of bwit (j=8)
across treatments are valid if one treats the bwit (j=8) as (recoded) data, but
they are not valid if one treats the bwit (j=8) as econometric estimates, i.e.
random variables whose standard deviations depend on the sampling error
from the estimation of

nbrit;bait;bbito in steps 1 and 2. Consistent with the
econometric literature, our empirical approach treats

nbrit;bait;bbito as econo-
metric estimates. Second, ABPW estimate four parameters

nb�it; brit;bait;bbito
when only three are necessary:

nbrit;bait;bbito. Given the small sample size with
which the parameters are estimated (13 or 19 observations depending on the
treatment) adding an auxiliary parameter reduces the e¢ ciency of the esti-
mates. In our empirical approach, we therefore estimate only the parameters
of interest

nbrit;bait;bbito. Third, by segmenting the data between step 1 and
step 2, some information is ignored when estimating the parameters. Indeed,nb�it; brito are estimated with 6 observations, while nbait;bbito are estimated with
the remaining 7 or 13 observations (depending on the treatment). Instead, we

estimate
nbrit;bait;bbito jointly with all the 13 or 19 observations collected for

subject i in treatment t. In general, such a joint estimation should provide
more precise estimates.

Appendix D: Structural Model with Calibration Errors

Did subjects report di¤erent certainty equivalents for risky bets in treatment
K and K2 because of calibration errors they made when calculating objective
probabilities? To address this question, we assume that the subjective prob-
ability of subject i for prospect j in treatment t is equal to the actual proba-
bility plus some noise: pijt = Pj + "ijt where "ijt follows a truncated normal
N[�Pj ;1�Pj ]

(0; �2t ) so that pijt 2 [0; 1]. It is easy to show that if �K2 > �K, then
the certainty equivalents will be higher (respectively lower) on average in K2
than in K when P

j
< 1=2 (respectively P

j
> 1=2).10 In other words, di¤erences

10Although similar in spirit, this model in which calibration errors are added to the objec-
tive probability is di¤erent from random utility models (see e.g. Blavatsky 2007, �Stochastic
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in �t could explain (at least in part) why subjects generally select di¤erent
certainty equivalents across treatments.
Under the source method, the indi¤erence of subject i between prospect j

and his elicited certainty equivalent implies:

(CEijt)
rit = exp

�
ln(ait) [ln pijt= ln(ait)]

bit
� �
(xj)

rit �
�
xj
�rit�+ �xj�rit (5.1)

or equivalently

pijt = exp

8<:[ln (ait)]1�1=bit
"
ln

 
(CEijt)

rit �
�
xj
�rit

(xj)
rit �

�
xj
�rit

!#1=bit9=;
with pijt � N[0;1]

�
P
j
; �2t
�
. The structural parameters frit; ait; bit,�tg can then

be estimated by maximum likelihood. Similar to the other parameters we
write �t = �K + �K2K2 + �U(K2+U).
As shown in Table E3, �U and �K2 are both positive and signi�cant. Thus,

subjects facing an ambiguous bet appear to make larger calibration errors
than when they face a risky bet with simple events. Further, subjects make
the largest calibration errors when they face risky bets with complex events
(which are arguably more di¢ cult to evaluate than bets with simple events).
These di¤erences in calibration errors, however, are not su¢ cient to explain

the di¤erences in certainty equivalents across treatments. Indeed, comparing
the results in Table E1 with those in the left panel of Table 1 shows that the
sign, magnitude and signi�cance of the other parameters remain essentially
unchanged when we account for calibration errors. In other words, while
there are di¤erences in the calibration errors subjects make when calculating
probabilities for simple, complex and ambiguous bets, we still �nd evidence
that a subject�s source function is statistically di¤erent for risky bets based on
simple events and for risky bets based on more complex events.

