
Computation in Recurrent Neural Networks: FromCounters to Iterated Function SystemsYvonne Kalinke 1 ? and Helko Lehmann 21 Queensland University of Technologyyvonne@�t.qut.edu.au2 University of Technology Dresdeneld@inf.tu-dresden.deAbstract. In the paper we address the problem of computation in re-current neural networks (RNN). In the �rst part we provide a formalanalysis of the dynamical behavior of a RNN with a single self{recurrentunit in the hidden layer, show how such a RNN may be designed to per-form an (unrestricted) counting task and describe a generalization of thecounter network that performs binary stack operations.In the second part of the paper we focus on the analysis of RNNs. Weshow how a layered RNN can be mapped to a corresponding iteratedfunction system (IFS) and formulate conditions under which the behaviorof the IFS and therefore the behavior of the corresponding RNN can becharacterized as the performance of stack operations. This result enablesus to analyze any layered RNN in terms of classical computation and,hence, improves our understanding of computation within a broad classof RNNs.Moreover, we show how to use this knowledge as a design principle forRNNs which implement computational tasks that require stack opera-tions. This principle is exempli�ed by presenting the design of particularRNNs for the recognition of words within the class of Dyck languages.IntroductionSo far, a lot of work has been done to �nd design principles for recurrent neuralnetworks (RNN) such that cognitive tasks given in terms of classical computationcan be translated into tasks which can be handled by the RNN (e.g., [3], [8], [11]).Other approaches are based on �nding suitable RNN architectures which can betrained to perform these cognitive tasks (e.g., [14], [4]). Though, most of theseRNNs were successfully used within certain applications, we still do not have acomprehension of computation in these networks and therefore can not answerquestions like: Why does a RNN actually solves the task it was designed andtrained for? Why are the computational capabilities of the RNN wrt. some tasksrestricted? Does a RNN, i.e. its architecture, actually �t to the given task? Soit turns out that, since our knowledge about how to interpret the behavior ofRNNs in terms of computation is quite limited, we are not able to constructRNNs appropriate to an arbitrary computational task.In contrast to that there are promising results coming from the investiga-tions of computational capabilities of RNNs. In [13] it has been shown that thereare no ultimate limitations imposed by the use of neural networks as comput-ing devices and that we do not even need higher order neural networks to haveenough computational power. It has been proven that a RNN made up of neuronsusing linear saturation activation functions can simulate an universal Turing ma-chine1 . However, this result does not provide the information we are interested? The author acknowledges support from the German Academic Exchange Service(DAAD) under grant no. D/97/29570.1 The proof uses a stack construction that is similar to the one we shortly sketch withinthis paper.



