Managing I nconsistenciesin an Evolving Specification

STEVE EASTERBROOK BASHAR NUSEIBEH

School of Cognitive & Computing Sciences Department of Computing, Imperial College
University of Sussex, Falmer, Brighton, BN1 9QH 180 Queen’s Gate, London, SW7 2BZ
easterbrook@cogs.susx.ac.uk ban@doc.ic.ac.uk

Abstract
In an evolving specification, considerable development time and effort is spent handling
recurrent inconsistencies. Tools and techniques for detecting and resolving inconsistencies
only address part of the problem: they do not ensure that a resolution generated at a particular
stage will apply at all subsequent stages of the specification process. Previously, we have
advocated tolerance and management of inconsistency, rather than strict enforcement of
consistency. The advantages of this approach include the ability to delay resolution,
facilitation of concurrent development, and greater flexibility in development strategies.
However, this approach does not prevent inconsistencies themselves from evolving, and it
does not ensure that resolved inconsistencies remain resolved throughout subsequent
developments. We address these problems by explicitly recording relationships between
partial specifications (ViewPoints), representing both resolved and unresolved inconsistencies.
We assume that ViewPoints will often be inconsistent with one another, and we ensure that a
complete work record is kept, detailing any inconsistencies that have been detected, and what
actions, if any, have been taken to resolve them. This work record is then used to reason about
the effects of subsequent changes to the ViewPoints, without constraining the development
process. We illustrate the approach through a case study.

1. Introduction

In an evolving specification, considerable development time and effort is spent handling recurrent
inconsistencies. Such inconsistencies are particularly prevalent during requirements engineering,
when conflicting and contradictory objectives are often required by different development
stakeholders. Tools and techniques for detecting and resolving inconsistencies only address part of th
problem: they do not ensure that a resolution generated at a particular stage will apply at all
subsequent stages of the specification process. In this paper, we propose an approach for managir
inconsistencies that arise during the development of multi-perspective specifications, by explicitly
recording consistency relationships between partial specifications, and by representing both resolvec
and unresolved inconsistencies. We use the ViewPoints framework for multi-perspective software
development as a vehicle for demonstrating our approach, and illustrate our techniques by working
through an example drawn from the behavioural specification of a telephone.

We begin the paper with a brief review of the ViewPoints framework (section 2), and discuss some
inconsistency management issues in this context (section 3). We then demonstrate our approach t
inconsistency management within the framework via a scenario (section 4), and this is followed by a
discussion of outstanding issues of terminology and undetected conflicts (section 5). We conclude the
paper with an outline of our prototype implementation constructed to support our approach

(section 6), and draw some conclusions.

2. TheViewPoints Framework

The framework upon which we base this work supports distributed software engineering in which
multiple perspectives are maintained separately as distributable objects, called ViewPoints. We will
briefly describe the notion of a ViewPoint as it is used in this paper. The reader is referred to
[Finkelstein et al. 1992] for a fuller account of the framework, arf@#&sterbrook et al. 1994] for an
introduction to the issues of inconsistency management.

A ViewPoint can be thought of as a combination of the notion of an ‘actor’, ‘knowledge source’,
‘role’ or ‘agent’ in the development process, and the notion of a ‘view’ or ‘perspective’ which an
actor maintains. In software terms, ViewPoints are loosely coupled, locally managed, distributable
objects which encapsulate partial knowledge about a system and its domain, specified in a particular
suitable representation scheme, and partial knowledge of the process of development.

Each ViewPoint has the following slots:

* arepresentationstyle the scheme and notation by which the ViewPoint expresses what it can see;
» adomain which defines the area of concern addressed by the ViewPoint;

» aspecification the statements expressed in the ViewPoint's style describing the domain;

» awork plan which comprises the set of actions by which the specification can be built, and a
process model to guide application of these actions;

» awork record which contains an annotated history of actions performed on the ViewPoint.

The development participant associated with any particular ViewPoint is known as the ViewPoint
‘owner’. The owner is responsible for developing a ViewPoint specification using the notation defined
in the style slot, following the strategy defined by the work plan, for a particular problem domain. A
development history is maintained in the work record.

This framework actively encourages multiple representations, and is a deliberate move away from
attempts to develop monolithic specification languages. It is also independent from any particular
software development method. In general, a method is composed of a number of different
development techniques. Each technique has its own notation and rules about when and how to us
that notation. A software development method can be implemented in the framework by defining a set
of ViewPoint templates, which together describe the set of notations provided by the method, and the
rules by which they are used independently and together.

The use of viewpoints in requirements engineering has been advocated by a number of researcher
The notion of a viewpoint was first introduced as part of requirements specification methods such as
Structured Analysis [Ross & Schoman 1977] and CORE [Mullery 1%#%] more recently deployed

for validating requirements [Leite & Freeman 199d@pmain modelling [Easterbrook 1993hd
service-oriented specification [Kotonya & Sommerville 1992; Greenspan & Feblowitz 1993]. In our
framework, we use structured ViewPoints to organise multi-perspective software development in
general, and to manage inconsistency as we elaborate briefly below.

3. Inconsistency Management

In our framework, there is no requirement for changes to one ViewPoint to be consistent with other
ViewPoints[Finkelstein et al. 1994]Hence, inconsistencies are tolerated throughout the software
development process. This is in contrast with many existing support environments which enforce
consistency maintenance, for example by disallowing changes to a specification that lead to
inconsistencies.

We view the strict enforcement of consistency throughout the requirements process as unnecessaril
restrictive. Partly this view arises from a consideration of the distributed nature of software
development: it may not always be possible to check that particular changes are consistent with work
in progress at another site. Consistency enforcement can also stifle innovation, causing premature
commitment and preventing exploration of alternatives [Kramer 1991]. Finally, development
participants are likely to have conflicting views about many aspects of the requirements, and
exploration of these conflicts are greatly facilitated by the ability to express the alternative views.

