
TCP: Improving Startup Dynamics by Adaptive Timers andCongestion ControlMohit Aron Peter DruschelTR98-318Department of Computer ScienceRice UniversityAbstractThis paper studies the startup dynamics of TCP on both high as well as low bandwidth-delay network paths and proposes a set of enhancements that improve both the latency as wellas throughput of relatively short TCP transfers. Numerous studies have shown that the timerand congestion control mechanisms in TCP can have a limiting e�ect on performance in thestartup phase. Based on the results of our study, we propose mechanisms for adapting TCPin order to yield increased performance. First, we propose a framework for the management oftiming in TCP. Second, we show how TCP can utilize the proposed timer framework to reducethe overly conservative delay associated with a retransmission timeout. Third, we propose theuse of packet pacing in the initial slow-start to improve the performance of relatively shorttransfers that characterize the web tra�c. Finally, we quantify the importance of estimatingthe initial slow-start threshold in TCP, specially on high bandwidth-delay paths.1 IntroductionAs new network technologies emerge and transform the Internet, the TCP (Transmis-sion Control Protocol) is being evolved to cope with new operating conditions andperformance demands. For instance, extensions like large windows [4], selective ac-knowledgements [20], PAWS (protection agains wrapped sequence numbers) [4] and thetimestamp option [4] are being incorporated in TCP to maintain correct operation andhigh performance on the evolving Internet. This paper studies the startup dynamics ofTCP on both high as well as low bandwidth-delay network paths and proposes a set ofenhancements that improve both the latency as well as throughput of relatively shortTCP transfers. The term high bandwidth-delay path is intended for those network pathsthe product of whose bandwidth and round trip propagation delay is of the order of twoorders of magnitude larger than the MTU (maximum transmission unit) supported bythe network.Numerous studies have shown that the timer and congestion control mechanisms inTCP can have a limiting e�ect on performance in some network environments, speciallyin the startup phase. The coarse-grained clock1 used for measuring round-trip time14.4BSD TCP uses a 500ms clock for measuring RTT and scheduling timeouts1

2(RTT) and scheduling retransmission timeouts (RTO) in the BSD based implementa-tions of TCP has been shown to a�ect both latency as well as throughput [6, 5, 14, 19].The slow-start congestion control mechanism [16] has been found to be slow in �llingthe network pipe [21, 12, 1] and a�ects the performance of short transfers that typically�nish during the initial slow-start. Throughout this paper, the term pipe size is intendedto be synonymous with the product of the available bandwidth2 and the round-trip timeobserved when there is no queuing at the routers.In this paper, we propose enhancements to the TCP timer and slow-start mechanismsthat adapt TCP for providing better performance during startup. Firstly, we proposea framework that decouples the timing algorithms in TCP from the event schedulingfacilities provided by the operating system, viewing the latter as a service that TCPtries to adaptively use to its best possible advantage. Secondly, we show how thisframework can be utilized by TCP to achieve a reduction in the long delays associatedwith a timeout. Thirdly, we show how the performance of the slow-start mechanism inTCP can be improved by using the event scheduling service to pace packets. Finally, wequantify the impact of estimating the slow-start threshold (ssthresh) [14] on the startupTCP performance in high bandwidth-delay networks.The remainder of this paper is organized as follows. The simulation environmentused to obtain the results presnted in this paper is described in Section 2. In Section 3,we show simulation results that demonstrate performance problems that TCP su�ers incertain network enviroments. Section 4 presents a new framework for managing TCPtimers and time measurement that allows TCP to make use of improved timing facilitiesavailable in many modern host environments. Section 4.2 presents our enhanced slow-start mechanism, which takes advantage of the time framework in order to pace packets,thus a�ording higher performance for short transfers over network paths with highbandwidth-delay products. A detailed simulation-based performance evaluations of theproposed mechanisms is given in Section 5. Related work is discussed in Section 6 andin Section 7 we summarize our conclusions.2 Simulation EnvironmentThis section describes the simulation environment used in our study. All simulationswere done using the x-sim network simulator [7], which is based on the x-kernel [15].x-sim is an execution-driven network simulator, where the actions of network protocolsare simulated by executing its actual protocol implementation code, rather than anabstract behavioral model of the protocol. x-sim supports multiple hosts, each runninga full protocol stack, and several abstract link behaviours (point-to-point and ethernetlinks). The routers are modelled as network nodes that supports a particular queuing2Available bandwidth indicates how fast a connection should transmit data to preserve network stability whilebottleneck bandwidth gives an upper bound on how fast a connection can possibly transmit data [22].

3
30ms

R2

S7
D7

D8S8

S1

S2

D1

D2

R1
155Mb/s

100Mb/s 100Mb/sFigure 1: High Speed WAN R1 R2

1.5Mbps

S1 D1

S2 D2

10Mbps Ethernet

10Mbps EthernetFigure 2: Low Speed Networkdiscipline (e.g. FCFS). Host and router computation is assumed to have zero overhead.The simulator clock has a granularity of 1�s.The version of TCP Lite used in our simulations corresponds to Lite.4 proposed in [5].This version �xes many bugs in the original 4.4BSD-Lite[26] distribution. TCP Lite is anextension of TCP Reno and provides support for long fat pipes (high bandwidth-delaypaths) amongst other improvements [4]. The timeout estimation and congestion controlalgorithms used in TCP Lite are essentially the same as those in TCP Reno[16, 17, 23].Figure 1 and Figure 2 show the network topologies we used for our simulations. Thetopology in Figure 1 was used to simulate a high speed WAN (wide area network) whilethe one in Figure 2 was used to simulate both a low speed WAN as well as a satellitenetwork. In both topologies, nodes R1 and R2 are IP routers that are connected by thebottleneck link. The IP packet size used for simulating the low and high speed WANswas 1500 bytes while 512 bytes was used for simulations involving the satellite network.For the topology in Figure 1, eight senders (S1, S2, ... S8) use TCP to send datato eight destinations (D1, D2, ... D8) across the bottleneck link. The routers werecon�gured to have a bu�er size of 200 packets. The round-trip propagation delay is60ms. The links connecting the end-hosts to the routers have a bandwidth of 100Mbpswhile the bottleneck link has a bandwidth of 155Mbps. This topology then provides ahigh bandwidth-delay path between R1 and R2 having a pipe size of 1.1MB. It resemblesa real internet where hosts on several 100Mbps Ethernet LANs (local area networks)transfer data to destinations across a WAN consisting of an 155Mbps STS-3 link.In Figure 2 the bottleneck link that connects R1 and R2 has a bandwidth of 1.5Mbps.The two IP routers R1 and R2 are further connected to 10Mbps Ethernets. Senders(S1, S2) connected on the Ethernet attached to R1 use TCP to send data to desinations(D1, D2) that are connected on the Ethernet attached to R2.For simulating a low speed WAN, the bottleneck link in Figure 2 was con�gured touse a round-trip propagation delay of 100ms and the bu�er sizes at the routers were setto 20 packets. This results in a low bandwidth-delay path of pipe size 200KB betweenR1 and R2. The setup is similar to other studies of TCP dynamics on low speed WANs[6, 5] and resembles an internet where 10Mbps Ethernet LANs are connected by a T1link.