in, since it does not answer the question on how to interpret computation withinRNNs.Following this question, the behavior of RNNs is commonly interpreted asbehavior of Deterministic Finite State Machines (DFSM) (e.g., [5], [2]). However,in [9] it has been shown that this may be not adequate and that RNNs are closelyrelated to iterated function systems (IFS). Anyway, we do not share the opinionthat we need a new computational model to understand the behavior of RNNs,since the Turing machine and related models are not restricted to �nite statesets. But, actually, IFSs are closely related to RNNs and in this paper we willshow that layered RNNs can be mapped to IFSs and that IFSs provide a toolto analyze and understand computation in RNNs wrt. to certain computationaltasks.Some work has been done trying to examine dynamics within RNNs, e.g.in [4] and [12] simple RNNs were trained to learn context free languages upto a certain word length. It turned out that the RNNs behaved like a counterimplementation. But in these papers no explanation for the restriction of thecounter to a certain word length has been given. In [10] a partial analysis ofthe dynamics of sigmoidal activation functions (which is widely used in RNNsthat have to be trained) is given and the possibility of bifurcation behavior isproposed as a model for dynamics of attention. In [7] we provided a complete2analysis of the dynamics of sigmoidal activation functions, where, in opposite to[10], we investigated also cases of non �xed point behavior. In [6] a higher orderRNN (using sigmoidal activation functions) has been shown to recognize wordsin a context sensitive prediction task up to a certain length. To understand andprove the proposed behavior of the network an analysis of the dynamics has beengiven.Since the application of continuous sigmoidal activation functions does notonly complicate the analysis of the dynamical behavior, but moreover, does notallow the implementation of unrestricted stack operations (see Section 3 for somedetails), we decided to use piecewise linear activation functions instead. Analo-gously to the formal analysis of the dynamics of a RNN with a single recurrentunit in the hidden layer using a sigmoidal activation function in [7] within thispaper we present a formal analysis for such a RNN using a linear saturationactivation function. This analysis enables us to exploit the dynamical behaviorof the activation function to construct a RNN that implements a counter whichis not restricted to a certain word length. Such a counter moreover can be viewedas a specialization of a stack and we describe a RNN which is a generalizationof the counter RNN and implements binary stack operations.The paper is organized as follows. In the �rst section we introduce some no-tions and notations used throughout the paper. This is followed by the analysisof the dynamics of a RNN with a single recurrent unit in the hidden layer. InSection 3 we describe how to use the dynamical behavior of the RNN describedin the second section to set up a RNN performing a simple counting task. After-wards we extend the counter RNN to a RNN that is capable to perform binarystack operations. The main emphasis of the paper is treated in Section 5 wherewe address the relation between stack operations, IFS and RNN. We show thatthe behavior of IFSs can be interpreted in computational terms of stack opera-tions and that layered RNNs can be mapped to corresponding IFSs. We moreoverformulate conditions under which an IFS implements stack operations what �-nally leads us to a procedure allowing to analyze whether an arbitrary layeredRNN performs stack operations, where arbitrary means that we allow arbitraryactivation functions, number of layers, training algorithms or design principlesetc. In Section 6 we show how the correspondence between IFSs implementing2 complete in the sense of investigating the whole parameter space



stack operations and RNNs can be used as a design principle. As an examplewe show how to construct RNNs that recognize Dyck languages D(n) (for anarbitrary choice of n , respectively). Dyck languages are context free languageswhich cannot be recognized by DFSMs or one{counter{automata (if n � 2 ).We conclude with a discussion of the results.1 Notions and NotationsA metric space (X; d) consists of a set X and a distance function d : X�X!IR . A dynamical system consists of a metric space (X; d) and a transformationf : X ! X and will be denoted as (X; d; f) . Let I be some set of inputsymbols. Then a dynamical system with input is a metric space (X; d) anda transformation T : X � I ! X . We denote the domain and the range ofa transformation f : X ! X by Domf and Ranf , respectively. An iteratedfunction system (IFS) consists of a metric space (X; d) and a �nite number N oftransformations fn : X! X and will be denoted as (X; d; ffn j 1 � n � Ng) .To de�ne the class of hyperbolic IFSs we need some more de�nitions aboutsequences of points of metric spaces:A sequence fxng1n=1 of points of a metric space (X; d) converges to a pointx 2 X , if for any � > 0 there exists a positive integer N such that 8n > N :d(xn; x) < �: The point x 2 X is then called the limit of the sequence. LetS � X be a subset of a metric space (X; d) , then S is compact if each in�nitesequence fxng1n=1 in S contains a subsequence with a limit in S . A sequencefxng1n=1 of points of a metric space (X; d) is said to be a Cauchy sequence if forany � > 0 there exists a positive integer N such that 8n;m > N : d(xn; xm) <� . A metric space (X; d) is complete if each Cauchy sequence fxng1n=1 in Xhas a limit x 2 X .A transformation f : X ! X on a metric space (X; d) is a contractivetransformation or contraction if there exists a constant 0 < s < 1 such that8x; y 2 X : d(f(x); f(y)) � s � d(x; y): (1)De�nition 1. A hyperbolic IFS consists of a complete metric space (X; d) anda �nite set of contractive transformations ffn : X! X j 1 � n � Ng .A transformation f : IR n ! IR n such that f(x1; x2; : : : ; xn) = (a11x1 + : : :+a1nxn+a1; : : : ; an1x1+: : : annxn+an) , where the ai; aji 2 IR ( i; j = 1; : : : ; n ),is said to be an ( n {dimensional) a�ne transformation.Let S � X be a subset of the metric space (X; d) , then S is bounded if thereexists a point a 2 X and a real number r > 0 such that 8x 2 S : d(a; x) < r .Let d be some positive integer. The set [0; 1]d denotes the bounded subsetf(x1; x2; : : : ; xd) 2 [0; 1]d j 0 � xi � 1; i = 1; 2 : : : ; dg .Throughout the paper we will use the class of dynamical systems ([0; 1]d; jx�yj; f) , with the metric space ([0; 1]d; jx�yj) where jx�yj denotes the Euclideandistance between two points x; y 2 [0; 1]d and the transformation f : [0; 1]d ![0; 1]d . Note that each bounded subspace of the metric space ( IR d; jx� yj) is acomplete metric space, so is ([0; 1]d; jx� yj) (see for instance [1]). Two subsetsS � [0; 1]d and R � [0; 1]d of the metric space ([0; 1]d; jx � yj) are disjoint if8x 2 S : 8y 2 R : jx� yj > 0 .Examining the dynamical behavior of the transformation f we are interestedin periodic points, i.e. points which are invariant under (possibly repeated) ap-plications of f . The orbit of a point x 2 [0; 1]d is the sequence ffn(x)g1n=0 .De�nition 2. x 2 [0; 1]d is a n{periodic point of f i� 9n 2 IN : fn(x) =x ^ (:9 m 2 IN : m < n ^ fm(x) = x) .