Expected Utility Theory,�Journal of Risk and Uncertainty) in which an error is added to
the expected utility. In particular, it is easy to show that random utility models do not
necessarily produce the pattern just described, i.e. higher (respectively lower) certainty
equivalents on average when P

j
< 1=2 (respectively P

j
> 1=2).
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Appendix E: Additional Figures and Tables 
 
 
 
 
 

Table E1 
Comparison of Certainty Equivalents across Treatments in Experiment 1 

Treatments P=1/8 P=2/8 P=3/8 P=4/8 P=5/8 P=6/8 P=7/8 

K vs. U 
Z=0.229 
P=0.819 

Z=1.362 
P=0.173 

Z=1.873 
P=0.061 

Z=3.578 
P=3.5E-4 

Z=5.127 
P=2.9E-7 

Z=6.399 
P=1.6E-10 

Z=5.881 
P=4.1E-9 

K vs. K2 
Z=-0.577 
P=0.564 

Z=0.249 
P=0.803 

Z=3.615 
P=3.0E-4 

Z=4.542 
P=5.6E-6 

Z=6.362 
P=2.0E-10 

Z=5.410 
P=6.3E-8 

Z=5.969 
P=2.4E-9 

U vs. K2 
Z=1.181 
P=0.238 

Z=1.842 
P=0.065 

Z=-1.884 
P=0.059 

Z=-0.582 
P=0.560 

Z=-1.200 
P=0.230 

Z=1.697 
P=0.090 

Z=1.013 
P=0.311 

Wilcoxon Sign-Ranked tests are conducted to compare subjects’ certainty equivalents across treatments. Under the null hypothesis, the 
distributions of subjects’ certainty equivalents are the same across treatments. Shaded cells indicate tests significant at the 5% level. 
 
 
 

 

Table E2 
Comparison of Reported Probabilities across Treatments in Experiment 2 

Objective 
Probability 

Rank Sum 
for each Treatment 

Friedman 
Statistic p-value Objective 

Probability 
Rank Sum 

for each Treatment 
Friedman 
Statistic p-value 

3% 
K K2 C 

40.26 1.81E-9 45% 
K K2 C 

10.92 0.004 
53.5 108 96.5 70 95 94 

Objective 
Probability 

Rank Sum 
for each Treatment 

Friedman 
Statistic p-value Objective 

Probability 
Rank Sum 

for each Treatment 
Friedman 
Statistic p-value 

5% 
K K2 C 

28.43 6.71E-7 61% 
K K2 C 

9.86 0.007 
58 103 97 102 78 79 

Objective 
Probability 

Rank Sum 
for each Treatment 

Friedman 
Statistic p-value Objective 

Probability 
Rank Sum 

for each Treatment 
Friedman 
Statistic p-value 

15% 
K K2 C 

25.02 3.68E-6 70% 
K K2 C 

23.45 8.10E-6 
60 103 96 109 66 84 

Objective 
Probability 

Rank Sum 
for each Treatment 

Friedman 
Statistic p-value Objective 

Probability 
Rank Sum 

for each Treatment 
Friedman 
Statistic p-value 

25% 
K K2 C 

13.49 0.001 80% 
K K2 C 

32.19 1.02E-7 
67 98 94 110 60 89 

Objective 
Probability 

Rank Sum 
for each Treatment 

Friedman 
Statistic p-value Objective 

Probability 
Rank Sum 

for each Treatment 
Friedman 
Statistic p-value 

35% 
K K2 C 

35.57 1.89E-8 90% 
K K2 C 

15.99 1.74E-3 
59 113 87 105 70 84 

Friedman tests are conducted to compare a subject’s reported probabilities across treatments. Under the null hypothesis, the distributions of a 
subject’s reported probabilities are the same across treatments. Shaded cells indicate tests significant at the 5% level. 

