
21

Survey of State Melding in Virtual Worlds

HUAIYU LIU and MIC BOWMAN, Intel Labs, Intel Corporation
FRANCIS CHANG, Portland State University

The fundamental goal of virtual worlds is to provide users with the illusion that they are all seeing and
interacting with each other in a consistent world. State melding is the core of creating this illusion of a
shared reality. It includes two major parts: consistency maintenance and state update dissemination. Well-
designed state melding technologies are also critical for developing a virtual world that can scale to a large
number of concurrent users and provide satisfying user experiences. In this article, we present a taxonomy
of consistency models and categorization of state update dissemination technologies for virtual worlds. To
connect theories and practices, we then apply the taxonomy to case study several state-of-the-art virtual
worlds. We also discuss challenges and promising solutions of state melding in large-scale virtual worlds. This
survey aims to provide a thorough understanding of existing approaches and their strength and limitations
and to assist in developing solutions to improve scalability and performance of virtual worlds.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; c. [Computer
Systems Organization]

General Terms: Design, Performance

Additional Key Words and Phrases: State melding, virtual worlds, consistency maintenance, consistency
models, state update dissemination, scalability

ACM Reference Format:
Liu, H., Bowman, M., and Chang, F. 2012. Survey of state melding in virtual worlds. ACM Comput. Surv.
44, 4, Article 21 (August 2012), 25 pages.
DOI = 10.1145/2333112.2333116 http://doi.acm.org/10.1145/2333112.2333116

1. INTRODUCTION

Virtual worlds are computer-based simulated 3D environments for users to explore,
collaborate, and interact in real time. There are two broad classes of popular virtual
worlds: general-purpose virtual worlds, such as Second Life R©,1 and massively multi-
player online. games, such as World of WarcraftTM2 and Eve Online R©.3 Virtual worlds
have been growing rapidly in the past a few years. It is estimated that there are 137
million virtual world users today, with up to 1 billion projected users in the year 2017
[Virtual Worlds News 2008].

Typically, a virtual world has the following features [Singhal and Zyda 1999]: a
shared sense of space, a shared sense of presence, a shared sense of time (real-time
interaction), a way to communicate (by gesture, text, voice, etc.), and a way to share in-
formation and manipulate objects. The fundamental goal of virtual worlds is to provide

1http://secondlife.com/.
2http://www.worldofworcraft.com/.
3http://www.eveonline.com/.

Author’s email address: H. Liu (corresponding author), huaiyu.liu@intel.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0360-0300/2012/08-ART21 $15.00

DOI 10.1145/2333112.2333116 http://doi.acm.org/10.1145/2333112.2333116

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:2 H. Liu et al.

users with the illusion that they are all seeing and interacting with each other in a
consistent virtual world in a fashion similar to how people in a space in the real world
experience a consistent reality. The core of creating this illusion of a shared reality is
to meld together the actions of all the objects, avatars, and their interactions into a
form which can be shared among all of the participants [Second Life Wiki 2008]. State
melding is about creating and sharing that melded state.

In general, there are two major parts in state melding: (1) consistency maintenance,
which deals with how to create and update the dynamic shared state on participating
processes, and (2) dissemination of state updates, which deals with how to utilize
resources efficiently to disseminate the state updates to the participating processes.
Well-designed state melding technologies not only create the illusion of a shared reality
but also are critical for developing a virtual world that can scale to a larger number of
concurrent users and provide satisfying user experiences with complex scenes and high-
fidelity interactions. In this article, we review different state melding technologies that
have been developed in the past, discuss how each technology may affect the scalability
and performance of virtual worlds, and apply our discussions to several state-of-the-art
virtual worlds. We believe that a thorough understanding of existing approaches and
their strengths and limitations will assist developing solutions to improve scalability
and performance of virtual worlds.

In short, the contribution of this article is three-fold.

—We present a taxonomy of consistency models and a categorization of state update
dissemination technologies that are applicable to virtual worlds and analyze the
strength and limitations of different models and technologies.

—To connect theories and practices, we apply the taxonomy and categorization intro-
duced in this article to several state-of-the-art virtual worlds, including well-known
systems, such as Second Life, Eve Online, and Darkstar, to analyze the consistency
model that is supported by each system as well as the update dissemination tech-
nologies used.

—We discuss the challenges of state melding in large-scale virtual worlds and provide
insights into promising directions.

