Computation in Recurrent Neural Networks: From
Counters to Iterated Function Systems

Yvonne Kalinke ' * and Helko Lehmann 2
! Queensland University of Technology
yvonne@fit.qut.edu.au

University of Technology Dresden
eld@inf.tu-dresden.de

2

Abstract. In the paper we address the problem of computation in re-
current neural networks (RNN). In the first part we provide a formal
analysis of the dynamical behavior of a RNN with a single self recurrent
unit in the hidden layer, show how such a RNN may be designed to per-
form an (unrestricted) counting task and describe a generalization of the
counter network that performs binary stack operations.

In the second part of the paper we focus on the analysis of RNNs. We
show how a layered RNN can be mapped to a corresponding iterated
function system (IFS) and formulate conditions under which the behavior
of the IF'S and therefore the behavior of the corresponding RNN can be
characterized as the performance of stack operations. This result enables
us to analyze any layered RNN in terms of classical computation and,
hence, improves our understanding of computation within a broad class
of RNNs.

Moreover, we show how to use this knowledge as a design principle for
RNNs which implement computational tasks that require stack opera-
tions. This principle is exemplified by presenting the design of particular
RNNs for the recognition of words within the class of Dyck languages.

Introduction

So far, a lot of work has been done to find design principles for recurrent neural
networks (RNN) such that cognitive tasks given in terms of classical computation
can be translated into tasks which can be handled by the RNN (e.g., [3], [8], [11]).
Other approaches are based on finding suitable RNN architectures which can be
trained to perform these cognitive tasks (e.g., [14], [4]). Though, most of these
RNNs were successfully used within certain applications, we still do not have a
comprehension of computation in these networks and therefore can not answer
questions like: Why does a RNN actually solves the task it was designed and
trained for? Why are the computational capabilities of the RNN wrt. some tasks
restricted? Does a RNN; i.e. its architecture, actually fit to the given task? So
it turns out that, since our knowledge about how to interpret the behavior of
RNNs in terms of computation is quite limited, we are not able to construct
RNNs appropriate to an arbitrary computational task.

In contrast to that there are promising results coming from the investiga-
tions of computational capabilities of RNNs. In [13] it has been shown that there
are no ultimate limitations imposed by the use of neural networks as comput-
ing devices and that we do not even need higher order neural networks to have
enough computational power. It has been proven that a RNN made up of neurons
using linear saturation activation functions can simulate an universal Turing ma-
chinel . However, this result does not provide the information we are interested

* The author acknowledges support from the German Academic Exchange Service
(DAAD) under grant no. D/97/29570.

! The proof uses a stack construction that is similar to the one we shortly sketch within
this paper.

in, since it does not answer the question on how to interpret computation within
RNNs.

Following this question, the behavior of RNNs is commonly interpreted as
behavior of Deterministic Finite State Machines (DFSM) (e.g., [5], [2]). However,
in [9] it has been shown that this may be not adequate and that RNNs are closely
related to iterated function systems (IFS). Anyway, we do not share the opinion
that we need a new computational model to understand the behavior of RNNs,
since the Turing machine and related models are not restricted to finite state
sets. But, actually, IFSs are closely related to RNNs and in this paper we will
show that layered RNNs can be mapped to IFSs and that IFSs provide a tool
to analyze and understand computation in RNNs wrt. to certain computational
tasks.

Some work has been done trying to examine dynamics within RNNs, e.g.
in [4] and [12] simple RNNs were trained to learn context free languages up
to a certain word length. It turned out that the RNNs behaved like a counter
implementation. But in these papers no explanation for the restriction of the
counter to a certain word length has been given. In [10] a partial analysis of
the dynamics of sigmoidal activation functions (which is widely used in RNNs
that have to be trained) is given and the possibility of bifurcation behavior is
proposed as a model for dynamics of attention. In [7] we provided a complete2
analysis of the dynamics of sigmoidal activation functions, where, in opposite to
[10], we investigated also cases of non fixed point behavior. In [6] a higher order
RNN (using sigmoidal activation functions) has been shown to recognize words
in a context sensitive prediction task up to a certain length. To understand and
prove the proposed behavior of the network an analysis of the dynamics has been
given.