  



 
 
 

Table E3 
Structural Estimation of Utility and Source Functions 

Models with Calibration Errors 

 Homo-
genous 

Heterogenous 

 Homo-
genous 

Heterogenous 
Average 
across 

Subjects 

Std 
across 

Subjects 

% of subjects 
 with significant 
parameter at 5% 

Average 
across 

Subjects 

Std 
across 

Subjects 

% of subjects 
 with significant 
parameter at 5%

 ௄ݎ
0.039 

(0.050) 0.095 0.452 51.9% ܾ௄ 0.817*** 
(0.043) 1.002 0.218 __ 

 ௎ -0.030ݎ
(0.071) -0.018 0.413 11.7% ܾ௎ -0.201*** 

(0.053) -0.242 0.413 51.9% 

 ௄మ 0.023ݎ
(0.095) 0.006 0.596 10.4% ܾ௄మ

-0.054 
(0.058) -0.068 0.377 18.2% 

ܽ௄ 0.512*** 
 ***௄ 0.098ߪ __ 0.385 0.478 (0.032)

(0.003) 0.060 0.033 __ 

ܽ௎ -0.113** 
 ***௎ 0.039ߪ 33.8% 0.423 0.085- (0.049)

(0.008) 0.027 0.045 37.7% 

ܽ௄మ
-0.047 
௄మߪ 14.3% 0.417 0.044- (0.041)

0.018** 
(0.009) 0.026 0.053 27.3% 

Estimates’ standard errors and test statistics’ distributions are estimated by bootstrap (size=10,000) to account for the finiteness of the sample.  
***, **, * represent parameters significant at respectively the 1%, 5% and 10% significance level. 

 
  



 
Each dot represents a subject. Each color represents a probability P=1/8,…,7/8. Each line represents the linear trendline for the corresponding color/probability. 
The figures shows that the positive relationship between ambiguity and complex risk premia holds for each P=1/8,…,7/8. 

 
 

 
Each dot represents a subject. Each color represents a probability P=3%,…,90%. Each line represents the linear trendline for the corresponding color/probability. The 
figures shows that the positive relationship between compound and complex risk premia holds for each P=3%,…,90%. 
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Appendix F: Instructions Experiment 2 (translated from French) 

 

 

Your Identification Code: _______ 

 

You are about to take part in an experiment aimed at better understanding decisions made under uncertainty. In the 

experiment you will earn an amount of money. This amount of money will be paid to you at the end of the experiment, 

outside the lab, in private, and in cash. The amount of money you will earn may be larger if : 
 

1. You read the instructions below carefully. 

2. You follow these instructions precisely. 

3. You make thoughtful decisions during the experiment. 
 

If you have any questions while we read the instructions or during the experiment, then call us by raising your hand. 

Any form of communication between participants is absolutely forbidden. If you do not follow this rule, then we will 

have to exclude you from the experiment without any payment. 

 

The Task 

You will be given 30 different «events», divided into 3 series of 10. Each of these events describes the possible 

outcome produced by the roll of 2 dice. One of the die is red, the other die is black. Each die has 10 sides numbered 

from 0 to 9. Each die is fair, which means that any of the 10 sides has an equal chance to come up when the die is 

rolled. Consider now two examples of events we could give you: 

 Event 1: «The red die equals 5 and the black die equals 3».  

 Event 2: «The red die produces a number strictly greater than the black die».  
 

As explained below, 1 out of the 30 events will be randomly selected for payment at the end of the experiment. We 

will then roll the 2 dice once in order to determine whether the event occurs or whether the event does not occur. For 

instance, if Event 1 above is randomly selected for payment, then we will say that Event 1 occurred when the outcome 

of the roll of the 2 die is such that the red die produces a 5 and the black die produces a 3. For any other number 

produced by either the black or the red die, we will say that Event 1 did not occur. Likewise, if Event 2 is randomly 

selected for payment, then we will say that Event 2 occurred when the outcome of the roll of the 2 dice is such that the 

red die produces a number strictly greater than the black die. Otherwise, we will say that Event 2 did not occur. 

