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Abstract

Shape similarity and shape retrieval are very important topics in computer vision. The recent

progress in this domain has been mostly driven by designing smart shape descriptors for providing

better similarity measure between pairs of shapes. In this paper, we provide a new perspective to this

problem by considering the existing shapes as a group, and study their similarity measures to the query

shape in a graph structure. Our method is general and can be built on top of any existing shape similarity

measure. For a given similarity measure, a new similarity is learned through graph transduction. The

new similarity is learned iteratively so that the neighbors of a given shape influence its final similarity to

the query. The basic idea here is related to PageRank ranking, which forms a foundation of google web

search. The presented experimental results demonstrate that the proposed approach yields significant

improvements over the state-of-art shape matching algorithms. We obtained a retrieval rate of 91.61%

on the MPEG-7 data set, which is the highest ever reported in the literature. Moreover, the learned

similarity by the proposed method also achieves promising improvements on both shape classification

and shape clustering.

Index Terms

Shape similarity, shape retrieval, shape classification, shape clustering, graph transduction

I. INTRODUCTION

Shape matching/retrieval is a very critical problem in computer vision. There are many different

kinds of shape matching methods, and the progress in improving the matching rate has been

substantial in recent years. However, nearly all of these approaches are focused on pair-wise

shape similarity measure. It seems to be an obvious statement that the more similar two shapes

are, the smaller is their difference, which is measured by some distance function. Yet, this

statement ignores the fact that some differences are more relevant while other differences are

less relevant for shape similarity. It is not yet clear how the biological vision systems perform

shape matching; it is clear though that shape matching involves the high-level understanding

of shapes. In particular, shapes in the same class can differ significantly because of in-class

variation, distortion or non-rigid transformation. In other words, even if two shapes belong to

the same class, the distance between them may be very large if the distance measure cannot

capture the intrinsic property of the shape. It appears to us that many published shape distance

measures [1]–[14] are unable to address this issue. For example, based on the inner distance
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shape context (IDSC) [3], the shape in Fig. 1(a) is more similar to (b) than to (c), but it is

obvious that shape (a) and (c) belong to the same class. This incorrect result is due to the fact

that the inner distance is unaware that the missing tail and one front leg are less relevant than

much smaller shape details like the dog’s ear and the shape of the head. No matter how good a

shape matching algorithm is, the problem of more relevant and less relevant shape differences

must be addressed if we want to obtain human-like performance. This requires having a model

to capture the essence of a shape class instead of viewing each shape as a set of points, a

parameterized function, or a manifold. In the proposed approach, each shape is considered in

the context of other shapes in its class, and the class does not need to be known.

Fig. 1. Existing shape similarity methods incorrectly rank shape (b) as more similar to (a) than (c).

Fig. 2. A key idea of the proposed distance learning is to replace the original shape distance between (a) and (e) with a

distance induced by geodesic paths in the manifold of know shapes. One such path is (a)-(e) in this figure.

Given a database of shapes, a query shape, and a shape distance function, which does not

need to be a metric, we learn a new distance function that is expressed by shortest paths on the

manifold formed by the know shapes and the query shape. We can do this without explicitly

learning this manifold. As we will demonstrate in our experimental results, the new learned

distance function is able to incorporate the knowledge of intrinsic shape differences. It is learned
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in an unsupervised setting in the context of known shapes. For example, if the database of known

shapes contains shapes (a)-(e) in Fig. 2, then the new learned distance function will rank correctly

the shape in Fig. 1(a) as more similar to (c) than to (b). The reason is that the new distance

function will replace the original distance (a) to (c) in Fig. 1 with a distance induced by the

shortest path between in (a) and (e) in Fig. 2.

In the proposed approach, for a given similarity measure s0, a new similarity s is learned

through graph transduction. Intuitively, for a given query shape q, the similarity s(q, p) will

be high if neighbors of p are also similar to q. However, even if s0(q, p) is very high, but

the neighbors of p are not similar to q, then s(q, p) will be low. Thus, the new similarity s

is context sensitive, where a context of a given shape is defined by its neighbors, which are

database shapes that are most similar to it. In this paper, we adopt a graph-based transductive

learning algorithm to tackle this problem, and it has the following properties: (1) Instead of

focusing on computing the distance (similarity) for a pair of shapes, we take advantage of the

manifold formed by the existing shapes. (2) However, we do not explicitly learn the manifold

nor compute the geodesics [15], which are time consuming to calculate. A better similarity

is learned by collectively propagating the similarity measures to the query shape and between

the existing shapes through graph transduction. (3) Unlike the label propagation [16] approach,

which is semi-supervised, we treat shape retrieval as an unsupervised problem and do not require

knowing any shape labels. (4) We can build our algorithm on top of any existing shape matching

algorithm and a significant gain in retrieval rates can be observed on well-known shape datasets.

(5) The learned distance by our algorithm can also be used to improve the performance of the

existing shape clustering methods.

