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Abstract Choosing a suitable classifier for a given dataset is an important
part of developing a pattern recognition system. Since a large variety of classi-
fication algorithms are proposed in literature, non-experts do not know which
method should be used in order to obtain good classification results on their
data. Meta-learning tries to address this problem by recommending promising
classifiers based on meta-features computed from a given dataset. In this pa-
per, we empirically evaluate five different categories of state-of-the-art meta-
features for their suitability in predicting classification accuracies of several
widely used classifiers (including Support Vector Machines, Neural Networks,
Random Forests, Decision Trees, and Logistic Regression). Based on the eval-
uation results, we have developed the first open source meta-learning sys-
tem that is capable of accurately predicting accuracies of target classifiers.
The user provides a dataset as input and gets an automatically created high-
performance ready-to-use pattern recognition system in a few simple steps. A
user study of the system with non-experts showed that the users were able to
develop more accurate pattern recognition systems in significantly less devel-
opment time when using our system as compared to using a state-of-the-art
data mining software.

Keywords meta-learning · meta-features · landmarking · regression ·
classifier selection · classifier recommendation

1 Introduction

The large variety of classification algorithms challenges developers of a pat-
tern recognition system to select an appropriate algorithm for their problem.
In general, it is not clear which specific classifier should be used for a particular
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dataset in order to achieve good results. Some classifiers such as Support Vec-
tor Machines (SVM) deliver high accuracy on a variety of datasets. However,
the no-free-lunch theorem [42] tells us that there is no learning scheme that
can be uniformly better than all other learning schemes for all problem in-
stances. Hence, no universal recommendation can be made for arbitrary data.
The actual performance of a classifier compared to alternatives always depends
on the characteristics of the data and how well they satisfy the assumptions
made by the classifier.

The idea of meta-learning is to learn about the learning algorithms them-
selves, i.e. to predict how well a learning algorithm will perform on a given
dataset. This prediction is based on extracting meta-features – these are fea-
tures that describe the dataset itself. These features are used to train a meta-
learning model on training data (in this case one dataset corresponds to one
training sample). Afterwards, this model is applied on the meta-features of
a new dataset. The result is the prediction of the suitability or performance
of one or more target classifiers. Especially for non-experts in pattern recog-
nition, meta-learning might significantly reduce the development time of a
pattern recognition system by decreasing the required level of expertise for
choosing a suitable classifier for a given problem.

Different approaches have been presented in the field of meta-learning in
the last two decades. A major focus of research has been on identifying what
kind of meta-features are suitable for characterizing a dataset. An overview
of different meta-features proposed in the literature is given in Section 1.1.
Based on these meta-features, several techniques have been proposed for meta-
learning using classification, regression, ranking, and case-based reasoning. We
will review them in Section 1.2. In the following Section 1.3, we will illustrate
how this work advances the state-of-the-art in meta-learning.

1.1 Meta-Feature Extraction and Selection

Many different meta-features have been proposed in the literature. They are
derived from different concepts and therefore can be categorized into five
groups: simple, statistical, information-theoretic, model-based, and landmark-
ing meta-features.

Simple meta-features are directly derived from the data, e.g. the number
of samples, the number of attributes or the number of classes. Statistical fea-
tures describe statistical properties of the data, e.g. the “peakedness” or the
asymmetry of a probability distribution [13,39]. Information-theoretic features
are typically based on entropy measures [38]. The Data Characterization Tool
(DCT) of the MetaL project is widely used for calculating these groups of
meta-features [25,29,9,40,18]. More recently proposed types of meta-features
are landmarking features and model-based features.

The landmarking approach utilizes simple and fast computable classifi-
cation algorithms [27,30,6]. These classifiers are applied on the dataset and
the resulting performance values are used as meta-features of the dataset.
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Fürnkranz and Petrak [16] evaluated variants of landmarking for pairwise
predicting the more suitable classifier. Five different landmarking represen-
tations, such as pairwise landmarker comparisons or ranks of the landmarkers
were investigated. Besides, the technique of sub-sampling landmarkers was
also evaluated. This approach uses the performance of the target classifier on
a subsampled dataset as meta-feature. Using landmarking features for pre-
dicting the best out of a pair of classifiers has been evaluated by Pfahringer
et al. [30]. The authors used artificial datasets for creating a Decision Tree
and real world datasets for testing it. The results with landmarking were com-
pared with information-theoretic features and a combination of both. Bensuan
et al. [4] used the same type of meta-features and also artificial datasets for
training. However, instead of predicting the best out of a pair of classifiers, the
best out of all was predicted directly. Additionally, five different meta-learners
were investigated. The results show that landmarking features worked best in
both cases.