 

 

Your Choices: 

For each of the 30 events, you will be asked to make a choice. One of these choices will determine the amount of 

money you will earn both when the event randomly selected for payment occurs and when it does not occur. Each of 

your choices consists in selecting a number between 1 and 149 in the table we gave you separately. We will now 

explain how your choice for the event randomly selected for payment affects the amount of money you will earn.  



If you look at the table, you can see that there are two amounts associated with each of the 149 possible choice 

numbers. The first is the amount of money you receive if the event occurs. The second is the amount of money you 

receive if the event does not occur. For instance, you can see in the table that the amounts associated with the choice 

number “1” are 53 and 4,000. This means that the amount of money you earn would be 53FCFA if the event occurs or 

4,000FCFA if the event does not occur. As you can see, when the choice number increases from 1 to 149, the amounts 

in the first columns increase, while the amounts in the second column decrease. For instance, the amounts associated 

with the choice number “90” are 3,360FCA and 2,560FCFA. In other words, if you choose the number “90” instead of 

the number “1” then you would earn more if the event occurs (3,360FCFA instead of 53FCFA), but you would earn 

less if the event does not occur (2,560FCFA instead of 4,000FCFA). Note also, that the highest choice numbers (those 

closer to 149) produce the largest amounts of money when the event occurs, but the smallest amounts of money when 

the event does not occur. For instance, the choice number “140” produces 3,982FCFA if the event occurs, but only 

516FCFA when the event does not occur.  
 

For each of the 30 events, you are free to select any choice number you want. Note that there is no correct or incorrect 

choice. The choice numbers selected may differ from one individual to the next. In general however, you may find it 

profitable to choose a higher choice number when you think the chances that the event occurs are higher. Indeed, as 

we just explained, such a choice number will produce a larger amount if the event occurs. Conversely, you may find it 

profitable to choose a smaller number when you think the chances that the event occurs are lower.  

 

Your Payment 

The amount of money you receive today will be determined in 3 steps. In a first step, we will randomly select one of 

the 30 events for payment. In a second step, we will roll the 2 dice once to determine whether the event selected for 

payment occurs or does not occur. Finally, in a third step, we will look at the choice number you chose for the event 

selected for payment in order to determine the amount of money you will receive.  

We will proceed as follows to select one of the 30 events for payment. At the beginning of the experiment, we will ask 

you to write your identification code on a piece of paper that you will then fold. Your identification code is located on 

the top right hand corner on the first page of the instructions. At the end of the experiment, we will draw at random 

one of the pieces of paper. The person whose identification number has been drawn will randomly choose 1 out of 30 

numbered tokens from a bag. The number written on the token selected indicates the event that will be considered for 

the payment of each person in the room.  

We will then draw at random a second piece of paper. The person whose identification code has been drawn will roll 

the 2 dice once to determine whether the event selected occurs or not. This single roll will be used to determine the 

payment of each person in the room.  
 

If you do not wish to be one of the persons rolling the dice or drawing the token, then simply leave your piece of paper 

blank. Just fold it without writing your identification code.     

 

 

 



Comprehension Test:  

Understanding the instructions well is important if you want to improve your chances to earn a larger amount of 

money during the experiment. In order to make sure you understand the instructions well, we will now conduct a 

quick test without monetary consequences. Imagine first that Event 1: «The red die equals 5 and the black die equals 

3» has been selected for payment. In addition, imagine that an individual selected the choice number 98 for this event, 

while a different individual selected the choice number 139. Please, write in the table below the amount of money 

each of these 2 individuals would receive if the roll of the dice produces the following outcomes: 
 

 

Outcome produced by the roll of the 2 dice 
Payment to the individual with  

A choice number of 98 A choice number of 139 

The red die equals 6 and the black die equals 4 ________FCFA ________FCFA 

The red die equals 5 and the black die equals 4 ________FCFA ________FCFA 

The red die equals 5 and the black die equals 3 ________FCFA ________FCFA 
 

Imagine now that Event 2: «The red die produces a number strictly greater than the black die» has been selected for 

payment. In addition, imagine that an individual selected the choice number 6 for this event, while a different 

individual selected the choice number 71. Please, write in the table below the amount of money each of these 2 

individuals would receive if the roll of the dice produce the following outcomes: 
 