Even if the difference between shape A and shape C is large, but there is a shape B which

has small difference to both of them, we still claim that shape A and shape C are similar to each

other. This situation is possible for most shape distances, since they do not obey the triangle

inequality, i.e., it is not true that d(A, C) ≤ d(A, B)+d(B, C) for all shapes A, B, C [17]. If we

have the situation that d(A, C) > d(A, B)+d(B, C) for some shapes A, B, C, then the proposed

method is able to learn a new distance d′(A, C) such that d′(A, C) ≤ d(A, B)+d(B, C). Further,

if there is a path in the distance space such that d(A, C) > d(A, B1) + . . . + d(Bk, C), then our

method learns a new d′(A, C) such that d′(A, C) ≤ d(A, B1) + . . . + d(Bk, C). Since this path

represents a minimal distortion morphing of shape A to shape C, we are able to ignore less
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Fig. 3. The first column shows the query shape. The remaining 10 columns show the most similar shapes retrieved from

the MPEG-7 data set. The first row shows the results of IDSC [3]. The second row shows the results of the proposed learned

distance.

relevant shape differences, and consequently, we can focus on more relevant shape differences

with the new distance d′.

Our experimental results clearly demonstrate that the proposed method can improve the

retrieval results of the existing shape matching methods. We obtained the retrieval rate of 91.61%

on part B of the MPEG-7 Core Experiment CE-Shape-1 data set [18], which is the highest ever

bull’s eye score reported in the literature. We used the IDSC as our baseline algorithm, which

has the retrieval rate of 85.40% on the MPEG-7 data set [3]. Fig. 3 illustrates the benefits of the

proposed distance learning method. The first row shows the query shape followed by the first 10

shapes retrieved using IDSC only. Only two flies are retrieved among the first 10 shapes. The

results of the learned distance for the same query are shown in the second row. All of the top 10

retrieval results are correct. The proposed method was able to learn that the shape differences

in the number of fly legs and their shapes are not intrinsic to this shape class.

The remainder of this paper is organized as follows. In Section II, we briefly review some

well-known shape matching methods and the semi-supervised learning algorithms. Section III

describes the proposed approach to learning shape distances, and relates it to PageRank. Section

IV relates the proposed approach to the class of machine learning approaches called label

propagation. The problem of the construction of the affinity matrix is addressed in Section

V. Section VI-A gives the experimental results on several famous shape data sets to show

the advantage of the proposed approach. Conclusion and discussion are given in Section VII.

A preliminary version of this paper appeared as [19]. In this paper we introduce two new

applications, shape clustering and retrieval of partially occluded shapes, and a systematic method

for selecting optimal parameter setting in Section VI-A. We also relate the proposed approach
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to PageRank. Moreover, the experimental evaluation has been substantially extended.

II. RELATED WORK

The semi-supervised learning problem has attracted an increasing amount of interest recently,

and several novel approaches have been proposed. The existing approaches could be divided

into several types, multiview learning [20], generative model [21], Transductive Support Vector

Machine (TSVM) [22]. Recently there have been some promising graph based transductive

learning approaches proposed, such as label propagation [16], Gaussian fields and harmonic

functions (GFHF) [23], local and global consistency (LGC) [24], and the Linear Neighborhood

Propagation (LNP) [25]. Zhou et al. [26] modified the LGC for the information retrieval. The

semi-supervised learning problem is related to manifold learning approaches, e.g., [27].

The proposed method is inspired by the label propagation method [16]. The reason we choose

the framework of label propagation is that it allows clamping of labels. In other words, it fixes

the label of labeled data points during the propagation process. Since the query shape is the

only labeled shape in the retrieval process, the label propagation allows us to enforce its label

during each iteration, which naturally fits in the framework of shape retrieval. Usually, GFHF is

used instead of label propagation, as both methods can achieve the same results [16]. However,

in the shape retrieval, we can use only the label propagation, the reason is explained in detail

in Section IV.

Since a large number of shape similarity methods have been proposed in the literature, we

focus our attention on methods that reported retrieval results on the MPEG-7 shape data set (part

B of the MPEG-7 Core Experiment CE-Shape-1) [18]. This allows us to clearly demonstrate

the retrieval rate improvements obtained by the proposed method. Belongie et al. [1] introduced

a novel 2D histograms representation of shapes called Shape Contexts (SC). Ling and Jacobs

[3] modified the Shape Context by considering the geodesic distance between contour points

instead of the Euclidean distance, which significantly improved the retrieval and classification

of articulated shapes. Latecki and Lakämper [4] used visual parts represented by simplified

polygons of contours for shape matching. Tu and Yuille [2] proposed the feature driven generative

models for probabilistic shape matching. In order to avoid problems associated with purely global

or local methods, Felzenszwalb and Schwartz [8] described a dynamic and hierarchical curve

matching method. Other hierarchical methods include the hierarchical graphical models in [28]
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and hierarchical procrustes matching [7]. Alajlan et al. proposed a mutiscale representation of

triangle areas for shape matching, which also included partial and global shape information [29].

Daliri and Torre defined a symbolic descriptor based on Shape Contexts, then used edit distance

for final matching in order to overcome the difficulty caused by deformation and occlusions

[30]. The methods above all focused on designing improved shape descriptors for single shapes

and their comparison for pairs of shapes. Although the recent methods made some progress, the

improvement is not obvious as shown in Table I of Section VI-A. In this table, we summarize

all the reported retrieval results on MPEG-7 database, and the retrieval rates of the recent

publications are all around 85%. There are two main reasons that limit the progress in shape

retrieval: (1) The case for large deformation and occlusions still can not be handled well. 2)

The existing algorithms can not distinguish the more relevant and less relevant shape differences

pointed out in Section I.

