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1. Introduction

Fuzzy Rule Base Systems (FRBS) has been shown to be an important tool for problems
where, due to the complexity or the imprecision, classical tools are unsuccessful. In
[3,14] it has been proved that FRBS are universal approximators in the sense that for
any continuous system it is possible to find a set of fuzzy rules able of
approximating it with arbitrary accuracy. Now, the question is: How can we find this
set of rules?.

Unfortunately, acquiring rules from experts is not an easy task. On the other
hand, it is very difficult for a knowledge engineer to extract rules from static
databases. Thus rule acquisition becomes a bottleneck in the knowledge engineering
process.

In order to automatically obtain rules from an example database, various methods
have been proposed in the literature. This methods include the learning methods
employing Descent Method (Araki et al. [1]), or Neural Network (Yamaoka-Mukaidono
[15], Lee [10]) as well as Belief or Uncertainty measures (Binaghi [2], Peng-Wang
[13], Delgado-Gonzalez [4]).

However, from a practical point of view, these methods suffer from some of the
following critical problems,

1) the number of rules is to be set in advance and so it must be derived by trial
and error;

2) the search tends to falls into local optima;

3) a high degree of nonlinearity can appear in the search, which makes the method
uneffective.

The result of the learning depends largely on the number of rules. When it is set
under the rigth one, an inadequate FRBS to approximate the real system may results,
while setting the set of rules over its correct size may sacrifice the generalization
capability of the fuzzy rules. Therefore, the number of inference rules has to be
determined from a standpoint of overall learning capability and generalization
capability of fuzzy rules. The work to determine the number of rules requires to
designers a huge number of experiment by trial and error.

Genetic Algorithms (GA) are a search technique drawing an increasing attention in
the field of Artificial Intelligence. GA are algorithms that use operationsfound in
natural genetics to guide the trek through a search space, and this enables them to
escape from local optimum, being in this way (potentially) very powerfull
optimization techniques for complex functions [6,7]. De Jong’s work [5], in
particular, establishes the GA as a robust search technique efficient across a
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spectrum of problems, as compared to other traditional schemes. Subsequent
application of GA’s to other search and machine learning problems support the claim
that GAs are broadly based.

The robustness and simple mechanics of GA make them inviting tools for learning
the rules to be used in a FRBS. GA are also potentially useful for learning fuzzy
rules due to some special traits that differentiate them from conventional
techniques. In fact, recently, the use of Genetic Algorithms (GA) have been proposed
for learning rules (Karr [7,8]), showing that AG are an appropriate tool for this
problems. This papers present methods to be applied to special types of rules or to
specific problems.

We present here a more general approach to this problem using GA. A very
important advantage of our method is that the number of fuzzy rules is determined by
the algorithm. Moreover, the method does not depend on the type of fuzzy reasoning
neither on the shape of membership functions employed.

2. Formulation of the problem

As we have said above, in [3,14] it has been proved that fuzzy logic controllers
are universal approximators, that is:

For each a < b, a,b∈R let µ(a,b):R [----------L R be a membership function such that
µ(a,b)(x) ≠ 0 iff x∈(a,b). Let T and T’ be some t-norms and I a fuzzy implication
verifying I(a,0) = 0 if a≠0 (for example a R-implication or a t-norm implication
I(a,b) = T’’(a,b)). Let S be a t-conorm.

Assume S = S(T’,T,I,S,µ(a,b)) is the family of all Fuzzy Logic Controller (FLC)
systems where:
i) The rules base is composed by a finite number of rules with the form

If x is A and x is A and ... x is A , then y is B.
1 1 2 2 n n

1 2 1 2 1 2ii) The membership function of each A isµ(a ,a ) for some a < a , a , a∈
ij i j i j i j i j i j i j

R, i.e.
1 2A (x) = µ(a ,a )(x).

ij i j i j

1 2 1 2 1 2iii) The membership function of each B isµ(b ,b ) for some b < b , b , b ∈ R,
j j j j j j j

i.e.
1 2B (y) = µ(b ,b )(y).