Since the application of continuous sigmoidal activation functions does not
only complicate the analysis of the dynamical behavior, but moreover, does not,
allow the implementation of unrestricted stack operations (see Section 3 for some
details), we decided to use piecewise linear activation functions instead. Analo-
gously to the formal analysis of the dynamics of a RNN with a single recurrent
unit in the hidden layer using a sigmoidal activation function in [7] within this
paper we present a formal analysis for such a RNN using a linear saturation
activation function. This analysis enables us to exploit the dynamical behavior
of the activation function to construct a RNN that implements a counter which
is not restricted to a certain word length. Such a counter moreover can be viewed
as a specialization of a stack and we describe a RNN which is a generalization
of the counter RNN and implements binary stack operations.

The paper is organized as follows. In the first section we introduce some no-
tions and notations used throughout the paper. This is followed by the analysis
of the dynamics of a RNN with a single recurrent unit in the hidden layer. In
Section 3 we describe how to use the dynamical behavior of the RNN described
in the second section to set up a RNN performing a simple counting task. After-
wards we extend the counter RNN to a RNN that is capable to perform binary
stack operations. The main emphasis of the paper is treated in Section 5 where
we address the relation between stack operations, IFS and RNN. We show that
the behavior of IFSs can be interpreted in computational terms of stack opera-
tions and that layered RNNs can be mapped to corresponding IFSs. We moreover
formulate conditions under which an IFS implements stack operations what fi-
nally leads us to a procedure allowing to analyze whether an arbitrary layered
RNN performs stack operations, where arbitrary means that we allow arbitrary
activation functions, number of layers, training algorithms or design principles
etc. In Section 6 we show how the correspondence between IFSs implementing

2 complete in the sense of investigating the whole parameter space

stack operations and RNNs can be used as a design principle. As an example
we show how to construct RNNs that recognize Dyck languages D(n) (for an
arbitrary choice of n , respectively). Dyck languages are context free languages
which cannot be recognized by DFSMs or one—counter—automata (if n > 2).
We conclude with a discussion of the results.

1 Notions and Notations

A metric space (X,d) consists of a set X and a distance function d: X x X —
R . A dynamical system consists of a metric space (X,d) and a transformation
f: X = X and will be denoted as (X,d, f). Let I be some set of input
symbols. Then a dynamical system with input is a metric space (X,d) and
a transformation T : X x I — X . We denote the domain and the range of
a transformation f : X — X by Domj; and Rany, respectively. An iterated
function system (IFS) consists of a metric space (X, d) and a finite number N of
transformations f,, : X — X and will be denoted as (X,d;{f, |1 <n < N}).

To define the class of hyperbolic IFSs we need some more definitions about
sequences of points of metric spaces:

A sequence {x,}22, of points of a metric space (X,d) converges to a point
x € X, if for any € > 0 there exists a positive integer N such that Vn > N :
d(xn,x) < €. The point = € X is then called the limit of the sequence. Let
S € X be a subset of a metric space (X,d), then S is compact if each infinite
sequence {z,}52, in S contains a subsequence with a limit in S. A sequence
{z,}32, of points of a metric space (X,d) is said to be a Cauchy sequence if for
any € > 0 there exists a positive integer N such that Vn,m > N : d(zy,zm) <
€. A metric space (X,d) is complete if each Cauchy sequence {z,}32; in X
has a limit =z € X.

A transformation f : X — X on a metric space (X,d) is a contractive
transformation or contraction if there exists a constant 0 < s < 1 such that

Va,y € X d(f(z), f(y) < s - d(z,y). (1)
Definition 1. A hyperbolic TFS consists of a complete metric space (X,d) and
a finite set of contractive transformations {f, : X - X |1<n < N}.

A transformation f: R"™ — IR" such that f(z1,22,...,2n) = (a1121 + ...+
A1nTp+ai,...,0n1T1+. .. GppTn+ay), where the a;,a5; € R (4,5 =1,...,n),
is said to be an (n dimensional) affine transformation.