There has been a significant body of work on distance learning [31]. Xing et al. [32] propose

estimating the matrix W of a Mahalanobis distance by solving a convex optimization problem.

Bar-Hillel et al. [33] also use a weight matrix W to estimate the distance by relevant component

analysis (RCA). Athitsos et al. [34] proposed a method called BoostMap to estimate a distance

that approximates a certain distance. Hertz’s work [35] uses AdaBoost to estimate a distance

function in a product space, whereas the weak classifier minimizes an error in the original feature

space. All these methods’ focus is a selection of suitable distance from a given set of distance

measures. Our method aims at improving performance of a given distance measure.

III. LEARNING NEW DISTANCE MEASURES

We first describe the classical setting of similarity retrieval. It applies to many retrieval

scenarios like key word, document, image, and shape retrieval. Given is a set of objects X =

{x1, . . . , xn} and a similarity function sim: X × X → R+ that assigns a similarity value (a

positive value) to each pair of objects.

We assume that x1 is a query object (e.g., a query shape), {x2, . . . , xn} is a set of known

database objects (or a training set). Then by sorting the values sim(x1, xi) in decreasing order

for i = 2, . . . , n we obtain a ranking of database objects according to their similarity to the

query, i.e., the most similar database object has the highest value and is listed first. Sometimes a

distance measure is used in place of the similarity measure, in which case the ranking is obtained
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by sorting the database objects in the increasing order, i.e., the object with the smallest value is

listed first. Usually, the first N � n objects are returned as the most similar to the query x1.

As discussed above, the problem is that the similarity function sim is not perfect and for many

pairs of objects it returns wrong results, although it may return correct scores for many pairs.

We introduce now a method to learn a new similarity function simT that drastically improves

the retrieval results of sim for the given query x1.

Let wi,j = sim(xi, xj), for i, j = 1, . . . , n, be a similarity matrix, which is also called an

affinity matrix. We also define a n×n probabilistic transition matrix P as a row-wise normalized

matrix w.

Pij =
wij∑n

k=1 wik

(1)

where Pij is the probability of transit from node i to node j.

We seek a new similarity measure s. Since s only needs to be defined as similarity of other

elements to query x1, we denote f(xi) = s(x1, xi) for i = 1, . . . , n. A key function is f and it

satisfies

f(xi) =
n∑

j=1

Pij f(xj) (2)

Thus, the similarity of xi to the query x1, expressed as f(xi), is a weighted average over all

other database objects, where the weights sum to one and are proportional to the similarity of

the other database objects to xi. In other words we seek a function f : X → [0, 1] such that

f(xi) is a weighted average of f(xj), where the weights are based on the original similarities

wi,j = sim(xi, xj). Our intuition is that the new similarity f(xi) = s(x1, xi) will be large iff all

points xj that are very similar to xi (large sim(xi, xj)) are also very similar to query x1 (large

sim(x1, xj)). Note that function f reaches equilibrium and an arbitrary function does not satisfy

the equality.

The recursive equation (2) is closely related to PageRank. As stated in [36], a slightly simplified

version of simple ranking R of a web page u in PageRank is defined as

R(u) =
∑
v∈Bu

c

Nv

R(v), (3)

where Bu is a set of pages that point to u, Nv is the number of links from page v and c is a

normalization factor.
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Consequently, our equation (2) differs from PageRank equation (3) by the normalization

matrix, which is defined in Eq. (1) in our case, and is equal to c
Nv

for PageRank. The PageRank

recursive equation takes a simple average over neighbors (a set of pages that point to a given

web page), while we take a weighted average over the original input similarities. Therefore, our

equation admits recursive solution analog to the solution of the PageRank equation. Before we

present it, we point out one more relation to recently proposed label propagation [16].

We obtain the solution to Eq. (2) by the following recursive procedure:

ft+1(xi) =
n∑

j=1

Pij ft(xj) (4)

for i = 2, . . . , n and we set

ft+1(x1) = 1. (5)

We define a sequence of newly learned similarity functions restricted to x1 as

simt(x1, xi) = ft(xi). (6)

Thus, we interpret ft as a set of normalized similarity values to the query x1. Observe that

sim1(x1, xi) = w1,i.

The steps (4) and (5) are used in label propagation, which is described in Section IV. However,

our goal and our setting are different. Although label propagation is an instance of semi-

supervised learning, we stress that we remain in the unsupervised learning setting. In particular,

we deal with the case of only one known class, which is the class of the query object. This

means, in particular, that label propagation has a trivial solution in our case limt→∞ ft(xi) = 1

for all i = 1, . . . , n, i.e., all objects will be assigned the class label of the query shape. Since

our goal is ranking of the database objects according to their similarity to the query, we stop the

computation after a suitable number of iterations t = T . As is the usual practice with iterative

processes that are guaranteed to converge, the computation is halted if the difference ||ft+1−ft||
becomes very slow, see Section VI-A for details.

If the database of known objects is large, the computation with all n objects may become

impractical. Therefore, in practice, we construct the matrix w using only the first M < n most

similar objects to the query x1 sorted according to the original distance function sim. Our

experimental results in Section VI-A demonstrate that the replacement of the original similarity
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measure sim with simT results in a significant increase in the retrieval rate. The pseudo-code

of our algorithm is shown in Fig. 4.

