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Abstract

The same information is often broadcast to many
receivers over different frequency selective channels.
Digital audio signals and digital video signals are com-
monly distributed by such broadcasts. A coded modu-
lation technique for orthogonal frequency division mul-
tiplexing (OFDM) is presented that provides consis-
tent performance over a variety of frequency selective
channels. The range of performance for an example of
the new scheme over three different frequency selec-
tive channels is 0.75 dB at P, = 10~% as compared to
4 dB for a commonly used scheme.

The new technique employs relatively dense con-
stellations combined with low rate codes designed to
allow the receiver to take advantage of reliable sym-
bols to compensate for unreliable symbols. Frequency
hopped systems and flat fading systems with inter-
leaving can also benefit from the new technique.

1 Introduction

Multicarrier modulation, or orthogonal frequency
division multiplexing (OFDM), is an alternative to
equalized single carrier modulation. Multicarrier is es-
pecially attractive in environments where severe inter-
symbol interference (IST) makes equalization difficult.
Terrestrial wireless broadcast from multiple towers is
an example of a severe ISI environment where multi-
carrier is attractive [1, 2].

When multicarrier is used for point to point com-
munication, the coded modulation can be adapted to
the channel, distributing information and power op-
timally among the subcarriers [3]. However a broad-
cast transmitter must use a single coded modulation
that will provide consistent performance on a variety
of channels.

In Section 2, a review of multicarrier is presented.
The theoretical limits of broadcast transmission are
discussed in Section 3. Section 4 presents criteria for
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the design of broadcast coded modulation with peri-
odic symbol interleaving. Section 5 uses these crite-
ria to design an example coded modulation. Section
6 presents simulation results comparing the designed
coded modulation to a commonly used COFDM sys-
tem for three different frequency selective channels.
Section 7 concludes the paper.

2 Multicarrier modulation

A multicarrier transmission system that creates N
subcarriers in the frequency domain using the discrete
Fourier transform (DFT) is shown in Figure 1. As
shown in Figure 2, the multicarrier transmission sys-
tem is equivalent to IV parallel subchannels each con-
sisting of a complex scalar gain a; and additive white

Gaussain noise (AWGN) n;.
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Figure 1: Multicarrier modulation system
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Figure 2: Parallel subchannels in frequency

The scale factors a; are exactly the values of the
DFT of the channel impulse response. A cyclic prefix
(guard interval) approximately the length of the chan-
nel impulse response must be inserted between each



DFT block for the transformation to parallel channels
to be exact. It is assumed that E[n;?] = o2 for all 7.

3 Theoretical Limits

For a fixed set of transmitter powers { E[z;%]}, the
highest data rate possible on a set of subchannels de-
scribed by Figure 2 is the mutual information I defined
as

The value of I above is less than the channel capac-
ity achieved by choosing the values of { EF[z;%]} to have
the optimal water—pouring distribution [4]. Since the
subcarrier SNRs are not known at a broadcast trans-
mitter, the optimal distribution of power is not pos-
sible. Furthermore, each channel over which data is
being broadcast has a different optimal power distri-
bution.

Shannon’s fundamental coding theorem ensures that
for each AWGN-ISI channel there is a code that will
permit reliable transmission at rate I in Eq. (1). Can
one code work for all channels with rate /7 Root and
Varaiya’s 1968 result [5] on the Gaussian compound
channel implies that the answer is yes. Specifically,
given data rate R and transmitter powers {E[x;?]}
there exists a “universal” code that will reliably trans-
mit at rate R over all AWGN-ISI channels for which
I>R.

To achieve I on the overall channel, the mutual
information I; of each subchannel must be achieved

I; = log, (1 + ﬂgﬂ]) : (2)

where

o

Thus consistent performance can be achieved only if
high capacity subcarriers are able to provide the re-
ceiver with their full potential of information.

A subchannel cannot provide more than n bits of
information to the receiver where n is the base 2 log of
the constellation size. Thus the constellation should
be as large as possible to allow the highest capacity
subcarriers to be fully utilized. This can be contrasted
with the AWGN case where n is should always be k+1
for a rate k/n code [6]. Practical considerations such
as precision limit how large n can be in practice. Still,
n can be made sufficiently large to allow consistent
performance on typical ISI channels.

