
Asymptotically Optimal Water�lling in Vector MultipleAccess Channels�Pramod Viswanath, David N.C. Tse yand Venkat Anantharam zNovember 16, 1999AbstractDynamic resource allocation is an important means to increase the sum capacityof fading multi access channels. In this paper we consider vector multiaccess channels(channels where each user has multiple degrees of freedom) and study the e�ect ofpower allocation as a function of the channel state on the sum capacity (or spectrale�ciency) de�ned as the maximum sum of rates of users per unit processing gainat which the users can jointly transmit reliably, in an information theoretic sense,assuming random directions of received signal. Direct sequence code division multipleaccess (DS-CDMA) systems and multiple access systems with multiple antennas at thereceiver are two systems that fall under the purview of our model. Our main resultis the identi�cation of a simple dynamic power allocation scheme that is optimal in alarge system, i.e., with a large number of users and a correspondingly large number ofdegrees of freedom, for both the ergodic and non-ergodic models. A key feature of thispolicy is that, for any user, it depends on the instantaneous amplitude of channel stateof that user alone and the structure of the policy is \water�lling". In the context of DS-CDMA and in the special case of no fading, the asymptotically optimal power policyof water�lling simpli�es to constant power allocation over all realizations of signaturesequences; this result veri�es the conjecture made in [27]. We study the behavior ofthe asymptotically optimal water�lling policy in various regimes of number of users perunit degree of freedom and signal to noise ratio (SNR). We also generalize this result tomultiple classes, i.e., the situation when users in di�erent classes have di�erent averagepower constraints.Index Terms: CDMA, Multiple Antenna Systems, Sum Capacity, Spectral E�ciency, Lin-ear MMSE Receivers, Power Control, Water�lling.�The authors are with the department of EECS, University of California at Berkeley. Email:fpvi,dtse,ananthg@eecs.berkeley.eduyResearch of this author is supported by an NSF CAREER Award under grant NCR-9734090.zResearch of the �rst and third author is supported by NSF under grant IRI 97-12131.1



1 IntroductionThe focus of this paper is multiaccess vector channels; these are multiaccess channels withmultiple degrees of freedom. Two common examples of such channels are Direct sequenceCode Division Multiple Access (DS-CDMA) and a multiple access channel with multipleantennas at the receiver. The number of degree of freedom in DS-CDMA model is theprocessing gain and in the antenna model it is the number of received antennas at thereceiver. The signal direction at the receiver of any user in the CDMA model is its spreadingsequence (assuming at fading) and in the antenna model it is the vector of path gainsfrom the user to the di�erent antennas at the receiver. A central problem in this vectormultiaccess scheme in fading channels is how to carry out power allocation to increase thespectral e�ciency of the channel. In this paper, we assume that the signal directions ofthe users are random (but known at both the transmitter and receiver) and study powerallocation policies that aim to maximize the rates at which users can reliably communicate(in an information theoretic sense). One fundamental performance measure of a multiaccesschannel is sum capacity (equivalently spectral e�ciency), de�ned as the maximum sum ofrates of users per unit degree of freedom at which the users can transmit reliably. Ourfocus in this paper will be to identify simple power allocation policies that allow users tocommunicate at rates (these are long term rates averaged over the fading process) such thatthe sum of rates is arbitrarily close to the Shannon limit.Allocation of resources (power, bandwidth, bit rates) in the context of speci�c multipleaccess schemes such as TDMA, FDMA and CDMA, with the performance criterion typicallybeing the signal to interference ratio of the users at the receiver, is studied in [4, 7, 9, 28, 22].In the context of information theoretic power control, existing literature focuses mainly onscalar channels. For the single user scenario [6] identi�es water�lling to be the optimalpower allocation as a function of the fading state. This allocation maximizes the rate atwhich the user can communicate reliably, the rate being averaged over the fading process.In the multiuser scenario [10] studies power allocation strategies of the users as a function ofthe fading state to maximize the sum of rates at which the users can jointly communicate.It is shown there that the power policy that allows users to achieve sum capacity has theproperty that only the user with the best channel at any time transmits (if at all) withpositive power and the users themselves adopt a water�lling strategy with respect to theirfading states. This paper focuses on multiaccess vector fading channels. Our main resultscan be summarized as follows:1. In the DS-CDMA model, we assume that the spreading sequences of the users arerandom and each user experiences independent at fading. We consider both long andshort signature sequence models: short signature sequences get repeated every symbolinterval while many symbols are transmitted over one duration of a long signaturesequence. Our main result is the identi�cation of a simple power allocation policy thatis asymptotically optimal (the asymptotic is in the regime of a large number of usersand correspondingly large processing gain). This policy is water�lling for each userand depends solely on the amplitude of that user's instantaneous fading amplitude.We show that the water�lling policy is asymptotically optimal for both the long and2



the short signature sequence models.2. In the multiantennamodel, we assume i.i.d. frequency at fading from the users to eachof the antennas at the receiver. Our main result is that the constant power allocationpolicy (this policy transmits a constant power regardless of the realization of fadingamplitudes of the users) is asymptotically optimal (the asymptotic is in the number ofusers and correspondingly large number of antennas at the receiver).These results are rather surprising from the point of view of the scalar multiaccess channelresult in [10] which shows that the spectral e�ciency harnessing the multiuser diversity byallocating positive power only to the user with the best channel (if at all) can be substantiallymore than spectral e�ciency obtained by allocating constant powers to the users at all fadingstates. Our results show that if there are su�ciently many degrees of freedom, the gain inspectral e�ciency by having multiuser diversity vanishes.In other related work on multiaccess vector channels, [16] and [29] study the allocationof signature sequences to achieve sum capacity in non fading channels as a function ofthe average power constraints of the users. In [8] the authors study the sum capacity ofCDMA systems with random long signature sequences in non fading channels. In [27] theauthors study the sum capacity of CDMA systems with random long signature sequencesfor a wide variety of receiver structures: optimal joint detection receivers, linear MMSEreceivers, matched �lter receivers, and decorrelator receivers. They assume that the usersare received at the same power and the channel has no fading. In the special case of constantat fading in the DS-CDMA long signature sequence model, our main result simpli�es toconstant power allocation over all realizations of signature sequences and fading states; thisveri�es the conjecture made in [27]. Recent results on information theoretic power controlin non-ergodic scalar fading channels are in [2].In Section 2 we outline the DS-CDMA fading channel model, formulate the problemand precisely state our main results. In Section 3 we heuristically derive the structure of theoptimal power allocation strategy and see that it is water�lling. This section outlines the keyideas in the identi�cation of asymptotic optimality of the water�lling strategy and allowsthe more casual reader to gain insight into our result without entering the technicalitiesrequired for the formal proof. In Section 4 we develop the mathematical machinery andsome preliminary results required for the proof of our main result. In Section 5 we �rstgive the simpler proof for the no fading case and then give the formal proof in the generalcase of fading channels. In Section 6 we study various regimes of number of users andSNR and analyze the behavior of the optimal policy in those regimes. We also discussnatural extensions when there are di�erent classes of users; users in di�erent classes havedi�erent average power constraints. In Section 7 we demonstrate our results by simulatingthe di�erent power allocation strategies and plot the corresponding sum capacities achievedfor at and Rayleigh fading channels under a wide range of loading of users and SNR. InSection 8, we turn to the multiple antenna model and model the path gains from any userto any antenna by i.i.d complex random variables (in the at Rayleigh fading model, theamplitude of the path gains are independent Rayleigh random variables). We conclude thepaper in Section 9 with some summarizing remarks and suggestions for future work.3



2 Model, Problem Formulation and Main Results2.1 ModelWe consider a single cell in a symbol synchronous CDMA system and focus on the uplink. There are K users in the system and a single receiver. The processing gain is N andrepresents the number of degrees of freedom of the multiaccess channel. Throughout thispaper we assume that K = b�Nc where � is a �xed positive number. This assumptionsimpli�es the analysis and notation though only K=N ! � as N !1 along with some mildrestrictions allows us to derive all the asymptotic results obtained (asymptotic in N) in thispaper. Following standard notation (see Section 2.1 of [26]), the baseband received signal inone symbol interval can be expressed asY (n) = KXi=1Xi(n)si(n)hi(n) +W (n) : (1)Here the index n represents time and the received signal Y is regarded as a vector in CN . Heresi(n) is the signature sequence of user i regarded as a vector in RN. We consider both longand short signature sequences (short signature sequences get repeated every symbol intervalwhile many symbols are transmitted over one duration of a long signature sequence). Thusin the long signature sequence model si(n) is an independent realization for every time nand in the short signature sequence is �xed for all time. We model the signature sequencesas having random i.i.d. entries (the choice and relevance of this model are discussed in[22] and [27]). Here hi is the complex fading or path gain from user i to the single basestation (receiver). We write the amplitude squared of this complex path gain by hi def= hih�i .Henceforth, we refer to hi as the path gain and explicitly say \complex path gain" whenreferring to hi. The user symbols are represented by the real valued random variables Xi. Wis an additive white complex Gaussian process with variance �2. Each user has an averagepower constraint �p. Our assumptions on the path gains hi are conventional (see Section 2of [21] and [6] for example): We assume that nfhi(n)gn2NoKi=1 is a sequence of independentand identically distributed stationary and ergodic processes; let us denote the (common)stationary distribution of the amplitude squared of the complex fading process by F which islimited to a bounded set h0; �hi and has a density. We writeH = (h1; : : : ; hK) a random vectorhaving the same joint stationary distribution as the fading processes fhi(n)gn ; i = 1 : : :K.2.2 Problem FormulationWe �rst consider short signature sequences. Here the signature sequences, once chosen, are�xed and repeated over every symbol interval. We model the signature sequence of user i assi = 1pN (vi1; : : : ; viN)t where fvilg is a collection of i.i.d. random variables with zero mean,variance 1, and bounded fourth moment. These random variables are independent of the4



fading processes fhi(n)gn2N. Both the random variables fvijg and fhig live on the sameprobability space, say (
; �) and we write E [X] to mean R
X d� for any X in L1 (
; �).We use the notation EH to indicate that the integration is carried out only over the fadingparameters. Formally, EH [X] def= E [X j s1; : : : ; sK].Conditioned on one sample point or realization of signature sequences, say s1; : : : ; sK (wewrite S = [s1; : : : ; sK]) the channel model in (1) becomesY (n) = KXi=1Xi(n)hi(n)si +W (n) : (2)We assume that all the signature sequences (once chosen) are known to both the receiver andall the users. We also assume that the receiver has perfect side information i.e. has perfectknowledge of the fading gains at each channel use. For the situation when the transmitterhas no knowledge of the fading gains and the signature sequences are �xed to be s1; : : : ; sK,the sum capacity of the multiple access channel (MAC) in (2) is:12N EH "log det I + �p��2 KXi=1 hisisti!# : (3)The capacity region for single degree of freedom fading channels with no information of thefading state at the transmitter is in [17] and the intuitive idea behind the proof is in [5] sowe omit the proof of (3).Our interest is in the situation when the transmitter also has perfect knowledge of fadinggains. In practice, this knowledge is obtained by the receiver measuring the channels andfeeding back the information to the transmitters (users). Implicit in this model is the as-sumption that the channel varies much more slowly than the data rate, so that the trackingof the channel variations can be done accurately and the number of bits required for feedbackis negligible compared to that required for transmitting information. By a power allocationpolicy, we mean a function from the fading states and signature sequences of the users tothe non-negative reals. We let Pi : (h1; : : : ; hK; S) 7! R+denote a power allocation policy for user i and call the tuple P = (P1; : : : ;PK) a powerallocation policy. We say that the power allocation policy is feasible if for every realizationof the signature sequences the average power allocated to each user (over the fading processof the users) is no more than �p. Formally, the set of feasible allocations for a �xed realizationof signature sequences S isF1 (S) def= f(P1; : : : ;PK) : EH [Pi (h1; : : : ; hK; S)] � �p 8i = 1 : : : Kg :Now, for every power allocation policy P 2 F1(S), de�ne the quantityCsum (P; S) def= 12N EH "log det I + ��2 KXi=1 hisistiPi (h1; : : : ; hK; S)!# : (4)5



Comparing with (3), Csum (P; S) can be interpreted as the (random, since it depends onthe speci�c realization of the signature sequences) sum capacity of the MAC with powersallocated according to policy P. The following proposition characterizes sum capacity whentransmitters also have perfect knowledge of the fading states.Proposition 2.1 The sum capacity of the fading Gaussian vector MAC conditioned on aparticular realization of the signature sequences (say S) in (2) when both the users and thereceiver can perfectly track the fading state and know the signature sequences isCopt (S) = supP2F1(S) Csum (P; S)= supP2F1(S) 12N EH "log det I + KXi=1 ��2hisistiPi (h1; : : : ; hK; S)!# (5)A version of the coding theorem in the above proposition appeared as Theorem 2.1 of [21],another version of the above result for single user fading channels is in [6] and we omit theproof. For general S, no closed form solution to the optimization problem in (5) is known.We discuss algorithmic computations that get close to the solution in Section 7.In the notation of [20], the MAC with short signature sequences in (2) represents anon-ergodic channel and the Shannon capacity of the channel is zero; however small thesum rate the users attempt to communicate at there is a non zero probability that therealized signature sequences will render the channel incapable of supporting the rates reliably.Motivated by the approach in [20] and [12] to such channels, we study the tradeo� betweenthe supportable rate and outage probability. Formally, the supportable sum rate R at anoutage probability a is the maximum sum rate at which the users can communicate reliablywith sum rate R for all realization of signature sequences but a set S whose total probabilityis less than a. In our notation, the supportable rate R�(N)a is de�ned asR�(N)a = sup fR : P[Copt (S) � R] � 1� ag (6)For a family of valid power allocations (power allocations for each realization of the ] signaturesequences), de�ne the quantityRa (fPS 2 F1 (S)gS) = sup fR : P[Csum (PS ; S) � R] � 1 � ag (7)and interpreting it as the supportable rate with outage probability at most a when the powerallocation policy for the signature sequence realization S is PS, we haveR�(N)a = supfPS2F1(S)gS Ra (fPSgS) (8)One of the main aims of this paper is to characterize the family of optimal power allocationpolicies that \achieves" the maximum supportable rate in (8). Our demonstration of asimple power policy (that does not depend on the actual realization of signature sequencesand hence the family of power allocations reduce to a single power allocation) that has thesupportable rate asymptotically (in N) equal to the optimal R�(N)a is one of our main results.6