The remainder of the article is organized as follows. In Section 2, we review several
consistency models that are applicable to virtual worlds, compare the strength and
limitations of each model, and identify protocols to support each model. In Section 3, we
focus our discussion on different approaches to efficiently disseminating state updates.
In Section 4, we take a closer look at a few state-of-the-art virtual world applications
and analyze the protocols they use for state melding. In Section 5, we discuss the
challenges of state melding in large-scale virtual worlds and promising approaches in
addressing the challenges. Finally, we conclude the survey in Section 6.

2. CONSISTENCY MODELS

When building a virtual world, a key consideration is how to ensure that the partici-
pating processes keep a consistent view of the shared state of the virtual space. This
is fundamental to providing users with the illusion that they are all experiencing the
same events and interacting with each other in the same virtual space. It is a great
challenge to maintain a consistent view for users who are interacting concurrently,
especially to support many concurrent users and update each user’s customized view
with unnoticeable delay. In the best case, inconsistency may just lead to transient vis-
ible artifacts. In other cases, it may cause more serious problems. In fact, consistency
violation is a major source of security problems in virtual worlds [Keating 2007].

Consistency models has been introduced and studied in many distributed appli-
cations, including distributed shared memories [Lamport 1979; Welch 1994; Raynal

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:3

and Schiper 1996], databases [Bernstein et al. 1987], distributed computing [Lamport
1978], and computer-supported cooperative work (CSCW) [Ellis and Gibbs 1989].
In general, a consistency model is concerned with the causal order of operations
in different processes. The concept of operation is somewhat different in different
applications. In distributed shared memories, an operation refers to a single read or
write. In databases, an operation is a transaction that consists of multiple reads or
writes. In distributed systems, an operation (or an event) usually refers to the sending
and receiving of a message. In our discussion, we follow the concept of the causal order
of events as defined in Lamport [1978]. Further, for virtual world operations, we define
an event as sending or receiving of a state update message or applying a state update
(i.e., updating the state in the local replication).

Compared to traditional distributed applications, virtual worlds typically exhibit the
following characteristics of consistency and interactivity [Bouillot and Gressier-Soudan
2004; Delaney et al. 2006].

—Causality. The “happening before” relation introduced by Lamport [1978].
—Concurrency. The simultaneous execution of events by different users on the same

entity.
—Simultaneity. If two events are perceived by a user simultaneously, then they are

perceived by other users simultaneously as well. It refers to the strong requirements
on the temporal relationship of events.

—Instantaneity (real-time responsiveness). For a targeted event and from a human user
point of view, the time between the event being generated and the time it is executed
and perceived by the user is unperceivable.

Causality and concurrency are well-known properties of distributed applications. It
is simultaneity and instantaneity that are the desired properties that imitate the real-
world interactions and distinguish virtual worlds from other distributed systems. In
fact, due to the strong requirement for instantaneity, virtual world implementations
typically would tolerate some short-term inconsistency in order to provide fast respon-
siveness to user inputs (more discussions in Section 2.3). Hence, when we say a virtual
world system supports a consistency model, it means that the system always tries to
maintain the consistent state as defined by the model, and it is able to detect short-term
consistency and take actions to converge back to the desired consistent state.

In general, there are two main categories of consistency models that can be applied to
virtual worlds: ultimate consistency and deadline-based consistency. Each of them has
different capabilities of supporting the preceding characteristics. In a deadline-based
consistency model, consistency needs to be achieved by time t + � after some event
happens at time t, for a predetermined amount of delay �. By contrast, in ultimate
consistency models, it takes an undetermined amount of time to achieve consistency. A
set of formal definitions of some consistency models can be found in Raynal and Schiper
[1996]. Bouillot and Gressier-Soudan [2004] have also done a good job in categorizing
consistency models.

Consistency in virtual worlds is context specific (depending on the type of interac-
tions), and different types of virtual worlds have different requirements. A virtual world
designer needs to understand the interaction context, its requirements on different as-
pects of consistency, and the strength and weakness of each consistency model so as
to apply the appropriate models. In this section, we present a taxonomy of consistency
models. We also analyze the strength and weakness of each model, the consistency
protocols to support the models, and the application of the consistency models and
protocols to virtual worlds.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:4 H. Liu et al.

2.1. Ultimate Consistency Models

In ultimate consistency models, there is little consideration of the particular wall-clock
time when the operations would be executed. They only impose certain rules or certain
orders for operations to be executed.