The ability to express and reason with inconsistent specifications during software development
overcomes many of these problems. However, we assume that eventually a consistent specificatiol

will be required as the basis for an implementgtiowe therefore focus on the management of
inconsistencies, so that the specification process remains a coordinated effort. Consistency checkini
and resolution are still required, but they can be delayed until the appropriate point in the process. As
there is no requirement for inconsistencies to be resolved as soon as they are discovered, consisten
checking can be separated from resolution.

In order to manage inconsistencies, the relationships between ViewPoints need to be clearly defined
In general, the relationships arise from deploying the software development method. For example, if a
method involves hierarchical decomposition of a particular type of diagram, then two diagrams that
are hierarchically related should obey certain rules. Similarly, a method which provides several
notations, will also specify how those notations should be used in combination, and how they inter-
relate. Thus, the possible relationships between ViewPoints that are created during development, ar
determined by the method.

Consistency checking is performed by applying a set of rules, defined by the method, which express
the relationships that should hold between particular ViewP@Niseibeh, Kramer & Finkelstein

1994]. These rules define partial consistency relationships between the different representation
schemes. This allows consistency to be checked incrementally between ViewPoints at particular
stages rather than being enforced as a matter of course. A fine-grained process model in eac
ViewPoint provides guidance on when to apply a particular rule, and how resolution might be
achieved if a rule is broken [Nuseibeh, Finkelstein & Kramer 1993]

An increasing number of researchers have recognised the need to tolerate inconsistency in a variety ¢
settings. These include configuration management [Schwanke & Kaiser, p88&jamming [Balzer

1991], logical databases [Gabbay & Hunter 1991] and collaborative developNealyanaswamy &
Goldman 1992] In [Easterbrook et al. 1994yve discuss how co-ordination between ViewPoints can

be supported without requiring consistency to be maintained. A key problem with tolerance of
inconsistency is to support resolution of inconsistencies in an incremental fashion, so that resolutions
are not lost when the ViewPoints continue to evolve. We now present a scenario to illustrate how this
process is supported.

4. Scenario

Our scenario is drawn from the behavioural specification of a telephone, described using an extende
state transition notation. We begin by outlining the salient features of the method we use to elaborate
the scenario, and then illustrate how we deploy the method to specify parts of our telephone system.

41. Themethod

Our method is based on the use of state transition diagrams. This notation is used to specify the
required behaviour of a device, in this case a telephone. The method permits the partitioning of a statt
transition diagram describing a single device into separate ViewPoints, such that the union of the
ViewPoints describes all the states and transitions of the device. Such separation of concerns is
powerful tool for reducing software development complexity in genpehlezzi, Jazayeri &
Mandrioli 1991], and requirements complexity in particular [Alford 1994]. It does, however, require
corresponding techniques to combine resultant partial specifications, such as composition [Zave &
Jackson 1993] and amalgamation [Ainsworth et al. 1994]

Our scenario, describing the behaviour of a telephone as two separate partial specifications, allows u
to concentrate on different subsets of behaviours, and hence clarify how those subsets interact. In thi
way, we can, for example, analyse problems such as “feature interaction” in telecom $¥aiems
1993]. The scenario concentrates on how two instances of the same device interact under various
circumstances.

1 We will ignore the question of whether inconsistencies in a final specification or an eventual product are
acceptable under some circumstances.

For the purposes of the scenario, we deploy a method that exploits the ViewPoint framework to model
different aspects of the overall behaviour of a device separately. Thus, our method provides the
following:

A notation for expressing states and transitions diagrammatically. The state transition notation
includes some of the extensions for expressing super-states and sub-states

A partitioning step which allows a separate diagram to be created to represent a subset of the
behaviours of a particular device. This may mean that on any particular diagram, not all the
device’s possible states are represented, and for some states, not all the transitions from them ai
represented.

A set of consistency checking rules which test whether partitioned diagrams representing the same
device are consistent with one another. Essentially, these rules test whether two diagrams
describing the same device may be merged without any problems; even though the checking
process does not require such a merge to take place.

An analysis step which allows behaviours of one device to be associated with those of another, sc
that for example a transition in one device causes a transition in another.

A further set of consistency checking rules which test whether devices whose transitions have
been linked together exhibit consistent behaviours.

Our method also includes some guidance about when to use each of the steps, and when to apply t
consistency rules. The scenario will illustrate each of these steps in turn.

4.2. Preiminary specifications

At the start of our scenario, Anne has created a ViewPoint to represent the states involved in making ¢
call (figure 1), and Bob has created a ViewPoint to represent the states involved in receiving a call
(figure 2). This separation of views is useful, because it allows them to consider the interaction
between the caller and the callee. However, as they are both describing states of a single device,
number of consistency relationships must hold between their ViewPoints.

A (owner=Anne; domain=telephone/calling)

(off hook) A
dial
(callee idle)

lift
receiver

ringing
tone

replace dial
receiver (callee off
hook)

callee
lifts

receiver
engaged

connected
tone

\- J

callee
replaces
receiver

Figure 1: Anne’s initial ViewPoint specification for making a call.

2 We use the extensions to state transition diagrams propodéthisl 1987]. These extensions include the

use of super and sub-ordinate states, as illustrated in figure 1. Note that transitions out of super-states ar
available from all sub-ordinate states. The notation also allows transitions to be a function not just of a
stimulus, but of the truth of a condition. Conditions are shown in brackets after the name of the stimulus.