j j j

iv) The fuzzy inference is made with T as fuzzy conjunction and the generalized modus
ponens constructed from T’ and I:

a) A rule

R : If x is A and x is A and ... x is A , then y is B
j 1 1 j 2 2 j n n j j

owill be applied if and only if the input x matches with the antecedent, i.e. iff
oA (x ) ≠ 0, being A (x) = T(A (x ),A (x ),...,A (x )).

j j 1j 1 2j 2 nj n

ob) If the input x matches with the antecedent then the inference is
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I f x i s A and x is A and ... x is A , then y is B
1 1 2 2 n n

x is A ’
[---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]

y is B ’

nB’(y) = Sup {T’(A’(x ), I(A(x),B(y))) / x∈R }. (GMP)

A(x) = T(A (x ),A (x ),...,A (x )),
1 1 2 2 n n

oSince the input is a point x= x

o& 1 if x = x
A’(x ) = { ,

o7 0 if x ≠ x

and thus the result is translated into
o oB’(y) = T’(1, I(A(x ),B(y))) = I(A(x ),B(y).

c) In general, we can express the the inference of the rule R when the input is
j

ox = x by:
o& 0 if A (x ) = 0
jB ’(y) = {

j o7 I(A (x ),B (y)) elsewhre.
j j

which in the case of a t-norm implication is the general expression

oB ’(y) = I(A (x ),B (y)).
j j j

*v) The joint of all fuzzy rule is made by means of S: B’(y) = T ({B ’(y)}).
j

vi) The defuzzification method is the center of the area:

i B ’ (y) .y dy
o o jy = S(x ) = [------------------------------------------------------------------------]

i B’(y) dyj
The only parameters being not prefixed in this class are the number of rules K,

1 2 1 2such that j=1,..,K; and the the real values a , a , b , b which characterize the
i j i j j j

membership functions (i = 1..n, j = 1..k).

nTHEOREM. Let f: U ⊆ R [---------------L R be a continuous function defined on a compact U. For
eachε > 0 there exists a S∈S such thatε

sup {1f(x) - S (x)1 / x∈U} ≤ ε.ε
Basically, the problem considered in this paper consist on finding the finite set

of fuzzy rules able to approximate to levelε the input-output behavior of a real
system. That is, fixed the classS = S(T’,T,I,S,µ(a,b)) of FLC systems, whereµ(a,b)
is the triangular membership function with support = (a,b), to find the parameters k
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1 2 1 2and a , a , b , b (i=1..n, j=1..k) of a system ofS which approximate the real
i j i j j j

system. The domain of every input variable X is a close real interval [a ,b ].
i i i

Similarly, the domain of the output variable Y is a close real interval [c ,d ].
j j

Let us suppose we only know a set of training examples of the system consisting in
the values that the variables take during an experiment in which the system is
controlled by a human:

i i"in the time t = i, the value of the variables X and Y are x and y respectively"
j j j j

and possibly a number s (it is possible s=0) of linguistic rules given by the
domain expert

h h hR : If X is L and ... and X is L then Y is T ,
h 1 1 n n

h hh = 1..s, where L and T are linguistic labels.
i i

3. The method

We have subdivided the solution of this problem in the following steps:

1.- We obtain "good" rules from the examples;

2.- We obtain optimal membership functions for any linguistic rule given by the
domain expert.

3.- We get from the rules candidates (those obtained in first and second step) an
optimal subset of rules, which will be the output of our algorithm.

The set of rules candidates must be exhaustive, in the sense that for any input
must have a rule to apply. In first step we reduce the rule candidates in order to
avoid the exponential complexity of the search space in the third step.