Let S C X be asubset of the metric space (X,d),then S is bounded if there
exists a point @ € X and a real number r > 0 such that Vo € S :d(a,z) <r.
Let d be some positive integer. The set [0,1]? denotes the bounded subset
{(z1,22,...,24) €[0,1]7 |0 < 2; < 1,i =1,2...,d}.

Throughout the paper we will use the class of dynamical systems ([0, 1]¢, |z —
y|, f) , with the metric space ([0,1]%, |z —y|) where |z—y| denotes the Euclidean
distance between two points z,y € [0,1]¢ and the transformation f:[0,1]¢ —
[0,1]? . Note that each bounded subspace of the metric space (IR %, |z —y|) is a
complete metric space, so is ([0,1]%, |z — y|) (see for instance [1]). Two subsets

S c[0,1]? and R C [0,1]? of the metric space ([0,1]%,|z — y|) are disjoint if
VeeS:VyeR:|jz—y|>0.

Examining the dynamical behavior of the transformation f we are interested
in periodic points, i.e. points which are invariant under (possibly repeated) ap-

plications of f. The orbit of a point z € [0,1]¢ is the sequence {f"(x)}, .

Definition 2. z € [0,1]? is a n-periodic point of f iff In € IN : f*(z) =
z A (-I3meIN: m<n A f(x)=x).

The orbit of a n periodic point of f is called a cycle with period n. A fized
point is a 1—periodic point. Periodic points may be attractive or repulsive. At-
tractive ones are stable with respect to minor perturbations, i.e., the system
returns to the periodic point, whereas repulsive ones are unstable, i.e., perturba-
tions may send the system to another periodic point. The n periodic attractive
points form a class of attractors.

2 Dynamics of Simple Recurrent Neural Networks

The simplest RNN consists of a single unit, whose output is propagated back to
itself. Figure 1 shows such a unit with threshold 6, a recurrent connection with
weight w , and the activation function o: R — [0,1]:

o(z) = sat(wz + 0 + 1), (2)
where sat(z) represents the linear saturation function:

0if =<0
sat(z) =q zif 0<z<1
1if 2>1
,
O 08
06
a(X)
o
w
02
° 0.4 0.2 o 0.2 U‘A 06 D‘E 1 12 14
. Xm
! X
! 1
T :
o8 08 [3
o(x) a(x) 3
02 02 :
. ‘ - R , R R
-0.4 -0.2 12 14 -0.4 0.2 0 02 04 06 08 1 12 14
Xm
X X

Fig. 1. A simple RNN with threshold 6, activation function o , input i, output o,
and weight w on the recurrent connection. Depending on the parameters p; and p»
(which are determined by w and) the behavior of the dynamical system can be
classified according to the three examples given here: The case of a single attractor of
o at z,, for the parameter values p1 = 3/4 and p2 = —1/5. The case of a repulsive
fixed point at x, and two attractors at x; and x, of o for the parameter values
p1 =2 and p» =1/2. The case of an attractive cycle with period 2 for the parameter
values p1 = —2 and p» =3/4.

Let p1 = w, ps = —(6+14)/w, and assume that the input i € R is clamped3.
Then the output behavior of such a simple RNN corresponds to a dynamical
system (IR ,|z — y|,0), where

o(z) = sat(p1(z — p2)). (3)
The activation function o has at most three fixed points which are obtained as
the intersections of y = o(x) with the line y = z. Let z,, denote the fixed
point of o, whose absolute value of the gradient is the largest compared to the

gradients of all other fixed points of o . We can distinguish three cases wrt.
o'(zm), where o' denotes the first derivative of o .

Case 1: If —1 < ¢/(z,) < 1 then o admits one attractive fixed point .,
(see Figure 1). Whatever initial value xy is chosen the system eventually
converges to I, .

Case 2: If o'(z,,) > 1 then o has a repulsive fixed point at z,, and two
attractive fixed points z; and x, , where z; < xj . The behavior of the sys-
tem depends on the initial value z¢.If z¢y < x,, then the system converges
to the attractor x;, whereas if z,, < zp then the system converges to the
attractor x, (see Figure 1).