-4-

B (owner=Bob; domain=telephone/incoming call)

lft
receiver

caller dials

idle ringing connected

caller
replaces
receiver

caller replaces
receiver

replace
receiver

Figure 2: Bob's initial ViewPoint specification for receiving a call.

At this stage, Anne and Bob may wish to check whether or not their ViewPoints are consistent with
one another. They have not yet attempted to analyse the interaction of the calling and receiving
telephone: the only type of consistency they wish to check at present is that the subset of behaviour
of a telephone that each ViewPoint represents are consistent. In particular the subsets of behaviour ai
likely to have some overlap, and these overlaps need checking. In this scenario, both ViewPoints
include states such as “idle”, “connected” and “dial tone”.

We will consider two of the consistency rules in more detail:

() “If atransition between two states is described in one ViewPoint, and both states are described in
the second ViewPoint, then the transition should also be described in the second ViewPoint”.

In the example above, the “replace receiver” transition is shown between “connected” and “idle” in
Anne’s ViewPoint (because it is inherited from the super-state “off hook”), but not in Bob’s.
Although the partitioning method allows states to be missed out in different ViewPoints, if two states
are included, and no transition is shown between them, then it is assumed that no such transition ca
occur. In this example, Bob’s ViewPoint implies that replacing the receiver while connected does not
return the phone to idle. Indeed, this is the actual behaviour of many telephone systems for incoming
calls.

(i) “If a state is shown as belonging to a super-state in one ViewPoint, and the same state is included
in the second ViewPoint, then the super-state must also be included in the second ViewPoint”.

Again this rule is to ensure no ambiguity: the “connected” state is part of the “off hook” super-state as
defined in Anne’s ViewPoint, but it is not clear which other states of Bob’s ViewPoint are also
members of “off hook”.

4.3. Support for consistency checking

The consistency checking process described above is supported in each ViewPoint by providing the
consistency rules that may be invoked and applied by the ViewPoint owner. These rules are definec
by the method designer. We have developed a notation for expressing the rules (presented in
simplified form below), which allows the method designer to express relationships between objects in
the specifications of a source ViewPoint (from which the rule is invokedy, &Rl a destination
ViewPoint, VR,. For example, the first consistency rule above would be expressed in each ViewPoint
as:

Ry UJ VPp(STD, Ds)
{ VPs.transition(X, Y) OVPp.state(X) OVPp.state(Y) - VPp.transition(X, Y) }
Briefly, the above rule has three partdabel by which it can be referred (R aquantifier defining
the possible destination ViewPoints for which the relationship should hold (in this case, all

ViewPoints containing state transition diagrams, STD, whose domagiris e same as the current
ViewPoint); and aelationship(in this case the existence of a transition in the source ViewPoint and

the two states to which it is connected in the destination Viewlait#ils the existence of the
transition in the destination ViewPaint).

There also is an entry in the ViewPoint's process model, defining circumstances under which the rule
is applicable, and the possible results of applying it. Entries in the process model are expressed in th
form:

{preconditions} [0 [agent, action] {postconditions}
Hence, for rule R the following entry has been defined:
{} O [VPs, Rq] {O(transition(X, Y), VPp.transition(X, Y))} O
{ missing(transition(X, Y), VPp.transition(X, Y), R)}

In this case the preconditions are empty, indicating the rule can be applied at any time. The action i<
the application of rule Rby the source ViewPoint, \ The result is a set of predicates describing

the facts that have been established. Predicates of the‘fgomp.d) indicate that the relationship
defined by the rule Rholds for the partial specifications in the source ViewPoint andl in the
ViewPointy. Predicates of the formmissing (o, ¢.psp, R;) indicate that no items matching partial
specification pg in the destination ViewPoini were found to meet the existence criteria associated
with partial specificatiom as required in rule R

Hence, if Anne applies rule Rthe result will be the predicate:
missing(transition(off hook, idle), B.transition(connected, idle), Ry)

This merely states that according to rulg Re transition from “off hook” to “idle” in ViewPoint A
requires that there be a transition from “connected” to “idle” in ViewPoint B, which is mbsdihgs
predicate is recorded as part of the history of Anne’s ViewPoint (in the ViewPoint's work record slot).
Normally, ViewPoint B is also notified of the results of the check.

4.4. Resolution of inconsistencies

Anne and Bob consider the inconsistency resulting from the application of rule (i) above. It reveals a
conflict between their notion of the “connected” state. Bob had assumed that if the callee replaces the
receiver it does not sever the connection, and his ViewPoint is correct given that assumption. One
possible resolution would be to distinguish the connected states in each ViewPoint as different — beinc
connected as a caller is different from being connected as callee. However, they cannot agree on this
and decide to delay resolution.

At a later point, they then consider the inconsistency resulting from the application of rule (ii). The
most obvious resolution is to add the “off hook” super-state to Bob’s ViewPoint. Bob does this, and
his ViewPoint then contains the specification shown in figure 5.

B (owner=Bob; domain=telephone/incoming call)

" (off hook)
I
receiver

ringing

_/

connected

caller replaces

. caller replaces
receiver

receiver

replace
receiver

\- J

Figure 3: Bob’s ViewPoint specification after resolution.

3 We have assumed that inheritance of transitions from super-states, which is a part of the notation, is handle(
by the process of matching partial specifications given in a rule with the actual contents of a ViewPoint.

-6-

Note that this resolution has accidentally resolved the inconsistency resulting from the application of
rule (i) as well, in that the connected state in Bob’s ViewPoint inherits the “replace receiver”
transition from the super-state. This side effect contradicts Bob’s assumption that when the callee
replaces the receiver it does not end the connection. However, he does not notice the side effect at th
stage.