4The simulations on a satellite network involve setting the round-trip propagationdelay in Figure 2 to 580ms, while the router bu�er sizes were set to 70 packets. Thistopology is similar to the one used in [1] to emulate satellite networks and provides ahigh bandwidth delay path of size 116KB. The links used in this topology, however, donot simulate any bit errors.In the simulations with the high speed WAN and satellite topology, we use a TCPadvertised window size of 512KB to accomodate the relatively large bandwidth-delayproducts in these simulated networks. This enables us to examine the e�ect of timerand congestion control algorithms on TCP performance without being limited by thereceiver advertised window. For the low speed WAN, an advertised window of 64KBwas used.3 TCP timers and congestion controlIn this section, we present performance problems with the timer and congestion controlmechanisms in TCP Lite that a�ect the startup dynamics. Many of these limitationshave also been observed elsewhere in the literature [21, 12, 1, 6, 14]. As we will show, theimpact of these problems is particularly signi�cant in networks with large bandwidth-delay products, including high-bandwidth, long-haul networks and satellite networks.Simulation E�ective Avg DataTime (s) Throughput (%) Transferred1 6.62 145.8 KB5 19.81 2.2 MB10 30.52 6.7 MB20 56.36 24.8 MB30 68.65 45.3 MBFigure 3: Time vs ThroughputIn this section, we'll use the high speed WAN topology in Figure 1 for studying thestartup TCP dynamics over high bandwidth-delay paths. All senders transfer 100MBof data to the corresponding destinations and the simulation time was limited so asto terminate the transfers before they �nish (as suggested in [7]). We de�ne e�ectivethroughput as the ratio of the total amount of useful data that was transferred, to themaximum amount of useful data that could have been transferred over the bottlenecklink for the time of the simulation. Figure 3 shows the e�ective throughput obtained bylimiting the simulation time to several di�erent values. It also indicates the resultingaverage amount of data transferred by each sender in that time.The results indicate that the e�ective throughput of the TCP transfers increaseswith the increase in simulation time. The results can also be interpreted by thinking

5of the transfer sizes to be variable while the simulation time is unlimited. Interpretedthis way, the e�ective throughput increases with the transfer size. For TCP transfersthat take less than 1s of time to �nish (i.e. the size is less than 145KB), the e�ectivethroughput is less than 7% while transfers that takes less than 10s to �nish (less than6.7MB in size), have an e�ective throughput of less than 30%. Only very large TCPtransfers (of sizes greater than 45MB) attained an e�ective throughput of 70% and shallbe able to e�ectively utilize the high-bandwidth network.Today, the vast majority of TCP tra�c over the Internet consists of HTTP transfersthat have a mean size of less than 100KB [2]. Most of the TCP transfers on the Internetthat use the ftp protocol are also less than 10MB. Thus, our results indicate a potentiallysevere underutilization of link capacity in networks with high bandwidth-delay productsduring common TCP transfers.
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

Time in seconds

0
60

120
180
240
300
360
420
480
540
600

K
B

5090 10180 15270 20360 25450 30540 35630 40720 45810Figure 4: TCP Lite over Topology1Figure 4 shows the trace of a typical TCP Lite transfer when the simulation timewas limited to 30s (enough to transfer about 580MB of data across the bottleneck link).A description of the information presented in the trace is given in Appendix A.At t=0s, TCP enters the slow-start phase, where is doubles the size of the congestionwindow every round-trip time (RTT), starting at a size of one segment. This phasecontinues until t=1.2s, when multiple segment losses occur because the size of thecongestions window has exceeded the capacity of the network. The losses result in aperiod of inactivity that extends to t=2.8s, when a retransmission timeout occurs. TCPreenters slow-start until t=3.4s, when the congestion window size reaches the slow-startthreshold (ssthresh). At this point, TCP enters the congestion avoidance state, wherethe congestions window is increased by only 1 segment every RTT. This state continuesuntil t=26.5s, when the congestion window has again grown too large, resulting in theloss of a single segment. This loss is detected by TCP's fast retransmit mechanism [23],the lost segment is retransmitted, the congestion window is halved, and TCP continuesin the congestion avoidance state.In the rest of this section, we describe the main factors that limit TCP performancebased on these observed simulation results.

63.1 Retransmission TimeoutWe �rst focus on performance losses related to TCP's retransmission timeout mecha-nism. TCP's fast retransmit mechanism attempts to recover from packet losses withoutrequiring a retransmission timeout. Fast retransmit is a heuristic that retransmits asegment upon receiving three duplicate ACKs for the segment that precedes the re-transmitted packet. However, when faced with multiple segment losses, TCP has togenerally rely on a retransmission timeout for recovery. For instance, the trace in Fig-ure 4 indicates a retransmission timeout (shown by a large black circle at the top of thegraph) at t=2.8s that resulted from multiple segment losses. The single segment loss att=26.5s, on the other hand, is handled by the fast retransmit mechanism.Notice that prior to the retransmission timeout, the connection remained idle fromt=1.2s to t=2.8s (indicated by the absence of Hash marks at the top of the graph asdescribed in Appendix A). Hence, there is a delay of almost 1.6s between the timeoutand the previous packet sent. Given that the round-trip delay is only 60ms, this timeoutperiod is excessivley long. There are two reasons for this long timeout period. TheBSD implementation of TCP uses a coarse-grained clock (500ms granularity), both formeasuring the RTT and for scheduling timeouts. Since all scheduled timeout events aresynchronized to the 500ms clock, the minimum possible timeout value is 2 ticks, resultingin an actual timeout period in the range 0.5{1s. Moreover, because of inaccuraciesresulting from the measurement of the actual RTT using the 500ms clock, the actualminimal timeout value is normally 3{4 ticks, resulting in a timeout period in the range1{2s. This issues will be further analysed in Section 4.1.3.2 Slow Start
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Time in seconds

0
60

120
180
240
300
360
420
480
540
600

K
B

640 1280Figure 5: Slow-Start in TCP Lite over Topology1Next, we consider the impact of TCP's slow-start on performance. Figure 5 shows anexploded view of the �rst 4 seconds in the trace of Figure 4. The trace shows that theconnection gets established after about 60ms3. After this, TCP enters the slow-startstate with an initial congestion window of 1 segment. TCP is said to be in slow-start3This is where the sender gets to know the receiver's advertised window and is indicated by the setting of the darkgray line in the trace to 512KB as mentioned in Section 2.