Case 3: If ¢'(z,,,) < —1 then the system has a repulsive fixed point at =z,
and an attractive cycle with period 2. In other words, the system has a 2—
periodic attractor. Whatever initial value z(is chosen the system eventually
converges to this cycle (see Figure 1).

As the transformation o in equation
(3) depends on the parameters p; and
po , the three cases may be graphically
depict wrt. these parameters. The figure
on the right hand side shows the three
regions in the space opened up by p; B,
and ps which correspond to the three
cases defined above. The various regions
can be determined analytically by the

different values of the derivative of o s 1
at x,, , that is
0 if M (T _ p2) <0 0)) o o 2 0
o'(z)={pif 0<pi(z—p2) <1 R
0 if pi(z —p2) >1

Regions 1 and 2 are bounded by values p; and p, where p(z —p2) =0 and
pi(z —p2) =1 and o'(z) = p; > 1. Regions 1 and 3 are bounded by values
p1 and ps where pi(z — p2) =0 and pi(z —p2) =1 but o'(z) =p1 < —1.
With the fixed point condition o(z) =z we find the borderlines

pe =0, pg:l—pl forpy >1and po =0, pg:l—pl for p; < -1
1 1
in the parameter space, respectively.

According to equation (2) and equation (3) the input value i to a self-
recurrent neuron computing the linear saturation function can be understood as
changing the value of p, . Hence, the input cannot steer the neurons behavior
arbitrarily, e.g. it is not possible to steer the neuron from region 2 (one repulsive
fixed point, two attractive fixed points) to region 3 (one repulsive fixed point,
one attractive cycle with period 2). Using additional neurons (without self-

2 This parameter transformation relates our results concerning the dynamics of iterated
linear saturation functions to the results for iterated continuous sigmoidal functions
described in [7].

recurrent connections) however, will enable the input i to choose a value for the
parameter p; from a determined set of values.

3 Setting up a Counter

By using linear saturation instead of sigmoidal activation functions it is possible
to avoid some difficulties occurring in the design of a RNN that implements a
counter as described and discussed in [4] and [7]. This is due to the fact that
the inverse mapping of an affine transformation (if it exists) is again an affine
transformation4 .

To implement a counter the functions f;,. which implements the increment-
ing and f4ec which implements the decrementing of the counter, respectively,
must fulfill the conditions

Vz € Domy,, : Vn € N : faoo(f5" (2) = f2.(x) and (4)

mc

Vz € Domy,,, : Vm,n € N:m #n — f/.(z) n(x). (5)

inc inc
These conditions can easily be met by the affine transformations
fznc(m) = QjpcT + binc and fdec(m) = QgecT + bdec
which range over a bounded subset [I,7] of IR . A neuron computing sat(wz+6)
behaves over the subset

{—ﬁ.l_a if w>0 and 1_07—ﬁ} if w<0

wow w w
as an element computing the affine transformation wz+6 . Hence, if the bounded
subset [I,7] is chosen accordingly, a neuron can be designed which implements
incrementing and decrementing of a counter, respectively.
To ensure that f7 (z) € [I,r] for all n € IN and for all = € [I,r], the

Jinc

parameters a;,. and b;,. must fulfill, if a;,. > 0:

l(l - ainc) S binc S ’I“(l - ainc) and 0 S Aine S 1: (6)
and if a;p. < 0:

I— AjneT S binr‘ S r— aincl and -1 S Aine S 0.
Together with condition (5) follows |a;,.| < 1. Hence, the transformation f;,.
is contractive on [I,r] according to equation (1) and the neuron implementing
fine shows region—1-behavior (=1 < p1 = w = ajp < 1).

Moreover, from condition (4) follows that fge. is given as the inverse trans-

formation of f;,.. Hence, the parameters ag.. and bg.. are determined as
follows:

binc
Adec =) bdec = - .
Aine Aine
If ajne is considered to be positive (0 < a;pe < 1), from condition (6) with
_6 _ __bi_"" <] and r < =2 = —]7_1)""" follows
w QAine — - w Ainc
0 S binc S 1- Aine
With the substitutions p; = w = agec = — and ps = f% = fgi‘% = bine

for the neuron implementing fge. holds 0 < py, <1 — p]—l , i.e. the neuron shows
region— 2 —behavior.