3.1. Learning new "good" fuzzy rules

We apply a three-operator GA in order to obtain a set of fuzzy rules, which will
be exhaustive and appropriate. The term exhaustive means that for any possible input
of the system point (x ,...,x ) must have in the set a fuzzy rule to apply. As the

1 n

set of possible inputs is continuous, in order to check exhaustively we divide the
domain of every variable X , in d+1 points,

i

x [l] = a + l(b -a )/d, l = 0...d.
i i i i

When we apply a three-operator GA to a search problem, three decisions must be
made: how to code the possible solutions to the problem as finite bit strings, how to
evaluate the merit of each string, and which will be the stop condition.

A fuzzy rule

If X is A and ... and X is A , then Y is B
1 1 n n

is determined by the parameters of the membership function of every A and B. The
i

study of sensibility of fuzzy rules has shown that the type of the membership
function is not so important as its support. Thus, we will restrict to the standard
type, simmetrical triangular membership functions.

For coding, a common method called a "concatenated, mapped, unsigned binary
coding" will be used. The domain of each variable is discretized by mapping from a
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minimum value C to a maximum value C using a k-bit, unsigned binary integer
min max

according to the equation:
b inrep

C = C + [-------------------] (C - C )
min k max min(2 -1)

where binrep is the integer value represented by an k-bit string, and C is the value
coded. Thus each triangle is coded as two k-bit (left limit, and right limit of the

n + p

triangle), and the rule is coded by a h =Σ 2*k (k is the length of the string
i = 1 i i

associated to the discretization of the domain of each variable, x , 1≤ i ≤ n, y ,i i

n+1 ≤ i ≤ n+p)

The evaluation function of the string coding a rule R will be

( (ε-App(R))*b if App ( R) ≤ ε
f (R)= {
e 9 0 oth erw i se

where
l o l l lApp(R) = sup {A(x)*1y (x )-y 1 / l=1..r and R can be applied to x},

o lbeing y is the output of the rule R when the input is xobtained by the inference
process, and b is the product of the support wide of each triangle. R can be applied

l lto x if x belongs to the support of the variables x for all i.
i i

The stop condition will be:

a) Approximation: Each rule of the population verifies App(R)≤ε, and

b) Exhaustivity: for any (x ,..,x )∈D, there exists a rule R in the population which
1 n

can be applied to (x ,..,x ). This condition is checked by look at the base of every
1 n

triangle in the rules of the population.

3.2. Learning high-performance membership functions

In this subsection we present a three-operator GA to select optimal membership
functions of a linguistic rule. Specifically, given a rule R,

If X is L and ... and X is L , then Y is T
1 1 n n

where L and T are linguistic labels, we must determine the membership functionof
i i

each L and T in order to obtain an optimal rule, that as we have said above, we
i i

will restrict to triangular membership functions.

In a first step we assign a prototype example to the rule. The value of any
variable in the example will be used to be the mode of the membership function of the
linguistic label qualifying this variable. Then, the GA is used to translate, and
expand or shrink the base of each triangle.

Thus each triangle is coded as two k-bit (left limit and right limit of the
triangle), and the rule is coded by the code of its membership functions as a h-bit

n + p

string, (h = Σ 2*k *(n+p)).
i = 1 i

The evaluation function of the string associated to the string coding a rule R is

again
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( (ε-App(R))*b i f App(R) ≤ ε
f (R)= {
e 9 0 oth e rwi se.

Finally the stop condition will be if there exists a string such that App(R)≤ ε
for all rules given by the expert or the number of iterations is greater than a
prefixed number.

3.3. Obtaining an optimal set of rules

Now, we must obtain the final set of rules. The set of rules obtained in first
step together the rules considered in second step are the set of cadidates rules.
This set will be ordered in a arbitrary way from 1 until the number m of candidates
rules. Then, a m-bit string represents a subset of candidates rules and we apply aGA
to obtain an optimal subset of rules.

The evaluation function of a subset S will be

l l lf = sup {1Inf(S(x ,..,x )-y1/ l = 1..r},
e 1 n

l l l lwhere Inf(S(x ,..,x )) is ∞ if none rule in S can be applied to x ,..,x , and the
1 n 1 n

stop condition will be f ≤ ε, for a prefixedε > 0.
e
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