Input: The n × n row-wise normalized similarity matrix P with the

query x1, f1(x1) = 1, and f1(xi) = 0 for i = 2, ..., n.

while: t < T.

for i = 2, ..., n,

ft+1(xi) =
∑n

j=1 Pij ft(xj)

end

ft+1(x1) = 1.

end

Output: The learned new similarity values to the query x1: fT .

Fig. 4. The pseudo-code for the proposed algorithm

IV. RELATION TO LABEL PROPAGATION

Label propagation belongs to a set of semi-supervised learning methods, where it is usually

assumed that class labels are known for a small set of data points. We have an extreme case

of semi-supervised learning, since we only assume that the class label of the query is known.

Thus, we have only one class that contains only one labeled element being the query x1. In

our approach, we have a sequence of labeling functions ft : X → [0, 1] with f0(x1) = 1 and

f0(xi) = 0 for i = 2, . . . , n, where ft(xi) can be interpreted as probability that point xi has the

class label of the query x1.

Label propagation is formulated as a form of propagation on a graph, where node’s label

propagates to neighboring nodes according to their proximity. The key idea is that its label

propagates “faster” along a geodesic path on the manifold spanned by the set of known shapes

than by direct connections. While following a geodesic path, the obtained new similarity measure

learns to ignore less relevant shape differences. Therefore, when learning is complete, it is able

to focus on more relevant shape differences. We review now the key steps of label propagation

and relate them to the proposed method introduced in Section III.

Let {(x1, y1) . . . (xl, yl)} be the labeled data, y ∈ {1 . . . C}, and {xl+1 . . . xl+u} the unlabeled

data, usually l � u. Let n = l + u. We will often use L and U to denote labeled and unlabeled

March 30, 2009 DRAFT

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Temple University. Downloaded on January 16, 2010 at 13:32 from IEEE Xplore.  Restrictions apply. 



11

data respectively. The Label propagation supposes the number of classes C is known, and all

classes are present in the labeled data [16]. A graph is created where the nodes are all the data

points, the edge between nodes i, j represents their similarity wi,j. Larger edge weights allow

labels to travel through more easily. Also define a l × C label matrix YL, whose ith row is an

indicator vector for yi, i ∈ L: Yic = δ(yi,c). The label propagation computes soft labels f for

nodes, where f is a n×C matrix whose rows can be interpreted as the probability distributions

over labels. The initialization of f is not important. The label propagation algorithm is as follows:

1) Initially, set f0(xi) = yi for i = 1, . . . , l and f0(xj) arbitrarily (e.g., 0) for xj ∈ Xu

Repeat until convergence:

2) set ft+1(xi) =
∑n

j=1 Pij ft(xj), ∀xi ∈ Xu

3) set ft+1(xi) = yi for i = 1, . . . , l (the labels of the labeled objects should be fixed).

In step 2, all nodes propagate their labels to their neighbors for one step. Step 3 is critical,

since it ensures persistent label sources from labeled data. Hence instead of letting the initial

labels fade way, we fix the labeled data. This constant push from labeled nodes, helps to push

the class boundaries through high density regions so that they can settle in low density gaps.

If this structure of data fits the classification goal, then the algorithm can use unlabeled data to

improve learning.

Let f = (
fL

fU

). Since fL is fixed to YL, we are solely interested in fU . The matrix P is split

into labeled and unlabeled sub-matrices

P =

⎡
⎣ PLL PLU

PUL PUU

⎤
⎦ (7)

As proven in [16] the label propagation converges, and the solution can be computed in closed

form using matrix algebra:

fU = (I − PUU)−1PULYL (8)

However, as the label propagation requires all classes be present in the labeled data, it is not

suitable for shape retrieval. As mentioned in Section III, for shape retrieval, the query shape is

considered as the only labeled data and all other shapes are the unlabeled data. Moreover, the

graph among all of the shapes is fully connected, which means the label could be propagated on

the whole graph. If we iterate the label propagation infinite times, all of the data will have the
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same label, which is not our goal. Therefore, we stop the computation after a suitable number

of iterations t = T .

V. THE AFFINITY MATRIX

In this section, we address the problem of the construction of the affinity matrix W . There

are some methods that address this issue, such as local scaling [37], local liner approximation

[25], and adaptive kernel size selection [38].

However, in the case of shape similarity retrieval, a distance function is usually defined,

e.g., [1], [3], [4], [8]. Let D = (Dij) be a distance matrix computed by some shape distance

function. Our goal is to convert it to a similarity measure in order to construct an affinity matrix

W . Usually, this can be done by using a Gaussian kernel:

wij = exp(−D2
ij

σ2
ij

) (9)

Previous research has shown that the propagation results highly depend on the kernel size σij

selection [25]. In [23], a method to learn the proper σij for the kernel is introduced, which has

excellent performance. However, it is not learnable in the case of few labeled data. In shape

retrieval, since only the query shape has the label, the learning of σij is not applicable. In

our experiment, we use use an adaptive kernel size based on the mean distance to K-nearest

neighborhoods [39]:

σij = α · mean({knnd(xi), knnd(xj)}) (10)

where mean({knnd(xi), knnd(xj)}) represents the mean distance of the K-nearest neighbor

distance of the sample xi, xj and α is an extra parameter. Both K and α are determined

empirically.