4 Code design for periodic interleaving

These large constellations are combined with low
rate codes that allow the receiver to use the informa-
tion obtained from the high capacity subchannels to

compensate for information unavailable from the low
capacity subchannels. This section presents criteria
useful in the design of these codes when periodic sym-
bol interleaving is used.

Subsection 4.1 reviews periodic interleaving. Sub-
section 4.2 introduces the periodic distance vector.
Subsections 4.3 and 4.4 introduce periodic effective
code length and periodic product distance which are
computed from the periodic distance vectors. Subsec-
tion 4.5 presents a procedure for coded modulation
design based on these two criteria.

4.1 Periodic interleaving

Recall from Section 2 that the subchannel gains
a; are the values of the DFT of the channel impulse
response. Since the frequency response of a typical
channel is continuous, subchannel gains adjacent in
frequency will have similar values. A long sequence of
small subchannel gains for consecutive received sym-
bols will typically cause a decoding error. To avoid
poor performance, consecutive code symbols should
not be mapped to subchannels adjacent in frequency.

Interleaving is used to implement a different map-
ping of code symbols to subchannels. There are var-
ious types of interleaving, and the choice of an in-
terleaver affects how well a particular coded modula-
tion will perform. Periodic symbol interleaving is used
in this paper, and the coded modulation is designed
specifically to give good performance when combined
with periodic symbol interleaving.

Periodic symbol interleaving can be implemented
by writing the constellation points into a matrix col-
umn by column and then reading them out row by row.
In a multicarrier system with 512 subchannels, peri-
odic interleaving with period P = 8 is accomplished
by writing the coded modulation constellation points
¢; into an 8 x 64 matrix column by column and then
reading the subchannel inputs z; row by row. This
matrix is shown below with both write and read la-

beling.

C1 Co ... C505 sl 9 N T4
C2  Cio C506 Les Le6 L1128
cg Cig ... Cs12 L449 T450 ... T512

A periodic interleaver with period P provides the
maximum possible separation in frequency of any P
consecutive code symbols (¢;, ¢iq1,...¢i4p—1). How-
ever, codewords ¢; and ¢;4p are transmitted on sub-
channels adjacent in frequency.



4.2 Periodic distance vectors

Suppose that {¢;} and {é} are two sequences of
constellation points that are valid outputs of a particu-
lar coded modulation. Define distances {d;} such that
d; = ¢; —¢;. Assuming a maximum likelihood decision
between {¢;} and {¢;}, define P.: be the probability
of mistaking {¢} for {¢;}. When {¢;} is periodically
interleaved so that z(;y = ¢; is transmitted over sub-
.channels as in Figure 2, P.: decreases as Zai(i)d?
increases.

Periodic interleaving maps adjacent subchannel gains
to codewords with indexes separated by P. Since ad-
Jjacent subchannel gains have similar values,

Qr() R An(i+P) " R Ax(i+5P) - - - (3)

where j is an integer. The summation Y a? ,,d? can
be approximated by summing up all the squared dis-
tances d? which have the same index modulo P and
then multiplying these P different distance sums by
an appropriate a? and summing as shown below.

%] P
2 2 2 7
Z g ydi & Zaw(i)di (4)
i=1 i=1
where d? = Z dzz+jP' (5)
§=0

The vector [dy, ds, . . ., dp] will be referred to as the
periodic distance vector. To the extent that the above
approximations are valid, the periodic distance vector
represents all the information available about what
values of Zai(i)d? are possible. Recall that larger

values of > ai(i)d? imply smaller values of P...
4.3 Periodic effective code length

For a given coded modulation, the smallest num-
ber of nonzero elements in a periodic distance vector
for that coded modulation will be referred to as the
periodic effective code length (PECL) of the coded
modulation. Larger values of PECL allow more small
values of ¢; to be tolerated since at least some nonzero
elements see large values of a;.

In [7], Lapidoth suggested designing codes to trans-
mit error free for the largest possible number of era-
sures in the periodic erasure pattern resulting from a
block erasure channel combined with periodic inter-
leaving. This is equivalent to maximizing the PECL.