7whenever the congestion window is less than the slow-start threshold (ssthresh). Inslow-start, the congestion window is increased exponentially every RTT4 until eitherthe congestion window becomes larger than ssthresh or lost segments are detected.Despite an exponential increase in the size of the congestion window, slow-startcan take many round-trip times before �lling up the network pipe in a network withlarge bandwidth-delay product. This results in ine�cient link utilization for short TCPtransfers, especially those that �nish while still in slow-start. The primary cause of thelow e�ective throughput reported in Figure 3 for small simulation times is the slow-start phase. We will address the issue of performance limitations due to slow-start inSection 4.2.3.3 Congestion AvoidanceFinally, we consider performance loss due to TCP's congestion avoidance state. Whenthe congestion window becomes greater than ssthresh, TCP enters the congestion avoid-ance state, where the congestion window is increased by 1 segment every RTT5. Figure 4shows that TCP enters the congestion avoidance state at 3.4s. The congestion windowis increased linearly until a packet loss is detected (at 26.5s). Thus, it took about 23s to�ll the network pipe (including the bu�ers at the bottleneck router). More importantly,after the timeout, it took more than 16s to increase the congestion window to a valueof 145KB (this is the pipe size available to a sender if we assume that the bandwidthis distrubuted fairly amongst all 8 senders). During this time, TCP was underutiliz-ing the available capacity in the network. Once the pipe is full, further increase inthe congestion window �lls up the router bu�ers until congestion occurs due to bu�erover
ows.Other researchers [1] have also observed that the linear rate of growth of the con-gestion window can cause decreased performance in satellite networks that typicallyinvolve high bandwidth-delay paths. We do not address this problem in this paper, butin Appendix B we suggest some possible approaches that can be used.In the next section, we present our enhancements to TCP's timeout estimation andslow-start techniques that address the limitations described in this section.4 TCP Timers: New Framework to Utilize OS Capabili-tiesIn this section, we propose a new framework that allows TCP to make the best possibleuse of the timer facilities available in the host operating system and architecture. Theframework allows TCP to perform more accurate RTT measurements and to schedule4Delayed ACKs in TCP cause the window increase to be less than exponential [5].5Delayed ACKs cause the window increase to be less than 1 segment every RTT

8�ner-grained timeouts that are much closer to the RTT of the network by exploitingimproved timing facilities available in modern computer systems.The BSD implementation of TCP, which still forms the basis for many commercial OSimplementations, expects the operating system to provide it with two periodic \softwareinterrupts". One of these interrupts invokes a designated TCP function every 200ms, theother invokes a separate TCP function every 500ms. These two interrupts consitituteall of the timing services that TCP expects of the host operating system; all TCP timermechanisms (round-trip time estimation and various TCP timeouts) are implementedby the TCP protocol module using these periodic interrupts. While this minimalistictiming service interface to the operating systems ensures portability across a wide rangehost hardware and software platforms, it also constrains the accuracy of TCP timemanagement.Two technological changes have occured since the original BSD TCP implementationwas developed that drive our proposed new framework for time management in TCP.First, network speed has increased by several orders of magnitude, thus increasing theimpact of inaccuracies in timer management on TCP performance. Second, vastlyimproved timing and event handling facilities are available in modern host operatingsystems and platforms. Our new framework aims at enabling TCP to take advantage ofthe best timing facilities available in a given host OS and platform, while still retainingthe ability to make due with the traditional BSD style coarse-grained timing facilitiesto ensure backward compatibility and portability across a wide range of host platforms.Our proposed framework has two salient features:1. TCP expects OS to provide two di�erent timing-related services|one for measure-ment and one for event scheduling.2. TCP is actively aware of the clock granularity of each of the services and adaptsits behavior based on the available clock granularities.The OS service for time measurement consists of an operation currentTime(), whichreturns a 64-bit value, representing the current real time in nanoseconds. Since thevalues are used only to measure intervals, the time need not be synchronized withany standard time base. In addition, the TCP module can queury the resolution ofthe underlying timer. Note that although currentTime() returns the current time innanoseconds, the actual resolution of the obtained values may be much coarser, forinstance 500ms.A second OS service provides the TCP module with a facility to schedule events.This can either be in the form of a periodic software interrupt (as for BSD implementa-tions), or as an explicit request by the TCP module for a sofware interrupt whichever ise�ciently supported by the OS. A designated function in the TCP module is invoked asa result of the software interrupt. This function is used by the TCP module to imple-ment its various event timer facilities using appropriate data structure, such as timing