The orbit of a n{periodic point of f is called a cycle with period n . A �xedpoint is a 1{periodic point. Periodic points may be attractive or repulsive. At-tractive ones are stable with respect to minor perturbations, i.e., the systemreturns to the periodic point, whereas repulsive ones are unstable, i.e., perturba-tions may send the system to another periodic point. The n{periodic attractivepoints form a class of attractors .2 Dynamics of Simple Recurrent Neural NetworksThe simplest RNN consists of a single unit, whose output is propagated back toitself. Figure 1 shows such a unit with threshold � , a recurrent connection withweight w , and the activation function � : IR ! [0; 1] :�(x) = sat(wx + � + i); (2)where sat(x) represents the linear saturation function:sat(x) = (0 if x < 0x if 0 � x � 11 if x > 1
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xFig. 1. A simple RNN with threshold � , activation function � , input i , output o ,and weight w on the recurrent connection. Depending on the parameters p1 and p2(which are determined by w and � ) the behavior of the dynamical system can beclassi�ed according to the three examples given here: The case of a single attractor of� at xm for the parameter values p1 = 3=4 and p2 = �1=5 . The case of a repulsive�xed point at xm and two attractors at xl and xh of � for the parameter valuesp1 = 2 and p2 = 1=2 . The case of an attractive cycle with period 2 for the parametervalues p1 = �2 and p2 = 3=4 .