 

Outcome produced by the roll of the 2 dice 
Payment to the individual with  

A choice number of 6 A choice number of 71 

The red die equals 3 and the black die equals 9 ________FCFA ________FCFA 

The red die equals 5 and the black die equals 2 ________FCFA ________FCFA 

The red die equals 0 and the black die equals 5 ________FCFA ________FCFA 
 

 

Please, do not hesitate to raise your hand now if the instructions we just read were not perfectly clear. Once the 

experiment starts you can still call us to answer any question by raising your hand. 
 

Note that the amount of money you will receive today may be larger or smaller depending on your choices and on the 

outcome produced by the roll of the 2 dice. By accepting to participate in the experiment,  you accept the 

consequences associated with your choices and with the roll of the dice. If you do not wish to participate in the 

experiment you are free to leave now, in which case you will receive a flat fee of 500FCFA. 

 

 

 

 

 

 

 



Series 1 : 

For the first series of 10 events, we will consider that the red die determines the first digit (meaning 0, 10, 20, 30, 40, 

50, 60, 70, 80, or 90) and the black die determines the second digit (meaning 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9) of a number 

between 1 and 100  (both dice equal to zero corresponds to the number 100). As a result, every number between 1 and 

100 has an equal chance to come out from the roll of the 2 dice.  
 

 

Event 
 

Description 
 

Your Choice Number 

1 « the number is between 1 (included) and 25 (included) »  

 2 « the number is between 62 (included) and 66 (included) »  

 3 « the number is between 16 (included) and 76 (included) »  

 4 « the number is between 3 (included) and 92 (included) »  

 5 « the number is between 52 (included) and 96 (included) »   

 6 « the number is between 9 (included) and 88 (included) »  

 7 « the number is between 44 (included) and 58 (included) »   

 8 « the number is between 23 (included) and 25 (included) »  

 9 « the number is between 37 (included) and 71 (included) »  

 10 « the number is between 28 (included) and 97 (included) »   

 

 

Series 2 : 

For the next series of 10 events, we will sum the outcome of the red die to the outcome of the black die. Since each die 

can only produce a number between 0 and 9, the sum obtained can only be a number between 0 and 18. Observe that 

some of these sums (for instance 0) can only be obtained from a unique combination of the 2 dice, while other sums 

(for instance 6) can be obtained from multiple combinations of the 2 dice. As a result, some of the 19 possible sums 

have more chances to come out than other sums.  
 

 

Event 
 

Description 
 

Your Choice Number

 11 « The sum is between 0 (included) and 4 (included) »  

 12 « The sum is between 2 (included) and 10 (included) »   

 13 « The sum is equal to 16 »  

 14 « The sum is between 4 (included) and 14 (included) »   

 15 « The sum is between 5 (included) and 13 (included) »   

 16 « The sum is between 0 (included) and 14 (included) »  

 17 « The sum is between 10 (included) and 18 (included) »   

 18 « The sum is equal to 4 »  

 19 « The sum is between 11 (included) and 17 (included) »   

 20 « The sum is between 2 (included) and 6 (included) »   



Series 3 : 

The last series of 10 events is similar to the first series. The red die determines the first digit and the black die 

determines the second digit of a number between 1 and 100. The difference with the first series is that, when you 

select your choice number, you are not facing 1, but 2 possible events. For instance, the 1st of the 2 possible events 

could be «the number is between 1 (included) and 25 (included)» and the 2nd of the 2 possible events could be «the 

number is between 55 (included) and 59 (included)». You are asked to select a single choice number without 

knowing which of the 2 possible events will be used to determine your payment. It is only at the end of the experiment 

that we will toss a coin to identify which of the 2 possible events will be used for payment. If the coin lands on Heads, 

then your payment will be determined using the 1st event. If the coin lands on Tails, then your payment will be 

determined using the 2nd event. As with Series 1, we will then roll the 2 dice to determine whether the event identified 

by the coin toss occurs or not. Here is an example :  
 

♦ If the coin lands on Heads, then the event is : 

«the number is between 1 (included) and 25 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 55 (included) and 59 (included)». 
 