9wheel [24] and calendar queues [8]. Again, the TCP module can query the granularityof this event service, and this granuarity determines the granularity of TCP's timers.Typically, the OS service for measuring time can provide a �ner granularity thanthe service for event scheduling. This is because most modern architectures provide a�ne-grained timer/counter with micro to nano-second granularity in hardware, whosecurrent value can be read with little overhead [6]. Providing an event timer, on theother hand, involves a thread dispatch that is currently only e�ciently supported at amillisecond granularity as a �ner granularity could cause signi�cant interrupt overhead.The separation of the services for time measurement and event scheduling allows TCPimplementations to take advantage of this fact.Current BSD implementations use the same coarse-grained (500 ms) clock for bothtime measurement as well as for scheduling events. Thus, time measurements are madeat the same coarse granularity as event scheduling. In the following subsections, weshow how the proposed timer framework can be utilized to reduce the ine�cienciesassociated with retransmission timeouts and slow-start in TCP.4.1 Retransmission Timeout: decoupling estimation and schedulingWe have shown in Section 3.1 that the long delay associated with the �ring of theretransmission timeout can cause decreased performance. In this section, we show howto achieve shorter retransmission timeouts and the associated throughput loss takingadvantage of the timer framework proposed in the previous section.The RTO value calculation in the BSD implementations of TCP are described in[16]. The appropriate retransmission timer value rto is calculated based on an RTTestimator a and a mean deviation estimator d, according to the formula:rto a + 4dThe estimators are updated using a new RTT measurement m using the followingformulas: Err � m� aa a+ g0Errd d+ g1(jErrj� d)The chosen values for gain parameters are g0 = 18 and g1 = 14 , which allows integerarithmetic using scaled versions of the above equations and using scaled estimators thatare de�ned as sa = 23a and sd = 22d. The calculations can be implemented usinginteger arithmetic as follows: Err � m� (sa >> 3)sa sa+ Err

10sd sd+ (jErrj� (sd >> 2))rto (sa >> 3) + sd (1)The BSD implementations of TCP use a coarse-grained clock (500ms granularity) formeasuring RTT and scheduling timeouts. Two problems arise when the above calcula-tions are performed on tick counts from a coarse-grained clock:1. Due to the coarse-grained clock used, there can be a large variance in the measure-ment of RTT, resulting in a large value for sd. For small RTTs, the contribution of(sa >> 3) would be much smaller than the contribution due to sd, thus resultingin large estimates of RTO as compared to the average RTT (given by (sa >> 3)).2. Brakmo and Peterson [5] have shown that due to limited precision of the C im-plementation, the mean deviation estimator does not decay even when repeatedRTT measurements with the same value are made. This problem is signi�cantonly when sd is large compared to (sa >> 3) i.e. when the clock is coarse-grained.The work in [5] shows that for round-trip times of about 100ms, the estimated RTOcan be as large as 5 ticks and almost never goes below 3 ticks. RTO values of 5 ticks and3 ticks can cause an actual timeout delay of 2{2.5s and 1{1.5s, respectively6 . Brakmoand Peterson [5] also propose a �x for the second problem described above by usinglarger scaling factors. The authors show that as a result, the estimated RTO frequentlyis 3 ticks while sometimes it does get as low as 2 ticks (the minimum possible value forRTO in BSD implementations of TCP).Overly conservative estimates for RTO can keep the connection idle for unnecessar-ily long periods of time. This results in ine�cient link utilization, which is particularlycostly for high bandwidth networks. If the RTT is su�ciently smaller than the granu-larity of the coarse-grained clock, the estimated value of RTO should be the minimumpossible (2 ticks). This would keep the timeout delay between 0.5{1s. We propose thefollowing method for calculating RTO values, taking advantage of the timer frameworkproposed in the previous section.Let the clock frequency for measuring time be frtt and the clock frequency forscheduling events be fev . After measuring time in ticks corresponding to the frtt clock,Equation 1 is used to compute rto. This value is in ticks, corresponding to the frtt clock,and is expected to be closer to the real RTT because of the �ner granularity of the clockused. The actual timeout rtoev value is computed using the following equation:rtoev MAX(2; drto � fev=frtte + 1) (2)The term drto � fev=frtte gives the number of ticks of the fev clock that are equivalentto rto ticks of the frtt clock. The increment by one accounts for the fact that packettransmissions may not coincide with any clock tick in BSD implementations.6The 500ms clock in BSD implementations of TCP ticks regularly every 500ms rather than re-starting at theinstant when packets are sent. Thus, an RTO of 5 ticks can result in a delay of anywhere from 2 to 2.5s.

11RTTc RTOO RTOB RTTf RTONf RTONc(500ms) (500ms) (500ms) (1ms) (1ms) (500ms)0 3 3 60 183 20 3 3 150 253 21 5 3 60 218 20 4 3 60 190 20 3 3 61 167 20 3 3 60 150 20 3 3 61 135 20 3 3 60 123 20 3 3 60 114 20 3 2 61 105 20 3 2 60 99 21 5 3 61 93 2Figure 6: Sample RTO computationIn short, the new framework decouples the clock granularity used for measuringRTT from that used for scheduling events. This e�ectively results in a �ne-grainedmeasurement of RTT and avoids an overly conservative estimation of RTO withouta�ecting the clock granularity for actually scheduling timeouts.The 4.4BSD implementations of TCP also use the timestamp option [4] in the packetheader to measure the round-trip time of a segment in addition to maintaining internalvariables for timing a segment7. This timestamp is re
ected back in acknowledgementssent by the receiver. It is to be noted that clock granularities �ner than 1ms should notbe used in the timestamp option in TCP [4] (the BSD implementations use a 500msclock granularity). This value is the minimum suggested in RFC1323 [4] and is necessaryfor the detection of timestamps that are older than 24 days by the PAWS (protectionagainst wrapped sequence numbers) mechanism in TCP8. However, this does not implythat a �ner granularity clock available in the OS cannot be used to its full advantage.The value provided by currentTime() can be scaled to 1ms granularity to be put inthe timestamp option and upon reception of the acknowledgement, the �ner internalestimation of RTT can be compared with that obtained using the timestamp. If they arewithin a millisecond, the internal estimation can be used; if not, the RTT measurementusing the timestamp should be used in the timeout estimation equations (after scalingit to nanosecond granularity).Figure 6 shows the RTO computation with RTT measurements taken from a typical7This avoids underestimations of RTT when an ACK is misinterpreted as acknowledging a retransmitted segment[4] 8As long as the timestamp doesn't have a �ner granularity than 1ms, the PAWS test remains una�ected.