We now turn to long signature sequences. Here, many symbols are transmitted overone period of the signature sequence. Thus, the simplifying assumption that the signaturesequences are independent copies of identically distributed sequences for every channel use ismade. Formally, we de�ne si(n) = 1pN (vi1 (n) ; : : : viN (n))t where fvil (n)g are i.i.d. randomvariables with zero mean and variance 1 and �nite fourth moment. We retain the assumptionthat both the receiver and the transmitters (users) have complete side information, namelythey have perfect knowledge of the signature sequences and fading gains at all times. Asbefore, power allocation policies are maps from signature sequences and fading states of theusers to the non-negative reals. A policy P = (P1; : : : ;PK) is feasible if for every user i, theaverage (over signature sequences and fading states of the users) of Pi is no more than �p.Let the set of feasible power allocation policies be denoted by F (N)2 . Formally we haveF (N)2 = fP : E [Pi (h1; : : : ; hK ; S)] � �p and Pi (h1; : : : ; hK; S) � 0 a:s: 8i = 1 : : :Kg :The Shannon sum capacity of the MAC (recall the channel model in (1)) with perfect sideinformation at both the transmitters and the receiver is given by�C(N)opt def= supP2F(N)2 12N E "log det I + KXi=1 ��2hisistiPi (h1; : : : ; hK; S)!# : (9)This result was observed in Section 3 of [27]. For P 2 F (N)2 de�ning the quantity�Csum (P) def= 12N E "log det I + KXi=1 ��2hisistiPi (h1; : : : ; hK; S)!# (10)which can be interpreted as the sum capacity of the fading MAC with random long signaturesequences when powers are allocated using the policy P, from (9) and (10) it follows that�C(N)opt = supP2F(N)2 �Csum (P) : (11)In the case of long signature sequences, we are interested in characterizing power allocationpolicies that are optimal in the sense of achieving sum capacity equal to �Copt.2.3 Main ResultsThe main focus of this paper is in characterizing optimal power allocation policies in twodi�erent settings. First, for the long signature sequence model we are interested in thepower allocation policy as a function of the realization of signature sequences and fadingstates subject to an average power constraint that maximizes sum capacity of the MAC in(1). In the second setting, we wish to characterize a family of power allocations as a functionof the fading states of the users subject to an average power constraint that maximize thesupportable rate at some �xed outage probability. Our main result is the identi�cationof a simple power allocation policy using which both the supportable rate at some outage7



probability (when the MAC model involves short signature sequences) and sum capacity(when the MAC model involves long signature sequences) are \close" to the optimal values(de�ned in (8) and (9) respectively). We state this result formally below. Consider the powerallocation policies Pwfi : (h1; : : : ; hK; S) 7!  1� � 1��wfhi!+ 8i = 1 : : :K (12)where we have used the notation (x)+ to indicate maxfx; 0g. The constant ��wf is thelimiting signal to interference ratio (SIR) of a unit received power user using the linearMMSE estimator in a large system (large processing gain and correspondingly large numberof users) with random signature sequences when all other users are following the powerallocation policy above in (12). The formal de�nition and proof of existence of this quantityis in sections 3 and 4. In (12), the constant (Kuhn-Tucker coe�cient) � is chosen such thatE hPwfi (hi)i = �p. Observe that this policy does not depend on the signature sequences ofthe users and for any user depends only on the fading state of that user at that instant (inthe special case when there is no fading this implies that this policy is a static allocationof powers equal to �p independent of the signature sequences). This power allocation policyis water�lling and generalizes the strategy of [6] for single user fading channels. To see thisgeneralization, recall the optimal power allocation policy for the single user case from [6]:P (h) =  1� � �2h !+ (13)where 1�2 is the SIR seen by a unit received power user in the system (there is only one userin this scenario). Now the generalization is apparent: ��wf replaces 1=�2.We show that the water�lling policy of (12) is a \good" power allocation policy for boththe long and the short signature sequence models. We also analyze its behavior in variousregimes of the number of users per unit processing gain and background noise variance.We enumerate our main results below. We emphasize that these results are true for anydistribution of the random variables vij that satis�es the property of zero mean, unit varianceand bounded fourth moment and any stationary fading distribution F that has a boundedsupport and allows a density.1. Consider the case of long signature sequences. With long signature sequences we showthat asymptotically the water�lling strategy is optimal and identify the gap in sumcapacity to be of the order of N� 12 where N is the processing gain of the system.Formally, �C(N)opt � �Csum �Pwf� < O  1pN !Note that because of the simplicity of the water�lling policy, the notation becomessomewhat deceptive: in this equation, �Csum �Pwf� does depend on N .8



2. Consider now the case of short signature sequences. Our main result in this scenariois Ra �Pwf� � R�(N)a � Ra �Pwf�1 � a + o(1) :Thus, in a large system the supportable rate using the water�lling strategy is within afactor (1 � a) of the optimal supportable rate. We are interested in very small valuesof a (typically, a could be 10�3 or 10�4) and thus the water�lling strategy achieves asupportable rate that is close to the optimal rate.3. For a single user fading channel, it is intuitive (observe the structure of the optimalpower allocation policy in (13)) that in high SNR (as �2 ! 0) the loss in sum capacityby using a constant power (equal to �p) allocation policy as compared to the sumcapacity by using the optimal water�lling policy becomes negligible . In the generalmultiple user scenario we show that the policy (12) at high SNR converges and thelimiting policy is the constant power allocation policy for � � 1. Thus the correctextension of the single user high SNR result is that when � (the ratio of users toprocessing gain) is less than unity, the gain in sum capacity in a large system (largeprocessing gain) over constant power allocation by using an optimal strategy goes tozero at high SNR. On the other hand, there is a strict loss in using constant powerallocation when there are more users than the processing gain even in the limit of highSNR. We also give an intuitive explanation of this fact.4. We have been able to extend our results on the asymptotic optimality of the water�llingpower allocation to the scenario of multiple classes in the situation of long signaturesequences. Users in di�erent classes have di�erent average power constraints. Theasymptotically optimal strategy still has the basic structure of the water�lling policy(12) but users in di�erent classes have di�erent threshold levels for their water�llingpolicies.3 Heuristic Derivation of the Asymptotically OptimalPower Allocation StrategyIn this section, we �rst restrict ourselves to long signature sequences channel model andmotivate the reason why we can expect asymptotically the water�lling structure (12) of theoptimal power allocation policy. Towards this end, we proceed in the following order: we�rst review the water�lling power allocation policy (identi�ed in [6]) for a single user in a(scalar) fading channel. Then, we show the relation of sum capacity to linear minimummeansquare error (LMMSE) estimation of users along with successive decoding. We then arriveat a heuristic expression for the optimal power policy in the multiuser scenario.We begin with the single user, single degree of freedom scenario. Now, the receivedbaseband signal in any channel use is (analogous to (1))Y (n) = h (n)X(n) +W (n)9



where fh (n)gn2Nis the complex fading process assumed to be stationary and ergodic. Asbefore we denote the amplitude squared process by fhngn having a bounded stationarydistribution F with a density. W is an additive white complex Gaussian noise process withvariance �2. We assume that the receiver and the transmitter have perfect channel sideinformation, i.e., the fading gains hn are perfectly known to both the transmitter and thereceiver. The transmitter has an average power constraint �p. Then, (Theorem 2.1, [6]) thecapacity of the channel is�C1user = maxfP�0:E[P]��pg 12E "log 1 + hP (h)�2 !# (14)and the power allocation that achieves the maximum above is \water�lling" (refers to thevisualization of this scheme): P�(h) =  1� � �2h !+ (15)where � is a constant (the Kuhn-Tucker coe�cient for the concave function maximization in(14)) that is chosen such that E [P� (h)] = �p. Observe that zero power is transmitted whenthe fading is below the threshold hwf def= ��2.We now turn to the multiuser multiple degrees of freedom scenario. We �rst restrictour attention to the case when the signature sequences and the fading gains are �xed (tobe s1; : : : ; sK and h1; : : : ; hK respectively). Let the users have average power constraintsp1; : : : ; pK. Then the channel model (1) focusing on one symbol interval isY = KXi=1Xisihi +W (16)Sum capacity of this channel was explicitly calculated in (4) as a function of the signaturesequences and the user average power constraints asC(p1; : : : ; pK) = 12N log det I + KXi=1 ��2sistipihi! : (17)The rate tuples in the capacity region are in general achieved by jointly demodulating theusers from the received signal Y (joint typical decoding and joint maximum likelihood esti-mation are well studied techniques; this classic study is in Chapter 14 of [3]). We focus on thefollowing speci�c structure of demodulation of the users' symbols from the received signal Y :Fix an ordering of the users. For every symbol interval, following the ordering of the users,users are successively decoded (by estimating the symbols by the LMMSE receiver, and theestimate used to decode that user) and the received signal is stripped o� the decoded users.LMMSE) receiver for user i obtains the optimal linear estimate (in the sense of minimizingthe mean squared error; Chapter 6 of [26] is an excellent reference for this) of the user isymbol Xi from the received vector Y . It was observed in [25] that this scheme allows theusers to transmit reliably at a sum rate equal to the sum capacity of the system1. We use1In fact, a stronger statement is claimed in [25]: By changing the ordering of the users, this scheme allowsthe users to transmit reliably at rate tuples corresponding to all the vertices of the capacity region of thechannel in (16), by appropriately choosing the ordering of the decoding.10



this to interpret an increase in sum capacity by an increase in the power of one user: Letthe average power constraint of one user (say user i) be increased by �. Then the increasein sum capacity (de�ned in (17)) isC (p1; : : : ; pi�1; pi + �; pi+1; : : : ; pK)�C (p1; : : : ; pK) = 12N log0B@1 + �histi 24�2I + KXj=1 sjstjpjhj35�1 si1CA(18)where we used the matrix inversion lemma (A+ xxt)�1 = A�1 � A�1xxtA�11+xtA�1x whenever theterms exist. We can interpret this increase in sum capacity as the rate of a �ctitious user(numbered K + 1) with average power �, fading gain hi and signature sequence si and isdecoded �rst and then stripped o�. The rate achieved by this �ctitious user being decoded�rst is simply R = 12N log (1 + ��K+1hi)where ��K+1hi is the signal to interference ratio (SIR) of the LMMSE estimate of the �ctitioususer K + 1. It can be shown that (see Section 2 of [22] or Chapter 6 of [26]) the SIR of theLMMSE estimate of this �ctitious K + 1 user is �K+1�hi where�K+1 = sti 0@�2I + KXj=1 sjstjpjhj1A�1 si (19)which is consistent with the expression for the increase in sum capacity in (18).Recall the expression of the sum capacity �C(N)opt for the long signature sequence model asan optimization problem in (9):�C(N)opt def= supP2F2 12N E "log det I + KXi=1 ��2hisistiPi (h1; : : : ; hK; S)!#In Proposition 4.2 we show that this is a concave maximization problem. Thus there existsa Kuhn-Tucker coe�cient � > 0 such that for every realization of h1; : : : ; hK; S any positiveoptimal policy P� satis�es the following constraints: @@piC (p1; : : : ; pK)! (P� (h1; : : : ; hK; S)) = �; 8i = 1; : : : ;Kwhich can be written assti 0@�2I + KXj=1 sjstjhjP�j (h1; : : : ; hK; S)1A�1 sihi = �; 8i = 1 : : :K ; (20)by using the expression (18) for the increase in the sum capacity by an increase in power ofone user in the derivation of (20). For a similar calculation, see Section 3 of [24]. Here � isthe Kuhn-Tucker coe�cient (the formal existence and de�nition is in Proposition 4.4) and is11



chosen such that the average power constraint of the users is met. Application of the matrixinversion lemma to (20) yieldsP�i (h1; : : : ; hK; S) = 0B@ 1� � 1sti ��2I +Pj 6=i sjstjhjP�j (h1; : : : ; hK; S)��1 sihi1CA+ 8i = 1 : : :K :(21)De�ning �i def= sti 0@�2I +Xj 6=i sjstjhjP�j (h1; : : : ; hK; S)1A�1 si (22)and observing that �ihiP� (h1; : : : ; hK; S) is the (random) SIR of the LMMSE estimate ofuser i when powers are allocated according to P� and substituting in (21), we arrive at thefollowing structure of an optimal power policy:P�i : (h1; : : : ; hK; S) 7!  1� � 1�ihi!+ : (23)Here �i is the (random) SIR of the LMMSE estimate of user i when all users are allocatingpowers optimally. In general we are not aware of a closed form expression for the optimalpower allocation in (21). Let us consider the performance of power allocations that have thestructure that for any user the policy depends only on the fading gain for that user, i.e., Piis of the form (h1; : : : ; hK; S) 7! g (hi) for every user i where g is some bounded nonnegativefunction into the reals. In this situation, Theorem 3.1 of [22] shows that the (random) SIRof any user (say, user 1 to be speci�c) converges pointwise in a large system. Using ournotation we can make this statement precise: �1 from (22) with P�i (h1; : : : ; hK; S) = g (hi)converges almost surely to ��gh1 as N ! 1. The positive constant ��g depends on �, thebackground noise variance �2, and the function g itself and Theorem 3.1 of [22] identi�es ��gto be the unique positive solution of a �xed point equation (in general there is no knownclosed form solution to ��g). Thus, in a large system (large N and correspondingly large K)we see that the power allocationP�i : (h1; : : : ; hK; S) def= gwf (hi) def=  1� � 1��wfhi!+ (24)satis�es the Kuhn-Tucker conditions in (21) asymptotically. Here ��wf is a positive constantwith the following structure: When every user uses a power allocation policy of this form,namely: Pi : (h1; : : : ; hK; S) 7!  1� � 1�hi!+for some positive real � (and � chosen such that the average power, averaged over the fading,is �p), an application of the central result (Theorem 3.1) of [22] shows that the (random) SIRof the LMMSE estimate of any (every) user converges almost surely in a large system to aconstant, which we denote by ~�. Every choice of � results in a unique asymptotic SIR ~�of the users giving rise to the map � 7! ~�. Since ��wf denotes the asymptotic SIR of the12