Let p1 = w , p2 = �(�+ i)=w , and assume that the input i 2 IR is clamped3 .Then the output behavior of such a simple RNN corresponds to a dynamicalsystem ( IR ; jx� yj; �) , where�(x) = sat(p1(x� p2)): (3)The activation function � has at most three �xed points which are obtained asthe intersections of y = �(x) with the line y = x . Let xm denote the �xedpoint of � , whose absolute value of the gradient is the largest compared to thegradients of all other �xed points of � . We can distinguish three cases wrt.�0(xm) , where �0 denotes the �rst derivative of � .Case 1: If �1 < �0(xm) < 1 then � admits one attractive �xed point xm(see Figure 1). Whatever initial value x0 is chosen the system eventuallyconverges to xm .Case 2: If �0(xm) > 1 then � has a repulsive �xed point at xm and twoattractive �xed points xl and xh , where xl < xh . The behavior of the sys-tem depends on the initial value x0 . If x0 < xm then the system convergesto the attractor xl , whereas if xm < x0 then the system converges to theattractor xh (see Figure 1).Case 3: If �0(xm) < �1 then the system has a repulsive �xed point at xmand an attractive cycle with period 2. In other words, the system has a 2{periodic attractor. Whatever initial value x0 is chosen the system eventuallyconverges to this cycle (see Figure 1).As the transformation � in equation(3) depends on the parameters p1 andp2 , the three cases may be graphicallydepict wrt. these parameters. The �gureon the right hand side shows the threeregions in the space opened up by p1and p2 which correspond to the threecases de�ned above. The various regionscan be determined analytically by thedi�erent values of the derivative of �at xm , that is�0(x) = (0 if p1(x� p2) < 0p1 if 0 � p1(x� p2) � 10 if p1(x� p2) > 1 -1

-0.5

0

0.5

1

1.5

2

-30 -20 -10 0 10 20 30

3

1

p
1

2
p 2

Regions 1 and 2 are bounded by values p1 and p2 where p1(x� p2) = 0 andp1(x � p2) = 1 and �0(x) = p1 > 1 . Regions 1 and 3 are bounded by valuesp1 and p2 where p1(x � p2) = 0 and p1(x � p2) = 1 but �0(x) = p1 < �1 .With the �xed point condition �(x) = x we �nd the borderlinesp2 = 0; p2 = 1� 1p1 for p1 > 1 and p2 = 0; p2 = 1� 1p1 for p1 < �1in the parameter space, respectively.According to equation (2) and equation (3) the input value i to a self{recurrent neuron computing the linear saturation function can be understood aschanging the value of p2 . Hence, the input cannot steer the neurons behaviorarbitrarily, e.g. it is not possible to steer the neuron from region 2 (one repulsive�xed point, two attractive �xed points) to region 3 (one repulsive �xed point,one attractive cycle with period 2 ). Using additional neurons (without self{3 This parameter transformation relates our results concerning the dynamics of iteratedlinear saturation functions to the results for iterated continuous sigmoidal functionsdescribed in [7].



recurrent connections) however, will enable the input i to choose a value for theparameter p1 from a determined set of values.3 Setting up a CounterBy using linear saturation instead of sigmoidal activation functions it is possibleto avoid some di�culties occurring in the design of a RNN that implements acounter as described and discussed in [4] and [7]. This is due to the fact thatthe inverse mapping of an a�ne transformation (if it exists) is again an a�netransformation4 .To implement a counter the functions finc which implements the increment-ing and fdec which implements the decrementing of the counter, respectively,must ful�ll the conditions8x 2 Domfinc : 8n 2 IN : fdec(fn+1inc (x)) = fninc(x) and (4)8x 2 Domfinc : 8m;n 2 IN : m 6= n! fminc(x) 6= fninc(x): (5)These conditions can easily be met by the a�ne transformationsfinc(x) = aincx+ binc and fdec(x) = adecx+ bdecwhich range over a bounded subset [l; r] of IR . A neuron computing sat(wx+�)behaves over the subset�� �w ; 1� �w � if w > 0 and �1� �w ;� �w� if w < 0as an element computing the a�ne transformation wx+� . Hence, if the boundedsubset [l; r] is chosen accordingly, a neuron can be designed which implementsincrementing and decrementing of a counter, respectively.To ensure that fninc(x) 2 [l; r] for all n 2 IN and for all x 2 [l; r] , theparameters ainc and binc must ful�ll, if ainc > 0 :l(1� ainc) � binc � r(1� ainc) and 0 � ainc � 1; (6)and if ainc < 0 :l � aincr � binc � r � aincl and � 1 � ainc � 0:Together with condition (5) follows jaincj < 1 . Hence, the transformation fincis contractive on [l; r] according to equation (1) and the neuron implementingfinc shows region{1{behavior (�1 < p1 = w = ainc < 1 ).Moreover, from condition (4) follows that fdec is given as the inverse trans-formation of finc . Hence, the parameters adec and bdec are determined asfollows:adec = 1ainc ; bdec = � bincainc :If ainc is considered to be positive ( 0 < ainc < 1 ), from condition (6) with� �w = � bincainc � l and r � 1��w = 1�bincainc follows0 � binc � 1� aincWith the substitutions p1 = w = adec = 1ainc and p2 = � �w = � bdecadec = bincfor the neuron implementing fdec holds 0 � p2 � 1� 1p1 , i.e. the neuron showsregion{ 2 {behavior.4 Whereas the inverse mapping of a sigmoidal transformation is not a sigmoidal trans-formation.