VI. EXPERIMENTAL RESULTS

In this section, we show that the proposed approach can significantly improve the performance

of the existing shape retrieval, shape classification and shape clustering methods.
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A. Improving shape retrieval/matching

1) Improving MPEG-7 shape retrieval: The IDSC [3] significantly improved the performance

of shape context [1] by replacing the Euclidean distance with shortest paths inside the shapes, and

obtained the retrieval rate of 85.40% on the MPEG-7 data set. The proposed distance learning

method is able to improve the IDSC retrieval rate to 91.61%. For reference, Table I lists several

reported results on the MPEG-7 data set. The MPEG-7 data set consists of 1400 silhouette images

grouped into 70 classes. Each class has 20 different shapes. The retrieval rate is measured by

the so-called bull’s eye score. Every shape in the database is compared to all other shapes, and

the number of shapes from the same class among the 40 most similar shapes is reported. The

bull’s eye retrieval rate is the ratio of the total number of shapes from the same class to the

highest possible number (which is 20 × 1400). Thus, the best possible rate is 100%. From the

retrieval rates collected in Table I, we can clearly observe that our method made a significant

progress on this database, and the second highest result is 87.70% obtained by Shape Tree [8].

In order to visualize the gain in retrieval rates by our method as compared to IDSC, we

plot the percentage of correct results among the first k most similar shapes in Fig. 5(a), i.e.,

we plot the percentage of the shapes from the same class among the first k-nearest neighbors

for k = 1, . . . , 40. Recall that each class has 20 shapes, which is why the curve increases for

k > 20. We observe that the proposed method not only increases the bull’s eye score, but also

the ranking of the shapes for all k = 1, . . . , 40.

We use the following parameters to construct the affinity matrix: α = 0.25 and the neighbor-

hood size is K = 14. As stated in Section III, in order to increase computational efficiency, it is

possible to construct the affinity matrix for only part of the database of known shapes. Hence,

for each query shape, we first retrieve 300 the most similar shapes, and construct the affinity

matrix W for only those shapes, i.e., W is of size 300 × 300 as opposed to a 1400 × 1400

matrix if we consider all MPEG-7 shapes. Then we calculate the new similarity measure simT

for only those 300 shapes. Here we assume that all relevant shapes will be among the 300 most

similar shapes. Thus, by using a larger affinity matrix we could improve the retrieval rate but at

the cost of computational efficiency. For each query, the average running time of our method on

MEPG-7 is about 30 seconds in Matlab. For comparison the running time of the original IDSC

is about one minute for each query.
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TABLE I

RETRIEVAL RATES (BULL’S EYE) OF DIFFERENT METHODS ON THE MPEG-7 DATA SET.

Alg. CSS Vis. Parts Shape Aligning Distance Prob. Chance Skeletal Gen. Optimized

Contexts Curves Set Approach Prob. Context Model CSS

[40] [4] [1] [41] [42] [43] [44] [45] [2] [46]

Score 75.44% 76.45% 76.51% 78.16% 78.38% 79.19% 79.36% 79.92% 80.03% 81.12%

Alg. Contour Multiscale Shape Fixed Inner Symbolic Hier. Triangle Shape IDSC [3]

Seg. Rep. L’Âne Rouge Cor. Distance Rep. Procrustes Area Tree + our

[47] [48] [49] [50] [3] [30] [7] [29] [8] method

Score 84.33% 84.93% 85.25% 85.40% 85.40% 85.92% 86.35% 87.23% 87.70% 91.61%

In addition to the statistics presented in Fig. 5, Fig. 6 illustrates also that the proposed approach

improves the performance of IDSC. A very interesting case is shown in the first row, where for

IDSC only one result is correct for the query octopus. It instead retrieves nine apples as the most

similar shapes. Since the query shape of the octopus is occluded, IDSC ranks it as more similar

to an apple than to the octopus. In addition, since IDSC is invariant to rotation, it confuses the

tentacles with the apple stem. Even in the case of only one correct shape, the proposed method

learns that the difference between the apple stem is very relevant, although the tentacles of the

octopuses exhibit a significant variation in shape. We restate that this is possible because the new

learned distances are induced by geodesic paths in the shape manifold spanned by the known

shapes. Consequently, the learned distances retrieve nine correct shapes. The only wrong results

is the elephant, where the nose and legs are similar to the tentacles of the octopus.

As shown in the third row, six of the top ten IDSC retrieval results of lizard are wrong. since

IDSC cannot discover the more relevant differences between lizards and sea snakes. All retrieval

results are correct for the new learned distances, since the proposed method is able to learn the

less relevant differences between lizards and the more relevant differences between lizards and

sea snakes. For the results of deer (fifth row), three of the top ten retrieval results of IDSC are

horses. Compared to it, the proposed method (sixth row) eliminates all of the wrong results so

that only deers are in the top ten results. It appears to us that our new method learned to ignore

the less relevant small shape details of the antlers. Therefore, the presence of the antlers became

a relevant shape feature here. The situation is similar for the bird and hat, with three and four
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Fig. 5. (a) A comparison of retrieval rates between IDSC [3] (blue circles) and the result improved by the proposed method

(red stars) for MPEG-7. (b) A comparison of retrieval rates between visual parts in [4] (blue circles) and the result improved

by the proposed method (red stars) for MPEG-7. (c) A comparison of retrieval rates between Gen. Model [2] (blue circles) and

the result improved by the proposed method (red circles) for MPEG-7.

wrong retrieval results respectively for IDSC, which are eliminated by the proposed method.