The model-based approach creates a model from the data and uses its
properties as feature values. The used model in this context is typically a
decision tree [29,5]. This group of meta-features has been evaluated by Peng
et al. [29] according to a ranking approach. A k -Nearest Neighbor algorithm
creates the ranking for different meta-feature groups. Comparisons between
model-based features, landmarking, and a set of features from different groups
are provided. An additional manual feature selection process does neither cover
the model-based features nor the landmarking features.

Besides manual meta-feature selection, work on automatic feature selec-
tion for meta-learning has only been reported in two papers to our knowledge.
Todorovski et al. [40] showed that reducing the set of meta-features can in-
crease the performance of a meta-learning system. A beam-search was used
for selecting the best features, whereas the set of considered features does not
contain any landmarking nor model-based measures. Since the feature set is
optimized according to the final ranking of classifiers, the features were not
selected for each target classifier individually. Kalousis et al. [21] also evalu-
ated feature selection for meta-learning. For each pair of classifiers, a separate
model was trained with independently selected features. Many meta-features
have been used, but neither landmarking nor model-based features were taken
into account.

1.2 Meta-Learning Approaches

Rice [37] first presented an abstract model for meta-learning. For a given
problem, a mapping function based on meta-features selects the algorithm
that maximizes the performance. Rendell and Cho [36] developed rules based
on simple meta-features only determining if a certain algorithm should be
used for a problem instance or not. This approach was later extended by using
more features and a Decision Tree learner within the well known StatLog
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project [23]. As a result, the learned model predicts the most suitable classifier
for a new problem.

Instead of such a classification approach, Gama and Brazdil [17] used re-
gression in order to predict the performance values of different algorithms.
They created linear regression models based on 15 meta-features. Instead of
directly predicting the accuracy values or error rates, the normalized error
rates using the error margins were predicted. Three different methods for nor-
malizing the error rates of the datasets were investigated. The regression ap-
proach was compared with a rule learner, a combination of a Decision Tree
and Linear Regression as well as a 3-Nearest Neighbor approach. The results
show that it is hard to determine which combination of normalization method
and learning algorithm is the best one. Unfortunately, the evaluation was only
based on about 20 datasets.

Köpf et al. [24] also presented results of using regression for meta-learning.
The M6 method [34] was used as a meta-regression learner. In the evaluation,
the error rates of three classification algorithms were predicted for artificial
datasets. Additionally, the regression method was compared to the classifica-
tion approach by selecting the classifier with the lowest predicted error as the
best classifier.

A more recent paper about using regression for meta-learning is from Ben-
susan and Kalousis [7]. The authors used Cubist [33] and a kernel method as
meta-learners. The kernel method fits a linear regression model around the
performance values of the nearest known datasets. The evaluation was per-
formed on 65 datasets from the UCI repository [3]. The performance of the
predictions was measured using the Mean Absolute Deviation. Different sets
of meta-features and a feature selection have been investigated as well. Unfor-
tunately, landmarking [30] was not included in the feature selection process
although it was already known as a good method at that time. In addition, the
regression model was used to produce a ranking of the classifiers. The results
were compared with Zooming [9].

Case-based reasoning was used for meta-learning by Linder et al. [25]. Using
a case base of known and solved problem instances, the most similar problem
served as a basis for the recommendation of one or more algorithms. The sim-
ilarity of problems was determined by meta-features but the recommendation
also included application restrictions concerning the class of the algorithm,
interpretability of the produced model, as well as training and testing time.

Besides classification and regression, a commonly used technique for rec-
ommending algorithms is ranking. The result of the recommendation proce-
dure is a list of algorithms, ordered by their predicted suitability. The ranking
approach has the advantage that the user may evaluate the most suitable
algorithms for the given data. Brazdil et al. [8] used a k -Nearest Neighbor
approach for creating the ranking. For each algorithm that was selected by
the Nearest Neighbor method, a score is computed that takes accuracy as well
as total execution time of the algorithm into account. The ranking is directly
deduced from these values.
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Ali et al. [2] used a rule learner based on meta-features to predict the most
suitable classifier. For every target classifier, a rule was learned, determining
if the classifier should be used. For the training data, the best classifier was
determined by a combined measure of accuracy and time. This work is also
one of the few papers until today taking an SVM classifier into account.

Besides the already mentioned StatLog project, a second large-scale project
in meta-learning was MetaL [26]. In this project, the Data Mining Advisor [18]
was developed as a practical implementation of a meta-learning approach. It
used the Data Characterization Tool (DCT) and a k -Nearest Neighbor algo-
rithm to deliver a ranking of ten target classifiers. Unfortunately, neither a
classification model nor a usable pattern recognition system was provided at
the end. The user could not directly use the recommended classifiers. Addi-
tionally, the practical usefulness of the proposed system was not evaluated.
The e-LICO project investigated a different approach by using ontologies and
templates for discovering complex data mining workflows [22,19].