Anne now reapplies consistency rule (ii) to confirm that the problem is resolved. As she is group
leader, she also re-applies all the other checks, and discovers, to her satisfaction, that the ViewPoint
are completely consistent.

4.5. Support for resolution of inconsistencies

When the consistency checking rules were invoked, the results were recorded as part of the
ViewPoints’ respective work records. This provides some basic historical information on which to
base the resolution process, and is available whenever ViewPoint owners wish to handle the
inconsistencies.

Support for resolution is in the form of a list of actions, defined as part of the method. Each
consistency rule has a number of actions associated with it, which may be applied if the rule is broken.
Some of the actions will repair the inconsistency, others may just take steps towards a resolution, fol
instance by eliciting further information or performing some analysis [operationally: the actions are
available to the ViewPoint owners as a menu, and each action has a short text giving the rationale fo
that action].

Consider the inconsistency resulting from the application of rule (i) above. Anne and Bob both have
available the “missing” predicate described in section 4.3. They also have the list of suggested action:
for tackling the resolution. In this case the available actions are:

ViewPoint A actions:
(1) delete transition(off hook, idle)
(2) move state(connected) so it is no longer part of state(off hook)
(3) move transition(off hook, idle) so it no longer connects from state(off hook)
(4) delete state(connected)
(5) delete state(idle)
(6) rename state(connected)
(7) rename state(idle)
(8) devolve transition(off hook, idle) to all sub-states of “off hook”

ViewPoint B actions:
(9) delete state(connected)
(10) delete state(idle)
(11) rename state(connected)
(12) rename state(idle)

Joint Actions:
(13) copy transition(off hook, idle) from ViewPoint A to ViewPoint B as transition(connected, idle)

Note that some actions were derived directly from the rule that failed. These include removing items
that make the rule hold, or adding items required by the rule. In particular, action (13) is offered as a
likely suggestion, because it is normally assumed that under-specification is the cause of the problem
and it can be dealt with by transferring material from one ViewPoint to another.

Other actions are offered by the method designer. These are typically resolution actions that the
method designer has identified after considering examples of the inconsistencies detected by a rule
They may also have resulted from the experience of method users in the past: we assume that metho
evolve as lessons are learnt about their application.

One further source of suggested actions is from general heuristics defined as part of the method. Fc
example, action (8) is derived from a heuristic for this type of state transition diagram, which suggests

that as an alternative to deleting a transition from a super-state, the transition could be devolved to the
sub-states. In this case, action (8) does not resolve the inconsistency, but it may take ViewPoint
owners a step closer to finding a resolution.

In addition to the suggested actions, ViewPoint owners always have the option of ignoring an
inconsistency, or invoking a tool to analyse it further by, for example, displaying portions of the
ViewPoints side-by-side and exploring the differences between them [Easterbrook 1991]. If they
choose to ignore the inconsistency, they may wish to first perform some steps towards resolution,
either by applying actions which don’t quite resolve the inconsistency, or by eliminating some of the
suggested actions as undesirable. Any such steps performed in the context of resolving a particula
inconsistency are stored as such in the appropriate ViewPoint work record, so that the process may b
continued at a later point.

Each ViewPoint always has available a list of unresolved inconsistencies. The list only contains those
that have been detected - there may always be others for which relevant rules have not been appliel
All subsequent changes to a ViewPoint are checked to see if they affect any of the known
inconsistencies. This process can be illustrated by considering what happens when an inconsistenc
resulting from the application off rule (ii) is resolved:

* The inconsistency is represented in Anne’s ViewPoint as:
missing(state(off hook), B. state(off hook), R 1)
* Among the actions suggested for its resolution are that “off hook” be added to B.

» Anne selects this latter action, as a suggested resolution for Bob to carry out. Bob agrees and si
adds the new state.

* An annotated entry is added to each ViewPoint's work record to record that this particular action
resolved the inconsistency.

* As part of the resolution, the transition from “off hook” to “idle” is also copied to Bob's
ViewPoint.

» The actions are checked for their effect on any other inconsistencies. These are only performec
locally; i.e., each ViewPoint only checks its own actions against its own list of consistency rules.
In this case, the new transition in Bob’s ViewPoint is likely to repair the inconsistency:

A.missing(transition(off hook, idle), B. transition(connected, idle), A.R1)

This fact is noted in Bob’s work record, but it is not immediately flagged to Bob, as there may be
a large number of such effects.

* Anne’s rule R is re-applied to check that the inconsistency is indeed resolved.

Note that the rule Ris not re-applied automatically, despite the evidence that this too is resolved.
There are two reasons for this: only Bob’s ViewPoint has the information about this side-effect, and,
the resolution process only specifically concerned the inconsistency fromrukayReffect on other
inconsistencies can be dealt with when the ViewPoint owners specifically consider these.

46. Further elaboration

Anne and Bob now proceed to consider some additional features which will be made available on this
phone system. The first of these is the ability to forward a call to a third party. This requires Anne to
add an “on hold” state (figure 4). Note that her connected state does not specify which party the phone
is connected to:

A (owner=Anne; domain=telephone/calling)
("off hook))
lft dial
receiver (callee=idle) ringing
tone
replace dial \ callee
receiver (callee= N\ lifts
off hook) callee receiver callee
repla_\ces replaces
engaged | receiver connected reciever
(callee=
forwarding)
callee callee
replaces dials
reciever ‘R'+N
(callee=
connected on hold
to N) '
. J

Figure 4: Adding an “on hold” state to Anne’s ViewPoint specification.