LMMSE estimate of any user, it follows that ��wf must be the �xed point of the map � 7! ~�.Thus, if we assume the existence of the unique �xed point ��wf and infer (heuristically) thatthe power policy (24) which asymptotically satis�es the Kuhn-Tucker conditions is close toan optimal power policy, we have heuristically seen the asymptotic structure of an optimalpower allocation policy. The nontrivial fact that the map � 7! ~� has a unique positive�xed point will follow from Lemma 4.10 in Section 4. We also show that there is a simpleexpression that relates this unique �xed point ��wf to the corresponding � and propose a�xed point iteration algorithm to compute the quantities ��wf and the corresponding �. Inthe next section, we develop the mathematical apparatus required to present the formalproof of the asymptotic optimality of the water�lling power allocation policy we have onlyheuristically developed in this section.Thus we have a heuristic derivation of the structure of the asymptotically optimal powerallocation policy for the long signature sequence model. Recall the key features of this policy:the policy is independent of the realization of the signature sequences and for each user thepolicy is water�lling over the fading process of that user alone. We use this structure toshow that water�lling power allocation performs very \close" to the optimal policy evenfor the short signature sequences model. Towards this end, we make some observationsof the limiting sum capacity when using power allocation policies of the type above, i.e.,power allocation policies of the form Pgi : (h1; : : : ; hK; S) 7! g (hi) where g is a non-negativebounded function. We observe that sum capacity with this policy converges pointwise in alarge system and we make this precise below:Proposition 3.112N log det I + KXi=1 ��2sistihig (hi)! a:s:;L1�! �Cgsum as N !1 : (25)The proof is found in Appendix A. For the special case when hi = 1 a:s: and g(�) = �p(this is the no fading case with equal received powers for every user), there is a closed formexpression for �Cgsum and (9) of [27] gives the explicit expression (denoting the limiting valueas �Cssum; this is the spectral e�ciency with static power allocation in the notation of [27]) as:�Cssum (�p) = �2 log �1 + �p�2 � 14F � �p�2 ; ���+ 12 log �1 + �p��2 � 14F � �p�2 ; ���� log e8�p F � �p�2 ; �� (26)where F (x; z) def=  rx �1 +pz�2 + 1�rx �1�pz�2 + 1!2 :13



In general, there is no known closed form expression for �Cgsum; however [18] gives someexpressions to compute �Cgsum. With the power allocation being Pg recall the supportablerate Ra (Pg) at outage probability a de�ned in (7) as the largest rate such that:P[Csum (Pg; S) � R] � 1 � a :The reader will observe that we have replaced the family of power allocations in (7) bythe single power allocation Pg since Pg is independent of the realization of the signaturesequences. It follows thatRa (Pg) � �Cgsum � 2E hj Csum (Pg; S)� �Cgsum jia� �Cgsum � o(1) ; using Proposition 3.1 (27)Thus the supportable rate using the power allocation Pgis asymptotically close to the limitingsum capacity with power allocation Pg. Combined with the formal result of the asymptoticoptimality of the water�lling strategy, we use this result in Section 5 to show that the water-�lling strategy is also close to the optimal power allocation with short signature sequences.4 Preliminary MaterialIn this section we introduce some preliminary results and the mathematical backgroundneeded for the formal derivation of our main result: asymptotic optimality of the water�llingstrategy. We begin with the scenario of long signature sequences. Since our main focus is onunderstanding the optimization problem (9) we begin with some simple observations aboutits structure its solution.4.1 Properties of Optimal Power AllocationsThe optimization problem in (9) is on an in�nite dimensional set (a closed ball in a Banachspace) of valid power allocations and it is not clear a priori if the supremum in (9) is actuallyachieved. In this section, we show that the supremum is actually attained and characterizethe set of the optimal power allocations. We proceed via a series of propositions.1. Our �rst step is to show that the optimization problem in (9) is well de�ned. Formallywe have the following proposition and the proof is in Appendix B.Proposition 4.1 For every N , �C(N)opt � �Kc where Kc is a constant independent of Nand �.2. We next show that the function �Csum (P) is concave. Consider the following proposi-tion. 14



Proposition 4.2 For every deterministic h1; : : : ; hK and S, the map from the positiveorthant in RK to the non-negative realsC : (p1; : : : ; pK) 7! 12N "log det I + ��2 KXi=1 pihisisti!# (28)is concave. Furthermore, if fhisisti; i = 1 : : : Kg are linearly independent, then C isstrictly concave.The proof is in Appendix C. It then follows that�Csum : F (N)2 ! R+(P1; : : : ;PK) (h1; : : : ; hK; S) 7! 12N E "log det I + ��2 KXi=1 hisistiPi (h1; : : : ; hK; S)!#is also concave.3. We observe that the power allocation policies that are of interest always meet theaverage power constraint with equality. Formally, we have the following result:Proposition 4.3 �C(N)opt = supP2F(N)2 \fE[Pi]=�p; i=1;:::;Kg �Csum (P) :The following (elementary) proof provides an operational interpretation of increas-ing the average power of one user. Consider P 2 F (N)2 and E [P1 (h1; : : : ; hK; S)] =�p � � for some positive �. Consider the power allocation policy P̂1 (h1; : : : ; hK ; S) =P1 (h1; : : : ; hK; S) + � and P̂i = P�i for i = 2; : : : ;K. By de�nition P̂ 2 F (N)2 . Then�Csum �P̂� = 12N E "log det I + ��2 KXi=1 hisistiP̂i (h1; : : : ; hK; S)!#= 12N E "log det I + ��2 KXi=1 sistihiP�i (h1; : : : ; hK; S) + ��2�h1s1st1!#= �Csum (P) + 12N E "log 1 + ��1 (P�)1 + �1 (P)h1P (h1; : : : ; hK ; S)!# (29)> �Csum (P) :Here �1 (P)h1P (h1; : : : ; hK; S) is the (random) SIR of the LMMSE estimate of user 1when all users are using the power policy P (an explicit expression for �1 (P) is in (39))and (29) follows from the matrix inversion lemma (as in (18)). Thus, the sum capacitycan always be increased by de�ning a power allocation policy that is pointwise biggerand meets the average power constraint with equality and the proof of the propositionis complete. 215



4. The following proposition allows us to use Lagrange multipliers in this maximizationof a concave function. N is �xed below.Proposition 4.4 There exists (a Kuhn-Tucker coe�cient) � > 0 such that�C(N)opt = supP2F(N)0 ( �Csum (P)� �2N KXi=1 (E [Pi (h1; : : : ; hK; S)]� �p)) : (30)where F (N)0 def= nP : Pi � 0 and P 2 L1 (h1; : : : ; hk; S) 8i = 1 : : :Ko : (31)This claim is completely standard for maximization of concave functions in �nite di-mensions. However F (N)2 is in�nite dimensional and hence this claim needs a formalproof, which is supplied in Appendix D.5. We now use the previous propositions to show that the supremum in the de�nition of�C(N)opt in (9) is actually achieved by a valid power allocation policy. We state this for-mally in the following proposition and also identify the structure of this optimal powerallocation policy. The problem size N is �xed below and the proof is in Appendix E.Proposition 4.5 There exists a power allocation policy P� 2 F (N)2 such that �C(N)opt =�Csum (P�). Furthermore, for almost every realization of h1; : : : ; hK and S, the optimalpower allocation for this realization, denoted by p�i def= P�i (h1; : : : ; hK; S) ; i = 1 : : :K,satis�es the equationsp�i = 0B@1� � 1sti ��2I +Pj 6=i sjstjhjp�j��1 sihi1CA+ 8i = 1 : : :K (32)where � is the same as that given in Proposition 4.4.6. It is clear from the symmetry in the problem that the optimal power policiesP�1 ; : : : ;P�Kare symmetric with respect to the signature sequences and the fading gains. One simplesymmetry is given by Proposition 4.3 which allows us to writeE [P�i (h1; : : : ; hK; S)] = �p; 8i = 1 : : : K : (33)Another type of symmetry is in the formal statement below:Proposition 4.6 Let P� achieve the maximum in (9). Then for every permutation� 2 SK and 8i = 1 : : : KP�i (h1; : : : ; hK; s1; : : : ; sK) = P��(i) �h�(1); : : : ; h�(K); s�(1); : : : ; s�(K)� a:s: (34)16



Proof For every permutation � 2 SK denoteP�i (h1; : : : ; hK; s1; : : : ; sK) def= P��(i) �h�(1); : : : ; h�(K); s�(1); : : : ; s�(K)� :Now, �Csum (P�) = 12N E "log det I + KXi=1 hisistiP�i (h1; : : : ; hK; S)!# (35)= �Csum (P�) (36)where (36) follows from the observation that the random variables are permuted (by �)in (35) and by hypothesis that h1; : : : ; hK are exchangeable and s1; : : : ; sK independentand identically distributed. Since P� is the unique maximizer of (9), we haveP�i (h1; : : : ; hK; s1; : : : ; sK) = P��(i) �h�(1); : : : ; h�(K); s�(1); : : : ; s�(K)� a:s:which completes the proof of the proposition. 27. From the structure of the optimal power allocation policy in (32), it follows that theallocations are bounded from above. We need the following technical result that showsthat the allocations are uniformly bounded from above (uniform in N).Theorem 4.7 Let P� achieve the maximum in (9). ThenP�i (h1; : : : ; hK; S) � Kp a:s:where Kp is some universal constant (that depends on the fading statistics, � and �p).This theorem is proved in Appendix F. Using this, sum capacity can be written as�C(N)opt = maxP2F(N)3 �Csum (P) : (37)Here F (N)3 = (P : P satis�es properties (33) and (34)Pi (h1; : : : ; hK; S) 2 [0;Kp] a:s: 8i = 1 : : :K ) : (38)4.2 Limiting SIR of LMMSE estimatesIn this section we review some recent results about the asymptotic behavior of SIR of theLMMSE estimate in a random spreading environment. Fix a power allocation policy P 2F (N)3 . Associated with the LMMSE estimate of user i symbolXi (estimated from the receivedsignal Y ) is the performance measure signal to interference ratio (SIR) de�ned as the ratioof the power of the signal to the power of the interference in the estimate. Recalling (19), we17



have that the (random) SIR of the LMMSE estimate of user i is �i (P)hiPi (h1; : : : ; hK; S)where �i (P) = sti 24�2I +Xj 6=i hjsjstjPj (h1; : : : ; hK; S)35�1 si 8i = 1 : : :K (39)The SIR is random since it depends on the particular realizations of the signature sequencesand the fading. We further focus our attention on the following class of power allocationpolicies: P is independent of the signature sequences and has the structurePi (h1; : : : ; hK ; S) def= Pgi (h1; : : : ; hK; S) 7! g (hi)for each i = 1 : : :K where g is a non-negative function bounded by Kg. Denote the corre-sponding SIRs of the LMMSE estimates (de�ned in (39)) of the users as �1 (Pg) ; : : : ; �K (Pg).Then it is straightforward to see thatThe random variables �1 (Pg) ; : : : ; �K (Pg) are identically distributed. (40)In a large system, the central result of [22] shows that the (random) SIRs converge almostsurely to a deterministic constant. Focusing on user 1 alone (without loss of generality), wehave the following formal result.Lemma 4.8 (Theorem 3.1,[22])�1 (Pg) a:s:�! ��g as N !1 (41)where ��g is the unique positive solution to the integral �xed point equation�2� = 1 � � Z �h0 �hg (h)1 + �hg (h)dF (h): (42)Recall that F is the (same) marginal distribution of the fading gains h1; : : : ; hK. Convergenceof �1 (Pg) in measure �rst appeared as Theorem 3.1 in [22] and the pointwise convergence (anatural extension) follows as a consequence of the main result in [19] which shows that theempirical distribution of the eigenvalues of the matrix PKi=1 sistihi almost surely converge indistribution to a nonrandom limit.To get a better feel for this result, consider the special case when there is no fading (wejust take hi = 1 a:s: ) and g = �p a:s: . Let us denote this static power allocation policy by�P. Then Lemma 4.8 particularizes to�1( �P) a:s:�! �� (�p; �) (43)It is easily veri�ed from (42) that �� (�p; �) is the unique positive solution of the �xed pointequation in � �2� = 1� � �p�1 + �p� (44)18



and hence �� (�p; �) is the positive root of the quadratic equation (in �)�2�2�p + � ��2 + �p (� � 1)�� 1 = 0 (45)and can be explicitly written out as:�� (�p; �) = 1 � �2�2 � 12�p +vuut(1 � �)24�4 + 1 + �2�p�2 + 14�p2 (46)4.3 Variations around the mean of limiting SIRFor the power allocation policy Pg, we saw in Lemma 4.8 that the SIR of any user convergespointwise. Our �rst simple observation is that this convergence holds in L2 also.�1 (Pg) = st10@�2I +Xj 6=1 sjstjhjg (hj)1A�1 s1 ; from (39) (47)� ��2st1s1 a:s: (48)= ��2N KXi=1 v21iE h(�1 (Pg))2i � C1��4 (49)where C1 is a constant independent of N . It now follows from (41) and the dominatedconvergence theorem that �1(Pg) L2�! ��g : (50)The following result investigates the variation around the mean of the limiting SIR (withoutloss of generality, focusing only on user 1):Lemma 4.9 E ���1 (Pg)� ��g�2� < C22N (51)where C2 is some constant independent of N .The lemma is proved in Appendix G.4.4 Existence of ��wfIn Section 3, we derived heuristically the asymptotic structure of the optimal power allocationpolicy to be (from (24))P�i : (h1; : : : ; hK; S) 7! gwf (hi) def=  1� � 1��wfhi!+ (52)19



where ��wf was the limiting SIR of the LMMSE estimate when users adopt the above powerallocation policy and � is a constant chosen such that the average of the power allocation(average of the fading statistics) is equal to �p. We now prove the existence of this quantity��wf . >From (42), ��wf is the unique positive solution to the integral �xed point equation:�2��wf = 1� � Z �h0 ��wfh� 1� � 1��wfh�+ dF (h)1 + ��wfh� 1� � 1��wfh�+= 1� � Z �h�=��wf  1� ���wfh! dF (h) (53)Furthermore, by the average power constraint of �p on the power allocation in (52), we haveanother equation relating � and ��wf . Denoting the ratio ���wf by hthr, the fading thresholdlevel below which no power is transmitted, we see that the average power constraint in ournotation yields: hthr = HM (hthr)1 + �pHM(hthr)1�F (hthr) ��wf (54)where HM(h) is the \harmonic mean at the level h" de�ned asHM(h) = (1� F (h)) Z �hh dF (~h)~h !�1 : (55)Observe that HM(h) > h; 8h 2 h0; �hi. As observed by the authors who �rst derived the�xed point integral equation (42) for the SIR of the LMMSE estimate in [22], in generalthere is no closed form solution to this �xed point equation. For the special case when therewas no fading and all the users were received with the same power, the �xed point equationfor the SIR became quadratic (given in (44)) and there is an explicit solution (given by (45)).However, when the power allocation is in this special form we are able to obtain a closedform solution to ��wf . Continuing from (53), we have�2��wf = 1 � � Z �hhthr  1� hthrh ! dF (h) (56)= 1 � � (1 � F (hthr)) + �hthr (1� F (hthr))HM (hthr) (57)= 1 � � (1 � F (hthr)) + � � (1� F (hthr))21 � F (hthr) + ��wf �pHM (hthr) (58)where (56) uses the de�nition of hthr as ���wf , (57) follows from our notation of harmonicmean in (55) and we used (54) in (58). Comparing (58) with (44) we see that ��wf is equalto �� � �pHM(hthr)1�F (hthr) ; � (1� F (hthr))�, the SIR of the LMMSE estimate of a unit power user in alarge system with all other users received at constant power equal to �pHM(hthr)1�F (hthr) and numberof users per unit processing gain equal to � (1 � F (hthr)). Thus ��wf has an explicit form as20