1.3 Contributions of this Paper

Summarizing the issues of previous work in meta-learning, the following com-
mon limitations can be found:

– Not all five groups of meta-features have been evaluated all together.
– No automatic or only a limited feature selection was performed.
– The recently widely used SVM classifier was hardly investigated.
– Parameters of the target classifiers were not optimized although this might

change classification results significantly.
– The presented systems have not been released as Open Source.

Table 1 gives an overview of previous papers and their individual strengths
and weaknesses according to these aspects.

In this work, we overcome these limitations by performing exhaustive ex-
perimental evaluations. Meta-learning is used to predict the accuracy of each
single target classifier independently. The major contributions of the presented
work are:

Higher variety of target classifiers: In contrast to previous work, we se-
lected nine representative target classifiers with respect to different con-
cepts in the machine learning domain. We also include recently favored
algorithms such as Support Vector Machines (SVM) [12] and Random
Forests [10] but also traditional methods that have different theoretical
foundations.

Parameter optimization of target classifiers: The most important pa-
rameters of each target algorithm are optimized in order to get more real-
istic performance measures and thus a more convincing evaluation.

Evaluation of all groups of meta-features: The meta-features used for the
evaluation comprise all five groups. Each set of meta-features is evalu-
ated for each target classifier independently. To the best of our knowledge,
model-based meta-features are used for meta-regression for the first time.



6 Matthias Reif et al.

Investigated

Meta-Features

S
im

p
le

S
ta

ti
st

ic
a
l

In
f.

T
h
e
o
re

ti
c

M
o
d
e
l-

B
a
se

d

L
a
n
d
m

a
rk

in
g

F
e
a
tu

re
S
e
le

c
ti

o
n

a
u
to

m
a
ti

c
/
m

a
n
u
a
l

C
la

ss
ifi

e
r

P
a
ra

m
e
te

r
O

p
ti

m
iz

a
ti

o
n

S
V

M
in

v
e
st

ig
a
te

d

R
e
le

a
se

d
a
s

O
p

e
n

S
o
u
rc

e

Gama and Brazdil [17] • • •
Köpf et al. [24] • • •
Bensusan and Kalousis [7] • • • • a1

Linder et al. [25] • • •
Brazdil et al. [8] • • • m

Ali et al. [2] • • • •
Fürnkranz and Petrak [16] •
Pfahringer et al. [30] • •
Bensuan et al. [4] • •
Peng et al. [29] • • • • • m2

Todorovski et al. [40] • • • a

Kalousis et al. [21] • • • a

Presented Approach • • • • • a • • •

Table 1 Previous work in meta-learning has limitations regarding the set of used meta-
features, feature selection, and the target classifiers.

1 The feature selection was not applied using the landmarking features.
2 The feature selection was neither applied using the model-based features nor the land-

marking features.

Evaluation according to two performance measures: For a more exhaus-
tive evaluation, the root mean squared error (RMSE) as well as the Pearson
product-moment correlation coefficient (PMCC) are used as performance
measures. RMSE has the advantage of providing a confidence interval along
the prediction, whereas PMCC can measure relative deviations well.

Automatic feature selection: Automatic feature selection is applied twice
according to both performance measures and independently for each target
classifier. The results are compared to each of the different meta-feature
groups as well as to the complete set of meta-features.

Design of a practical system: The complete approach was designed and
implemented as a software wizard that recommends classifiers by predict-
ing their accuracies. It uses only freely available algorithms and is fully
integrated into RapidMiner [28], the most frequently used data mining
software. Moreover, the wizard is able to build a complete pattern recogni-
tion system automatically. Therefore, the recommended classifiers can be
used right away within RapidMiner.

Practical evaluation of meta-learning: We performed an exhaustive user
study to show the usefulness of the presented wizard and the practical
applicability of the meta-learning approach. Objective measures such as
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achieved accuracy as well as subjective experiences by the users are evalu-
ated.

The rest of this paper is structured as follows. In the next Section, the ap-
proach of using regression for meta-learning is presented in more detail. This
includes theoretical aspects as well as the proposed design of a practical sys-
tem. Section 3 contains the evaluation including theoretical comparison of
different groups and combinations of meta-features in Section 3.1 as well as
the results of a user study of the practical system in Section 3.2. Section 4
concludes the paper.

2 Method

Although especially ranking was often used for classifier recommendation, we
think that using regression for meta-learning is more suitable for a practical
system used by inexperienced users. Therefore, we first present the theoretical
foundations followed by the presentation of a practical system based on these
foundations. Furthermore, a ranking can also be obtained directly from our
regression approach.