Whereas, if ainc is considered to be neg-ative (�1 < ainc < 0 ), very similararguments lead to the conclusion thatthe neuron implementing fdec showsregion{ 3 {behavior. The resulting RNNis shown in the �gure on the right handside. For switching between region{1 {behavior and region{ 2 {behavior (orregion{ 3 {behavior if �1 < ainc < 0 )two additional neurons are used. Theoutput of the �rst unit is 0 in case thecounter has to be decremented ( inc =1 , dec = 0 ) and the output of the sec-ond unit is 0 in case the counter has tobe incremented ( inc = 0 , dec = 1 ).
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Fig. 2. A simple RNN implementing a binary stack.ment the push operations the contractive a�ne transformations fpush0(x) =apush0x+ bpush0 for pushing the value 0 and fpush1(x) = apush1x+ bpush1 forpushing value 1 , respectively, are used. To implement the pop operation an in-verse transformation fpop is used which must additionally ful�ll:8x 2 Domfpush0 : fpop(fpush0(x)) = x and8x 2 Domfpush1 : fpop(fpush1(x)) = x:Thus, the ranges of fpush0 and fpush1 must be disjoint:Ranfpush0 \ Ranfpush1 = ;:Figure 2 sketches the structure of a RNN implementing a binary stack. Here, wedo not want to give a particular instantiation of the parameters apush0 , bpush0 ,etc. ful�lling the above conditions. See Section 6 for details on how to computeappropriate values for these parameters5 .5 We added some additional neurons which are necessary for implementing the particu-lar kind of pop operation which is the inverse operation of each of the push operations.In this paper, we do not discuss this construction any further.