given in (46). Substituting this structure of ��wf in (54), we see that our claim is veri�ed ifwe can show the existence of a solution hthr satisfying (54). DenotingK (h) = HM (h)1 + �pHM(h)1�F (h) �� � �pHM(h)1�F (h) ; � (1 � F (h))� ; h 2 �0; �h� (59)we have to show that hthr is the unique positive �xed point of K. The following lemmainvestigates the �xed points of K and identi�es a convergent �xed point iteration scheme;the proof is found in Appendix H.Lemma 4.10 K has a unique positive �xed point hthr. Furthermore, a �xed point iterationof K from small enough h converges to hthr.5 Proof of Main ResultIn this section we formally prove the asymptotic optimality of the water�lling power alloca-tion strategy heuristically identi�ed earlier. We �rst focus on the scenario when there is nofading (hi = 1 a:s: ) and begin with the long signature sequences channel. For this scenario,the authors in [27] conjectured that asymptotically the optimal power allocation policy isto allocate equal powers to all users independent of signature sequences. The water�llingstrategy identi�ed earlier indeed simpli�es to the constant power allocation when there isno fading. Our �rst main result is to show the asymptotic optimality of constant powerallocation formally and furthermore identify the loss in sum capacity to be of the order ofpN . Recall our notation that the policy of static allocation of equal powers is denoted by�P.Theorem 5.1 For the no fading scenario,lim supN!1 pN � �C(N)opt � �Csum � �P�� <1De�ne the function L (the Lagrangian) asL : P 7! �Csum (P)�  12N ��1 + ���p! KXi=1 E [Pi (S)� �p] :Here P is any power allocation such that Pi � 0a:s: and �� is the positive root of thequadratic in (45). Observe that L is just the sum of �Csum and a linear functional and henceis also a strictly concave function. Furthermore L (P) = �Csum (P) over F (N)3 . Recall our21



earlier notation (from Section 4) that P� is the power policy that maximizes �Csum over F (N)3 .Fix a realization of signature sequences S. Let (recall earlier notation from (126) and (128))p�i def= P�i (S) 8i = 1 : : :K :Then, by the concavity of the map C (Proposition 4.2) we arrive atC (p�1; : : : ; p�K)� C (�p; : : : ; �p) � 12N KXi=1 sti 0@�2I + KXj=1 sjstj �p1A�1 si (p�i � �p) (60)= 12N KXi=1 �i � �P�1 + �i � �P� �p (p�i � �p) (61)where we used (18) to arrive at (60) and (61) is arrived at by using the de�nition of �i � �P�from (39) (the quantity �i � �P� �p denotes (the (random) SIR of the LMMSE estimate of useri when all the users are transmitting at constant power equal to �p) and the matrix inversionlemma. Integrating (61), we arrive atL (P�)� L � �P� � 12N KXi=1 E 240@ �i � �P�1 + �i � �P� �p � ��1 + ���p1A (P�i (S)� �p)35 (62)� Kp2N KXi=1 E 240@ �i � �P�1 + �i � �P� �p � ��1 + ���p1A35 (63)� KKp2N E 240@ �1 � �P�1 + �1 � �P� �p � ��1 + ���p1A35 (64)� KKp2N E hj �1 � �P�� �� ji (65)� �KpC22pN (66)where (63) follows from Theorem 4.7, (64) from (40), (65) follows from the fact that the mapx 7! x1+x is contractive and (66) follows from (43) and Lemma 4.9. Recalling the observationthat L (P�) = �Csum (P�) and L � �P� = �Csum � �P�, the theorem follows. 2We now focus on the short signature sequences model while retaining the assumption ofno fading. The supportable rate at outage probability a with static power allocationR�(N)a � E [Copt(S)]1 � a (67)� �C(N)opt1� a (68)� �Csum � �P�+O � 1pN �1 � a (69)22



� �Cssum + o(1) +O � 1pN �1� a (70)� Ra � �P�+O � 1pN �+ o(1)1� a (71)where (67) follows from de�nition of R�a in (6) and the Markov inequality, (68) is from thede�nition of �Copt in (9) and the fact that the power allocation policy P de�ned as (and soas to be measurable in S)P : (h1; : : : ; hK; S) 7! PS (h1; : : : ; hK) for some PS 2 F1 (S)belongs to F (N)2 8S, we used Theorem 5.1 in (69), (70) comes from Proposition 3.1, and�nally (71) follows from (27). Thus we haveRa � �P� � R�(N)a � Ra � �P�1� a + o(1): (72)Hence in a large system the static constant power allocation fetches supportable ratewhich is optimal up to a factor (1 � a). Typical values of a that are of interest in thisframework are very small and thus the supportable rate with static power allocation is veryclose to the optimal supportable rate for large N .We now turn to the general scenario with fading and �rst consider the long signaturesequences model. The proof of the asymptotic optimality of the water�lling strategy issubtler than in the no fading situation but the essential ideas are contained in the proofof the no fading situation and the heuristic derivation of the water�lling strategy. Let usdenote the water�lling strategy of (52) byPwfi : (h1; : : : ; hK; S) 7! gwf (hi) def= 1��wf � 1hthr � 1hi�+ : (73)Recall that ��wf = �� � �pHM(hthr)1�F (hthr) ; � (1� F (hthr))� and the threshold hthr below which nopower is transmitted is the unique �xed point of K in (59). The formal statement of theasymptotic optimality of the water�lling policy Pwf that also identi�es the order of the lossin sum capacity is below:Theorem 5.2 lim supN!1 pN � �C(N)opt � �Csum �Pwf�� <1Proof De�ne the function L (the Lagrangian) asL : P 7! �Csum (P)� ��wfhthr2N KXi=1 E [Pi (h1; : : : ; hK; S)� �p]+ 12N KXi=1 E h1fhi�hthrg ���wfhthr � hi�i �Pwf��Pi (h1; : : : ; hK; S)i (74)23



where P is any power allocation such that Pi � 0 a:s:. Observe that L is just the sumof �Csum and a linear functional and hence is also a strictly concave function. Recall ournotation from Section 4 of P� that maximizes �Csum over F (N)3 . We proceed by the followingsteps:1. We show that L �Pwf� is close to L (P�) for large enough N . Formally,j L (P�)� L �Pwf� j< O  1pN ! : (75)2. We show that L (P�) � �Csum (P�) for large enough N . Formally,lim infN!1 �L (P�)� �Csum (P�)� � 0 : (76)Combining the observation that L �Pwf� = �Csum �Pwf� with the two steps above proves thetheorem. We �rst show (75) and then (76).Analogous to (60), for every realization of fading gains h1; : : : ; hK and signature sequencesS, we have from the concavity of the map C (Proposition 4.2) thatC (P� (h1; : : : ; hK; S))�C �Pwf (h1; : : : ; hK; S)� � 12N KXi=1 �i �Pwf� hi �P�i (h1; : : : ; hK; S)�Pwfi (hi)�1 + �i (Pwf) hiPwfi (hi) :(77)In (77) we have emphasized the fact that Pwfi is only a function of hi. Using our notationin (73) and integrating (77), we arrive atL (P�)� L �Pwf� � 12N KXi=1 E 241fhi>hthrg0@ �i �Pwf�hi(1 + �i (Pwf) higwf (hi)) � ��wfhthr1A� (P�i (h1; : : : ; hK; S)� gwf (hi))] : (78)In (78) we used the fact (by de�nition) that gwf (hi) 1fhi<hthrg = 0. Continuing from (78),L (P�)� L �Pwf� � KKp2N E 241fh1>hthrg j �1 �Pwf�h1(1 + �1 (Pwf )h1gwf (h1)) � ��wfhthr j35 (79)where we used (40) and Theorem 4.7. By de�nition, ��wf is equal to ��gwf and thus fromLemma 4.8 we have �1 �Pwf� a:s:�! ��wf as N !1 :By de�nition of gwf we get 1fh1>hthrg��wfh11 + ��wfh1gwf (h1) = ��wfhthr1fh1>hthrg : (80)24



Using the fact that the map x 7! x1+x is contractive, (80) and (79) yieldL (P�) � L �Pwf� � �Kp2 E hh11fh1>hthrg j �1 �Pwf�� ��wf ji� �C2Kp�h2pN (81)where we used Lemma 4.9 to arrive at (81). We have thus shown (75).To show (76), �x � > 0. Using Lemma 4.9, we have from a Chebyshev boundP24�1 �Pwf���wf � 1 + �35 � E hj �1 �Pwf�� ��wf j2i��2wf �2� 0@ C2��wf �pN1A2 (82)Then, using properties (34) and (33) of P� and (40) we haveL (P�) = �Csum (P�) + K��wf2N E 241fh1�hthrg0@hthr � h1�1 �Pwf���wf 1AP�1 (h1; : : : ; hK; S)35 : (83)Consider the case lim infN!1 E hP�1 (h1; : : : ; hK; S) 1fh1�hthrgi = 0 : (84)Using Theorem 4.7, (84) leads tolim infN!1 E h(P�1 (h1; : : : ; hK; S))2 1fh1�hthrgi � Kp lim infN!1 E hP�1 (h1; : : : ; hK; S) 1fh1�hthrgi= 0 (85)Then it follows from (83) that there exists a subsequence fNingn such thatL (P�)� �Csum (P�) � ���h2 E h�1 �Pwf�P�1 (h1; : : : ; hK; S) 1fh1�hthrgi� ���hpC12�2 E h(P�1 (h1; : : : ; hK; S))2 1fh1�hthrgi12 (86)limn!1L �P�(Nin)�� �Csum �P�(Nin)� � 0where we used the Cauchy-Schwartz inequality and the bound in (49) in arriving at (86)and we have thus shown (76) (the notation of the superscript N in P�(N) denotes thatP�(N) 2 F (N)3 ). Now suppose (84) does not hold and hence we havelim infN!1 E hP�1 (h1; : : : ; hK; S) 1fh1�hthrgi > 0 : (87)25



We evaluate the integral in (83) over the two disjoint sets A1 def= n�1 �Pwf� � ��wf (1 + �)oand A2 def= n�1 �Pwf� < ��wf (1 + �)o. As usual, 1Ai denotes the indicator function over theset Ai; i = 1; 2: We haveE 24P�1 (h1; : : : ; hK; S)0@hthr � h1�1 �Pwf���wf 1A 1fh1�hthrg1A135� �Kphthr��wf E h�1 �Pwf� 1A1i (88)� �Kphthr��wf�2 E hst1s11A1i (89)� �KphthrpC1��wf�2 0@ C2���wfpN1A (90)where we used Theorem 4.7 in (88), (48) to derive (89), and (49) combined with the Cheby-shev bound of (82) in arriving at (90). We also haveE 24P�1 (h1 : : : ; hK; S)0@hthr � h1�1 �Pwf���wf 1A 1fh1�hthrg1A235� E hP�1 (h1; : : : ; hK; S) (hthr � h1 (1 + �)) 1fh1�hthrg1A2i= E hP�1 (h1; : : : ; hK; S) (hthr � h1) 1fh1�hthrg1A2i� �E hP�1 (h1; : : : ; hK; S)h11fh1�hthrg1A2i� E hP�1 (h1; : : : ; hK; S) (hthr � h1) 1fh1�hthrg1A2i� �hthrKp  1� C22��2wf�2N ! : (91)>From (87), we havelim infN!1 E hP�1 (h1; : : : ; hK; S) (hthr � h1) 1fh1�hthrg1A2i > 0 : (92)Letting � = 1logN and combining (90), (91), and (92) we have shown (76) thatlim infN!1 �L (P�)� �Csum (P�)� > 0completing the proof. 2The result regarding short signature sequences is completely identical to the argumentgiven in the situation of no fading. Completely analogous to (72) we haveRa �Pwf� � R�(N)a � Ra �Pwf�1 � a + o(1):26



6 Optimal Power Allocation and System ParametersIn this section we study the behavior of the water�lling power allocation strategy in di�erentregimes of the system parameters. In particular we study the e�ects of the number of usersper unit processing gain � and the variance of the background noise �2 on the water�llingstrategy. This exercise allows us to comment on the gain in sum capacity with dynamicpower allocation over the constant power allocation strategy. We also generalize our resultsto the situation of multiple classes: users in di�erent classes have di�erent average powerconstraints.6.1 Dependence on the number of users per unit processing gainRecall the water�lling power allocation strategy de�ned in (73):Pwfi : (h1; : : : ; hK; S) 7! gwf (hi) def= 1��wf � 1hthr � 1hi�+ : (93)Here hthr is the level above which no power is transmitted and ��wf is the SIR seen by a unitpower user in a large system when all the other users are using the power allocation strategyPwf . Following the heuristic derivation of the water�lling strategy, intuitively one expectsthat when � is very small there are very few users in a system with a very large processinggain and thus, the users are essentially orthogonal to each other and hence the policy is verysimilar to the single user water�lling strategy. In the following result we make this intuitiveobservation precise:Proposition 6.1 Recall Pwf , the water�lling power allocation strategy (93), and the singleuser water�lling strategy (15). Then,hthr # hwf and ��wf " ��2 as � # 0 ; (94)hthr " �h and ��wf # 0 as � " 1 : (95)The proof is found in Appendix I.6.2 Dependence on SNR, the background noise varianceWe begin with the single user situation. It is intuitive that at high SNR (very low backgroundnoise variance �2), there is so much power available that the water�lling strategy gains verylittle over the static power allocation policy, namely equal power allocation over all fading27



states. This was observed in [6] through simulation studies with Rayleigh and Nakagamifading examples. We make this statement precise and use it to �nd the structure of thewater�lling strategy at high SNR in the general multiuser scenario. Recall the single usercapacity formula from (14):maxfP�0:E[P]��pg �C (P) def= maxfP�0:E[P]��pg 12E "log  1 + hP (h)�2 !#and the optimal power allocation (water �lling) from (15) as:P�(h) =  �2hwf � �2h !+ : (96)Proposition 6.2 In high SNR, the optimal power allocation (96) converges to the constantpower policy and further more the loss in capacity by using the constant power policy goes tozero. Formally, as �2 ! 0, P� a:s:�! �p (97)�C (P�)� �C (�p) �! 0 : (98)The proof is completely elementary. As �2 ! 0, to meet the average power constraint wemust have �2hwf ! �p. Thus the water�lling strategy converges to the static power allocationstrategy at high SNR showing (97). The gain with water�lling strategy at any realization ofthe fading gain h is12  log 1 + hP� (h)�2 !� log 1 + h�p�2!! = 12  log 1 + h (P� (h)� �p)�2 + h�p !!� 12 log 1 + �2hwf �p! (99)where we used the de�nition of P� (h) as the single user water�lling policy in (15). Thus bythe dominated convergence theorem and (97) we have shown (98).We now turn to the multiuser scenario. Based on the single user result above one guessesthat when � is very small at high SNR there is not much to gain by using the water�llingstrategy over the static power allocation policy of equal powers at all fading states. Thecorrect extension of this intuition to the multiuser scenario is that when � � 1 the numberof users is less than the degrees of freedom available and each user can essentially null outthe other users and we are back in the single user situation. If � > 1, this strategy failsand there will be a strict loss with constant power allocation even at high SNR. The precisestatement is below and the proof is in Appendix J.Proposition 6.3 For every N , at high SNR (i.e., as �2 # 0),28