* Whereas the inverse mapping of a sigmoidal transformation is not a sigmoidal trans-
formation.

Whereas, if a;,. is considered to be neg-
ative (—1 < ajn. < 0), very similar
arguments lead to the conclusion that
the neuron implementing fj.. shows
region— 3 —~behavior. The resulting RNN
is shown in the figure on the right hand
side. For switching between region-
1 behavior and region 2 behavior (or
region— 3 —behavior if —1 < aj,. < 0)
two additional neurons are used. The
output of the first unit is 0 in case the
counter has to be decremented (inc =
1, dec = 0) and the output of the sec-
ond unit is 0 in case the counter has to
be incremented (inc =0, dec =1).

step of computation
N
|
T

[y
|
T

network layer

0+

4 Extending Counters to Binary Stacks

The RNN described in the previous section can easily be extended to implement
another important computational task: operations on a binary stack. To imple-

c

°

=

T2 T

S

3

k<)

g |

17} I

nil |

o I

3 1

4

5 |
I

% I

=

apushg' bpusho %usﬁ' l?Jusm ap0p0+ prpO ap+ Dhop1

0— push0 pushl

Fig. 2. A simple RNN implementing a binary stack.

ment the push operations the contractive affine transformations fpushg(a:) =
Apusho® + bpusno for pushing the value 0 and fpusn1(2) = apushi® + bpysn1 for
pushing value 1, respectively, are used. To implement the pop operation an in-
verse transformation f,,, is used which must additionally fulfill:

Va € Domy,, o ¢ fpop(fpusho(z)) =2 and
Vz € Domy,, ., : Frop(fpusni (z)) = z.

Thus, the ranges of fpusno and fpusp1 must be disjoint:

R’an,fpusho n R'an,fpushl =
Figure 2 sketches the structure of a RNN implementing a binary stack. Here, we
do not want to give a particular instantiation of the parameters apusnho, bpusho ;
etc. fulfilling the above conditions. See Section 6 for details on how to compute
appropriate values for these parametersd .

® We added some additional neurons which are necessary for implementing the particu-
lar kind of pop operation which is the inverse operation of each of the push operations.
In this paper, we do not discuss this construction any further.

5 Iterated Function Systems and Stacks

In this section we show how the dynamics of a wide class of RNNs can be
understood in terms of IFSs. Furthermore, we show that a RNN performs stack
operations if the corresponding IFS meets certain conditions.

A layered RNN corresponds to a dynamical system with input ([0, 1]?, |z —
y|;T), where T : [0,1]x I — [0,1]¢. If we consider the set I of input values to
be finite, this RNN can be transformed into an equivalent IFS ([0, 1]¢, |z—yl; {f; |
fi=T(@)Ni € I}) where T(i) represents the mapping T'(z1,xs,...,x4,1) for
some constant i (as also presented in [9]).

Theorem 3. Let (X,d; F¢) denote an IFS, where F*={f; | fi: X > X Ai¢€
I} and I is a finite set of input symbols. The IFS simulates the set of operations
{push(s,i) | i € I} on a stack s if

(i) Yie1: f; € F° is a bijective contraction on X and
(ii) the subsets Rany, C X are disjoint.

Proof. Each hyperbolic IFS has an unique attractor (for a proof see [1], theorem
7.1 on page 81). For each finite sequence w = wiws...w, of inputs w; € I
(1 < j < n) there is a mapping ¢ from w onto fu, (... (fuws (fur (2)))...)
for an arbitrary but constant choice of z € X (page 123, theorem 2.1 in [1]).
Additionally, the mapping ¢ is one to one if the subsets Rany, C X are dis-
joint (for a proof see [1], theorem 2.2 on page 125). Finally, consider a stack s
with content w . The operation push(s,u) for some u € I is mapped to the
application of f, to fu, (- (fuws(fu: (2)))-..). O

Theorem 4. Let (X,d; F¢) denote an IF'S, where F¢ = {g; | g:i: X > X Ai €
I} and I is a finite set of input symbols. The IFS simulates the set of operations
{pop(s,i) | i € I} on a stack s in X if for each ¢g; € F® there exists a

g; ' X = X such that
(i) Vz € Ran -1 : gi(g; t(2)) = =,

(i) Vi€ 1: g;" is a bijective contraction on X and
(i1i) the subsets Ran, -1 C X are disjoint.