Bob’s changes are a little more complicated, as new states need to be added to represent the process
contacting the third party. The required behaviour for the callee is that pressing the ‘R’ button on the
phone puts the calling party on hold, to enable the callee to dial and connect to the third party. If the
callee replaces the receiver before a connection to a third party is established, the phone rings agait
picking it up then reconnects to the original caller. If the callee replaces the receiver after connecting
to a third party, the original call is forwarded to the third party, leaving the callee’s phone idle. This is
shown in figure 5.

B (owner=Bob; domain=telephone/incoming call)

\\

(" off hook
ot hoo (forwarding

engaged
tone

dial N
(N=off hook)

dial R’
= forward
— tone

dial N
(N=idle)

replace
receiver

lift
receiver

ringing connected

“ caller dials

caller replaces
receiver

J

caller
replaces
receiver

ringing
tone

replace
receiver

N replaces
receiver

connected
toN

-

Figure 5: Extending Bob’s ViewPoint specification to handle call forwarding.

At this point Bob realises that one of the reasons he has distinguished between “connected” anc
“connected to N” is because replacing the receiver has a different result in each case. In the connecte
state, it is an incoming call, and replacing the receiver does not disconnect. In the “connected to N”
state, replacing the receiver completes the forward operation, leaving the phone idle. He notices tha
when he added the super-state “off hook”, he inadvertently gave all the off-hook states the transition
to idle when the receiver is replaced. He now corrects this error as shown in figure 6.

B (owner=Bob; domain=telephone/incoming call)

(off hook)
otthoo /forwarding)

engaged
replace tone
receiver
dial N
(N=off hook)

lift
receiver

forward
tone

ringing connected

I

caller dials

NV caller replaces
receiver

caller dial N
replaces (N=idle)
receiver

replace
receiver ringing
tone

N replaces N lifts
receiver receiver

replace
receiver

connected
toN

\

Figure 6: Replacing the receiver only returns the phone to an “idle” state if there is a
“dial tone” or “connected to N".

J

This now reintroduces an inconsistency according to rule (i), as Bob no longer has a transition from
connected to idle. The fact that Bob has made a change that affects a previous resolution is noted, <
that a suggestion to Bob that he re-checks rule (i) at some point can be made (this is particularly
useful when constructing automated support for such a resolution process).

When Bob checks the rule he discovers his ViewPoint is inconsistent with Anne’s. He realises that the
only resolution he will be happy with is to rename his connected state to distinguish it from Anne’s
connected state. This resolves the inconsistency.

4.7. Support for monitoring of inconsistencies

Throughout these further elaborations to ViewPoints, each action is checked for its effect on the
known inconsistencies in each ViewPoint. In our scenario, only two kinds of inconsistency were
detected, as we only applied two consistency rules. Both of these inconsistencies were resolved an
annotated with the action that resolved them. The list of unresolved inconsistencies is empty, but this
does not mean there are no other inconsistencies, as yet undetected. For example; iveute R
applied after the elaboration above, a new inconsistency between the states labelled “ringing tone” in
each ViewPoint would be detected - the transition “replace receiver” has a different destination in
each case (and the same applies to “engaged tone”). This inconsistency will be detected the next tim
the rule is applied, but having applied a rule in the past is no guarantee that the relationship expresse
in the rule still holds.

-10 -

Now consider what happens when Bob deletes the transition from “off hook” to “idle”. As the
addition of this transition was the action that resolved the inconsistency resulting from the application
of rule (i), its detection is likely to re-introduce the inconsistency. When the list of detected
inconsistencies is examined, this possibility is detected, and the ViewPoint owner, Bob, will be
warned. He may ignore the warning (inconsistencies are tolerated), or he can choose to check whethe
or not the inconsistency has indeed re-appeared, by invoking rule R1 again. If he does this, there ar
again two possibilities:

* The inconsistency does not re-appear. In this case some unknown action since the inconsistenc
was first resolved has affected it. Thus, the inconsistency is annotated to indicated that some
unknown action between the original resolution and the current action resolved it.

* The inconsistency re-appears, as is the case in our scenario. Here, the inconsistency is marked :
unresolved, but still annotated with the sequences of actions that resolved, and then re-introduce
it. This allows ViewPoint owners to further eliminate suggested resolution actions, if they have
been tried and found to be unsatisfactory.

4.8. User-defined relationships

There are still a number of conflicts between the two ViewPoints which have not been detected. For
example, Anne still has a transition from her “connected” state, indicating that the callee can cause ¢
disconnection by replacing the receiver. Bob’s ViewPoint assumes that the callee replacing the
receiver has no effect on the connection, but according to his ViewPoint, the callee can be in the
“connected as callee” state after replacing the receiver, even though “connected” is part of the “off
hook” super-state!

A further set of consistency rules will detect these conflicts at the next stage of the method. This
involves building relationships between the transitions of the caller and transitions of the callee, in
order to model the dynamics of interaction between devices, in this case two telephones. The
ViewPoints framework allows new relationships to be defined to represent such interactions.

For example, a connection between two phones must be synchronised such that if the connectiol
terminates, both phones must move out of the “connected” state. This can be modelled by defining ¢
relationship between “connected as caller” in Anne’s ViewPoint, and the state “connected as callee”
in Bob’s. Similarly, Anne’s transition “callee replaces receiver” is the same stimulus as “replace
receiver” in Bob's ViewPoint.

As well as allowing ViewPoint owners to define such relationships between elements of their
specifications, the method provides a further set of consistency rules. These check that the ViewPoint:
are consistent given the constraints imposed by any new relationships that are defined.