An additional explanation of the learning mechanism of the proposed method is provided by

examining the count of the number of violations of the triangle inequality that involve the query

shape and the database shapes. In Fig. 7(a), the curve shows the number of triangle inequality

violations after each iteration of our distance learning algorithm. The number of violations is

reduced significantly after the first few hundred iterations. We cannot expect the number of

violations to be reduced to zero, since cognitively motivated shape similarity may sometimes

require triangle inequality violations [17]. Observe that the curve in Fig. 7(a) correlates with
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Fig. 6. The first column shows the query shape. The remaining 10 columns show the most similar shapes retrieved by IDSC

(odd row numbers) and by our method (even row numbers).

the plot of differences ||ft+1 − ft|| as a function of t shown in (b). In particular, both curves

decrease very slow after about 1000 iterations, and at 5000 iterations they are nearly constant.

Therefore, we selected T = 5000 as our stop condition. Since the situation is very similar in all

our experiments, we always stop after T = 5000 iterations.

Besides the inner distance shape context [3], we also demonstrate that the proposed approach

can improve the performance of visual parts shape similarity [4] and feature driven generative

model method [2]. We select these two methods since they are very different approach than IDSC.

In [4], in order to compute the similarity between shapes, first the best possible correspondence

of visual parts is established (without explicitly computing the visual parts). Then, the similarity

between corresponding parts is calculated and aggregated. The settings and parameters of our

experiment are the same as for IDSC as reported in the previous section except we set α = 0.4.
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Fig. 7. (a) The number of triangle inequality violations per iteration. (b) Plot of differences ||ft+1 − ft|| as a function of t.

The accuracy of this method has been increased from 76.45% to 86.69% on the MPEG-7 data set,

which is more than 10%. This makes the improved visual part method one of the top scoring

methods in Table I. For feature driven generative model method [2], the accuracy has been

increased from 80.03% to 89.29% when we set α = 0.25 and the other parameters are also the

same as for IDSC. The detailed comparisons of the retrieval accuracy are given in Fig. 5(b) and

Fig. 5(c) respectively.

Besides MPEG-7 dataset, we also present experimental results on the Kimia’s 99 dataset [9].

The dataset contains 99 shapes grouped into nine classes. In this dataset, some images have

protrusions or missing parts. Fig. 8 shows two sample shapes for each class of this dataset.

As the database only contains 99 shapes, we calculate the affinity matrix based on all of the

shape in the database. The parameters used to calculate the affinity matrix are: α = 0.25 and

the neighborhood size is K = 4. We changed the neighborhood size, since the data set is much

smaller than the MPEG-7 data set. The retrieval results are summarized as the number of shapes

from the same class among the first top 1 to 10 shapes (the best possible result for each of

them is 99). Table II lists the numbers of correct matches of several methods. Again we observe

that our approach could improve IDSC significantly, and it yields a nearly perfect retrieval rate,

which is the best result in the Table II.

2) Improving Face Retrieval: We used a face data set from [51], where it is called Face (all).

It addresses a face recognition problem based on the shape of head profiles. It contains several
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Fig. 8. Sample shapes from Kimia’s 99 dataset [9]. We show two shapes for each of the 9 classes.

TABLE II

RETRIEVAL RESULTS ON KIMIA’S 99 DATASET [9]

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC [1] 97 91 88 85 84 77 75 66 56 37

Gen. Model [2] 99 97 99 98 96 96 94 83 75 48

Path Similarity [5] 99 99 99 99 96 97 95 93 89 73

Shock Edit [9] 99 99 99 98 98 97 96 95 93 82

IDSC [3] 99 99 99 98 98 97 97 98 94 79

Triangle Area [29] 99 99 99 98 98 97 98 95 93 80

Shape Tree [8] 99 99 99 99 99 99 99 97 93 86

Symbolic Rep. [30] 99 99 99 98 99 98 98 95 96 94

IDSC [3] + our method 99 99 99 99 99 99 99 99 97 99

head profiles extracted from side view photos of 14 subjects. There exist large variations in the

shape of the face profile of each subject, which is the main reason why we select this data

set. Each subject is making different face expressions, e.g., talking, yawning, smiling, frowning,

laughing, etc. When the pictures of subjects were taken, they were also encouraged to look a

little to the left or right, randomly. At least two subjects had glasses that they put on for half of

their samples. A few sample pictures are shown in Fig. 9.

Fig. 9. A few sample image of the Face (all) data set.
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The head profiles are converted to sequences of curvature values, and normalized to the length

of 131 points, starting from the neck area. The data set has two parts, training with 560 profiles

and testing with 1690 profiles. The training set contains 40 profiles for each of the 14 classes.

As reported on [51], we calculated the retrieval accuracy by matching the 1690 test shapes

to the 560 training shapes. We used a dynamic time warping (DTW) algorithm with warping

window [52] to generate the distance matrix, and obtained the 1NN retrieval accuracy of 88.9%

By applying our distance learning method we increased the 1NN retrieval accuracy to 95.04%.

The best reported result in [51] has the first nearest neighbor (1NN) retrieval accuracy of 80.8%.

The retrieval rate, which represents the percentage of the shapes from the same class (profiles

of the same subject) among the first k-nearest neighbors, is shown in Fig. 10(b).