The PECL is essentially a periodic version of the
effective code length discussed by Wilson and Leung
[8], Divsalar and Simon [9], and Sundberg and Se-
shadri [10]. These papers show that the effective code

length indicates the diversity provided by the code.
The PECL indicates the diversity provided by a code
combined with periodic symbol interleaving.
4.4 Periodic product distance

A coded modulation 1s desired which performs well
for all channels having I > R where I is defined in
Eq. (1) and R is the desired per symbol information
rate. For any particular periodic distance vector there
is a particular channel with I > R which produces the
smallest value of ) ai(i)jz.

Without loss of generality, assume E[z?]/o? = 1.
Neglecting the 1 in Eq. (1), the set of channels with
I > R is approximately the set of channels satisfying

Y-logy(af) > R. When df > 0 for i € {1,2,...P},

K3
the smallest sum ) ai(i)d? over this set of channels is

P L. (5

The above minimum value of ) ai(i CZZZ 1s monotonic
in the product of the elements of the periodic distance
vector. Thus this product 1s a good metric for code
design. For a given convolutional code, the periodic
product distance of order ¢ (PPD;) is defined as the
smallest product of the nonzero elements of a periodic
distance vector having exactly ¢ nonzero elements. As
with the PECL, the periodic product distances are
essentially periodic versions of the product distances
discussed in [9, 10].

Maximizing the product distance implies spreading
the available Euclidean distance as evenly as possible
over the periodic distance vector. Intuitively, this is
desirable to achieve good performance on a variety of
channels having different values of {a;}.

4.5 Design procedure

A coded modulation scheme using an M state rate
k/n convolutional code and a signal mapper using a
2" point constellation is to be designed to give good
performance in a broadcast multicarrier system with
N subcarriers using periodic symbol interleaving with
period P. Typically M, k, and N are specified before
the coded modulation is designed. As discussed in
Section 2, n should be made as large as possible.

The remaining issues are the choice of P, the la-
beling of the constellation, and the design of the con-
volutional code polynomial. P should be a factor of
N. Small values of P make it more likely that sub-
carriers in one period will be independent by making
their separation in frequency (N/P) larger. However,
increasing P can allow larger values of PECL up to a
point. A good initial choice of P is to increase P until
the PECL stops increasing.



The constellation labeling should be chosen so that
the set of minimum distances associated with error
patterns is as large as possible. Set partitioning is
not necessarily required since maximizing PECL pre-
cludes transmission of an uncoded bit. Gray coding
1s not necessarily required, and is sometimes not even
possible as with the 32 cross constellation.

The convolutional code should be chosen so that
it provides the maximum possible PECL. Typically,
many convolutional codes will satisfy this criterion.
From these maximum PECL codes, one code is se-
lected which has large values of PPD; for values of ¢
ranging from PECL to P. Since there are no peri-
odic distance vectors with fewer than PECL nonzero
elements, PPD; is not of interest for ¢ < PECL.

5 Code design example

As an example, a coded modulation is designed for
OFDM with 512 subcarriers. The parameters £ = 1
and M = 64 are used in the following example to
allow a fair comparison with the commonly used coded
modulation discussed in [1], which combines the 64
state rate 1/2 “industry standard” convolutional code
(having polynomials 133 171) with 4 PSK.

As discussed in Section 2, n should be chosen to be
as large as possible. In this example n is chosen to be
4. This i1s large enough to give a clear improvement
over the commonly used code with n = 2, but still
small enough to be considered practical for multicar-
rier broadcast [2, 11].

A 16 point constellation is implied by n = 4. For
16—QAM with a rate 1/4 convolutional code, the codes
achieved with gray labeling are isomorphic to those
achieved with Ungerboeck labeling. The QAM con-
stellation with the gray labeling shown below in hex-
adecimal was used in this example.

3 1 5 7
2 0 4 6
a 8 ¢ e (7)
b 9 d f

The PECL can be no larger than the constraint
length of the convolutional code. Another upper bound
on PECL follows from the discussion in [7] of convo-
lutional codes which are “matched” to a periodic in-
terleaver. Specifically,

—k
PECL < ——%p 4+ 1. (8)
n

A 64 state rate 1/4 convolutional code has a con-
straint length of 7. Thus no choice of P will provide
a PECL larger than 7 in this example. The small-
est value of P for which the bound in (8) allows a

PECL of 718 P = 8. There are many 64 state rate
1/4 convolutional codes that achieve PECL = 7 when
P =8, 50 P is chosen to be 8. The algorithm proposed
by Lapidoth in [7] for computing the bit error rate of
convolutional codes using periodic interleaving on an
erasure channel can be adapted to compute PECL.