2.1 Meta-Learning using Regression

The goal of using regression in meta-learning [17] is to predict the actual per-
formance outcome for each considered classifier independently instead of pre-
dicting the best out of a pair or out of all classifiers (classification). Therefore,
a separate regression model is trained for each algorithm. The knowledge of
the meta-learner is derived from the training data, which comprises of meta-
features of multiple datasets and a target variable. The actual performance
values of the classification algorithm serve as this quantitative target variable
in this context. Each dataset results in one instance in the training data de-
scribed by its meta-features and the computed performance of the target clas-
sifier. Using these measures, a regression model is learned that describes the
relation between the meta-features and the expected performance of datasets.

If the performance of a classifier is to be predicted for a new dataset, the
meta-features of this dataset are computed first. Then, the previously learned
regression model is applied on these feature values. The result is the predicted
performance of the classifier for this new dataset. This procedure is illustrated
in Figure 1.

Although some meta-features are originally developed for either nominal
or numeric values, both feature types can be converted to each other, e.g. by
discretization. Therefore, meta-features can be extracted from datasets with
different types of features and the approach is applicable to different types of
datasets including datasets with mixed types.

For a recommendation or decision about which algorithm should be used,
the results of the different regression models have to be compared. Since the
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Fig. 1 Training using regression (top) and application of the performance prediction model
(bottom) for one target classifier. Here, the accuracy of a classifier is used as the performance
measure.

predictions are quantitative values, multiple algorithms may be recommended
if two or more predicted accuracies are close. Predicting the accuracy value
instead of an arbitrary score has the advantage that the user already gets an
estimation of the expected accuracy for his task. Furthermore, the root mean
squared error (RMSE) is computed during the training of the meta regression
model. This measure can also be used additionally by the user to estimate the
confidence of the meta-learner for a given classifier.

A possible drawback of the regression approach is that for each target algo-
rithm, a separate regression model has to be trained. This can be time consum-
ing, especially when an exhaustive parameter optimization for the meta-model
is performed. On the other hand, independent models also simplify adding or
removing target classifiers. Additionally, the models for different target clas-
sifiers can be trained and evaluated independently. In particular, a different
regression algorithm, different parameter values or different meta-features can
be used.

In addition to the mentioned groups of meta-features, we also apply an
automatic feature selection method similar to the one presented by John et
al. [20]. Two wrapper approaches are applied to the set of all 43 meta-features
whereas the performance of a candidate feature set is determined by a leave-
one-out cross-validation of the resulting regression model. First, a forward
selection starts with no features and consecutively adds features until no im-
provement is achieved. In every iteration, it saves the k best feature sets. To
avoid being trapped in local maxima, the search stops only after n consec-
utive iterations without improvement. To remove possibly useless features, a
backward elimination is applied afterwards. It works analogically with for-
ward selection except that it consecutively removes features. Unfortunately,
this heuristic search does not guarantee that the selected features are the op-
timal set. For our evaluation, we used values of k = 5 and n = 3 for the
forward selection as well as for the backward elimination step.

The evaluation of a set of meta-features within the feature selection process
does not contain any parameter optimization of the meta-learner. Only after
the most promising features have been identified, an evaluation with parameter
optimization is performed.
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2.2 Classifier Recommendation using a Software Wizard

Additionally to the theoretical approach of meta-learning using regression, we
present a practical implementation of it. We designed the system as a software
wizard that guides the user in just three steps from a dataset to a reasonable
well performing classification system. The three steps are as follows:

1. The user selects a dataset, meta-features are calculated and supplied to
the pre-computed regression models. Both, predicted accuracy and RMSE
are presented to the user for each of the target classifiers in a tabular form.

2. The user selects multiple candidate classifiers, which are most promis-
ing based on the predictions. Each selected classifier is trained on the
dataset. Required pre-processing and parameter optimization is performed
automatically. The computed classification performance of the selected
classifiers are presented to the user.

3. The user selects a classifier he wants to get a pattern recognition system
for. This is typically the classifier with the highest computed accuracy. A
complete pattern recognition system including appropriate pre-processing
steps is created automatically. If the user has selected a classification algo-
rithm that already has been evaluated in the previous step, the optimized
parameter values will be set automatically. Otherwise, the default param-
eter values are used.

We integrated the recommendation tool into RapidMiner [28], that is the
most frequently used data mining tool according to the KDNuggets poll from
2010 [31]. The wizard is able to handle datasets with numeric, nominal, binary,
and mixed features. The pattern recognition system created by the wizard is
directly loaded into RapidMiner and can be used immediately.

3 Evaluation

According to the previous section, the evaluation is split up into two parts.
The theoretical evaluation of the meta-learning method is presented first. Af-
terwards, the evaluation of the practical system is presented.