12TCP sender in the simulation run presented in Section 3. RTTc gives the RTT mea-surement made by a 500ms clock. RTTf gives the RTT measurement made by a 1msclock. RTOO gives the RTO estimate as computed by TCP Lite. RTOB gives the RTOestimate after applying the �xes suggested by Brakmo and Peterson [5] to the timeoutestimation algorithms in TCP Lite. RTONf gives the RTO estimate as computed usingRTT measurements by the 1ms clock9. RTONc gives the RTO estimate as computed byequation 2 by using frtt = 1000Hz and fev = 2Hz. The results show that the proposedframework computes the minimum estimate for RTO (given by RTONc) while the otherestimation algorithms often compute values that are overly conservative.It is to be noted that even if a �ne-grained clock is provided by the OS to scheduleevents, a lower bound of at least 200ms should be observed for the estimation of thetimeout. This is because BSD TCP receivers can delay ACKs by 200ms that can causeunnecessary retransmissions if the timeout is estimated lower than this value. In allsimulations reported in this paper with a �ner event scheduling clock, we set this lowerbound to (200ms + rtt) where rtt gives the average round-trip time and is obtainedfrom sa mentioned earlier.4.2 Slow-Start: Pacing PacketsThe results in Section 3.2 indicate that on networks with a high bandwidth-delay prod-uct, TCP's slow-start mechanism can take many round-trip times until it �lls the net-work pipe. As a result, short transfers cannot take advantage of the network's capacity.We present a modi�cation to TCP slow-start based on packet pacing that enables TCPto �ll the network pipe more quickly, thus e�ciently utilizing the available bandwidth,even for short transfers. Packet pacing takes advantage of the new timer frameworkproposed in Section 4.In order to improve the e�ciency of slow-start, once could consider the followingnaive approach:1. Measure the bandwidth-delay product and set the slow-start threshold (ssthresh) tothis value. Techniques to measure the bandwidth-delay product have been shownin [14, 6, 18, 22] and Hoe [13] has already proposed setting the initial ssthreshvalue to the estimated bandwidth-delay product.2. Set the congestion window to the value of ssthresh. This would immediately sendout a bandwidth-delay product's worth of data, thus �lling up the network pipeimmediately.There are several problems with the above approach. The techniques used to mea-sure the bandwidth-delay product can overestimate its value. These techniques usu-ally implement a variant of the packet-pair algorithm [18] to estimate the bandwidth9BSD implementations set the initial values of sa and sd so as to give a value of rto that is three times as largeas the measured RTT. Thus RTONf has a large initial value.

13and multiply it by the measured RTT to compute the bandwidth-delay product. Thepacket-pair algorithm estimates bandwidth by measuring the di�erence in the times ofreception of the ACKs of two closely sent data segments. Certain network phenomenalike ack clustering [27] and the absence of fair queuing in the network routers can givean in
ated estimate of the bandwidth, if computed using the packet-pair algorithm.Furthermore, the measured RTT usually includes queuing delays that can also result inan elevated estimate of the bandwidth-delay product.Even if the bandwidth-delay product is measured accurately, sending an equivalentnumber of segments back-to-back (i.e., at the capacity of the network link adjacentto the sending host) can cause extreme congestion at the bottleneck router. TCP'sslow-start, on the other hand, never sends more than 2{3 segments back to back (if thereceiver uses delayed ACKs, then the sender sends 3 segments back to back).To avoid congestion, a practical scheme for speeding up TCP's slow-start for highbandwidth-delay networks must (1) conservatively estimate the bandwidth-delay prod-uct of the network to determine the appropriate congestion window, and (2) pace thetransmission of the corresponding segments at a rate that does not exceed the capacityof the bottleneck. We propose such a scheme in the following subsections.4.2.1 Estimating ssthreshWe present a method that conservatively estimates the initial value of ssthresh, theslow-start threshold. This value will be used to determine a pacing threshold (pthresh)that will be used as the target congestion window size during the segment pacing. Thessthresh estimation involves the following steps:� The bandwidth, bw, is estimated based on the interarrival times of closely spacedacknowledgements such that the total acknowledged data used to estimate thebandwidth is at least 2 segments. The bandwidth-delay product is computedby taking the product of the bandwidth with the estimated RTT. An ssthreshestimation is then made by setting it to this value.� Instead of estimating the ssthresh only once, we estimate its value repeatedly atmost once every RTT. The new ssthresh value at each estimation is set to theminimum of all estimations done so far. As soon as an estimation lies within10% of the minimum of the estimations done so far, the resulting ssthresh value isconsidered to be �nal and no more estimations are performed.Repeated estimations greatly decrease the probability of overestimating the band-width. The value of pthresh is then set to half the value of the estimated ssthresh.Setting pthresh to half the measured bandwidth-delay product compensates both foran elevated RTT estimate (due to any queuing delays) and any overestimations of thebandwidth. It can be shown that if bandwidth is estimated correctly, then transmittingpthresh's worth of data in the network would not even increase the queue occupancy at

14the routers unless the queuing delay is larger than round-trip propagation delay of thenetwork links.It is to be noted that both bandwidth estimation as well as RTT estimation use thetime measurement abstraction in our proposed timer framework.To reduce the time for computing an estimate for the bandwidth-delay product, weuse an initial startup congestion window given by:MIN(4 �MSS;MAX(2 �MSS; 4380bytes))where MSS gives the maximum size of a TCP segment. Setting the initial congestionwindow to the above value has been proposed by Floyd et al [11] and is currently in theprocess of standardization by IETF. The above amounts to using an initial congestionwindow of 3 segments for an IP packet size of 1500 bytes and 4 segments for an IPpacket size of 512 bytes.4.2.2 PacingOnce the value of pthresh has been estimated, we use the event scheduling clock toschedule the transmission of as many segments as possible, subject to the constraintthat the total transmitted data in one RTT remains less than the estimated pthreshvalue. The segments are paced in time dictated either by the estimated bandwidth, orby the minimum granularity provided by the OS's scheduling clock, i.e., a single tickof the event scheduling clock. Moreover, the amount of time over which pacing is donedoes not exceed one RTT. Thus, if p is the value of the estimated pthresh in segments,bw is the estimated value of the available bandwidth in segments/s d is the numberof segments that have already been sent in the current RTT by the normal slow-startmechanism, then N TCP segments would be sent with an inter-transmission time Twhere N and T are given by:N MIN(p� d;RTT � fev)T MAX(1=fev; 1=bw)Note that TCP takes both the granularity of the event scheduling clock and the pthreshvalue into account when determining the number of segments to send. It is also tobe noted that this technique cannot su�er from bandwidth overestimation if (1=fev >1=abw) where abw gives the actual available bandwidth. This implies that for the clockswith fev = 100Hz (or 10ms granularity) available in systems today, overestimatingavailable bandwidths of more than 150KB/s (for a 1500 byte IP packet size) cannotcause network bursts. Moreover, unless the RTT estimate is hugely in
ated due toqueuing delays, our pacing technique will not transmit more than the capacity of thepipe.Transmitting paced TCP segments in this fashion strikes a balance between �llingup the network pipe quickly and avoiding congestion due to tra�c bursts.