The accuracy of the proposed approach is stable, although the accuracy of DTW decreases

significantly when k increases. In particular, our retrieval rate for k = 40 remains high, 88.20%,

while the DTW rate dropped to 60.18%. Thus, the learned distance allowed us to increase the

retrieval rate by nearly 30%. Similar to the above experiments, the parameters for the affinity

matrix is α = 0.4 and K = 5.
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Fig. 10. (a) Conversion of the head profile to a curvature sequence. (b) Retrieval accuracy of DTW (blue circles) and the

proposed method (red stars).

3) Improving leaf retrieval: The Swedish leaf data set comes from a leaf classification project

at Linkoping University and Swedish Museum of Natural History [53]. Fig. 11 shows some

representative examples. The data set contains isolated leaves from 15 different Swedish tree
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Fig. 11. Typical images from the Swedish leaf database [53], one image per species. Note that some species are quite similar,

e.g., the first, third and ninth species.

species, with 75 leaves per species. We followed the experimental setting for the Inner-Distance

Shape Contexts used in [3], 25 leaves of each species are used for training, and the other 50

leaves are used for testing. The 1NN accuracy reported in [3] is 94.13%, but the result we

obtained with their software1 is 91.2%. As shown in Fig. 12, the retrieval rate of the Swedish

leaf is improved significantly by the proposed approach, especially, the 1NN recognition rate is

increased from 91.2% to 93.8%. The parameters for the affinity matrix are α = 0.2 and K = 5.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 12. Retrieval accuracy of IDSC (blue circles) and the proposed method (red stars).

B. Improving 1NN shape classification

The k-nearest neighbor algorithm is amongst the simplest of all machine learning algorithms.

An object is classified by a majority vote of its neighbors, with the object being assigned

to the class most common amongst its k nearest neighbors. k is a positive integer, typically

small. If k = 1, then the object is simply assigned to the class of its nearest neighbor. The

proposed distance learning algorithm could improve the recognition rate of 1NN classification.

1http://vision.ucla.edu/∼hbling/code
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TABLE III

RESULTS OF 1NN CLASSIFICATION IMPROVEMENT

Original Distance Learned Distance

Face (all) 88.9% 95.4%

Swedish leaf 91.2% 93.8%

MPEG-7 database 94.7% 95.7%

The retrieval results of Face (all) and Swedish leaf databases have shown the improvement.

Besides, we divided the MPEG-7 dataset into two sets: training set and testing set. For each

class, ten shapes are chosen as the training samples and the remaining ten shapes are then used

for testing. The results are shown in Table III. We observe that the performance on these datasets

have been improved. The improvements on Swedish leaf and MPEG-7 are not so significant as

on the Face dataset, which might be related to the number of the training samples per class,

which for the Swedish leaf and MPEG-7 datasets are much fewer than the Face dataset. The

parameters for all of the three datasets are the same as in the retrieval setting.

C. Improving retrieval of partially occluded shapes

It is well known that occlusion could potentially influence the performance of shape similarity

approaches [54]. Since there is no standard test dataset for occluded query shapes, we extended

the MPEG-7 dataset. In order to illustrate that the proposed approach has the potential to solve

this problem, we selected several shapes and manually removed some of their parts. Then, the

modified shapes are submitted as queries to the whole MPEG-7 dataset for shape retrieval. The

original distance matrix is obtained by IDSC. Fig. 13 shows the results of our experiments. The

retrieval results in the odd rows are obtained by IDSC, and the results in the even rows are obtain

by the proposed approach. It is clear that although part occlusion influences the original IDSC a

lot, our method can still improve the retrieval results. For example, we can interpret the results

in the second row as 100% correct, while the original IDSC retrieved several incorrect shapes

in the first row. We also observe that IDSC was unable to find the original fly from which the

occluded fly query was made. Our method retrieved this fly as the first most similar shape to the
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Fig. 13. The first column shows the query shape. The remaining 10 columns show the most similar shapes retrieved by IDSC

(odd row numbers) and by our method (even row numbers).

query in the second row. The original retrieval IDSC results of the crown are even worse; only

one result is correct, and most of the shapes belong to the class ’fountain’. Though the results

of the proposed approach are not perfect, it still improves the performance a lot. Moreover, our

query elephant is nearly half occluded, therefore, four of the top ten results belong to the class

’running person’. The proposed approach could correctly retrieve all elephants. We also were

able to obtain 100% correct retrieval for the occluded dog. The parameters for the part occluded

shapes are the same to them in the experiments on the whole MPEG-7 dataset.

D. Improving shape clustering

Besides the shape retrieval, the learned distance by the proposed approach can also be used

for improving the performance of shape clustering. The difficulty of the shape clustering is also

related to the shape similarity, which may have high variance of differences in the same class and

sometimes small differences in different classes. Analog to shape retrieval, the learned distance

can improve the shape clustering results a lot.

In this paper, we choose Affinity Propagation [55] for shape clustering. Compared to other
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classic clustering algorithm, such as k-means, the main advantage of Affinity Propagation is

that it does not require the prior knowledge of the number of clusters. As mentioned above,

two shapes in the same class may be very different from each other and the distribution of

differences are different for different classes. If the number of clusters is fixed before clustering,

it may ruin the results because of the outliers. Therefore, Affinity Propagation is more suitable

for the task of shape clustering, as the outliers or unusual shapes which are totally different from

other shapes in the same class will be automatically classified to separate clusters and will not

affect other clusters. The details of Affinity Propagation are given in [55].