3.1 Comparison of Meta-features

For the evaluation of the regression approach with different meta-features,
we used 54 datasets from the UCI machine learning repository [3] and from
StatLib [41], although artificially created datasets might be used as well [14].
We randomly selected datasets with different number of samples as well as
with different number of nominal and numeric attributes. Additionally, we only
used datasets that had an acceptable training time for all target classifiers. For
every dataset, the following 43 meta-features are calculated using R and the
landmarking extension for RapidMiner [1]:
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Simple meta-features: number of samples, number of classes, number of
attributes, number of nominal attributes, number of numerical attributes,
ratio of nominal attributes, ratio of numerical attributes, dimensionality
(number of attributes divided by number of samples)

Statistical meta-features: kurtosis, skewness, canonical discriminant cor-
relation (cancor1), first normalized eigenvalues of canonical discriminant
matrix (fract1), absolute correlation

Information-theoretic meta-features: normalized class entropy, normal-
ized attribute entropy, joint entropy, mutual information, noise-signal-ratio,
equivalent number of attributes

Model-based meta-features: For these features, a Decision Tree is trained
without pruning. Different properties of this tree are used as feature values:
number of leaves, number of nodes, nodes per attribute, nodes per sample,
leaf corroboration. Additionally, the minimum, maximum, mean value and
the standard deviation of the following measures are used: length of a
branch (min-, max-, mean-, devBranch), number of nodes in a level (min-
, max-, mean-, devLevel), number of occurrences of attributes in a split
(min-, max-, mean-, devAtt)

Landmarking meta-features: The accuracy values of the following simple
learners are used: Naive Bayes, Linear Discriminant Analysis, One-Nearest
Neighbor, Decision Node, Random Node, Worst Node, Average Node.

We use the classification accuracy as the target value for regression. The best
classification accuracy for each target classifiers was determined by parameter
optimization using a grid search and a ten-fold cross-validation. We selected
nine target classifiers based on two principles:

Recently favored used: In previous work, more recent algorithms were not in-
vestigated. We include SVM and Random Forest in the set of target classi-
fiers since both are successfully used classifiers on diverse machine learning
tasks. Especially SVMs are nowadays usually the first choice of pattern
recognition engineers.

Different learning approaches: As already mentioned, the variety of categories
of the target classifiers is rather limited in previous work. Usually, the set
of target classifiers consists of many tree and rule based methods as well as
variations of the C5.0 algorithm [35]. We selected classification algorithms
that use different learning foundations such as tree or rule-based learners
but also statistical and instance-based learners as well as Neural Networks.

The selected classification algorithms as well as their optimized parameters
are listed in Table 2. The features of all datasets have been normalized and
nominal features have been converted to numeric features for the SVM, the
Multilayer Perceptron (MLP), and the Fisher’s Linear Discriminant (FLD)
since these algorithms do not support nominal values. In order to avoid a
singular within-class covariance matrix SW within the FLD, this matrix have
been regularized using the parameter λ and the identity matrix I [15,32]:

SW (λ) = (1 − λ)SW + λI. (1)
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Classifier Parameter Range Steps Scale

Decision Tree confidence [1.0e-7, 0.5] 100 linear

SVM γ [0.001, 10.0] 100 logarithmic

C [0.0, 50] 10 logarithmic

Nearest Neighbor k [1,500] 100 logarithmic

MLP learning rate [1.0e-5, 1.0] 100 logarithmic

Random Forest k [1, 21] 10 linear

depth {1,2,3,4,5,7,10,20} - -

OneR - - - -

Naive Bayes - - - -

Logistic Regression - - - -

FLD λ [1.0e-5, 0.1] 8 logarithmic

Table 2 The most important parameters of the nine investigated target classifiers have
been optimized in order to get a well-founded ground truth estimation of their performance
values.

For each of the nine target classifiers, separate regression models are trained
on the normalized meta-dataset. Therefore, the regression variant of a Sup-
port Vector Machine, the ε-SVR, is used as learning algorithm based on the
LibSVM [11] implementation. We used a radial basis function as kernel whereas
the parameters γ and C were optimized independently for every target classi-
fier.

The performance of a regression model is evaluated by a leave-one-out
cross-validation. For measuring the performance of the meta-learner we used
the root mean squared error (RMSE) and the Pearson product-moment corre-
lation coefficient (PMCC). Feature selection as well as parameter optimization
were done independently for both measures.

3.1.1 Root Mean Squared Error

We selected RMSE as one measure because it is an often used measure of
precision and can also serve as a confidence indicator of the predictions. Table 3
shows the RMSE values of the trained regression models for the different sets
of meta-features. The first column “average accuracy” provides a baseline for
our experiments. It contains the RMSE for the case that the average accuracy
of the target classifier is used as prediction. This baseline indicates the overall
usefulness of meta-learning in general. The last column is the result of the
feature selection approach, whereas the subset of meta-features differs for each
target classifier. The most frequently selected meta-features are the Naive
Bayes landmarker (9 times), the One-Nearest Neighbor landmarker (8 times),
and the Decision Node landmarker (8 times). All selected meta-features for
each single target classifier can be found in Table 5.