—Causal consistency [Lamport 1978]. This requires that all the causally related events
be perceived in the same order by all processes, while unrelated concurrent opera-
tions may be perceived in different orders by different processes.

—Sequential consistency [Lamport 1979]. This model is first discussed in distributed
shared memories. It requires that the result of any execution is the same as if the
operations were executed in some sequential order that is consistent with the order
seen at individual processes. (That is, if event A happens before event B on one
process, that order is preserved in the sequential order.)

—Serializability [Bernstein et al. 1987]. This requires that all transactions appear to
have executed atomically in some sequential order that is consistent with the order
seen at individual processes. This model has been widely used in databases. Note
that if every transaction is reduced to a single read or write operation, serializability
is the same as sequential consistency [Raynal et al. 1997].

Although these models do not have built-in mechanisms to achieve low response
time, in practice, they are often used in virtual worlds because they have been widely
studied. In such virtual worlds, additional mechanisms are applied to reduce response
delays, such as dead-reckoning (more discussions in Section 2.3.2 and Section 4).

2.2. Deadline-Based Consistency Models

In deadline-based consistency models, an operation is time stamped using real time
instead of logical time. Such a model imposes real-time constraints on when an oper-
ation should be executed. By “an operation is executed in a process”, we mean that
an update message is received and that the update is applied to the replicated state
maintained by the process. In our discussion, we assume the clocks of all processes are
synchronized with limited clock drifting, for instance, by running the Network Time
Protocol.4

—Perceptive consistency [Bouillot and Gressier-Soudan 2004; Qin 2002]. If any opera-
tion is executed on process i at time t, it must be executed on process j at t as well.
At a high-level point of view, it indicates that for a group of users interacting with
each other, if a user takes an action, then the action will be perceived by everyone
simultaneously (though the action might be perceived at a time later than the time
at which it was taken by the user). It is also referred to as absolute consistency [Qin
2002].

—Delayed consistency [Qin 2002]. This is a relaxation of perceptive consistency. In this
model, for any operation issued by host i, say at time t, it takes effect instantaneously
on host i. On a remote host j, it is executed at time t + �(i,j), where �(i,j) is the
phase different between processes i and j, and it is a parameter specific to these two
processes. Unlike perceptive consistency, this model does not force all processes to
execute the same operation at the same time. Rather, it makes sure that the state of
objects operated by one process be viewed at another process with a consistent delay.

—Timed consistency [Torres-Rojas et al. 1999]. This guarantees that a local action at
time t will be perceived by others at a time bounded by t + �. It includes timed
sequential consistency (TSC) and timed causal consistency (TCC) by combining the

4http://www.ntp.org/.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:5

Fig. 1. Illustration of operation executions.

Fig. 2. Relationship of consistency models.

requirements of sequential consistency and causal consistency with the executed-on-
time requirement (defined next).

Figure 1 illustrates perceptive consistency and delayed consistency. In Figure 1(a), an
operation is issued on process i at time t, and it is executed at time t+� by all processes
(where � is the same for all). In Figure 1(b), the requirement that � is the same for
all processes is relaxed, and each process may executed by the same operation at a
different time, as long as on each process, say process j, the operation issued by process
i is always executed by a delay of �(i,j). The parameter �(i,j) could be specified based
on user requirements. Both perceptive consistency and delayed consistency specify the
exact execution time of an operation. We refer to it as the executed-at-specified-time
property. Timed consistency models, namely TSC and TCC, only require the operation
be executed on all processes no later than time t + �, or the executed-on-time property.
If � is infinite, then TSC (or TCC) is effectively equivalent to sequential consistency (or
causal consistency). Also, in each of the deadline-based consistency models previously
discussed, if � (or �(i,j) in delayed consistency) is less than the perceptive threshold,
then the model is said to exhibit properties of instantaneity.

Figure 2 summarizes all the consistency models discussed in Sections 2.1 and 2.2.
In the figure, an arrow from a model to another indicates that the former has stronger
consistency constraints than the latter.

2.3. Protocols Implementing Consistency Models

A number of protocols have been developed to implement different consistency models.
In general, they can be categorized based on their approaches in addressing a fun-
damental trade-off in virtual worlds, the consistency-responsiveness trade-off. From a

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:6 H. Liu et al.

user’s perception, response time refers to the delay between the time a user issues an
operation and the time the operation’s effect is observed at the user’s local machine. If
the response time exceeds a perceptive threshold, users will notice the delay. Unfortu-
nately, due to inevitable network delays in delivering updates, optimization of response
time and avoidance of short-term inconsistency are conflicting goals [Singhal and Zyda
1999].