Proof. From (ii) and (iii) it follows that (X,d; F°) where F°® = {g;' | g’ €
F*} simulates the operations push(s,i) on a stack s. Additionally, it follows
(i) from that for all w =wiws...w, (w; €I)and uwel:

9u(9u (Gt (- (G Gy (2))) -))) = Gt (- - (s (G (2))) - -2 - 0

Theorem 3 and Theorem 4 allow us to derive a procedure for analyzing arbitrary
layered RNN and checking whether they perform stack operations wrt. some
input symbols.

Procedure 1.

stepl. Determine the (finite) set I of input symbols and transform the
layered RNN into the corresponding IFS.

step2. Check the domains of the transformations for contractive and ex-
pansive sub domains.

step3. In case of a contractive sub domain check whether the transforma-
tion is a one-to—one mapping over this domain.

step3. Generate new IFSs for each corresponding sub—domain.

step4. Analyze the transformations that are contractive in a certain sub—
domain: check if they range over disjoint subsets (of the sub domain).

step5. Analyze the transformations which are expansive in a certain sub
domain: check whether the corresponding inverse contractive one—
to one transformations ranging over disjoint subspaces (of the sub
domain) exist.

If we consider RNN using linear saturation as activation functions as the RNNs
described in Section 2 up to 4 — some tests can be carried out to compute parts

of the given procedure: . o))
one—to—one: Since the linear saturation function is one to one iff the activa-

tion is in [0,1] and within this activation interval the neuron computes an
affine transformation, the bounds for this behavior can be calculated from
the net parameters, easily.
contractivity: If the absolute value of the largest eigenvalue of the operator
matrix is smaller than 1, then the affine transformation is a contraction.
expansion: If the absolute value of the largest eigenvalue of the operator matrix
is greater than 1, then the affine transformation is an expansion.
disjoint subspaces: Check the bounding surfaces of the corresponding hyper-
cubes. If there are no points of intersection and none of the hypercubes
contain another one completely, then the subspaces are disjoint.
As a result of Procedure 1 we may moreover realize that, since the inverse func-
tion of a sigmoidal function is not computable by a neuron, RNNs using sigmoidal
activation functions can not implement stack operations as described above. By
a similar observation the result provided in [13], stating that RNNs using linear
saturation activation functions can simulate an universal Turing machine, can
not be adapted to RNNs using sigmoidal activation functions, since the proof
given in [13] is based on a similar stack construction as described here, and thus
based on the fact that a neuron can compute the inverse function of another
neuron.

6 Recognizing Dyck Languages by Recurrent Neural
Networks

The results from the previous section can also be used to design networks which
perform computational tasks. To illustrate this we design a simple RNN that
recognizes a context free language. More precisely, we construct for any Dyck
language D(n) a corresponding RNN Np(, that recognizes D(n) .

Consider the class of Dyck languages D(n) (also known as the bracket
languages). Let, for n > 1, X, = {ay,b1,a2,ba,...,an,b,}, V = {S} and
P,={S = Sa;Sb;S |i=1,...,n} U{S — €} be the set of terminal symbols,
nonterminal symbols and productions, respectively.

Obviously, in terms of operations on an n-—-ary stack s,, a word ¢ =
cica...cm (¢j € Xy) of D(n) can be recognized by performing the follow-

ing algorithm on c:

Algorithm 1.

stepl. j:=0, 5,:=0

step2. if j = m stop

stepd. j:=j5+1

step4. if ¢; = a; for some i (1 <i <n) then push(sy,a;), goto step2

step5. if ¢; = b; and top(sn) = a; for some i (1 <4 <n) then pop(sy),
goto step2

step6. sp := push(sp,a;) (for some 1 <i<n), stop

The string is accepted iff the algorithm has stopped and the stack is empty.
Note that, whenever the algorithm stops in step6 the stack is not empty, i.e.,
the string is not accepted.