155 Performance EvaluationIn this section, we evaluate the performance improvement a�orded by the proposed im-provements to TCP in the previous sections. We �rst present simulations that demon-strate the e�ectiveness of our proposed techniques in reducing the delay associated withretransmission timeout in both high as well as low bandwidth-delay networks. Then weshow the performance improvements yielded by estimating ssthresh and pacing packetsduring the initial slow-start phase in TCP. In all simulations using our proposed timerframework, the granularity of the clock used for time measurement is 1ms (i.e. frtt is1000Hz).5.1 Timeout Delay Reduction
100

200

300

400

500

600

700

0 1 2 3 4 5

D
at

a
T

ra
ns

fe
rr

ed
 (

K
B

)

Simulation Time (in seconds)

prop-timer
orig-timerFigure 7: Low Bandwidth-Delay 5

10

15

20

25

30

0 1 2 3 4 5

D
at

a
T

ra
ns

fe
rr

ed
 (

M
B

)

Simulation Time (in seconds)

prop-timer
orig-timerFigure 8: High Bandwidth-DelayTo estimate the advantages a�orded by the proposed timer mechanism, we performedtwo experiments { one on the low bandwidth-delay network (obtained by setting thepropagation delay to 100ms in Figure 2) and the second on the high bandwidth-delaynetwork in Figure 15.1.1 E�ect on Low Bandwidth-Delay NetworkSender S1 in Figure 2 was set up to send an in�nite amount of data to D1 using TCPLite. Once the transfer reached steady state behaviour (after 15s of simulation time),sender S2 was made to transfer data to D2. Due to the bursty slow-start mode inTCP Lite, Figure 7 shows the amount of data transferred across the bottleneck link inthe next 5s after starting the transfer from S2 to D2. The curve entitled \prop-timer"shows the performance when all senders were using our proposed timer mechanism,while \orig-timer" corresponds to the use of the original timeout estimation algorithmin TCP Lite. Both senders use a 500ms clock for scheduling timeouts.

16Our results indicate that the startup burstiness of sender S2 caused both S1 andS2 to undergo a timeout. The average timeout delay for \orig-timer" was nearly 2s.On the other hand, the timeout delay associated with \prop-timer" was always lessthan 1s for both senders. This indicates that our proposed scheme always estimatesthe timeout as 2 clock ticks (a value more than 2 would result in a delay that is morethan 1s), which is the minimum in the BSD implementations of TCP. On the otherhand, the original scheme estimated the timeout to be more than 2 ticks that lead toan unnecessarily large delay given an RTT of 100ms. A reduction of 1s in delay isequivalent to 10 round-trips in the topology being simulated. Our results show thatthe senders using our proposed timer scheme were able to transfer about 170KB moredata during this period as compared to the original scheme that lead to an increase ine�ective throughput from 44% to 66%.We have also performed similar simulations with the technique suggested by Brakmoand Peterson in [5]. The faster decay resulted in an average delay of 1.5s (correspondingto 3 ticks) that provided an e�ective throughput of 55%.5.1.2 E�ect on High Bandwidth-Delay NetworkThe simulation involving the topology in Figure 1 was set up to have senders S1 throughS7 transmit data to the corresponding destinations D1 through D7. After 50s of simu-lated time, sender S8 was started so as to send data to D8. This enabled the sendersS1 through S7 to reach steady state behaviour. Our results indicate that due to theburstiness of the initial slow-start in TCP Lite, 6 out of the 7 senders experienced atimeout. Figure 8 shows the total amount of data transferred across the bottlenecklink in the next 5s. The meaning of entitled curves \prop-timer" and \orig-timer" issimilar to those for Figure 7. All senders use a clock granularity of 500ms for schedulingtimeouts.Our results show that the average timeout delay for \orig-timer" was about 1.5s. Onthe other hand, the timeout delay associated with \prop-timer" was again always lessthan 1s for all senders and averaged at about 700ms. This leads to an average reductionof more than 500ms in the delay that is equivalent to 8 round-trips (for 60ms RTT).Our results show that the senders using our proposed timer scheme were able to transferabout 1.5MB more data during this period as compared to the original scheme. Similarsimulations with the technique in [5] resulted in an average delay of about 950ms.Our results also indicate that less than 20MB of data were transmitted in the 5sfollowing the startup of sender S8. This indicates a bandwidth utilization of only about20% and is a direct result of the pipe drainage due to the timeout delay. The ensuingslow-start after a timeout is not fast enough to �ll up the pipe in high bandwidth delaynetworks.We conclude that while the occurance of a retransmission timeout leads to a greater

17degradation in e�ective throughput in high bandwidth-delay networks, a reduction inthe delay associated with it provides higher percentage gains for for the same in lowbandwidth-delay networks. However, reducing the delay is equally important in bothfor reducing the response time perceived by the user for short TCP transfers.5.2 SSthresh Estimation and PacingWe present simulations that show the e�ectiveness of predicting the initial ssthresh andpacing packets over high bandwidth-delay networks. We present results for both the lowbottleneck speed network in Figure 2 as well as for the high speed network in Figure 1.The propagation delay for the topology in Figure 2 was set to 290ms. As mentioned inSection 2, this topology is similar to the one used in [1] for emulating satellite networks.
0

20

40

60

80

100

0 10 20 30 40 50

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
%

)

Simulation Time (in seconds)

prop-Lite-10ms
prop-Lite-500ms
orig-Lite-500msFigure 9: Satellite Network 0

20

40

60

80

100

0 1 2 3 4 5

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
%

)

Simulation Time (in seconds)

prop-Lite-2ms
prop-Lite-10ms

prop-Lite-500ms
orig-Lite-500msFigure 10: High Speed WAN5.2.1 Satellite NetworkFigure 9 shows the results when a standalone TCP transfer is made between hosts S1and D1 in �gure 2. The y-axis shows the e�ective throughput, while the x-axis depictsthe simulation time for which the simulation was allowed to run. The curve denoted by\orig-Lite-500ms" corresponds to the simulation with the original timer and slow-startschemes in TCP Lite with the scheduling clock's granularity set to 500ms (i.e. fev is2Hz). Similarly the curve \prop-Lite-10ms" denotes the simulation with TCP Lite thatwas enhanced with ssthresh estimation as well as the proposed timer framework; thegranularity of the scheduling clock is 10ms (i.e. fev is 100Hz). For a fair comparison, allsimulations used an initial congestion window as de�ned in Section 4.2.1 (4 segmentsfor an IP packet size of 512 bytes).Our results indicate that the original TCP Lite is able to achieve a maximum ofonly 18% of the e�ective throughput in the time shown. This is mainly due to multiplewindow decreases followed by an expensive timeout because of the losses resulting fromunbounded initial window growth. After the timeout, Lite starts with a small congestion