As a first result it can be seen that meta-learning performs clearly better
than the baseline. Especially models using feature selection or landmarking
features are able to predict the accuracy precisely. It is also noticeable that
landmarking alone works better than feature selection for Naive Bayes and
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Classifier average simple statistical information model landmarking all feature

accuracy theoretic based selection

Decision Tree 0.183 0.127 0.126 0.100 0.117 0.076 0.079 0.069

SVM 0.193 0.125 0.112 0.113 0.117 0.075 0.083 0.070

Nearest Neighbor 0.179 0.130 0.108 0.102 0.110 0.056 0.071 0.063

MLP 0.187 0.124 0.115 0.115 0.119 0.081 0.086 0.076

Random Forest 0.164 0.111 0.097 0.088 0.100 0.059 0.067 0.056

OneR 0.221 0.155 0.145 0.115 0.162 0.071 0.079 0.065

Naive Bayes 0.193 0.145 0.125 0.131 0.129 0.045 0.061 0.050

Logistic Regression 0.195 0.138 0.126 0.124 0.120 0.062 0.075 0.059

FLD 0.190 0.138 0.115 0.116 0.115 0.059 0.074 0.058

Table 3 The RMSE values of predicted and computed accuracies of classifiers for different
meta-feature groups show that landmarking and feature selection contain the most useful
meta-features.

Nearest Neighbor. The reason why the feature selection yields to worse results
in these cases is that it does not guarantee to deliver the optimal feature
set. Additionally, during the feature selection, no parameter optimization is
performed. For example, using only the Naive Bayes landmarker for predicting
the Naive Bayes target classifier is of course the best choice. But the feature
selection picked more features since this set delivers a higher performance on
default parameters of the ε-SVR than just the Naive Bayes landmarker.

However, the difference of the results for landmarking and feature selection
does not seem to be significant and therefore we applied a two-sided t-test. The
differences are not statistically significant with a confidence level of 95%. This
means that the computationally intensive procedure of feature selection may
be omitted and only landmarking features could be used instead. As already
mentioned, the most frequently selected measures by the automatic feature
selection are landmarking features.

We also evaluated different set-ups of the landmarking meta-features. We
applied them with and without cross-validation and reduced the set of land-
marking algorithms according to Pfahringer et al. [30]. The results show that
there is no uniformly better set-up and the achieved error rates are quite close.
Therefore, no clear recommendation can be made. Nevertheless, we prefer the
Pfahringer set-up since the reduced set of classifiers requires less computation
time.

3.1.2 Correlation

The RMSE only considers the magnitude of the deviation between predicted
and actual performance, but not the sign of it. Nevertheless this aspect can
be important for algorithm recommendation. To get a more complete and re-
liable evaluation of the presented method, the performance was additionally
evaluated with a second performance measure. The Pearson product-moment
correlation coefficient (PMCC) of the predicted accuracy and the actual, com-
puted accuracy was calculated. In this context, the correlation between two
variables X and Y is defined as

ρX,Y =
E [(X − µX)(Y − µY )]

σXσY
. (2)
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Classifier simple statistical information model landmarking all feature

theoretic based selection

Decision Tree 0.427 0.375 0.729 0.220 0.791 0.819 0.838

SVM 0.503 0.558 0.684 0.253 0.865 0.826 0.883

Nearest Neighbor 0.478 0.635 0.645 0.340 0.909 0.815 0.916

MLP 0.576 0.578 0.592 0.256 0.838 0.810 0.882

Random Forest 0.594 0.629 0.733 0.263 0.899 0.825 0.903

OneR 0.520 0.544 0.780 0.186 0.900 0.869 0.919

Naive Bayes 0.451 0.545 0.585 0.415 0.965 0.914 0.998

Logistic Regression 0.560 0.540 0.660 0.391 0.899 0.849 0.925

FLD 0.497 0.507 0.696 0.393 0.902 0.866 0.925

Table 4 The Pearson product-moment correlation coefficients of different groups of meta-
features for the set of target classifiers also show that feature selection performs best.

This measure returns values in the interval [−1; 1]. A value of 1 (-1) indicates
a perfect positive (negative) relationship. If the correlation is 0, the two input
variables are independent.

Table 4 shows the correlation values for the same meta-feature groups as
previously evaluated with the RMSE. The feature selection yields the highest
correlation values for all nine target classifiers. The most frequently selected
features are the One-Nearest Neighbor landmarker (8 times), the Naive Bayes
landmarker (6 times), and the number of classes (6 times). All selected features
for each single classifier are shown in Table 5. It can be seen that, compared to
RMSE, less meta-features have been selected. The reason might be that pre-
dicting the accuracy relations as measured by correlation is easier and required
therefore less features than predicting precise accuracy values as measured by
the RMSE.