1. For � � 1, we have hthr # 0 and ��wf " 1. Furthermore, �Csum �Pwf�� �Csum � �P�! 0.2. For � > 1 we have hthr # ho > 0 and ��wf " 1��pho <1. Here ho is the unique positivepoint of the map Ko : h 7! HM (h) (� (1 � F (h))� 1)+� (1 � F (h)) :In this case, there is a strict loss in sum capacity by using the equal power allocationscheme.We would like to give an intuitive explanation as to why this result is a priori feasible: Recallthat successive decoding using the LMMSE receiver achieves sum capacity. At high SNR,the LMMSE receiver behaves as a decorrelator (Chapter 5 in [26]) and nulls out the multipleaccess interference. When � � 1, the entire multiple access interference can be nulled out andthus we are back to the single user channel situation and we have the result that water�llingmakes little di�erence compared to constant power allocation in this situation. However,when � > 1, the multiple access interference is not completely nulled out and the structureof the power strategy of the other users is still relevant. Having provided this intuition,we now dispel another explanation: at �rst sight it might appear that as N grows largethe signature sequences of the users are orthogonal for � � 1 and are not orthogonal for� > 1 and hence provide the intuition for this result. However, as N grows, the users areorthogonal even when � > 1. In fact, when the random variables vij are Gaussian, a simplecalculation shows that maxi6=j �stisj�2 a:s:�! 0 as N !1and K grows polynomially in N .6.3 Multiple ClassesWe now turn to a generalization of our model by allowing users to have di�erent averagepower constraints. In particular, we assume that there are L classes of users; users in class lhave average power constraint �pl for l = 1 : : : L. We assume that the number of users of classl is Kl def= bN�lc). For the regime of large N a close observation of the heuristic derivation inSection 3 shows that much of the analysis remains valid in this case also. In particular, whenthere is no fading, the constant power policy is asymptotically optimal. In the general caseof fading, the structure of the optimal power policy based on the asymptotic calculation isstill water�lling (73) but now the Kuhn-Tucker coe�cient � is di�erent for users of di�erentclasses and is chosen such that the average power constraints are met: For any user i of classl, the policy is P�i : �h1; : : : ; hPLl=1Kl; S� 7!  1�l � 1��wfhi!+ (100)where ��wf is the SIR of a unit power user in a large system with users adopting this powerstrategy and is the solution to the �xed point equation (by an appeal to Lemma 4.8; analogous29



to (53)): �2��wf = 1� LXl=1 �l Z �h�l=��wf  1� �l��wfh! dF (h) (101)Analogous to the continuation in Section 3 for the single class case, we will sketch an argu-ment that ensures the existence of the quantities ��wf and �l and also demonstrates a simple�xed point iteration algorithm that converges to the desired quantities. We will only discussthe major changes from the corresponding steps in Section 3. Denoting h(l)thr def= �l��wf , the levelbelow which no power is transmitted by users of class l, analogous to (54) we have, from theaverage power constraint on the power policy in (100), that h(l)thr is the solution to the �xedpoint equation: h(l)thr = HM �h(l)thr�1 + �plHM�h(l)thr�1�F�h(l)thr� ��wf : (102)Continuing from (101), analogous to (56), (57) and (58), we have using (102) that�2��wf = 1� LXl=1 �l �1 � F �h(l)thr��+ LXl=1 �l �1 � F �h(l)thr��21� F �h(l)thr�+ ��wf �plHM �h(l)thr� : (103)In the single class case we were able to observe that ��wf was equal to the solution of aquadratic equation (44). The natural extension is the following. Consider a system withprocessing gain N where Kl users are received with the same power pl (this is equivalent totransmit power pl but the fading is degenerate, i.e., hi (n) = 1) for l = 1 : : : L. As N !1,assuming that KlN ! �l for every class l, it follows from Lemma 4.8 that the asymptotic SIRof a unit (received) power user is a positive constant �� (fpl; �lg l = 1 : : : L) that satis�es the�xed point equation (analogous to (44)):�2� = 1� LXl=1 �l�pl1 + �pl : (104)Comparing (103) with (104) we observe that��wf = ��0@8<: �plHM �h(l)thr�1 � F �h(l)thr� ; �l �1 � F �h(l)thr��9=; ; l = 1 : : : L1A : (105)Analogous to the �xed point iteration of the map in (59) for the single class scenario, wede�ne the following maps for each class l:Kl : (h1; : : : ; hL) 7! HM (hl)1 + �plHM(hl)1�F (hl) �� �n �plHM(hl)1�F (hl) ; � (1� F (hl))o ; l = 1 : : : L� (106)It follows from (102) and (105) thatKl �h(1)thr; : : : ; h(L)thr� = h(l)thr :Analogous to Lemma 4.10, we justify the existence of h(l)thr by the following proposition:30



Proposition 6.4 Consider the �xed point iteration:hl (0) def= 0 8l = 1 : : : Lhl (n+ 1) def= Kl (h1 (n) ; : : : ; hL (n)) 8n � 0 ; 8l = 1 : : : L :Then fhl (n)gn is an increasing sequence that converges to h(l)thr for each l = 1 : : : L .Thus h(l)thr exist as the limits of the �xed point iteration above. We omit the proof of thisproposition while pointing out the replacement of the key observation (163) in the proof ofLemma 4.10: For every l = 1 : : : L,Kl (h1; : : : ; hL) � h() �2�plh + �l! f (h; hl) +Xj 6=l �j �pjHM (hj) f (h; hl)�plh+ �pjHM(hj)1�F (hj) f (h; hl) � 1where f (h; hl) def= Z �hhl  1� hho! dF (ho) :This also shows the uniqueness of h(l)thr. The formal statement of the optimality of this powerallocation solution, analogous to Theorem 5.2 is below and the key ideas of the proof are allcontained in the proof of Theorem 5.2.Theorem 6.5lim supN!1 pN � �C(N)opt � �Csum �Pwfl ; l = 1 : : : L�� <1 and Kl = b�lNc :Extensions of the observations made in Section 6.2 to the multiple class scenario are natural.Constant power allocation (equal to �pl for users of class l) to the users incurs no loss in sumcapacity as compared to the water�lling scheme at high SNR if and only if PLl=1 �l � 1.7 Numerical ExamplesIn this section we demonstrate the value of our theoretical results by simulating di�erentpower control strategies in a Rayleigh fading channel and plotting the corresponding sumcapacities achieved for various parameters of loading and SNR. We assumed that the com-ponents of the signature sequences are distributed as zero mean, unit variance Gaussianrandom variables (our theoretical results show that the actual distribution does not matter;so long as it has zero mean, unit variance and bounded fourth moment). In Fig 1, we plotsum capacity with the constant power allocation and also with the optimal power allocationpolicy (this policy depends on the actual realization of the signature sequences). We observe31
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Figure 1: No fading scenario. Sum Capacity is plotted with the optimal allocation and theconstant power allocation policies with N = 32.that there is very little di�erence in sum capacity between these two policies. Thus N = 32is already large enough for the di�erence to be very small. Assuming Rayleigh fading, Fig 2and Fig 3 plot sum capacity with three di�erent power allocation policies: the asymptot-ically optimal water�lling policy, the optimal power allocation policy (which is a functionof the realization of the signature sequences and fading) and the constant power allocationpolicy, for di�erent values of SNR and number of users equal to N=2 and N respectively.The �rst observation from Fig 2 and Fig 3 is that the sum capacity with the asymptoti-cally optimal policy of water�lling is already very close to that with the optimal policy evenat N = 32. Furthermore, from Fig 2 we observe that with the number of users per unitprocessing gain being small (� = 0:5) the di�erence in sum capacity by using one of thesetwo policies as compared with the constant power allocation policy (constant for all fadinglevels and realizations of signature sequences) is fairly small. Fig 3 shows that this di�erenceincreases when � is increased to 1. This observation is in concord with the observation in[6] that water�lling gains very little over constant power allocation policy in a single userfading channel for reasonably high SNRs. Proposition 6.3 predicts that the penalty in sumcapacity by using the constant power allocation policy grows with the number of users perunit processing gain. We observe this behavior in Fig 4 where we have plotted sum capacityfor �xed SNR (5dB) versus the number of users: while there is very little di�erence in sumcapacity between the optimal power allocation and water�lling policies, the penalty by usingconstant power allocation policy grows with the number of users.Even though closed form solutions are not known for the optimal power allocation policy(these depend in general on the instantaneous realizations of the signature sequences and fad-ing gains), we can compute numerically the sum capacity with the optimal power allocation.We used the software maxdet available in [31] to arrive at the optimal power allocation;32
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Figure 2: Rayleigh fading scenario with N = 32 and K = 16. Sum capacity in bits/s/Hz isplotted with the optimal allocation, asymptotically optimal water�lling allocation and theconstant power allocation policies.the software provides an interior point algorithm to solve the determinant maximizationproblem:maxpi�0 L (p1; : : : ; pK; �1; : : : ; �K) (107)where L (p1; : : : ; pK; �1; : : : ; �K) def= log det I + KXi=1 sistihipi!+ KXi=1 �i (pi � �p)We obtained sum capacity at power prices �1; : : : ; �K by averaging the scaled (by 1=2N)maximal value of the optimization problem above (107). Sum capacity is then the smallestvalue over all power prices (the corresponding prices are known as \equilibrium power prices"or Kuhn-Tucker coe�cients; this is from standard Lagrange theory in convex analysis - seeCorollary 28.4.1 in [14]). From the proof of Theorem 5.2, we have a good guess for theKuhn-Tucker coe�cients: �1 = � � � = �K = ��wfhthr. The actual power prices were found bya line search. The solution to the optimization problem (107) with the equilibrium powerprices gives the optimal power allocation and thus we arrive numerically at sum capacitywith the optimal power allocation policy.8 Multiple Antenna SystemsWe now turn to the multiple antenna model and refer the reader to Section 8 of [22] fora discussion of the standard model and advantages of this diversity scheme. A baseband33
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Figure 3: Rayleigh fading scenario with N = 32 and K = 32. Sum capacity in bits/s/Hz isplotted with the optimal allocation, asymptotically optimal water�lling allocation and theconstant power allocation policies.
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Figure 4: Rayleigh fading scenario with N = 16 and SNR = 5dB. Sum capacity is plottedwith the optimal allocation, asymptotically optimal water�lling allocation and the constantpower allocation policies versus number of users.34



model for a synchronous multiaccess antenna array channel isY (n) = KXi=1Xi(n)~hi (n) +W(n) : (108)Here, n denotes the time of channel use, Xi (n) is the transmitted symbol at time n of useri and Y (n) is a N dimensional vector of received symbols at the N antenna elements ofthe array at the receiver. The vector ~hi (n) represents the fading of the ith user at timen at each of the antenna array elements and the entries are independent and identicallydistributed complex stationary and ergodic processes. W (n) is an additive white propercomplex Gaussian noise process. Making the assumption that the channel fading of theusers can be measured and tracked perfectly (implicit is the notion that the time scale atwhich the path gains change is much slower than the symbol rate of the system) and that boththe transmitter and receiver know the fading state, the multiple antenna MAC model is verysimilar to that in the long random signature sequence model with no fading (i.e. hi = 1a:s:in (1)). The key di�erence is that the entries of the signature sequences si are scaled by 1pNin the CDMA model (1) while the entries of ~hi are not. Thus de�ning si = 1pN ~hi we arriveat the following expression for the sum capacity of the multiple antenna MAC (analogous to(9) and (10)):�CAopt (N) def= supP2F(N)2 �CAsum (P) def= supP2F(N)2 12N E "log det I +N KXi=1 ��2sistiPi (S)!# :Some remarks about this expression are now in order: The power allocation policy P nowdepends only on S = pN h~h1; : : : ; ~hKi and the sum capacity with the power allocation policyP in nats/s/antenna is written as �CAsum (P). The sum capacity of the MAC is (as in (9)) thesupremum over all valid power allocation policies. The di�erence in the expression for sumcapacities when compared to that of the CDMA model is that the received power is scaledby N .2We expect the result of Theorem 5.1 to hold in this case also in some appropriate sense,i.e., the power allocation policy of constant power over all fading levels is asymptotically (inthe number of antennas at the receiver and corresponding number of users) optimal. Weretain our earlier notation of �P to denote the static power allocation policy and formalizethis result below:Theorem 8.1 lim supN!1 � �CAopt (N)� �CAsum � �P�� � � (�� 1)+ ~Kp2�p2In the underlying physical model, the received power does not arbitrarily increase as N increases. AsN becomes too large, either the size of the antenna forces the received power to become constant (since thespacing between the antennas are at least half the wavelength apart) or the distance from the antennas tothe users increases (allowing us to keep the same size of the antennas) forcing the received power to becomeconstant. For small values of N , this linear increase in received power is justi�ed. We look at the asymptoticof sum capacity in the regime of large N in this scenario nevertheless since we believe that the asymptoticvalue of sum capacity is reached even for small values of N . Then linear increase in received power is therelevant model since we are primarily interested in the regime of small number of antennas.35
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Figure 5: Sum Capacity in bits/s with 1 antenna at the receiver is plotted versus number ofusers at a �xed SNR level of 5dB with both the optimal and constant power allocations.Here ~Kp is some constant independent of N . We relegate the proof of this result to Ap-pendix K. This result is rather surprising from the context of the results for the case ofN = 1, the single antenna scenario. When there is only one antenna the optimal power al-location policy is to let only the user with the best channel amplitude transmit and for thatuser to follow the water�lling power policy [10]. The gain in sum capacity by following thisstrategy over the suboptimal policy of constant power allocation to the users at all fadinglevels can be substantial; the larger the number of users, the larger this multiuser diversitygain is. Fig 5 plots the sum capacity with both these power policies assuming i.i.d. Rayleighfading from the users to the single antenna. We can see that with an increasing number ofusers, the gain in sum capacity is widening. However, when there are a substantial numberof antennas, the gain by utilizing multiuser diversity vanishes and the constant power alloca-tion policy performs just as well. In Figure 6, we plot the sum capacity as a function of theSNR of the users when following the optimal policy as well as when following the constantpower allocation policy. In practice, a small number of antennas is considered practical atthe receiver (to validate our assumption that the paths from any user to each antenna haveindependent fading, the antennas have to be at least half a wavelength apart and this gen-erally implies a strict restriction on the number of antennas given the size of the receiver).We assume N = 5 antennas for our simulations. In this simulation we assumed further thateach component of ~hi (n) is i.i.d. complex Gaussian with zero mean and variance 1. Weobserve that the loss in sum capacity with the constant power allocation policy as comparedto the optimal power allocation policy is not huge even when N is very small (N = 5 in thissimulation example). 36
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Figure 6: Sum Capacity in bits/s with 5 antennas at the receiver is plotted versus the SNRof the users with both the optimal and constant power allocations.The antenna model of (108) implicitly assumes that the users are approximately equidis-tant from the antenna array. The vector of path gains from any user i to the antenna arraycan more generally be modeled by ĥi~hi where ~h is as before and ĥi is a scalar complexnumber that is independent of the vector ~hi and models the (slowly varying, when comparedto the components of ~hi) component of the overall path gain that captures the distance ofuser i from the receiver and the shadowing loss of the signal of user i. Then the receivedsignal at the antenna array in symbol interval n isY (n) = KXi=1Xi(n)ĥi~hi (n) +W(n) :This model is now very similar to the DS-CDMA model in (1). The asymptotically optimalpower allocation policy in this model, analogous to the results we have for the DS-CDMAcase, is water�lling. This policy depends only on the slowly varying component ĥi for user iand some constants that depend on the statistics of the stationary fading distributions. Theformal result will be analogous to Theorem 5.2 and we do not pursue this here for brevity.9 ConclusionsThough we have identi�ed the asymptotic structure of the optimal power allocation policy,it remains an important open problem to �nd a closed form expression for the exact optimalsolution for every �nite system size N and �xed signature sequences and path gains. Aclosed form expression for the optimal powers as a function of the signature sequences and37