In general, there are two types of approaches to address the consistency-
responsiveness trade-off and manage the time that an operation is executed on each
process (referred to as time management): conservative approaches versus optimistic
approaches [Fujimoto 2003]. Time management is a well studied topic in parallel dis-
crete event simulation systems (PDES) [Fujimoto 1999]. In PDES, time management
typically not only ensures that events are processed in correct orders but also that a
simulation with the same inputs produces exactly the same results. Virtual worlds usu-
ally do not require repeatable simulations and sometimes may even tolerate incorrect
event ordering. Hence, some concepts developed in PDES have been applied to virtual
worlds by relaxing the requirements.

2.3.1. Conservative Approaches. These approaches delay execution of local operations
until they are supposed to be consistent on all processes. Unfortunately, delaying local
operations reduces responsiveness. Hence, added delays should be chosen according to
the application’s semantics, since user’s perceptive thresholds differ for different media
and different types of interaction.

—Local lag [Mauve 2000]. When an operation is issued at time t, its timestamp for the
execution will be t + �. Both the local process and remote processes will execute the
operation at time t + �. The delay � introduced for the local user is called a local lag.
For the amount of local lag between two processes, a minimal delay was chosen based
on the network delay between the two processes, while the maximal delay (the longest
acceptable response time) was chosen based on human perception and the type of
application. The local lag can then be be chosen between the minimal and maximal
delays to adapt to the specific consistency requirements. A repair mechanism is
needed to accommodate operations that arrive late due to network delays. This
approach could be applied to achieve perceptive consistency.

—Bucket synchronization [Gautier and Diot 1998]. In this protocol, time is divided into
intervals, or bucket lengths of T (e.g., 25 buckets per second, or T = 40 ms). Each
update event is assigned to a bucket and time stamped accordingly. The local view
of the global state is calculated using all the local updates as well as all the remote
updates whose timestamps are within interval [t − �, t − � + T], where [t, t + T] is
the current time interval, and � is the synchronization delay (100 ms as in [Gautier
and Diot 1998]). An update message is discarded if the transmitting delay is more
than �. Note that this approach is similar to a playout buffer mechanism [Ramjee
et al. 1994] used in audio streaming.

2.3.2. Optimistic Approaches. Such an approach is optimistic in the sense that it assumes
that few inconsistencies will occur. In predictive time management, future events are
predicted and distributed before they actually occur. In other approaches, local actions
take effect instantaneously to achieve better responsiveness, and inconsistencies at
remote processes are allowed to occur. Convergence is done ultimately by conflict res-
olution or reconciliation schemes. Optimistic approaches are often applied in models
with relaxed consistency constraints, such as late consistency and timed consistency.
However, short-term inconsistency can occur due to network delays or incorrect pre-
dictions. Hence, correction or rollback mechanisms need to be applied when short-term
inconsistency is discovered.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:7

—Predictive Time Management. This mechanism was first proposed in PaRADE
[Roberts 1996]. Certain future events can be predicted, and both an event and its
expected time of occurrence are transmitted before the event actually occurs. For in-
stance, events such as interaction with an entity may be predicted through heuristics
of collision prediction or knowledge of intent. Knowledge of network delays is used
to predict and send out an event so that it can be delivered to all participants prior
to its commencement time. Finally, rollback strategies must be provided to negate
incorrectly predicted events. The execution of local events can also be delayed so that
the same event will execute at the same time across the system. This approach can
be applied to virtual worlds where the state of the relevant objects is small (e.g.,
position and velocity) and relatively easy to predict, with each object having only
one controller. It becomes less appropriate when the state is complex and objects are
operated by multiple users.