To construct a RNN that recognizes the language D(n), we define a metric
space containing representations of all possible stack values and an IFS that
performs the corresponding operations on the metric space. To keep the resulting
network small, consider the metric space ([0,1],|z — y|). The space [0,1] is
partitioned in compact subspaces as illustrated here:

empty a a

~= ~= ~=
— et
0 1

A subspace named a; (for 1 <i < n) represents the set of stack values where
the top element is the symbol a; . These subspaces are considered to have the
same structure as the interval [0,1], i.e., the subspace named a; of the sub-
space named a; represents the set of stack values where the first element is the
symbol a; and the second element is the symbol a; , etc. The subspace named
empty represents the empty stack. To keep the construction simple, we consider
all intervals to be of equal length6. Hence, the [0,1] interval is partitioned
into 2n + 3 subintervals of length 2;? . According to this partitioning of the
state space the (contractive) transformations f; mapping the interval [0,1] to

[% %] , respectively, are defined as
1 2i+1
fi(z) =sat(wiz +6;) = sat(2n 37 + T 3)

The corresponding inverse transformations mapping the interval [22;44'_1?, 22::_2?]
to [0,1], respectively, are given by

9i(w) = sat(wow + nys) = sat((2n + 3)a — (2i +1)).

Note that, for all z < 2L gi(z) = 0 and for all & > 242 gi(z) = 1.
Now, the metric space given above together with these set of functions define
the IFS ([0,1],]z —yl;{fi |1 <i<n}U{g:|1<i<n}).Algorithm 1. can be

reformulated in terms of this IFS as follows:

Algorithm 2.

stepl. j:=0, s¢€ [2n]+3, 2n2+3]

step2. if j = m stop

stepd. j:=j5+1

step4. if ¢; = a; for some i (1<i<mn)then s:= f;(s), goto step2

step5. if ¢; = b; and s € [37%, 242] for some i (1 < i < n) then

s:= g;i(s), goto step2
step6. s := gi(s), goto step2

The string is accepted iff the algorithm has stopped and s € [ﬁ ﬁ] . Note,

that although the algorithm does not stop in step6 the value of s can never be

an element of [ﬁ’ ﬁ] again.

Consider the word ¢ = cjcs...c¢p, being sequentially fed into the system
such that the symbol ¢; (1 < j < m) is input at time j. Then the four
layered RNN NfD(n) implements Algorithm 2. Note, that 4 computation steps
are done within one time step. Hence, the RNN recognizes the Dyck language
within linear time of the length of the input word c.

6 The interval between two named intervals is left unnamed to avoid identification
conflicts. E.g., the representation of an infinite sequence a;ana, ... would be undis-
tinguishable from the representation of a;4+1 (for 1 <i < n —1), otherwise.

step of computation

N
|
T

network layer

[y
|
T

ol B

Fig. 3. A first order RNN that recognizes the Dyck language D(n) .

The RNN Np(n) consists of 2n 4+ 4 neurons which are connected according
to Figure 3. All neurons compute the linear saturation function sat(x) where z
represents the weighted sum of its input plus some threshold.

Let Fy,...,Fy,, S and 07,05, 03 denote the neurons of Np(n) as depicted
in Figure 3. Let Wk denote the weight of the edge connecting an object K
to some object L, and Twn the threshold of neuron N . Furthermore, let C}

denote the input vector (CY,...,C3, C’M_1 ,C3.) at step j, where
] 1 it ¢j=a; and (1§7§n)
C—{ if ¢;=b_, and (n+1<i<2n)
0 else

The weights and thresholds of the neurons realizing the push functions are given
by We,r, = w140k, Wep, =wi, Wrs =1, Tp, = —wy (for 1 <k <n),and
the weights and thresholds of the neurons realizing the pop functions are given by:
We,r, =ws + 0k, Wsp, =ws, Wps=1, Tp, = —ws (for n+1<k<2n).
The neuron whose activation represents the 'stack value has threshold 1 and for
the neurons computing the output the Welghts We.0, = w2, Wgo, = —wa,
Wo,0, = Wo,0, =1 and thresholds To, =0, To, =3, To, = —1 were
chosen to output 1 iff the stack value is element of the interval representing the
empty stack.