In the scenario, a number of further inconsistencies can be detected by applying these rules. Fo
example, in Anne’s ViewPoint, the transition from “connected” to “dial tone”, labelled “callee
replaces receiver”, is inconsistent with the agreed resolution of the connected state. However, this is
not detected until the two “connected” states of the caller and callee are linked together as co-existen
states. The most sensible resolution of this inconsistency is to delete the transition, not to transfer the
corresponding transition into Bob’s ViewPoint, as might be expected in other circumstances. Figure 7
and 8 show the two ViewPoints after further inconsistencies have been resolved.

-11 -

A (owner=Anne; domain=telephone/calling)

(off hook)
dial
(callee=idle)

lift
receiver

ringing
tone

replace dial
receiver (callee=
off hook)

callee
lifts

receiver
callee

engaged connected replaces
reciever
tone as caller (callee=
forwarding)

callee

replaces

reciever

(callee=

connected on hold
as caller)
\—_/
. J

Figure 7: Anne’s ViewPoint specification after conflict resolution.

B (owner=Bob; domain=telephone/incoming call)

P \
off hook (" forwarding)
replace
receiver
busy dial N
Ca”er (N=off hook)
dials SAAi i
ringing lit

tone

replace JL

. 4
connected| 4 receiver connected

caller on hook as callee
replaces

receiver

dial N
(N=idle)

caller
replaces

ringing
tone

replace receiver

N lifts
receiver

replace receiver

connected
as caller

.

Figure 8: Bob’s ViewPoint specification after conflict resolution.

4.9. Support for user-defined relationships

ViewPoint owners can define relationships between ViewPoints. These supplement the relationships
defined by the set of rules defined by the method designer. Relationships can be defined by direc
manipulation (i.e., the partial specifications are displayed graphically, and the user selects items
within them to link together), or by entering the relationships in the rule notation outlined in
section 4.3.

For example, Anne defines all transitions labelled “callee replaces receiver” in her ViewPoint as
equivalent to all transitions in Bob’s ViewPoint labelled “replace receiver”. This is recorded as:

-12 -

VPg.transition(_,).name.“callee replaces receiver” ~ B.transition(_,).name.“replace receiver”

where the underscore is used to denote ‘any’ element of a specification. The relationship denoted by
‘~" is a method-specific relationship, used to link together transitions in two interacting devices, in
order to analyse their interaction.

Having defined this relationship, Anne may then choose to export it to Bob’s ViewPoint, in which
case Bob will have to decide whether or not to accept the suggestion. Once they have defined ¢
number of relationships like those above, Anne or Bob may choose to apply some of the consistency
rules relating to device interaction. For example, if two states are linked together, then for any
transition from one of them, there must be a corresponding transition from the other. If we define a
corresponds predicate:

corresponds(X, Y) = (X ~Y) O(X.name = Y.name)

so that transitions in two ViewPoints correspond if they have been linked together, or have the same
name. The consistency rule can then be expressed as:

Ra: [VPp(STD, Dg)
{ (VP g.state(X) ~ VP p.state(Y)) OVPg.transition(X,)
- VPp.transition(Y, _) Ocorresponds(VPg.transition(X, _), VP p.transition(Y,)}

where this rule applies to two ViewPoints of any domain, The application of this rule will detect
that Anne still has a “callee replaces receiver” transition from “connected”, and add the predicate:

missing(transition(connected, dial tone), B.transition(connected,), R3)

to the list of inconsistencies in Anne’s ViewPoint. Should the inconsistency be explored, the
suggested actions will include adding the missing transition to Bob’s ViewPoint, linking one of Bob’s

existing transitions to Anne’s transition, or deleting Anne’s transition. Under normal circumstances,
the default action would be to add the transition to Bob’s ViewPoint, due to the under-specification
assumption mentioned earlier. However, in this case, there is more information available. A transition
that matches the required pattern did once exist in Bob’s ViewPoint, but was deleted:

transition(connected, idle).name.“replace receiver”

The implication, therefore, is that the default action should be to delete the corresponding transition in
Anne’s ViewPoint. This is in fact the action that Anne chooses to perform.

4.10. Implications on requirements specification

Incremental exploration and resolution of the inconsistencies reveals an important mismatch betweer
the conceptual models held by the two participants described in our scenario; hamely about who &
connection can be terminated by, and hence whether there is any difference in being connected as
caller and connected as a callee. Although it is entirely possible that this mismatch may have beer
detected anyway, the explicit conflict resolution process provides a focus for identifying these kinds
of mismatch.

The process of defining the required behaviour of a device is crucial to requirements specification.
Various tools exist for defining and analysing behavioural specifications, including, to some extent,
determination of completeness and consistency. However, no such analysis can guarantee that tk
behaviour that gets specified is the intended one. Animating a behavioural specification can also helg
by bringing the specified behaviour to the attention of the analyst. Analysis of conflicts in the way
described here is clearly an additional help.

5. Undetected conflicts

We have demonstrated how conflicts between the conceptual models used by the two participants ca
be detected through the identification of inconsistencies. It is worthwhile clarifying the distinction
between conflict and inconsistency. Artonsistencyccurs if a rule has been broken. Such rules are

-13-

defined by method designers, to specify the correct use of methods. Hence, what constitutes at
inconsistency in any particular situation is entirely dependent on the rules defined during the method
design. Rules will cover the correct use of a notation, and the relationships between different
notations.

We defineconflict as the interference in the goals of one party caused by the actions of another party
[Easterbrook et al. 1993For example, if one person makes changes to a specification which interfere
with the developments another person was planning to make, then there is a conflict. This does no
necessarily imply that any consistency rules have been broken.

An inconsistency might equally well be the result of a mistake. We defimistakeas an action that
would be acknowledged as an error by the perpetrator of the action; some effort may be required,
however, to persuade the perpetrator to identify and acknowledge a mistake.