To evaluate the performance of the proposed approach on shape clustering, we applied the

algorithm to three standard datasets: Kimia’s 99 [9] shown in Fig. 8, Kimia’s 216 [9], which is

a subset of the MPEG-7 dataset. Fig. 14 shows two sample shapes for each class of Kimia’s 216

shape dataset. The third dataset is the whole MPEG-7 dataset. The score of the test is the ratio

of the number of correct pairs of objects to the highest possible number of correct pairs and the

best result would be 1. This score could represent the performance of shape clustering. If two

shapes are clustered into one class and they had the same class label, it will be considered as

a correct cluster result. Otherwise, if they do no have the same class label, the cluster result is

wrong. Obviously, if two shapes are clustered into two different clusters, but they have the same

true label, the proposed approach would not take it as a correct result. Finally, if the clustering

algorithm could accurately cluster the MPEG-7 dataset into 70 classes and each class contains

the correct shapes, the score would be 1. Otherwise, it would be less than 1. The nearer to 1,

the better of the clustering algorithm. The IDSC [3] is used to obtain the input distance matrix

for each of three datasets. The shape clustering results based on the original distance by IDSC

[3] and the learned distance by our algorithm are shown in Table IV. Notice that the learned

distance achieved a significant improvement on all datasets, and the numbers of the clusters are

almost equal to the numbers of classes on Kimia’s two datasets. We believe that some other

methods such as [15] can be also improved with our method. Here we did not compare with

the shape clustering method in [15], since they need to fix the number of cluster centers before

clustering.

The number of iterations T is 1000 for MPEG-7 dataset and 300 for two Kimia’s datasets.

The parameters to calculate the affinity matrix for MPEG-7 are the same as for the retrieval.

Besides, for Kimia’s 99 shape database, the parameters are K = 5 and α = 0.33, and for Kimia’s
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Fig. 14. Sample shapes from Kimia’s 216 dataset [9]. We show two shapes for each of the 18 classes.

TABLE IV

CLUSTERING RESULTS ON THE KIMIA’S 99 DATASET [9], KIMIA’S 216 DATASET [9] AND MPEG-7 DATASET.

Kimia’s 99 dataset Kimia’s 216 shape dataset MPEG-7 dataset

Number of Classes 9 18 70

Original Dist. Learned Dist. Original Dist. Learned Dist. Original Dist. Learned Dist.

Number of Clusters 16 10 25 19 174 58

Accuracy 69% 95% 85% 97% 54% 86%

216 shape database, the parameters are K = 7 and α = 0.32.

E. Choice of Parameters

There are three main free parameters for the proposed approach, α, K for affinity matrix and

the number of iterations T . In order to show the proposed approach is applicable in a reasonable

range for parameters, we test the performance of the proposed approach on a range of parameter

values. For T , as in Fig. 7(b), it has been shown that after several hundred iterations the f is

stable, which means that the approach is stable for T . Thus, we only consider the influence

of the other two parameters. We randomly divide the whole MPEG-7 dataset into two sets

consisted of 700 shapes, in which each class contains 10 objects. One of them is chosen and

bull’s eye score is calculated for each different pair of parameters. The new data set consists

of 700 silhouette images grouped into 70 classes. Each class has 10 different shapes. For each

query, the number of shapes from the same class among the 20 most similar shapes is reported.

The bulls eye retrieval rate is the ratio of the total number of shapes from the same class to the

highest possible number (which is 10 × 700). The results are shown in Table V.
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TABLE V

THE BULL’S EYE SCORE FOR NEW DATASET BASED ON DIFFERENT PAIRS OF PARAMETERS

K = 3 K = 5 K = 7 K = 9

α = 0.1 83.9% 88.11% 89.26% 89.84%

α = 0.15 84.33% 88.67% 89.66% 90.31%

α = 0.2 85.77% 90.29% 91.34% 91.84%

α = 0.25 88.71% 92.17% 92.57% 92.56%

α = 0.3 89.69% 91.16% 91.41% 91.16%

α = 0.35 89.03% 90.39% 90.3% 90.2%

α = 0.4 88.74% 89.99% 89.97% 89.84%

In the above experiments, α is ranging from 0.1 to 0.4 with 0.05 increase in each step and

K is ranging from 3 to 9 with 2 increase in each step. The best parameter is α = 0.25 and

K = 7. As the new data set is half of the MPEG-7, it is reasonable to double the K for the

whole dataset to K = 14 in the new data set. It is obvious that in a proper range, the proposed

approach is stable for the two parameters.

As manually choosing parameters is not proper for real application, we use a supervised

learning framework to learn the parameters and obtain good results. We directly use the best

learned parameters in the above experiments and then we do the experiments on whole MPEG-7

dataset based on these parameters.

VII. CONCLUSION AND DISCUSSION

In this work, we adapted a graph transductive learning framework to learn new distances with

the application to shape retrieval, shape classification, and shape clustering. The key idea is to

replace the distances in the original distance space with distances induces by geodesic paths in

the shape manifold. The merits of the proposed technique have been validated by significant

performance gains in all presented experimental results. However, like semi-supervised learning,

if there are too many outlier shapes in the shape database, the proposed approach may not be

able to improve the results. Our future work will focus on addressing this problem. We also

observe that our method is not limited to 2D shape similarity but can also be applied to 3D

model retrieval, which will also be part of our future work.
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