The landmarking group is again almost as precise as using the compu-
tationally intensive feature selection algorithm. The correlation values were
again calculated for different landmarking set-ups. The results are similar to
the results using the RMSE: there is no set-up that is uniformly better and
the Pfahringer set-up still seems to be a good choice due to its low complexity.

However, it is still not clear, which landmarking algorithm correlates best
with a certain target classifier. For this reason, the correlation values between
each single accuracy of the landmarkers and each target classifier were com-
puted. Figure 2 shows the results for the four most sophisticated classifica-
tion algorithms. It can be seen that the One-Nearest Neighbor and the Naive
Bayes landmarkers deliver the highest correlation values for these target clas-
sifiers. This is not surprising since both classifiers are the only landmarking
algorithms that take the complete dataset into account and are non-linear.
However, as visible from the table of selected meta-features for RMSE, the
remaining landmarkers are suitable for predicting accuracies precisely using
an additional meta-regression model.
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Fig. 2 The correlation values for each single landmarker and the four most sophisticated
target classifiers reveal that in general One-Nearest Neighbor and Naive Bayes should be
the first choice for landmarkers.

3.2 Practical Evaluation of Classifier Accuracy Prediction

A system which accurately predicts the accuracy of multiple classifiers and is
able to construct a classification system automatically can improve and speed-
up the development process of pattern recognition systems. Especially non-
experts may benefit from an automated approach. The time of getting familiar
with pattern recognition theory in general but also with the used software
should be decreased significantly. Furthermore, the wizard can also provide
additional help to more experienced users. In order to verify the usefulness and
the applicability of the proposed wizard, a user study was performed. Since
the theoretical evaluation showed that the landmarking features perform well,
we also focused on this set of features.

3.2.1 Experiment Set-up

We asked computer science students at the University of Kaiserslautern to
build a pattern recognition system for the profb dataset from StatLib [41].
The system should deliver a classification model with the highest classification
accuracy as possible. To get a comparison between the presented wizard and
the traditional approach without meta-learning, the students were asked to
solve the problem two times:

Task A: A plain RapidMiner installation has to be used.
Task B: The wizard should be used additionally.

We decided to let the students do task A before task B because the order of
performing the tasks should not have a large influence on the results. If task
B (using the wizard) would be performed before task A (without wizard), the
user would already know a good classifier and its suitable parameters for the
given task. But doing task B after task A does not influence the accuracy
achieved by the wizard since the classifiers are recommended automatically.
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Fig. 3 Mean development time and classification accuracy for both tasks.

We also decided to give the students a very short introduction to pattern
recognition and RapidMiner. We want to avoid that the students spend too
much time with basic understanding and hence may deliver no result at all.
Furthermore, it was also allowed to use any additional help as needed, such as
the RapidMiner manual or any other resource on the Internet. The importance
of additional help was investigated in the evaluation.

The complete process was done two times. The first, preliminary round
consisted of nine students, which gave important feedback about the usability
of the wizard. Based on this feedback, we revised the user interface of the
wizard for the second round with 24 students. All results presented in this
paper are based on the second round only.

3.2.2 Accuracy and Time

The achieved classification accuracy as well as the time needed were recorded
for each single student. The mean time that the students needed for developing
the systems for task A and task B is plotted in Figure 3(a). The accuracy values
were determined by using a separate test set. The achieved mean classification
accuracies are shown in Figure 3(b). The plots show that using the wizard,
the development time could be decreased significantly. Moreover, the achieved
performance could be increased as well.

3.2.3 Questionnaire

In addition to the actual tasks, we asked each student to answer a question-
naire. It contained multiple-choice questions about previous knowledge, com-
parison between RapidMiner and the wizard as well as general questions about
the wizard.

Previous Knowledge: These questions give us an impression about the expe-
rience of the students in pattern recognition. The goal was to determine if
the wizard is equally useful for differently experienced users. The students
were asked what their main focus of study is, if they have attended a pattern



16 Matthias Reif et al.

 0

 2

 4

 6

 8

 10

 12

 14

 16

very easy easy neither nor difficult very difficult

p
e
rs

o
n
s

Did you find the task difficult?

without wizard
with wizard

(a) The wizard is able to decrease
the difficulty of developing a pattern
recognition system.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

not needed some was useful helped a lot totally required

p
e
rs

o
n
s

Did you need additional help or information?

without wizard
with wizard

(b) The required level of experience is
much lower when the wizard is used.

Fig. 4 Results of the questionnaire comparing the presented wizard for classifier recom-
mendation and the standard approach.

recognition course, and if they are already familiar with RapidMiner. Approxi-
mately half of the students had attended the pattern recognition course taught
at the University of Kaiserslautern but none of them had prior experience with
RapidMiner.