Although our approach is based on the management of inconsistency, our scenario has shown ho\
this in turn helps with the identification and resolution of conflicts, as well as mistakes. There remains
the possibility that some conflicts and mistakes will not manifest themselves as inconsistencies.

There is at least one conflict between the ViewPoints in the scenario which has not been detected b
the set of consistency rules we outlined. Consider what would happen in figures 7 and 8 if the callee i<
in any of the forwarding states, and the caller (who is on hold) replaces the receiver. Anne’s
ViewPoint is clear about the behaviour: the connection is terminated. However, Bob does not take
account of this possibility. An obvious resolution would be for Bob to add a transition from
“forwarding” to “dial tone” to account for this action, although it is not clear this is the desired
behaviour once the callee has dialled a forwarding number. This conflict may require further
consideration to find a satisfactory resolution.

That this conflict is not detected is a weakness in the set of consistency rules defined by the method
rather than a problem with the approach. The consistency rules arise from: consideration of the
rationale and operation of the method; from consideration of examples and case studies of the use ¢
the method; and from the experiences of method users. If it becomes clear that some types of mistake
and conflicts are not being detected, then new consistency rules should be added. In the exampl
above, a new rule would need to be added to the set of rules for checking relationships betweer
devices with associated behaviours.

6. Implementation

A prototype computer-based environment and associated Tdws\iewe) have been constructed to
support the framework [Nuseibeh & Finkelstein 199Phe Viewerhas two distinct modes of use:
method design and method use. Method design involves the creation of ViewPoint templates which
are ViewPoints for which only the representation style and work plan slots are filled. In method use,
ViewPoints are instantiated from these templates, to represent the various perspectives. Eacl
instantiated ViewPoint will inherit the knowledge necessary for building and manipulating a
specification in the chosen notation, and cross checking consistency with other ViewPoints. Hence,
each ViewPoint is a self-contained specification development tool.

We have also extendetihe Viewerto support a subset of the inconsistency management tools
described in this paper. &onsistency Checker allows users to invoke and apply selected in- and
inter-ViewPoint consistency rules, and records the results of all such consistency checks in the
appropriate ViewPoint's work record for later analysis. A preliminary prototype of an
Inconsistency Handler has also been implemented, to illustrate the kind and scope of inconsistency
management we expect tool support to provide (figure 9).

A number of inter-ViewPoint consistency checking and inconsistency handling issues that arise from
distributed and/or concurrent development in this setting have yet to be explored. Moreover,
combining inconsistency handling with the notion of development guidance still requires further

work. We plan to incorporate many of the conflict resolution strategies and actions Wighwiewer,

while tolerating inconsistency.

- 14 -

]

v

.

Inter-ViewPoint Inconsistency Handler ===

INCONSISTENCY: Sources not valid agents
INCONSISTENCY: Destinations not valid agents
INCONSISTENCY: Outputs not dataitems

ki) LOCAL |O JOINT |O REMOTE
v

£ | — | >

EDIT specification locally(e.q., addiremove objects and relations)
CHECKIN-YP consistencyas a possible cause of inter-¥YP inconsistency

£ | e— >

—> Perform Selected InconsistencyHandling Actions <—

v

Selectthe action yvouwishto perform ...

~
i
—_—
v

Figure 9: The user-interface of an inter-ViewPoint Inconsistency Handler. A list of broken
consistency rules is shown in the top pane, and a list of inconsistency handling actions for any
selected rule is shown in the middle pane. These actions may be “local” to the source ViewPoint
initiating the checks (e.g., local editing actions); “remote” actions performed by the destination
ViewPoint; or “joint” actions (e.g., negotiation) performed by both ViewPoints involved in the check.

7. Conclusions

ViewPoints facilitate separation of concerns and the partitioning of software development knowledge.
Partitioning is only useful if relationships and dependencies between partitions can be defined. In this
paper, we have shown how such relationships can be defined in two ways: as part of a method, and ¢
additional links identified by development participants during development. We have demonstrated
how inconsistencies identified by checking these relationships may be resolved, and illustrated how
subsequent evolution affects a resolution. Undone resolutions are recorded so that the effects o
subsequent changes may be tracked.

We have also shown how re-negotiation may be supported. Analysis of conflicts helps reveal the
conceptual models used and assumptions made by development participants. In this way, the explici
resolution process acts as an elicitation tool. The ability to identify mismatches in conceptual models
is an important benefit to requirements engineers adopting this approach.

The detection of conflicts and other problems (e.g., mistakes) depends on how well a method is
defined. We have demonstrated that conflicts can arise which do not give rise to inconsistencies.
Moreover, method design is an iterative process in which experience with method use can help
improve the method. In this way, development experience in using a method may lead to new types o
consistency rules being added to the method.

Identifying consistency relationships, checking consistency and resolving conflicts are all important
steps in managing inconsistency in an evolving specification. We believe our approach makes a
contribution to multi-perspective software development in general, and requirements specification in
particular by using inconsistency management to elicit knowledge about systems and their domain.

-15-

Acknowledgements

The authors would like to acknowledge the contributions and feedback of Anthony Finkelstein and
Jeff Kramer. This work was partly funded by the UK Department of Trade and Industry as part of the
Eureka Software Factory (ESF) project, and the EPSRC as part of the VOILA project.

References

Ainsworth, M., A. H. Cruickshank, L. G. Groves and P. J. L. Wallis (1994); “Viewpoint Specification
and Z”; Information and Software Technolad36(1): February 1994; Butterworth-Heinemann.

Alford, M. (1994); “Attacking Requirements Complexity Using a Separation of Concerns”;
Proceedings of 1st International Conference on Requirements Engine€oi@ado Springs,
Colorado, USA, 18-22nd April 1994, 2-5; IEEE Computer Society Press.