path gains appears to be unattainable. In fact, exactly this optimization problem (a �nitedimensional generalized version of (9)) is considered in [24] where the authors derive interiorpoint algorithms that converge to the optimal allocation; these algorithms have worst-casepolynomial (in N , the system size) run time complexity. A software routine that implementsthe ellipsoidal algorithms for determinant maximization is available in [31]. Nevertheless,the water�lling power policy identi�ed in this paper is very appealing practically, due to itssimplicity and the computation requirements to arrive at it is practically nil. The fadingstatistics can be estimated and used to adaptively compute the threshold level of the water-�lling strategy using the �xed point iteration outlined in the paper. Though our estimatefor the gap in sum capacity between this policy and the optimal policy is of the order of pNfor large N , our simulation studies suggest that this gap is very small. even for reasonablysmall values of N . In the context of multiple antenna systems, we saw this for a very smallnumber of antennas (N = 5 in our example). Thus, even if closed form expressions could befound for the optimal power allocation policy, it might not be worthwhile to implement theoptimal allocation because of its complexity.Another natural extension of the problem formulation in this paper is to characterizepower policies that maximize any linear functional of the rates at which the users can jointlyreliably transmit. This problem was addressed and solved in [21] for multiple access fadingchannels with a single degree of freedom. The extension of this result to multiple degrees offreedom remains an important open problem.A Proof of Proposition 3.1We �rst recall a special case of the central result of [19] regarding the convergence of theempirical distribution of eigenvalues of a random Hermitian matrices: Let GN be the em-pirical distribution function of the eigenvalues of PKi=1 sistihig (hi) (there are N eigenvalues).Then GN converges almost surely in distribution to a deterministic distribution G� wherethe Stieltjes transform m (z) of G� satis�es the �xed point equation:m (z) = 1�z + � R �hg(h)dF (h)1+�m(z) 8z 2 C+ :Here the Stieltjes transform of a distribution function G is de�ned asmG (z) = Z 1� � zdG (�) :It also follows from [19] that the support of G� is bounded above by Kg�h (1 +p�)2 whereKg denotes the upper bound on the function g. Applying Theorem 1.1 and its corollary of[1] to our case and denoting Ks = 1 +Kg�h (1 +p�)2, we have thatP[GN (Ks) = 1 for all large N ] = 1 :38



Thus we have that12N log det I + KXi=1 ��2sistihig (hi)! = 12 Z log �1 + ���2� dGN (�)a:s:�! 12 Z log �1 + ���2� dG� (�) (109)def= �Cgsum :We now show convergence to �Cgsum in the �rst moment. We have12N log det I + KXi=1 ��2sistihig (hi)! � 12N KXi=1 log �1 + ��2hig (hi) stisi� (110)� 12N KXi=1 log �1 + ��2�hKgstisi� (111)� �hKg2N�2 KXi=1 stisiwhere (110) follows from the Hadamard inequality and (111) follows from the fact that hi � �hand g is bounded above by Kg. Since1N KXi=1 stisi a:s:;L1�! �the proposition follows from the pointwise convergence result above (109) and the dominatedconvergence theorem. 2B Proof of Proposition 4.1We have �C(N)opt = �Csum (P�)� 12N KXi=1 E hlog �1 + ��2stisihiP�i (h1; : : : ; hK; S)�i= K2N E hlog �1 + ��2st1s1h1P�1 (h1; : : : ; hK; S)�i� K2N maxP2F(N)2 E hlog �1 + ��2st1s1h1P1 (h1; : : : ; hK; S)�i (112)where the derivation of these inequalities is completely straightforward. Using Jensen in-equality conditionally on h1; s1, we have from (112) that�C(N)opt � �2 supP2F2 nE hlog �1 + st1s1h1P �h1st1s1��io (113)39



where the set F2 is de�ned asF2 def= nP : h1st1s1 7! R+; E hP �h1st1s1�i � �po :Now, for every P 2 F2 we haveE hlog �1 + st1s1h1P �h1st1s1��i � log 2 + E hlog �2h1st1s1P �h1st1s1��i� 2 log 2 + log �E hh1st1s1i�+ log �E hP �h1st1s1�i�� 2 log 2 + log ��h�p� (114)where we used Jensen inequality in the derivation of the last but one step. Now combining(114) and (113) we have shown Proposition 4.1 by denoting Kc = log 2 + 12 log ��h�p�. 2C Proof of Proposition 4.2This result is fairly well known: [20] shows the concavity of a somewhat modi�ed map butthe reference is slightly obscure. The authors in [24] consider a slightly generalized version ofthe map (28) and mention that the map is known to be concave. We o�er the following proofbeginning with some notation: For any x = (x1; : : : ; xn)t 2 Rn, let x[1] � � � � � x[n] denotethe components of x in decreasing order, called the order statistics of x. Majorization is apartial order on the elements of Rn and makes precise the vague notion that the componentsof a vector x are \less spread out" or \more nearly equal" than are the components of avector y by the statement x is majorized by y.De�nition C.1 For x; y 2 Rn, say that x is majorized by y (or y majorizes x) ifPki=1 x[i] � Pki=1 y[i]; k = 1 : : : n� 1Pni=1 x[i] = Pni=1 y[i]A simple (trivial, but important) example of majorization between two vectors is the follow-ing:Example C.1 For every a 2 Rn such that Pni=1 ai = 1,(a1; : : : ; an)t majorizes �1n; 1n; : : : ; 1n�tReal functions on Rn that are monotone nonincreasing in majorization order are called Schur-concave functions. Formally, 40



De�nition C.2 A real valued function � : Rn ! R is said to be Schur-concave if for allx; y 2 Rn such that y majorizes x we have � (x) � � (y).An important class of Schur-concave functions is the following (Theorem 3.C.1 in [11]):Example C.2 If g : R! R is strictly concave then the symmetric concave function � (x) =Pni=1 g (xi) is Schur-concave.Let A and B be two symmetric matrices of dimension n � n. Let �A and �B denote thevectors of eigenvalues of A and B respectively. The following result (Theorem 9.G.1 in [11])shows that the eigenvalues of A + B (the components of the vector �A+B) are less spreadout than the sum of the order statistics of the eigenvalues of A and B:Lemma C.1 For any two symmetric matrices A and B,��A+B1 ; : : : ; �A+Bn �t is majorized by ��A[1] + �B[2]; : : : ; �A[n] + �B[n]�tWe now use these results to show that the map C is strictly concave. Fix p(1) and p(2) in thepositive orthant in RK. For every � 2 (0; 1) we have� log det I + KXi=1 p(1)i hisisti!+ (1� �) log det I + KXi=1 p(2)i hisisti!= � NXj=1 log �1 + �(1)[j] �+ (1 � �) NXj=1 log �1 + �(2)[j] � (115)� NXj=1 log �1 + ��(1)[j] + (1� �)�(2)[j] � (116)� NXj=1 log �1 + �(3)j � (117)= log det I + KXi=1 ��p(1)i + (1� �) p(2)i �hisisti! (118)where ��(t)1 ; : : : ; �(t)N � is the vector of eigenvalues of the matrix �I +PKi=1 sistihip(t)i � for t =1; 2. Also, ��(3)1 ; : : : ; �(3)N � is the vector of eigenvalues of the matrix hI +PKi=1 ��p(1)i + (1� �) p(2)i �hisistii.Then (115) follows from recalling that �[1]; : : : ; �[N ] are the order statistics of the �1; : : : ; �N .The inequality in (116) follows from concavity of the logarithm function and is strict unless�(1)[j] = �(2)[j] for every j = 1 : : : N . The inequality in (117) follows from Lemma C.1 and fromExample C.2. This inequality is strict unless the two matrices nhI +PKi=1 sistihip(t)i iot=1;241



have the same eigenvectors (i.e., the two matrices commute) and if the eigenvalue corre-sponding to an eigenvector for t = 1 is �(1)[j] then the eigenvalue for t = 2 corresponding tothe same eigenvector is �(2)[j] for every j = 1 : : : N . The equality (118) is just de�nition ofthe eigenvalues �(3). Thus, we have shown the map in (28) to be concave (in fact, we haveshown that the map in (28) is Schur-concave). Furthermore we have shown that the map isstrictly concave if and only if fhisisti; i = 1 : : : Kg are linearly independent. 2D Proof of Proposition 4.4We �x N throughout this proof. From Proposition 4.1 we know that �C(N)opt is �nite. Recallthe de�nition of F (N)0 from (31). De�ne functions f0; : : : ; fK from F (N)0 to the non-negativereals as follows: f0 : P 7! �C(N)opt � �Csum (P)fj : P 7! E (Pj)� �p2N ; 8j = 1 : : :K :We �rst observe that the functions fj are �nite on the domain F (N)0 . Now, by de�nition of�C(N)opt , the system of equationsf0 (P) < 0; f1 (P) < 0; : : : ; fK (P) < 0has no solution P 2 F (N)0 . Consider the following claim:9�0; �1; : : : ; �K � 0; not all zero such that KXj=0 �jfj (P) � 0; 8P 2 F (N)0 : (119)Suppose this is true. Our �rst observation is that �0 6= 0 sincePKj=1 �jfj (P) � 0 is impossiblefor all P 2 F (N)0 . Thus dividing throughout by �0, (119) can be rewritten as�Csum (P)� KXj=1 �j (E [Pi]� �p) � �C(N)opt ; 8P 2 F (N)0and hence �C(N)opt � supP2F(N)0 �Csum (P)� KXj=1 �j (E [Pj]� �p)2N : (120)By the symmetry among the users, it follows from (120) that for every permutation � 2 SKwe have �C(N)opt � supP2F(N)0 8<: �Csum (P)� KXj=1 ��(j)2N (E [Pj (h1; : : : ; hK; S)]� �p)9=; : (121)42



Observe that the map on the positive orthant of RK(�1; : : : ; �K) 7! supP2F(N)0 8<: �Csum (P)� KXj=1 �j2N (E [Pj (h1; : : : ; hK; S)]� �p)9=;is concave. De�ning � = 1K PKi=1 �i and using in (121) the concavity of the map above wearrive at�C(N)opt � supfP:Pi�0; 8i=1:::Kg( �Csum (P)� �2N KXi=1 (E [Pi (h1; : : : ; hK; S)]� �p)) : (122)Now we have for every � � 0 that�C(N)opt � �Csum (P)� �2N KXj=1 (E [Pj]� �p) ; 8P 2 F (N)2 :Since F (N)2 � F (N)0 we have for every � > 0�C(N)opt � supP2F(N)0 8<: �Csum (P)� �2N KXj=1 (E [Pj]� �p)9=; (123)Combining (122) and (123) the proof is complete. It remains now to show (119). To seethis, de�ne C1 = nz = (�0; : : : ; �K) : 9P 2 F (N)0 3 fj (P) < �j; 8j = 0 : : :KoC2 = fz = (�0; : : : ; �K) : �j � 0; 8j = 0 : : :Kg :It is seen that C1 is a convex nonempty set in RK+1 and C1 \ C2 6= �. By the separationtheorem for convex sets (Theorem 11.3 in [14]) there exist �0; : : : ; �K , not all zero and reala such that KXj=0�j�j � a; 8z 2 C1; (124)KXj=0�j�j � a; 8z 2 C2 : (125)Now (125) implies that a � 0 and �j � 0; 8j = 0 : : : K. Fix P 2 F (N)0 . Since fj (P) is �nitefor every j = 0 : : :K we have for every � > 0 that(f0 (P) + �; : : : ; fK (P) + �) 2 C1and substituting this in (124) we haveKXj=0 �j (fj (P) + �) � 0; 8� > 0; 8P 2 F (N)0 :Since this is true for every arbitrary � > 0, we have shown (119). This completes the proofof Proposition 4.4. 243