18window (due to multiple decreases before the timeout) and thus takes a long time in�lling the pipe.A comparison of the curves \prop-Lite-500ms" and \orig-Lite-500ms" shows almosta 5-fold increase in performance for simulations that lasted longer than 20s. This wasprimarily due to the ssthresh estimation incorporated for \prop-Lite-500ms" (pacingis not e�ective due to the large value of clock granularity). With a 10ms schedulingclock, the sender for \prop-Lite-10ms" was able to achieve a 5-fold improvement over\prop-Lite-500ms" for simulations that last less than 5s.5.2.2 High Speed WANFigure 10 shows the performance for eight competing TCP transfers on the topologyshown in Figure 1. The curves shown are labelled similarly as in Figure 9. Again,for a fair comparison, all simulations used an initial congestion window as de�ned inSection 4.2.1 (3 segments for an IP packet size of 1500 bytes).Our results indicate that incorporating the ssthresh estimation in TCP Lite yieldsnearly a 10-fold increase in performance over orig-Lite for simulations times that areless than 5s. The larger initial window usage and ssthresh estimation resulted in theslow-start terminating after 0.7s. Our results indicate that in this period, pacing witha 10ms clock achieved a 20% increase in performance. Pacing with a 2ms clock resultedin an 85% increase in e�ective throughput over \prop-Lite-500ms".We also observe that pacing with a 10ms clock o�ers lesser improvement in thistopology than for the one used for satellite network because of the relatively shortround-trip time (60ms compared to 580ms in satellite topology).6 Related WorkFloyd[10] discusses the problem of invoking fast retransmit mechanism multiple times forthe same window of data. Hoe [14] proposes two methods to improve TCP's congestioncontrol algorithms. First, it attempts to set the slow-start threshold (ssthresh) to anappropriate value by measuring the bandwidth-delay product using a variant of thepacket-pair technique [18]. Paxson[22] suggests a more robust bottleneck estimationtechnique called PBM that forms estimates using a range of packet bunch sizes. Thesecond method in [13] recovers multiple packet losses in the same window withoutdecreasing the window multiple times. Our method of estimating ssthresh is similar tothe one described in [14] except that it repeatedly estimates ssthresh until a value thatdi�ers from the minimum by less than 10% is obtained.Fall and Floyd [9] investigate the e�ect of multiple packet losses on the congestioncontrol algorithms of TCP Reno. They point out that the absence of selective acknowl-edgments imposes limits on TCP's performance. Their work also shows that TCP with

19selective acknowledgments (SACK-TCP) can e�ectively recover from multiple packetlosses.Paxson[22] shows that in the absence of the SACK TCP option [20], a signi�cantnumber of lost packets in the Internet are recovered using the coarse-grained retrans-mission timeout. The same was con�rmed by Balakrishnan et al [3]. Our proposedtimer framework reduces the unnecessary long delays associated with a retransmissiontimeout when a coarse-grained clock is used for scheduling events. Brakmo et al[6] havealso used the �ne-grained system clock to detect lost packets early (while processinga received duplicate ACK) in TCP Vegas. Their method does not however a�ect thecoarse-grained retransmission timeout in TCP.Allman et al[1] have shown the limiting e�ect of slow-start and congestion avoidanceschemes in TCP in utilizing the bandwidth over satellite networks. Our proposed schemefor pacing packets in slow-start addresses their former observation.Visweswaraiah et al[25] suggest using rate-based pacing to improve the restart ofidle connections. While their technique is applicable only to the restarting of data
owin TCP after an idle period, our suggested pacing technique improves performance inthe intial startup period and is primarily aimed at improving the performance of shortTCP transfers. To the best of our knowledge, using timer mechanisms to pace packetsin TCP has not been comprehensively studied.7 ConclusionsIn this section we present our conclusions. We summarize the main results presented inthis paper as follows:� The startup dynamics in BSD based implementations of TCP can su�er from severeperformance degradation, both in latency as well as throughput. The problem isspecially severe on high bandwidth-delay networks owing to the large number ofround-trips needed to �ll up the pipe.� The main cause of performance degradation for short transfers (that �nish beforeslow-start completes) is the large number of round-trips taken by slow-start to �llthe pipe.� The primary cause of performance degradation for transfers that �nish after slow-start is the draining of the pipe due to a retransmission timeout following the hugelosses caused by an unchecked increase of congestion window in slow-start. Thecongestion avoidance phase that follows is very slow in occupying the availablebandwidth in high bandwidth-delay networks. The overly conservative delay asso-ciated with a timeout in BSD implementations of TCP a�ects the user-perceivedlatency.

20� We have proposed a timer framework that decouples the OS facilities for time mea-surement and event scheduling. Decoupling these services in this fashion enablesTCP to adaptively use them to its best possible advantage.� We have shown how TCP can use the suggested timer framework to reduce theoverly conservative delays associated with a retransmission timeout. This reducesthe user-perceived latency in both high as well as low bandwidth-delay networks.However, the percentage gain in e�ective throughput is larger for low bandwidth-delay networks because of the smaller time needed to �ll the pipe.� We have proposed to improve the performance of the initial slow-start by pacingthe packets using the event scheduling facility provided by the OS. This has thepotential of yielding improved performance for short TCP transfers that mainlycharacterize the web tra�c today.� Finally we have shown the importance of estimating the initial ssthresh value forhigh bandwidth-delay paths.References[1] M. Allman, C. Hayes, H. Kruse, and S. Ostermann. TCP Performance over Satel-lite Links. In Proceedings of 5th International Conference on TelecommunicationSystems, Mar. 1997.[2] M. F. Arlitt and C. L. Williamson. Web Server Workload Characterization: TheSearch for Invariants. In Proceedings of the ACM SIGMETRICS '96 Conference,Philadelphia, PA, Apr. 1996.[3] H. Balakrishnan, S. Seshan, M. Stemm, and R. H. Katz. Analyzing Stability inWide-Area Network Performance. In Proceedings of the ACM SIGMETRICS '97Conference, 1997.[4] D. Borman, R. Braden, and V. Jacobson. RFC 1323: TCP extensions for highperformance, May 1992.[5] L. Brakmo and L. Peterson. Performance Problems in 4.4BSD TCP. ACM Com-puter Communication Review, 25(5):69{86, Oct. 1995.[6] L. Brakmo and L. Peterson. TCP Vegas: End to End Congestion Avoidance on aGlobal Internet. IEEE Journal on Selected Areas in Communications, 13(8):1465{1480, Oct. 1995.[7] L. S. Brakmo and L. L. Peterson. Experiences with Network Simulation. In Pro-ceedings of the ACM SIGMETRICS '96 Conference, 1996.[8] R. Brown. Calendar queues: A fast O(1) priority queue implementation for thesimulation event set problem. Communications of the ACM, 31(10):1220{1227,Oct. 1988.