7 Discussion

Within the first part of the paper we gave a formal analysis of the dynamical
behavior of a RNN with a single self recurrent unit in the hidden layer that com-

putes a linear saturation activation function. This analysis provided the basis
for the construction of a RNN implementing a counting task as discussed in [4]
and [7]. In contrast to the networks described in these papers the computational
depth of the RNN presented here is not restricted. Moreover, we described a
generalization of the counter network to a RNN that implements a binary stack
and its push and pop operations. The basic idea behind this generalization is a
mapping between a layered RNN and a corresponding IFS. The correspondence
is explicitly stated in the second part of the paper, where we gave conditions for
an IFS such that the IFS and the corresponding RNN implement stack opera-
tions wrt. some input symbols. We derived a procedure to analyze any layered
RNN independent of the particular used activation function. Such an analysis
may provide good comprehension on how behavior of RNNs can be characterized
in terms of classical computation no matter whether the structure of the RNN is
result of a training process, a particular design method or even the modeling of
parts in real brains. Moreover, the IFS—-RNN correspondence can also be used as
a design principle for RNNs which implement computational tasks that are given
in terms of stack operations. As an example we showed how to design a class of
RNN Np(y) such that for each n, Np(,) recognizes the Dyck language D(n) .

References

1. M. Barnsley: Fractals Everywhere. CA: Academic Press, San Diego, 1988.

2. M. Casey. The dynamics of discrete-time computation, with application to recur-
rent neural networks and finite state machine extraction. Neural Computation,
8(6):1135-1178, 1996.

3. J.L. Elman: Finding Structure in Time. Cognitive Science, 14, pp. 179-211, 1990.

4. J. Wiles and J. Elman: Learning to Count without a Counter: A Case Study of
Dynamics and Activation Landscapes in Recurrent Networks. Proceedings of the
Seventeenth Annual Conference of the Cognitive Science Society, Cambridge, MA,
MIT Press, 1995.

5. C.W. Omlin and C.L. Giles. Constructing deterministic finite-state automata in
recurrent neural networks. Journal of the ACM, 45(6):p. 937, 1996.

6. P. Grinwald and M. Steijvers: A Recurrent Network that performs a context-
sensitive prediction task. Proceedings of the Eighteenth Annual Conference of the
Cognitive Science Society, Morgan Kauffman, 1996.

7. S. Holldobler and Y. Kalinke and H. Lehmann: Designing a Counter: Another
Case Study of Dynamics and Activation Landscapes in Recurrent Networks. LNAI
1303, Proceedings of the KI97: Advances in Artificial Intelligence, Springer, pp.
313-324, 1997.

8. M.I. Jordan: Attractor Dynamics and Parallelism in a Connectionist Sequential
Machine. Proceedings of the Annual Conference of the Cognitive Science Society,
pp. 531-546, 1986.

9. J.F. Kolen: FEzploring the Computational Capabilities of Recurrent Neural Net-
works. PhD Thesis, Ohio State University, 1994.

10. H. Nakahara and K. Doya: Dynamics of Attention as Near Saddle Node Bifur-
cation Behavior. In: D.S. Touretzky and M.C. Mozer and M.E. Hasselmo (eds.):
Advances in Neural Information Processing Systems, Volume 8, Neural Information
Processing Systems 1995, MIT Press, 1996.

11. J.B. Pollack: Recursive Distributed Representations. Artificial Intelligence, 46, pp.
77-105, 1990.

12. P. Rodriguez and J. Wiles: Recurrent Neural Networks Can Learn to Implement
Symbol-Sensitive Counting. Proceedings of the 11th Conference on Neural Infor-
mation Processing Systems, Denver CA; USA, 1998 (to appear).

13. H. Siegelmann and E.D. Sontag. Turing Computability with Neural Nets. Applied
Mathematics Letters, 4(6), pp.77-80, 1991.

14. A. Stolcke and D. Wu: Tree Matching with Recursive Distributed Representations.
International Computer Science Institute, Berkeley, Technical Report TR-92-025,
1992.