The final step is to select a code having the max-
imum possible PECL which also has large values of
PPD; for values of ¢ from ¢ = PECL =7 to1= P = 8.
It is not possible to simultaneously maximize both
PPD7 and PPDg. In this example, codes with maxi-
mum PECL were ordered according to the sum of the
logs of PPD7 and PPDg. Values of PPD; were com-
puted by direct trellis search.

The five codes with the largest values of this sum
are listed in Table 1 along with their relevant prop-
erties. The top code was selected because 1t had the
largest sum and both PPD7 and PPDg were relatively
large. Note that a code further down on the list would
have been chosen if either PPD; or PPDg had been
particularly small for the top code.

(octal) logs( - )
code polynomial PPD~ | PPDg | Sum
43 176 171 45 | 11.068 | 10.461 | 21.53
73 105 131 147 9.769 | 11.764 | 21.53
71 103 137 145 9.939 | 11.501 | 21.44
73 105 131 147 9.876 | 11.447 | 21.32
43 175 155 103 | 10.671 | 10.617 | 21.29

Table 1: Codes with large product distances

6 Simulation Results

Bit error rate (BER) simulations were carried out
on three different frequency selective channels. Figure
3 shows the frequency responses in terms of subchan-
nel SNR. Channel 1 is an AWGN channel. Channel 2
is the notch channel studied by Sari in [1]. Channel 3
is the slope distortion channel used by Cioffi in [12].
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Figure 3: Channel frequency responses



Figure 4 compares performance of the the rate 1/2
4-PSK scheme used in [1] with code designed above
(the top code in Table 1).

Performance comparisons across different channels
should compare performance of channels that have the
same mutual information I as defined in (1). In Figure
4 every BER plotted at a given SNR, is for a channel
with I equal to the AWGN channel capacity at that
SNR. Thus the AWGN channel is plotted in the stan-

dard way, and the other channels are compared fairly.
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Figure 4: BER performance comparison

Consistent BER performance across the three chan-
nels studied is obtained at the cost of poorer perfor-
mance on the AWGN channel. At 3 x 1076 BER, the
range of performance on all three channels is reduced
to less than .75 dB from more than 4 dB for the com-
monly used rate 1/2 code. A gain of about 2.5 dB is
obtained on channel 3, and about 1 dB is lost on the
AWGN channel (channel 1) compared with the com-
monly used code.

7 Conclusions

With properly chosen coded modulation, multicar-
rier transmission systems can provide consistent per-
formance on a variety of frequency selective channels.
To achieve this consistent performance, dense constel-
lations combined with low rate codes are required.
This combination allows high capacity subchannels to
carry their full potential of information.

When periodic symbol interleaving is used, the pe-
riodic effective code length and periodic product dis-
tances are good criteria for coded modulation design.
This is true for frequency hopped spread spectrum sys-
tems and flat fading channels as well as the multicar-
rier scenario which has been the focus of this paper.
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8 An Additional Channel

This section presents an additional simulation which
demonstrates that the newly designed coded modu-
lation performs well even when more than half the
channel is severely attenuated. It is not part of the
published Asilomar paper.

More than half of the subchannels in channel 4 il-
lustrated in Figure 5 have a capacity that is essentially
zero for the SNRs of interest. For this channel, the rate
1/2 code can transfer at most 2 bits of information per
subchannel on less than half of the subchannels. Thus
it cannot reliably send the attempted average of 1 bit
per subchannel.
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Figure 5: Channel 4
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As shown in Figure 7, the rate 1/2 code has a high
BER on channel 4 for the entire range of SNR studied.

A 1/4 code can transfer up to 4 bits of information
per subchannel and is thus not precluded from reliably
sending an average of 1 bit per subchannel when half
the band is severely attenuated. As shown in Figure
7, the newly designed rate 1/4 code performs about
as well on this channel as it did on the three channels
discussed earlier.

Thus, depending on the channels encountered, im-
provements provided by the code design technique dis-
cussed in this paper can be dramatic.
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Figure 6: BER performance comparison