E Proof of Proposition 4.5Fix one realization of fading gains h1; : : : ; hK and signature sequences S. Since the map Cin (28) is concave, any tuple of of powers (denoted by (p�1; : : : ; p�K)) that maximizesC (p1; : : : ; pK) � �2N KXi=1 (pi � �p) (126)in the positive orthant of RK has the following structure:@C@pi (p�1; : : : ; p�K) = � (127)p�i = 0B@ 1� � 1sti ��2I +Pj 6=i sjstjhjp�j��1 sihi1CA+ 8i = 1 : : :K : (128)The derivation of (128) from (127) is completely analogous to that of (21). If the realizationh1; : : : ; hK; S is such that fhisisti; i = 1 : : :Kg is a linearly independent set then C is strictlyconcave and the solution p1�; : : : ; p�K in (128) is unique. In general the solution set is anonempty convex set.We now construct a power allocation policy that is equal to p�1; : : : ; p�K at the realizationh1; : : : ; hK; S. If there are no point masses in the distribution F and in the common distri-bution of vij then with probability 1 we have fhisisti; i = 1 : : :Kg are linearly independentand C is strictly concave. In this case the tuple (p�1; : : : ; p�K) is uniquely de�ned almosteverywhere (the value depends on the realization of fading gains and signature sequences).In this scenario, we de�ne the power allocation P�i for every user i as:P�i (h1; : : : ; hK; S) def= p�i : (129)If there are point masses in F and the common distribution of vij such that there is a positiveprobability of fhisisti; i = 1 : : :Kg being linearly dependent, then on these realizations, thesolution set (p�1; : : : ; p�K) is closed and convex and we select any of these points to be P� atthat realization of fading gains and signature sequences. Since there is ambiguity in P� onlyon point masses, we still have P�i a measurable function of h1; : : : ; hK; S for each i = 1 : : :K.More generally, we can appeal to general measurable selection theorems ([30] is a goodreview on these results; Theorem 3.1 is relevant to our case) to select a measurable P� thatsatis�es the property (128) at almost every realization of fading gains and sequences. Sincefor (almost) every realization of fading states and signature sequences P� is the maximizerof the map in (126), it follows from Proposition 4.4 that�C(N)opt = L� (P�) = supP2F(N)0 L� (P) (130)where L� maps F (N)0 to the reals asL� : P 7! �Csum (P)� �2N KXi=1 (E [Pi (h1; : : : ; hK; S)]� �p) :44



Furthermore, it follows for any P 2 F (N)2 thatL� (P) < �C(N)opt for P not satisfying (128) on realizations of positive measure. (131)Thus if we can show the existence of a power allocation policy ~P� 2 F (N)2 where the supremumof (9) is achieved, the claim of this proposition follows from Proposition 4.3 and (131). Wenow show the existence of such a power allocation policy.Fix a realization h1; : : : ; hK; S and consider p�1; : : : ; p�K de�ned in (128). Since each of thep�i is bounded from above (by ��1) it follows that P� 2 F (N)0 and furthermoreE [P�1 (h1; : : : ; hK :S)] = � � � = E [P�K (h1; : : : ; hK; S)] � �pfor each i = 1 : : :K. We used Proposition 4.3 in the observation that E [P�i ] cannot be lessthan �p for any i = 1 : : :K. >From (130) we conclude that if we can show that E [P�1 ] = �p, wehave proved the claim of this proposition that�C(N)opt = L� (P�) = �Csum (P�) :Fix � > 0 and let us denote the (measurably selected) power allocation policy P�� whichmaximizes L� in F (N)0 . In the previous notation P� maximizes L�. We begin with thefollowing claim for any 0 < a < b:g : � 7! E [P��1 (h1; : : : ; hK; S)] is continuous on � 2 [a; b] : (132)Suppose true. Now g (�) < 1� and thus as � ! 1 we arrive at g (�) ! 0. From Proposi-tions 4.4 and 4.3 we have, for every p > 0, that there exists �p > 0 such that g (�p) � p.Using (132), given �p we have ~� such that g �~�� = �p. Observe that�C(N)opt = supP2F(N)2 �Csum (P) � supP2F(N)2 L~�� supP2F(N)0 L~� (P) � L~� �P�~��= �Csum �P�~��where we have used the hypothesis that g �P�~�� = �p in the derivation of the last step. Thus�C(N)opt = �Csum �P�~�� : (133)We will now show that ~� must equal � (proposed by Proposition 4.4) and complete the proof.By the concavity of L�, for any P 2 F (N)0 that does not satisfy (32) on realizations (of fadinggains and signature sequences) with positive probability measure, we have L� (P) < L� (P�).Using (133) and Proposition 4.4 we arrive at � = ~�. It only remains to show the claim in(132). We only show this for the case when C is strictly concave for almost every realizationof h1; : : : ; hK; S. The extension to the general case when there are realizations of positive45



measure which lead to non-strict concavity of C is not pursued here. Fix 0 < a < b and arealization of h1; : : : ; hK; S. We �rst observe that the mapG : � 7! (p��1 ; : : : ; p��K ) def= arg maxpi�0;i=1:::K C (p1; : : : ; pK)� �2N KXi=1 (pi � �p)is continuous for every realization of h1; : : : ; hK; S such that C is strictly concave. For suchrealizations, G is invertible and we have (from (32))stj  �2I + KXi=1 hip��i sisti!�1 sjhj = �; 8j = 1 : : :K : (134)Fix a � � � b and consider �n ! � in [a; b] as n ! 1. Observe that the image of[a; b] under G in the positive orthant of RK is contained in the box [0; a�1] � � � � [0; a�1].Furthermore, the image is closed (using (134)) and thus compact. Now consider the sequencef(p��n1 ; : : : ; p��nK )gn�1 in the compact image G [a; b]. There exists a subsequence fp��ingn�1and some ~� 2 [a; b] and p�~� such that p��in ! p� ~mu. From the continuity of the inverse ofG (using (134)) we arrive at �in ! ~�. By hypothesis, �n ! � and thus � = ~� allows us toconclude that G (�n)! G (�) showing the continuity of G. Thus for almost every realization,we have shown continuity of G. Fix � > 0 and by Egoro�'s theorem (Theorem 3.6.23 in [15]),we have uniform continuity of the map� 7! (p��1 ; : : : ; p��K )on a set E such that P[(h1; : : : ; hK; S) 62 E] < �2a. Hence there exists n0 such that 8n � n0,we have on E, j P��n �P�� j (h1; : : : ; hK; S) < �2 : (135)Then, j g (�n)� g (�) j � E [j P��n �P�� j]< �2 + E hj P��n �P�� j 1f(h1;:::;hK ;S)2Egi< �; 8n � n0where we used (135) in the last step and the fact for every a � � � b that P�� < a�1 in thesecond step. Since � is arbitrary, we have completed the proof of (132). 2F Proof of Theorem 4.7Fix the processing gain N and the number of users K = b�Nc. >From the argumentfollowing Proposition 4.4 and (128) we know that any optimal power allocation has thefollowing structure:P�i (h1; : : : ; hK; S) = 0B@ 1�(N) � 1sti ��2I +Pj 6=i sjstjhjP�j (h1; : : : ; hK; S)��1 sihi1CA+ 8i = 1 : : :K :46



Here the notation �(N) emphasizes the dependence of (the Kuhn-Tucker coe�cient) � on N .Thus we have P�i � 1�(N) a:s: and if we can show thatinfN n�(N) ;N > 0o def= 1Kp > 0the proof is complete. We now show that �(N) is uniformly lower bounded (uniform in N).Denote (static) power allocations that allocate constant power (say p) for every realizationof the fading and signature sequence by �P (p) . The sum capacity with this static powerallocation converges pointwise to a nonzero constant in a large system. Formally,�Csum � �P (p)� �! �Cssum (p) > 0 as N !1 : (136)Using results about eigenvalues of large random matrices, we show a more general versionof this result in Proposition 3.1 and �Cssum (p) has an explicit expression given in (26). It alsofollows from this result that �Cssum (p)!1 as p!1. Some simple monotonicity propertiesof �Csum and �Cssum are as follows:�Csum � �P (p1)� > �Csum � �P (p2)� whenever p1 > p2 for each �xed N: (137)�Cssum (p1) > �Cssum (p2) whenever p1 > p2 (138)We �x �� such that �Cssum  1��! > � (Kc + 0:5) (139)where Kc is equal to log 2 + 12 log ��h�p� de�ned in the proof of Proposition 4.1. De�ning thefunction on the positive realsgN (�) def= supP2F(N)0 8<: �Csum (P)� �2N KXj=1 (EPj � �p)9=;we recognize from (123) that gN (�) � �C(N)opt ;8� � 0. By de�nition of �(N), from (30) weconclude that gN ��(N)� = min��0 gN (�) = �C(N)opt ; : (140)Now suppose infN �(N) = 0. Then there is a subsequence fingn such that limn!1 �(in) = 0and an integer n0 such that �(in) < �� for all n > n0. By de�nition, we arrive at�C(in)opt = gin ��(in)� � �Csum � �P � 1�(in)��� �2 : (141)In (141) the power allocation �P � 1�(in)� allocates constant power equal to 1�(in) for everyrealization of signature sequences and fading states (recall notation from Section 4.2). Fur-thermore, lim infn!1 �Csum � �P � 1�(in)�� � lim infn!1 �Csum  �P  1��!!= �Cssum  1��! (142)47



where we used (136) and (137). Combining (141), (142) and (139) we arrive at a contradictionto Proposition 4.1. Thus the Kuhn-Tucker coe�cient �(N) is uniformly (in N) lower boundedand denoting the lower bound as K�1p the proof is complete. 2G Proof of Lemma 4.9The essential ingredients of the proof are all contained in Lemmas 4.3 and 4.4 of [23] andwe only indicate the key points of departure. In particular, a close study of Lemmas 3.2,4.3 and 4.4 of [23] reveals that the statement made as Lemma 4.9 in this paper is true forthe situation when hi = 1 a:s: and g(�) = 1. Below, we keep consistency with the notationof [23] and point out the main steps in generalizing the results to the general case here. Weuse Kp; Ci; i = 2; ::; 21 to denote constants that are independent of N .3Let �(N)i = stiZ�1i si where, (recall notation from (47)) Zi = ��2I +Pl6=i slstlhlg (hl)�. Let~�(N)i = 1N trZ�1i and �(N)o = 1N trZ�1where Z = Zi + sistihig (hi). Let ��(N)i and ��(N)o denote E h�(N)i i and E h�(N)o i respectively. Inthis notation, we need to prove thatE ���(N)1 � ��g�2� � C22N : (143)We show (143) by the following sequence of bounds:E ���(N)1 � ~�(N)1 �2� � C3N (144)Var �~�(N)1 � � C4N (145)j E h~�(N)1 i� �� j � C5N (146)Now, from Lemma 3.2 of [23], it follows thatE ���(N)1 � ~�(N)1 �2 j s2; : : : ; sK;H� � C6N ��2max �Z�11 �2�� C6N 1�4showing (144). To show (145) we closely follow the proof of Lemma 4.3 of [23]. Let A = Z�11and Aj = �Z1 � sjstjhjg (hj)��1 for j � 2. Let Ej [�] denote the conditional expectation3The constant Kp used in the proof of this lemma is unrelated to the uniform upper bound Kp on theoptimal power policies which was identi�ed in Theorem 4.7; we use it here to keep consistency in our notationwith that of [23]. 48



E [� j sl; hl; 2 � l � j]. We denote the received powers as qj = hjg (hj) and �q = E [qj]. Usingthe matrix inversion lemma,EtrA� trA = KXj=2 (Ej � Ej�1) stjA2jsjqj1 + stjAjsjqj :Denotingaj = N�1trA2j ; �j = stjA2jsjqj � �qaj ; !j = 11 + stjAjsjqj ; bN = 11 + �qN�1EtrAj�j = stjAjsjqj � �qN�1EtrAj ; �̂j = stjAjsjqj � �qN�1trAjand using some algebra only slightly modi�ed from that in the proof of Lemma 4.3 in [23],we get KXj=2 (Ej � Ej�1) stjA2jsjqj1 + stjAjsjqj = bN KXj=2 Ej [�j]� b2N KXj=2 Ej haj�̂ji�b2N KXj=2 (Ej � Ej�1) h�j�j � stjA2jsjqj!j�2j idef= W1 �W2 �W3 :Since bN is uniformly (in N) upper and lower bounded (since hj is bounded by �h and g is abounded function, bounded by Kg), it su�ces to estimate E [W 21 =bN ] and E [W 2i =b4N ] ; i =2; 3. We begin with the following key estimates, for p = 2; 4:E [j �j jp] � C7 : (147)E hj �̂j jpi � C8 : (148)E [j �j jp] � C9 : (149)>From Lemma B.1 of [23] (as in Eq (33) of ([23])) we have for p = 2; 4E h�stjA2jsj �N�1trA2j�pi � C10N� p2 : (150)To see (147) with p = 2, observe thatE h�2ji = E ��stjA2jsj�2� E hq2j i� E ��N�1trA2j�2� �q2= E ��stjA2jsj �N�1trA2j�2� E hq2j i2 + E ��N�1trA2j�2� �E hq2j i� �q2�� C10�h2K2gN + �h2K2g�8where we used (150) and the fact that trAkj � N��2k in the derivation of the last step. Thisshows (147) for p = 2. Also,E h�4ji = E ��stjA2jsj�4� E hq4j i� 3E ��N�1trA2j�4� �q449