—Time Warp. This is a mechanism designed to implement virtual time, initially pro-
posed by Jefferson [1985] to support distributed discrete event simulation and dis-
tributed database. Virtual time is ticked by an imaginary global virtual clock and
used to measure computational progress and define synchronization. It always pro-
gresses forward. Time warp operates by executing each message as soon as it arrives
(optimistically). If a message x arrives at a process and has a timestamp earlier
than a message already executed, the process undoes all the events back to the time
dictated by the timestamp of x (rollback) and restarts execution from that time. It
must also send messages to undo any incorrect outputs that were communicated
to other nodes (rollback propagation). A main limiting feature of TimeWarp is the
requirement of checkpointing the execution context at every message. In addition,
TimeWarp issues a rollback immediately upon detecting a late event and suffers
from excessive rollbacks. To overcome the limitations, several schemes have been
proposed, including Breathing Time Warp [Steinman 1993] and Trailing State Syn-
chronization (TSS) [Cronin et al. 2004]. In Breathing Time Warp, optimistic exe-
cutions are limited to events within an event horizon. Events beyond the horizon
cannot be guaranteed to be consistent and are therefore not executed. Trailing State
Synchronization was designed for distributed first-person shooter games, which are
the most latency-sensitive multiplayer games. Instead of keeping state snapshots
at every event, as in TimeWarp (or every few events in the Breathing algorithm),
TSS keeps multiple copies of the same game state, where each copy will execute all
events with a different synchronization delay. Only the leading state—the copy with
the shortest synchronization delay—is rendered to the screen, while the other trail-
ing states are used to detect and correct inconsistencies. Each trailing state will see
fewer mis-ordered events than the state preceding it by waiting longer for delayed
events to arrive before executing. If an inconsistency is discovered, a rollback from
the incorrect leading state to the correct trailing state is performed.

—Dead Reckoning. This approach has been widely applied in distributed interactive
simulations (DIS) [IEEE 1993], where object behavior over time is “known”. Exam-
ples include an airplane flying with a constant velocity or a projectile following a
ballistic trajectory. In this approach, participating processes agree on a prediction
algorithm, an error threshold, and a convergence algorithm. An object’s current state
is computed based on previously received updates. No object updates are sent until
the difference between the predicted state and the real state exceeds a predefined
threshold. Convergence is handled by an agreement between participants that de-
termine how to correct inconsistencies once new updates are received. Similarly to
predictive time management, dead reckoning can be applied for the state that is
small (e.g., position and velocity of an object) and relatively easy to predict, and each
object has only one controller.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:8 H. Liu et al.

Table I. Comparison of Ultimate Consistency Models

Consistency
Model

Support of Interaction
Properties

Protocols Examples of Virtual
World Systems

Causal
Consistency

Preserves causality.
Does not resolve concurrency
efficiently, and resolution
schemes (e.g., versioning,
convergence) need to be added
to solve concurrency and
user-intention.
Nondeterministic
responsiveness.

Wait-free
implementations
[Ahamad et al. 1991;
Raynal and Schiper
1995].

Real-time collaborative
graphics editors [Sun and
Chen 2000].

Sequential
Consistency

Supports concurrency.
No strong support of
simultaneity due to lack of
temporal relationship of
executions. Nondeterministic
responsiveness.

Centralized solution:
central server imposes
total ordering
[Greenhalgh et al. 2000],
locking [Newman-Wolfe
et al. 1992], serialization
[Kanawati 1997].
TimeWarp [Jefferson
1985]

Distributed conferencing
system [Newman-Wolfe
et al. 1992], MASSIVE-3
[Greenhalgh et al. 2000],
Second Life (see
discussions in Section 4).

Serializability Same as above. Two-phase commit
[Moss 1985].

Darkstar [Waldo 2008]
(where serializability is
achieved across game
servers)

Orthogonal to these approaches, a few other mechanisms have also been proposed to
address the consistency-responsiveness trade-off. One is to identify and label different
types of operations to apply different consistency maintenance protocols within the
same virtual world [Greenhalgh et al. 2000]. Another approach is to accept the existence
of inconsistency and introduce a metric to evaluate and keep the inconsistency in
control [Zhou et al. 2004].

2.4. Comparison of Consistency Models and Protocols

To summarize, Tables I and II compare different consistency models, the virtual world
applications that they are able to support, and the protocols that have been designed
to support each model.

Ultimate consistency models have been widely studied in different distributed sys-
tems, and various protocols have been developed to support these models. In general,
they are better understood than deadline-based consistency models. However, due to
the lack of constraints on the wall-clock time at which each operation is executed,
ultimate consistency models are usually only applied to virtual worlds that do not
have strong requirements for simultaneity or instantaneity, such as virtual real-time
graphic editors and distributed conferencing. Another approach in applying ultimate
consistency models is to categorize events into classes with different requirements
on preserving causal relationships and apply different protocols to different classes
[Roberts and Sharkey 1997] (e.g., the order of hitting a ball and the ball’s movement
afterwards need to be preserved, but orders of different avatar’s random movements
may not).