21[9] K. Fall and S. Floyd. Simulation-based Comparisons of Tahoe, Reno, and SACKTCP. Computer Communication Review, 26(3), July 1996.[10] S. Floyd. TCP and Successive Fast Retransmits. Technical report, Lawrence Berke-ley Laboratory, May 1995. ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.[11] S. Floyd, M. Allman, and C. Partridge. Increasing TCP's Initial Window. IETF In-ternet Draft, July 1997. Available by anonymous ftp from ds.internic.net/internet-drafts/draft-
oyd-incr-init-win-00.txt.[12] J. Heidemann, K. Obraczka, and J. Touch. Modeling the performance of HTTP overseveral transport protocols. To appear, IEEE/ACM Transactions on Networking5(5), Oct. 1997.[13] J. C. Hoe. Start-up Dynamics of TCP's Congestion Control and AvoidanceSchemes. Master's thesis, MIT, 1995.[14] J. C. Hoe. Improving the Start-up Behaviour of a Congestion Control Scheme forTCP. In Proceedings of the ACM SIGCOMM '96 Symposium, 1996.[15] N. C. Hutchinson and L. L. Peterson. The x-kernel: An Architecture for Implement-ing Network Protocols. IEEE Transactions on Software Engineering, 17(1):64{76,January 1991.[16] V. Jacobson. Congestion Avoidance and Control. In Proceedings of the ACMSIGCOMM '88 Symposium, pages 314{32, Aug. 1988.[17] V. Jacobson. Berkeley TCP evolution from 4.3-tahoe to 4.3-reno. In Proceedingsof the Eighteenth Internet Engineering Task Force, Aug. 1990.[18] S. Keshav. A Control-Theoretic Approach to Flow Control. In Proceedings of theACM SIGCOMM '91 Symposium, pages 3{15, Sept. 1991.[19] D. Lin and H. T. Kung. TCP Fast Recovery Strategies: Analysis and Improve-ments. In Proceedings of IEEE INFOCOM '98, Mar. 1998.[20] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC 2018: TCP selectiveacknowledgment options, Oct. 1996.[21] J. C. Mogul. The Case for Persistent-Connection HTTP. In Proceedings of theACM SIGCOMM '95 Symposium, 1995.[22] V. Paxson. End-to-End Internet Packet Dynamics. In Proceedings of the ACMSIGCOMM '97 Symposium, 1997.[23] W. Stevens. TCP/IP Illustrated Volume 1 : The Protocols. Addison-Wesley, Read-ing, MA, 1994.[24] G. Varghese and A. Lauck. Hashed and hierarchical timing wheels: Data structuresfor the e�cient implementation of a timer facility. In Proceedings of the EleventhACM Symposium on Operating Systems Principles, pages 171{180, Nov. 1987.

22
Figure 11: General Elements Figure 12: TCP Windows[25] V. Visweswaraiah and J. Heidemann. Improving restart of idle TCP connections.Technical Report 97-661, University of Southern California, November 1997.[26] G. Wright and W. Stevens. TCP/IP Illustrated Volume 2 : The Implementation.Addison-Wesley, Reading, MA, 1995.[27] L. Zhang, S. Shenker, and D. D. Clark. Observations on the Dynamics of a Con-gestion Control Algorithm: The E�ects of Two-Way Tra�c. In Proceedings of theACM SIGCOMM '91 Symposium, pages 133{148, 1991.A Graph DescriptionFigures 11 and 12 explain the trace graphs used in this paper10. Figure 11 shows somegeneral information shown in the graphs:(1) Hash marks on the x-axis indicate when an ACK was received. (2) Hash marks atthe top of the graph indicate when a segment was sent. (3) The numbers on the top ofthe graph indicate when the nth kilobyte (KB) was sent. (4) Diamonds on top of thegraph indicate when TCP checked whether a coarse-grained timeout should happen.(5) Black circles on top of the graph indicate that a coarse-grained timeout actuallyoccurred. (6) Solid vertical lines running the whole height of the graph indicate whena segment that is retransmitted was actually sent.Figure 12 shows traces of the TCP windows:(1) The dashed line gives the slow-start threshold (ssthresh). (2) The dark gray linegives the send window (minimum of the sender's bu�er size and receiver's advertisedwindow) and gives the upper limit on the amount of unacked data. (3) The light grayline gives the congestion window. (4) The thin-line gives the actual amount of unackeddata.10[6, 5] give a more detailed description of the same

23B Congestion AvoidanceWe suggest a possible approach to address the problem of slow congestion windowincrease in high bandwidth-delay networks. Jacobson [16] suggests increasing the con-gestion window additively and decreasing it multiplicatively for network stability. Inmost existing TCP implementations, the unit of congestion window increase (in bytes)depends on the segment size, which is usually determined by the MTU of the network towhich the sender connects and can vary from 512 bytes to 9180 bytes. For a faster win-dow increase in high bandwidth-delay networks, this additive unit of window increasecan be decoupled from the TCP segment size and can be determined as a fraction of theavailable pipe size. As information about the available pipe size is not known apriori,extreme care is required so as not to a�ect the fairness and network stability. Thisapproach can be possibly used with TCP Vegas[6] that can dynamically estimate thepipe size by keeping track of the increase in bu�er occupancy at the bottleneck routers.