+6E ��stjA2jsj�2 �N�1trA2j�2� �q2E hq2j i� 4E ��stjA2jsj�3N�1trA2j� �qE hq3j i= E ��stjA2jsj �N�1trA2j�4�+ 3E ��N�1trA2j�4� �E hq4j i� �q4��6E ��stjA2jsj�2 �N�1trA2j�2� �E hq4j i� �q2E hq2j i�+4E ��stjA2jsj�3N�1trA2j� �E hq4j i� �qE hq3j i�� C10N�2 + 3�h4K4g�16 + 4�h4K4g E ��stjsj�3��16where we used (150) in the last step. This shows (147) for p = 4.>From Eq (34) of [23] we have, for p = 2; 4,E h�stjAjsj �N�1trAj�pi � C11N� p2 : (151)Observing the similarity in de�nition of �j and �̂j and in equations (150) and (151), we have,completely analogous to the calculation for �j above,E h�̂2j i � C11�h2K2gN + �h2K2g�4E h�̂4j i � C11N2 + 3�h4K4g�8 + 4�h4K4g E ��stjsj�3��8thus showing (148).Now, j �j � �̂j jp = j �qN (trAj � E [trAj]) jp� j �qN (trAj + E [trAj]) jp� �2�q�2�p ;and an appeal to (148) shows (149).We now return to the estimates onWi; i = 1; 2; 3. As in the proof of (Lemma 4.5,[23]), wehave that fEj [�j ]g is a martingale di�erence sequence and using the Burkholder inequality(Eq (30),[23]), we have, identical to Eq (32) of [23],E hW 21 =b2Ni � KpE 24 KXj=1 (Ej [�j])235� Kp KXj=2 E h�2j i� �KpC7N (152)50



where we used (147) in the last step. We have that nEj haj �̂jio is a martingale di�erencesequence and using the Burkholder inequality (Eq (30),[23]), we have as in [23]E hW 22 =b4Ni = E 2640@ KXj=2 Ej haj �̂ji1A2375� C12E 24 KXj=1 Ej�1 ��Ej haj �̂ji�2�+ �Ej haj �̂ji�235� 2C12�8 KXj=1 E h�̂2j i� 2�C12C8�8 N (153)where we used (148) in the last step. The bound involving W3 is very similar and we haveas in [23], E hW 23 =b4Ni = E 2640@ KXj=2 (Ej � Ej�1) h�j�j � stjA2jsjqj!j�2j i1A2375� C13 KXj=2 �E h�2j�2j i+ E h�4j i�= C13 (K � 1) �E h�22�22 i+ E h�42 i�� C13��qC9C7 + C9�N : (154)Thus we conclude that Var �~�(N)1 � = 1N2Var (trA)= 1N2 E h(W1 �W2 �W3)2i� C14Nwhere we used (152), (153) and (154) in the last step. This completes the proof of (145).To see (146) we closely follow the proof of Lemma 4.4 in [23] and indicate below only themajor deviations. Using the fact that hi is bounded by �h and that g is a bounded function(bounded above by Kg), following the proof of Lemma 4.4 in [23] we getVar ��(N)i � � C15N and j ��(N)i � ��(N)o j� �hKg��8N = C16N : (155)Writing �(N)i = ��(N)o +�(N)i , we obtain as in Eq (41) of [23]j E h�(N)i i j� C17N and E ���(N)i �2� � C18N : (156)51



Recalling equation (27) of [22] relating the SIRs attained with �(N)o we have, almost surely,as in Eq (39) of [23], 1N KXi=1 �(N)i hig (hi)1 + �(N)i hig (hi) = 1 � �2�(N)o : (157)In our notation, (157) can be written asKN � 1N KXi=1 11 + ���(N)o +�(N)i �hig (hi) = 1 � �2�(N)o : (158)Writing �(N)i = �(N)i1+��(N)o hig(hi) we have11 + ���(N)o +�(N)i �hig (hi) = 11 + ��(N)o hig (hi) � 11 + �(N)i hig (hi)= 11 + ��(N)o hig (hi)  1 � �ihig (hi) + 2 (�ihig (hi))2(1 + �i)3 !(159)for some �i 2 h0; �(N)i i [ h�(N)i ; 0i. Now�(N)i = �(N)i � ��(N)o1 + ��(N)o hig (hi) � ���(N)o1 + ��(N)o hig (hi)� �1�2 + hig (hi)and thus (1 + �i)�3 � C19. Substituting this upper bound in (159) and integrating (158) wearrive at j KN � 1N Z �h0 dF (h)1 + ��(N)o hg (h) � 1 + �2 ��(N)o j� C20Nand j � Z �h0 ��(N)o hg (h) dF (h)1 + ��(N)o hg (h) � 1 + �2 ��(N)o j� C20N : (160)Now consider the map f : � 7! �2� � 1 + � Z �h0 �hg (h)1 + �hg (h)dF (h) :>From (160) and Lemma 4.8 we havej f ���(N)o � j� C20N ; 8N and f ���g� = 0 : (161)52



Now, f (�1)� f (�2) = �2 (�1 � �2) + � Z �h0  �1hg (h)1 + �1hg (h) � �2hg (h)1 + �2hg (h)! dF (h)= (�1 � �2)(�2 + � Z �ho hg (h)(1 + �1hg (h)) (1 + �2hg (h))dF (h))j f ���(N)o �� f ���g� j � j ��(N)o � ��g j (�2 + � Z �ho hg (h) dF (h))� C21 j ��(N)o � ��g j : (162)Combining (161) and (162) we have shown (146) completing the proof of Lemma 4.9. 2H Proof of Lemma 4.10A key observation from the quadratic �� (�p; �) satis�es (in (45)) is the following:K �~h� � h()  �2�ph + �! 1� F �~h�� Z �h~h hh0dF (h0)! � 1 : (163)To see this, de�ne ~p def= �pHM �~h��1� F �~h�� and ~� def= � �1 � F �~h��Now, K �~h� � h () HM �~h� � h+ ~ph�� (~p; ~�)() HM �~h�� hh~p � �� (~p; ~�) (164)() �2HM �~h�� hh~p + ~�~pHM(~h)�hh~p1 + ~pHM(~h)�hh~p � 1 (165)() �2HM �~h�� hh~p + ~�HM �~h�� hHM �~h� � 1()  �2�ph + �!0@1 � F �~h�� h �1� F �~h��HM �~h� 1A � 1 (166)where (165) follows from (164) and (44). Now the claim in (163) follows directly from (166).The following statements now follow from the key observation (163).hK �~h� � 1 =) hK �ĥ� � 1; 8h � ĥ � ~h 2 sup(F ) (167)53



hK �~h� � 1 =) hK �ĥ� � 1; 8ĥ � ~h � h 2 sup(F ) (168)K (h) �! 0; as h �! �h (169)If HM(0) > 0 we have K(0) > 0, it follows from (169) and by the continuity of F that Khas at least one �xed point. We show that K has a �xed point hthr by explicit constructionof a sequence of points that converges to hthr and in the process uniqueness will follow.Consider the following iteratively de�ned sequence fh(n)gn2N. Let h(0) = 0. and h(n) =K (h (n� 1)) ; n � 1. We have h(1) = K (h (0)) > h(0) = 0. We show by induction thath (n) � h (n� 1). Suppose h (k) � h (k � 1) ; 8k � n. Now, substituting h = ĥ = h (n) and~h = h (n� 1) it follows from (167) thath (n)K (h (n)) = h (n)h (n+ 1) � 1This shows that fh (n)gn is an increasing bounded sequence (bounded using (169) and re-calling that K is continuous) and hence h (n) " hthr for some hthr in the support of F andhthr is a �xed point of K. Furthermore, for h 2 �hthr; �h�, it follows from (168) that1 � hthrK (h) < hK (h)and hence K (h) < h for all h 2 �hthr; �h�. Now suppose HM(0) = 0 and thus K (0) = 0.We need to show that for small enough h, we have K (h) � h and thus the �xed pointiteration can start from such small enough nonzero h. Substituting h = ~h in (163) we arriveat K �~h� � ~h for some ~h > 0 if we show thatZ �h~h �1~h � 1h0� dF (h0)!1; as h! 0 : (170)Observe that the integrand in (170) is the water�lling power allocation policy in (15) andmaximizes the single user capacity in (14). Supposesup~h>0 Z �h~h �1~h � 1h0�dF (h0) < Kdfor some constant Kd. Then, we have�C1user �~h� = 12 Z~h �h log�1 + h0��2 �1~h � 1h0��dF (h0)� log 2 + 12 log ��hKd� ; 8~h > 0 (171)where we used a technique similar to that used in the proof of Proposition 4.1 to derivethe last step. Since �C1user can be made arbitrarily large by choosing the average powerconstraint of the power policy �p arbitrarily large and for every choice of �p the correspondingsingle user capacity �C1user is achieved by the water�lling policy of the form � 1~h � 1h�+, wehave a contradiction to (171). Thus there cannot be a uniform bound Kd and we have shown(170). This shows that hthr is the unique �xed point of K and a \�xed point iteration" fromsmall enough h converges to hthr. 254



I Proof of Proposition 6.1The proof is quite elementary. We �rst show (94). Recall the map K in (59) of whichhthr is the unique positive �xed point (Lemma 4.10). Our �rst observation is that the mapK as a function of � (denoted by K�) is strictly increasing pointwise with increasing �.Furthermore, for each � the map K� is continuous.Consider the following claim:K� (h) # K0 (h)8h 2 h0; �hi as � # 0 uniformly in h : (172)where K0 : h 7! HM (h)1 + �p��2HM(h)1�F (h) :To see this claim, let us de�ne~p def= �pHM (h)�2 (1 � F (h)) and ~� def= � (1 � F (h))Observe that 8h 2 h0; �hi,K� (h)�K0 (h) � HM (h) �~p � �2~p�� ��2~p; ~���= HM (h)2 �~p (1 + ~�) + 1 �q~p2 (1� ~�)2 + 2~p~�+ 1� (173)� HM (h) ~p~�� �h2�p�2 � (174)where (173) is by de�nition of �� (�p; �) in (46). The �nal upper bound in (174) shows theclaim in (172) that K� converges pointwise uniformly. It follows from (15) and the constrainton the average power to be equal to �p that hwf is the unique positive solution of the following�xed point equation: hwf = HM (hwf )1 + �p��2HM(hwf)1�F(hwf ) : (175)>From (175), we see that hwf is the unique positive �xed point of the map K0. We now claimthat the �xed points of the maps K� themselves decrease monotonically with decreasing �.Let h(�)thr denote the unique �xed point of the map K�. Fix �2 > �1. De�ne sequencesfhi (n)gn�0 for i = 1; 2 as follows: hi (0) = 0 and hi (n) def= K�i (hi (n� 1)). Then, fromLemma 4.10 it follows that hi (n) " h(�i)thr as n " 1 for i = 1; 2. Thus we have h1 (n) < h2 (n)for every n > 0 and we conclude that h(�1)thr � h(�2)thr . Thus nh(�)thro� is a decreasing sequenceas � is decreasing and converges to, say, h0. Now 8�,h(�)thr = K� �h(�)thr� � K0 �h(�)thr� :55



Taking limits as �! 0 and using the continuity of the map K0 we haveh0 � K0 (h0) : (176)Also, from (174) we have, for every �,K0 �h(�)thr� � K� �h(�)thr�� �h2�p��2= h(�)thr � �h2�p��2and taking limits as �! 0, continuity of K0 yieldsK0 (h0) � h0 : (177)Now (176) and (177) show that h0 = K0 (h0) and thus h0 = hwf , the unique �xed point ofK0. Following the de�nition of �� (�p; �) in (45), we have��0@ �pHM �h(�)thr�1 � F �h(�)thr� ; � �1 � F �h(�)thr��1A �! 1�2 as �! 0 : (178)Observing that for every � E 24 1��wf  1h(�)thr � 1h!+35 = �p ;we have that h(�)thr decreases monotonically with � implies that ��wf increases monotonicallywith �. Since we had already observed that the limit of ��wf is ��2 in (178), we have shown(94). An identical argument now shows (95). 2J Proof of Proposition 6.3The proof is not too di�erent from that of Proposition 6.1. We observe by de�nition of�� (p; �) in (45) that, as �2 ! 0, �� (p; �)! 1p (� � 1)+ :This implies that (as in (172)), as �2 ! 0,K (h)! Ko (h) def= HM (h) (� (1� F (h))� 1)+� (1 � F (h)) :As in the proof of Proposition 6.1, hthr converges to the �xed point of Ko as �2 ! 0, denotedby ho. When � � 1, we easily identify ho = 0 and when � > 1 that ho > 0. The monotonicity56



arguments follow easily. >From the limiting values of hthr and ��wf we have for each user ithat Pwfi (hi) a:s:�! �p as �2 ! 0 and when � > 1 the limiting value of Pwf is di�erent fromthat of constant power allocation policy and thus there is a strict loss in sum capacity byusing the constant power allocation policy as compared to the water�lling strategy. It stillremains to show that when � � 1 the gain in sum capacity with water�lling strategy overconstant power strategy goes to zero in high SNR. We follow the proof of Proposition 6.2.Fix � � 1 and processing gain at N and the number of users at K = b�Nc. >From thelimiting values of hthr and ��wf we already have that Pwf a:s:�! �p as �2 ! 0. We establish abound akin to (99) and appeal to the dominated convergence theorem concluding the proof:12N  log det I + ��2 KXi=1 sistihiPwfi !! � 12N  log det I + ��2 KXi=1 sistihi��wfhthr!! (179)� 12N KXi=1 log 1 + �hstisi�2��wfhthr! (180)� �h2N�2��wfhthr KXi=1 stisiwhere we used the bound that Pwfi (hi) � 1��wfhthr by de�nition of the water�lling strategy (73)in (179) and the Hadamard inequality in (180). Analogous to the proof of Proposition 3.1,an application of the dominated convergence theorem completes the proof. 2K Proof of Theorem 8.1We follow the general approach adopted in the proof of Theorem 5.1. Our �rst observationis the following replacement of Proposition 3.1:�CAsum � �P�logN a:s:�! C �p : (181)To see this we use the notation developed in the proof of Proposition 3.1 and write:�CAsum � �P�logN = 12 Z log (1 +N �p�)logN dGN (�)= 12 log �p + 12 Z 0@log � + log �1 + 1N �p��logN 1A dGN (�)a:s:;L1�! 12 log �p + 12 Z�>0 log �dG� (�)where in the last step, we used the following arguments: any mass G� might have at � = 0does no contribute to the integral, Theorem 1.1 and its corollary of [1], and an application ofthe dominated convergence theorem as in the proof of Proposition 3.1. In this case, G� has57



very well known (in the random matrix literature) quarter circle density (Proposition [26])and thus C �p can be explicitly expressed asC �p = 12 log �p+ 12 Z (1+p�)2(1�p�)2 log �r�� � (1 �p�)2� �(1 +p�)2 � ��2��� d� :The replacement of Proposition 4.1 is the following:�CAopt (N)logN < �Kc ;8N > 0where Kc is some constant independent of N . The proof of this claim follows very closelythat of Proposition 4.1 and we omit it here. Any optimal P� (S) has the following structure:P�i (S) = 0B@ 1� � 1sti ��2N +Pj 6=i sjstjP�j (S)��1 si1CA+and Theorem 4.7 is still valid: P�i � Kp ;8i = 1 : : :K; 8Nfor a possibly di�erent constant Kp than the one used in Theorem 4.7. In this scenario, theSIR of user i with the constant power allocation policy is given by �i � �P� �p where�i � �P� def= sti 0@�2N + �pXj 6=i sjstj1A�1 si :De�ne the (Lagrangian) function:L : P 7! �CAsum (P)� 12N �p KXi=1 (E [Pi (S)]� �p) P 2 F (N)0 :As in the proof of Theorem 5.1,L (P�)� L � �P� � �2 E 240@ �1 � �P�1 + �1 � �P� �p � 1�p1A (P�i (S)� �p)35� �Kp2�p E 24 11 + �1 � �P� �p35� �Kp2�p2 E 24 1�1 � �P�35 : (182)58
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