Balzer, R. (1991); “Tolerating InconsistencyProceedings of 13th International Conference on
Software Engineering (ICSE-13Austin, Texas, USA, 13-17th May 1991, 158-165; IEEE
Computer Society Press.

Easterbrook, S. (1993); “Domain Modelling with Hierarchies of Alternative Viewpoints”;
Proceedings of International Symposium on Requirements Engineering (RES&BPiego, CA,
USA, 4-6th January 1993, 65-72; IEEE Computer Society Press.

Easterbrook, S. (1991); “Resolving Conflicts Between Domain Descriptions with Computer
Supported Negotiation'Knowledge Acquisition: An International Journdt 255-289.

Easterbrook, S., E. E. Beck, J. S. Goodlet, L. Plowman, M. Sharples and C. C. Wood (1993); “A
Survey of Empirical Studies of Conflict’{in) CSCW: Co-operation or Conflict”s. M.
Easterbrook (Ed.); 1-68; Springer-Verlag, London.

Easterbrook, S., A. Finkelstein, J. Kramer and B. Nuseibeh (1994); “Coordinating Distributed
ViewPoints: The Anatomy of a Consistency Chedkd; appear in) Concurrent Engineering:
Research and ApplicationsAugust 1994; CERA Institute, West Bloomfield, USA.

Finkelstein, A., D. Gabbay, A. Hunter, J. Kramer and B. Nuseibeh (1994); “Inconsistency Handling in
Multi-Perspective SpecificationsTransactions on Software Engineerjrgf(8): August 1994;
IEEE Computer Society Press.

Finkelstein, A., J. Kramer, B. Nuseibeh, L. Finkelstein and M. Goedicke (1992); “Viewpoints: A
Framework for Integrating Multiple Perspectives in System Developmiet¢inational Journal
of Software Engineering and Knowledge Engineer2(@): 31-58, March 1992; World Scientific
Publishing Co.

Gabbay, D. and A. Hunter (1991); “Making Inconsistency Respectable: A Logical Framework for
Inconsistency in Reasoning, Part 1 - A Position PapRrdceedings of the Fundamentals of
Artificial Intelligence Research ‘9119-32; LNCS, 535, Springer-Verlag.

Ghezzi, C., M. Jazayeri and D. Mandrioli (1998 ndamentals of Software Engineerimyentice
Hall, Inc., Engelwood Cliffs, New Jersey, USA.

Greenspan, S. and M. Feblowitz (1993); “Requirements Engineering Using the SOS Paradigm”;
Proceedings of International Symposium on Requirements Engineering (RES&BPiego, CA,
USA, 4-6th January 1993, 260-263; IEEE Computer Society Press.

Harel, D. (1987); “Statecharts: A Visual Formalism for Complex Systefsience of Computer
Programming 8: 231-74.

Kotonya, G. and I. Sommerville (1992); “Viewpoints for Requirements Definiti@dftware
Engineering Journal7(6): 375-387, November 1992; IEE.

Kramer, J. (1991); “CASE Support for the Software Process: A Research Viewpomt&edings of
Third European Software Engineering Confereriddan, Italy, October 1991, 499-503; LNCS
550, Springer-Verlag.

-16 -

Leite, J. C. S. P. and P. A. Freeman (1991); “Requirements Validation Through Viewpoint
Resolution”; Transactions on Software Engineeriri@(12): 1253-1269, December 1991; IEEE
Computer Society Press.

Mullery, G. (1979); “CORE - a method for controlled requirements expressitinteedings of 4th
International Conference on Software Engineering (ICSEL2%-135; IEEE Computer Society
Press.

Narayanaswamy, K. and N. Goldman (1992); ““Lazy” Consistency: A Basis for Cooperative Software
Development”;Proceedings of International Conference on Computer-Supported Cooperative
Work (CSCW '92) Toronto, Ontario, Canada, 31st October - 4th November, 257-264; ACM
SIGCHI & SIGOIS.

Nuseibeh, B. and A. Finkelstein (1992); “ViewPoints: A Vehicle for Method and Tool Integration”;
Proceedings of 5th International Workshop on Computer-Aided Software Engineering (CASE
‘92), Montreal, Canada, 6-10th July 1992, 50-60; IEEE Computer Society Press.

Nuseibeh, B., A. Finkelstein and J. Kramer (1993); “Fine-Grain Process Modelnogeedings of
7th International Workshop on Software Specification and Design (IWSSRedpndo Beach,
California, USA, 6-7 December 1993, 42-46; IEEE Computer Society Press.

Nuseibeh, B., J. Kramer and A. Finkelstein (1994); “A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specificatiofd; appear in) Transactions of Software
Engineering 20(10): October 1994; IEEE Computer Society Press (earlier version appeared in
Proceedings of ICSE-15, May 1993, pp.187-200).

Ross, D. T. and K. E. Schoman (1977); “Structured Analysis for Requirements Definition”;
Transactions on Software Engineerjidfl): 6-15, January 1977; IEEE Computer Society Press.

Schwanke, R. W. and G. E. Kaiser (1988); “Living With Inconsistency in Large Systems”;
Proceedings of the International Workshop on Software Version and Configuration Control
Grassau, Germany, 27-29 January 1988, 98-118; B. G. Teubner, Stuttgart.

Zave, P. (1993); “Feature Interaction and Formal Specifications in TelecommunicatiéBE’;
Computer 26(8): 20-30, August 1993; IEEE Computer Society Press.

Zave, P. and M. Jackson (1993); “Conjunction as Compositidndnsactions on Software
Engineering and Methodologg(4): 379-411, October 1993; ACM Press.

-17 -