5 Iterated Function Systems and StacksIn this section we show how the dynamics of a wide class of RNNs can beunderstood in terms of IFSs. Furthermore, we show that a RNN performs stackoperations if the corresponding IFS meets certain conditions.A layered RNN corresponds to a dynamical system with input ([0; 1]d; jx�yj;T ) , where T : [0; 1]d� I ! [0; 1]d . If we consider the set I of input values tobe �nite, this RNN can be transformed into an equivalent IFS ([0; 1]d; jx�yj; ffi jfi = T (i) ^ i 2 Ig) where T (i) represents the mapping T (x1; x2; : : : ; xd; i) forsome constant i (as also presented in [9]).Theorem 3. Let (X; d;F c) denote an IFS, where F c = ffi j fi : X! X ^ i 2Ig and I is a �nite set of input symbols. The IFS simulates the set of operationsfpush(s; i) j i 2 Ig on a stack s if(i) 8i 2 I : fi 2 F c is a bijective contraction on X and(ii) the subsets Ranfi � X are disjoint.Proof. Each hyperbolic IFS has an unique attractor (for a proof see [1], theorem7.1 on page 81). For each �nite sequence w = w1w2 : : : wn of inputs wj 2 I( 1 � j � n ) there is a mapping � from w onto fwn(: : : (fw2(fw1(x))) : : :)for an arbitrary but constant choice of x 2 X (page 123, theorem 2.1 in [1]).Additionally, the mapping � is one{to{one if the subsets Ranfi � X are dis-joint (for a proof see [1], theorem 2.2 on page 125). Finally, consider a stack swith content w . The operation push(s; u) for some u 2 I is mapped to theapplication of fu to fwn(: : : (fw2(fw1(x))) : : :) . utTheorem 4. Let (X; d;F e) denote an IFS, where F e = fgi j gi : X! X ^ i 2Ig and I is a �nite set of input symbols. The IFS simulates the set of operationsfpop(s; i) j i 2 Ig on a stack s in X if for each gi 2 F e there exists ag�1i : X! X such that(i) 8x 2 Rang�1i : gi(g�1i (x)) = x ,(ii) 8i 2 I : g�1i is a bijective contraction on X and(iii) the subsets Rang�1i � X are disjoint.Proof. From (ii) and (iii) it follows that (X; d;F c) where F c = fg�1i j gi 2F eg simulates the operations push(s; i) on a stack s . Additionally, it follows(i) from that for all w = w1w2 : : : wn (wj 2 I ) and u 2 I :gu(g�1u (g�1wn(: : : (g�1w2 (g�1w1 (x))) : : :))) = g�1wn(: : : (g�1w2 (g�1w1 (x))) : : :) . utTheorem 3 and Theorem 4 allow us to derive a procedure for analyzing arbitrarylayered RNN and checking whether they perform stack operations wrt. someinput symbols.Procedure 1.step1. Determine the (�nite) set I of input symbols and transform thelayered RNN into the corresponding IFS.step2. Check the domains of the transformations for contractive and ex-pansive sub{domains.step3. In case of a contractive sub{domain check whether the transforma-tion is a one{to{one mapping over this domain.step3. Generate new IFSs for each corresponding sub{domain.step4. Analyze the transformations that are contractive in a certain sub{domain: check if they range over disjoint subsets (of the sub{domain).



step5. Analyze the transformations which are expansive in a certain sub{domain: check whether the corresponding inverse contractive one{to{one transformations ranging over disjoint subspaces (of the sub{domain) exist.If we consider RNN using linear saturation as activation functions { as the RNNsdescribed in Section 2 up to 4 { some tests can be carried out to compute partsof the given procedure:one{to{one: Since the linear saturation function is one{to{one i� the activa-tion is in [0; 1] and within this activation interval the neuron computes ana�ne transformation, the bounds for this behavior can be calculated fromthe net parameters, easily.contractivity: If the absolute value of the largest eigenvalue of the operatormatrix is smaller than 1 , then the a�ne transformation is a contraction.expansion: If the absolute value of the largest eigenvalue of the operator matrixis greater than 1 , then the a�ne transformation is an expansion.disjoint subspaces: Check the bounding surfaces of the corresponding hyper-cubes. If there are no points of intersection and none of the hypercubescontain another one completely, then the subspaces are disjoint.As a result of Procedure 1 we may moreover realize that, since the inverse func-tion of a sigmoidal function is not computable by a neuron, RNNs using sigmoidalactivation functions can not implement stack operations as described above. Bya similar observation the result provided in [13], stating that RNNs using linearsaturation activation functions can simulate an universal Turing machine, cannot be adapted to RNNs using sigmoidal activation functions, since the proofgiven in [13] is based on a similar stack construction as described here, and thusbased on the fact that a neuron can compute the inverse function of anotherneuron.6 Recognizing Dyck Languages by Recurrent NeuralNetworksThe results from the previous section can also be used to design networks whichperform computational tasks. To illustrate this we design a simple RNN thatrecognizes a context free language. More precisely, we construct for any Dycklanguage D(n) a corresponding RNN ND(n) that recognizes D(n) .Consider the class of Dyck languages D(n) (also known as the bracketlanguages). Let, for n � 1 , �n = fa1; b1; a2; b2; : : : ; an; bng , V = fSg andPn = fS ! SaiSbiS j i = 1; : : : ; ng [ fS ! �g be the set of terminal symbols,nonterminal symbols and productions, respectively.Obviously, in terms of operations on an n {ary stack sn , a word c =c1c2 : : : cm ( cj 2 �n ) of D(n) can be recognized by performing the follow-ing algorithm on c :Algorithm 1.step1. j := 0 , sn := ;step2. if j = m stopstep3. j := j + 1step4. if cj = ai for some i ( 1 � i � n ) then push(sn; ai) , goto step2step5. if cj = bi and top(sn) = ai for some i ( 1 � i � n ) then pop(sn) ,goto step2step6. sn := push(sn; ai) (for some 1 � i � n ), stopThe string is accepted i� the algorithm has stopped and the stack is empty.Note that, whenever the algorithm stops in step6 the stack is not empty, i.e.,the string is not accepted.