Comparison of Task A and Task B: This part of the questionnaire is the
most important part since it directly compares the standard method with the
presented approach. In addition to the more objective measures of time and
accuracy, these questions show the advantages of using meta-learning and,
particularly, the presented wizard approach.

An important aspect of the user study was to compare the perceived level
of difficulty of both tasks. It is interesting to see that the mean opinion score
(MOS) about the difficulty level of the classification task, on a scale from 1
(very easy) to 5 (very difficult), was reduced from 3.4 when using RapidMiner
only to 1.3 when using the wizard. The frequencies of the answers are shown
in Figure 4(a).

Another question examines the level of expertise or the amount of experi-
ence that is required for solving the tasks. It was asked, how much additional
help or information the user needed for solving the tasks. The MOS on a scale
from 1 (not needed) to 4 (totally required) was reduced from 2.3 to 1.3 by using
the wizard. Figure 4(b) shows a summary of user responses to this question.

Rating of the Wizard: The last part of the questionnaire evaluates the wizard
and its meta-learning approach in general. All students considered the wizard
to be simple and intuitive and most of them have a good overall impression
about it. Additionally, most of the users would use the wizard as an additional
help instead of using either RapidMiner or the wizard only for future pattern
recognition tasks. Also, most of the users would recommend the wizard to
somebody else, who is new to pattern recognition.
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4 Conclusion

An exhaustive evaluation of meta-features for meta-learning using regression
was performed based on 54 datasets. We showed that meta-learning does
make sense in general by comparing the results with a baseline strategy. Five
different categories of meta-features, namely simple, statistical, information-
theoretic, model-based and landmarking were used and comparatively eval-
uated. Furthermore, a feature selection approach according to RMSE and
correlation has been utilized in order to select the most promising features
out of all categories. As a result, we found that feature selection yields the
best results in total, whereas landmarking achieved nearly the same perfor-
mance, but with times less computational effort. Especially the landmarking
set-up by Pfahringer et al. [30] with only four landmarkers can decrease the
computational effort further without significantly reducing the performance.

We also presented a technical implementation of meta-learning to evaluate
the applicability and practical usefulness of the theoretical approach. A soft-
ware wizard for classifier recommendation using regression and landmarking
features was developed and integrated into RapidMiner. With this open-source
tool it is now for the first time possible for researchers to actually reproduce
results of meta-learning processes precisely. From a system engineer point of
view, the wizard was evaluated according to its usefulness by a user study
with 24 students. The meta-learning tool shows improvements in development
time and achieved a classification accuracy compared to a standard pattern
recognition approach. Additionally, the level of expertise required for building
a pattern recognition system as well as the overall level of difficulty could be
reduced. The wizard was released in collaboration with Rapid-I GmbH as the
first third-party extension for RapidMiner and can be directly installed via
the RapidMiner extension manager.
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Simple

Number of classes 3 • • • 6 • • • • • •
Number of attributes 1 • 1 •
Number of numeric attributes 0 0

Number of nominal attributes 2 • • 0

Number of samples 2 • • 1 •
Dimensionality 2 • • 3 • • •
Rate of numeric attributes 0 0

Rate of nominal attributes 0 1 •
Statistical

skewness 4 • • • • 2 • •
kurtosis 1 • 2 • •
absolute correlation 2 • • 0

cancor1 7 • • • • • • • 0

fract1 0 0

Information-theoretic

Normalized class entropy 0 1 •
Normalized attribute entropy 1 • 3 • • •
Joint entropy 6 • • • • • • 1 •
Mutual information 2 • • 2 • •
Equivalent number of attributes 4 • • • • 2 • •
Noise-signal ratio 2 • • 2 • •
Model-based

Number of nodes 1 • 0

Number of leaves 1 • 0

Nodes per attribute 2 • • 0

Nodes per sample 5 • • • • • 0

Leaf corrobation 2 • • 1 •
minLevel 1 • 5 • • • • •
maxLevel 1 • 0

meanLevel 2 • • 1 •
devLevel 2 • • 1 •
minBranch 2 • • 3 • • •
maxBranch 4 • • • • 0

meanBranch 3 • • • 0

devBranch 2 • • 0

minAtt 2 • • 0

maxAtt 4 • • • • 0

meanAtt 0 0

devAtt 2 • • 1 •
Landmarking

Linear Discriminant 5 • • • • • 0

One-Nearest Neighbor 8 • • • • • • • • 8 • • • • • • • •
Decision Node 8 • • • • • • • • 1 •
Worst Node 1 • 0

Average Node 5 • • • • • 0

Random Node 7 • • • • • • • 1 •
Naive Bayes 9 • • • • • • • • • 6 • • • • • •
Count 14 10 15 21 14 8 15 13 8 7 7 8 8 5 5 2 7 6

Table 5 The selected meta-features of each target classifier. The regression model was
optimized according to either RMSE or correlation criterion.