You must select a unique choice number before you know which of the possible 2 events will be used for payment. 

Imagine for instance that an individual selects the choice number 70. We have to distinguish between different 2 

situations to determine how much the individual will be paid: 

♦ Either the coin tossed at the end of the experiment lands on Heads. In this case, the event used for payment 

is «the number is between 1 (included) and 25 (included)». Then, the event occurs if the 2 dice produce a 

number that is indeed between 1 (included) and 25 (included), and the individual in our example is paid 

2,862FCFA. On the other hand, if the 2 dice produce a number that is not between 1 (included) and 25 

(included), then the event does not occur and the individual in our example is paid 3,129FCFA. 

 ♦ Or the coin tossed at the end of the experiment lands on Tails. In this case, the event identified is «the 

number is between 55 (included) and 59 (included)». Then, the event occurs if the 2 dice produce a number 

that is indeed between 55 (included) and 59 (included), and the individual in our example is paid 2,862FCFA. 

On the other hand, if the 2 dice produce a number that is between 55 (included) and 59 (included), then the 

event does not occur and the individual in our example is paid 3,129FCFA. 
 

To summarize, there are only 2 cases under which the event occurs : 1) The coin lands on Heads and the 2 dice 

produce a number between 1 (included) and 25 (included), or 2) the coin lands on Tails and the 2 dice produce a 

number between 55 (included) and 59 (included). In all other cases, the event does not occur. Thus, when you select 

your choice number, you might want to imagine the different cases under which the event occurs and does not occur. 

 

If these explanations are not sufficiently clear, please call us by raising your hand. We will then come to your desk to 

answer any questions you may have. We would like to remind you that it is important for you to understand the 

instructions well so that you can make the decisions that suit you the best.  



 

Event 
 

Description 
 

Your Choice Number 

 
 

 21 

♦ If the coin lands on Heads, then the event is : 

«the number is between 48 (included) and 82 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 14 (included) and 48 (included)». 

 

 
 

 22 

♦ If the coin lands on Heads, then the event is : 

«the number is between 21 (included) and 35 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 30 (included) and 44 (included)». 

 

 
 

 23 

♦ If the coin lands on Heads, then the event is : 

«the number is between 25 (included) and 89 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 2 (included) and 96 (included)». 

 

 
 

 24 

♦ If the coin lands on Heads, then the event is : 

«the number is between 66 (included) and 97 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 13 (included) and 70 (included)». 

 

 
 

 25 

♦ If the coin lands on Heads, then the event is : 

«the number is between 56 (included) and 58 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 78 (included) and 80 (included)». 

 

 
 

 26 

♦ If the coin lands on Heads, then the event is : 

«the number is between 82 (included) and 89 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 25 (included) and 66 (included)». 

 

 
 

 27 

♦ If the coin lands on Heads, then the event is : 

«the number is between 7 (included) and 88 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 3 (included) and 100 (included)». 

 

 
 

 28 

♦ If the coin lands on Heads, then the event is : 

«the number is equal to 12». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 49 (included) and 57 (included)». 

 

 
 

 29 

♦ If the coin lands on Heads, then the event is : 

«the number is between 26 (included) and 86 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 14 (included) and 74 (included)». 

 

 
 

 30 

♦ If the coin lands on Heads, then the event is : 

«the number is between 1 (included) and 83 (included)». 

♦ Or, if the coin lands on Tails, then the event is :  

«the number is between 36 (included) and 91 (included)». 

 