To construct a RNN that recognizes the language D(n) , we de�ne a metricspace containing representations of all possible stack values and an IFS thatperforms the corresponding operations on the metric space. To keep the resultingnetwork small, consider the metric space ([0; 1]; jx � yj) . The space [0; 1] ispartitioned in compact subspaces as illustrated here:
a

n
a

1{ { {

0 1

emptyA subspace named ai (for 1 � i � n ) represents the set of stack values wherethe top element is the symbol ai . These subspaces are considered to have thesame structure as the interval [0; 1] , i.e., the subspace named aj of the sub-space named ai represents the set of stack values where the �rst element is thesymbol ai and the second element is the symbol aj , etc. The subspace namedempty represents the empty stack. To keep the construction simple, we considerall intervals to be of equal length6 . Hence, the [0; 1] interval is partitionedinto 2n+ 3 subintervals of length 12n+3 . According to this partitioning of thestate space the (contractive) transformations fi mapping the interval [0; 1] to[ 2i+12n+3 ; 2i+22n+3 ] , respectively, are de�ned asfi(x) = sat(!1x+ �i) = sat( 12n+ 3x+ 2i+ 12n+ 3):The corresponding inverse transformations mapping the interval [ 2i+12n+3 ; 2i+22n+3 ]to [0; 1] , respectively, are given bygi(x) = sat(!2x+ �n+i) = sat((2n+ 3)x� (2i+ 1)):Note that, for all x < 2i+12n+3 gi(x) = 0 and for all x > 2i+22n+3 gi(x) = 1 .Now, the metric space given above together with these set of functions de�nethe IFS ([0; 1]; jx� yj; ffi j 1 � i � ng [ fgi j 1 � i � ng) . Algorithm 1. can bereformulated in terms of this IFS as follows:Algorithm 2.step1. j := 0 , s 2 [ 12n+3 ; 22n+3 ]step2. if j = m stopstep3. j := j + 1step4. if cj = ai for some i ( 1 � i � n ) then s := fi(s) , goto step2step5. if cj = bi and s 2 [ 2i+12n+3 ; 2i+22n+3 ] for some i ( 1 � i � n ) thens := gi(s) , goto step2step6. s := gi(s) , goto step2The string is accepted i� the algorithm has stopped and s 2 [ 12n+3 ; 22n+3 ] . Note,that although the algorithm does not stop in step6 the value of s can never bean element of [ 12n+3 ; 22n+3 ] again.Consider the word c = c1c2 : : : cm being sequentially fed into the systemsuch that the symbol cj ( 1 � j � m ) is input at time j . Then the fourlayered RNN ND(n) implements Algorithm 2. Note, that 4 computation stepsare done within one time step. Hence, the RNN recognizes the Dyck languagewithin linear time of the length of the input word c .6 The interval between two named intervals is left unnamed to avoid identi�cationcon
icts. E.g., the representation of an in�nite sequence aianan : : : would be undis-tinguishable from the representation of ai+1 (for 1 � i � n� 1 ), otherwise.
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