In the deadline-based consistency models, protocols designed for achieving perceptive
consistency introduce local delays in executing operations to prevent misordering. Such
protocols support simultaneity but have limitations in supporting latency-sensitive ap-
plications. Hence, they are often applied to an application where optimizations could
be applied due to the specific characteristics of the application. For example, in the
distributed multiplayer game MiMaze [Gautier and Diot 1998], where bucket syn-
chronization is used, movements are limited to a confined maze. In contrast, delayed

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:9

Table II. Comparison of Deadline-Based Consistency Models

Consistency
Models

Support of Interaction
Properties

Protocols Examples of Virtual World
Systems

Perspective
Consistency

Provides simultaneity (i.e.,
allow users to perform tightly
coupled or synchronous
actions), concurrency
management, causality, and
deterministic responsiveness.

(1) Local lag [Mauve
2000].
(2) Bucket
synchronization [Gautier
and Diot 1998].
(3) Predictive Time
Management [Roberts
1996].

TeCo3D [Mauve 1999],
MiMaze [Gautier and Diot
1998], PaRADE (an Arena
application) [Roberts 1996].

Delayed
Consistency

Provides concurrency
management, causality, and
deterministic responsiveness,
but not simultaneity.

(1) Conductor-driven
synchronization [Bouillot
2004].

Distributed musician
interaction [Bouillot 2004].

Timed
Consistency
(TSC & TCC)

Simultaneity not provided.
Suited for concurrency
resolution and responsiveness
control, but not for continuous
media having strong temporal
relationships between two
successive actions.

(1) Lifetime-based
protocol [Torres-Rojas
et al. 1999].
(2) Variations of
TimeWarp: Breathing
Time Warp [Steinman
1993], Trailing State
Sync [Cronin et al. 2004].
(3) Dead reckoning with
periodic synchronization
[Lui et al. 1999].

Multimedia real-time
collaborative applications.

Eve Online
(http://www.eveonline.com/.)

consistency and timed consistency models achieve low response time (local operations
are executed immediately) but in general are not appropriate for interactions that need
strong support of temporal relationships, such as simultaneity.

3. STATE UPDATE DISSEMINATION

To achieve consistency, when one object inside a virtual world performs an operation,
the replicated copies on all participating processes need to be updated to reflect the
result of the operation. When the number of concurrent users or the scene complexity
increases, the network quickly can be overwhelmed by the aggregated traffic of deliv-
ering updates. In particular, the aggregated traffic increases quadratically with the
number of concurrent users [Liu et al. 2010]. For example, suppose there are N users,
each having an avatar in a virtual world. When one avatar moves, every one of the
other N − 1 users needs to receive an update of the moved avatar’s new position (the
update could be either sent in a peer-to-peer fashion or channeled through a server).
When all the avatars move to new positions, N (N − 1) updates need to be transmitted
in the network. Figure 3 shows our measurements of the total outgoing traffic with an
increasing number of users connected to a virtual world server [Liu et al. 2010]. In this
experiment, each client had an avatar in the world, and the avatar moved around fol-
lowing the Random Waypoint module [Johnson and Maltz 1996]. If two avatars collided
with each other, they would change walking directions. The result was from running
the OpenSimulator 0.6.3, an open-source virtual world server platform that is compat-
ible with Second Life viewers.5 (The workload can be downloaded from ScienceSim.)6

The result clearly shows the trend of quadratic increase in the amount of aggregated
network traffic.

Figure 3 shows the baseline scenario for the amount of network traffic, where ev-
ery avatar’s movement update is sent to every other user interacting in the space. To

5http://opensimulator.org/wiki/Main_Page.
6http://www.sciencesim.com/wiki/doku.php.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:10 H. Liu et al.

Fig. 3. Bandwidth utilization versus increasing number of concurrent users.

address this communication bottleneck, exploring redundancies in updates to reduce
network traffic is critical. One important observation is that each user has a unique
perspective of the world, given that each user has his own view point to observe the
world. Hence, a user may not need to receive all updates from the space he is inter-
acting in, and for updates the user needs to receive, he may not need to receive all
of them in full fidelity. In addition, for users sharing similar perspectives (e.g., users
whose viewpoints are close to each other), some updates sent to each of them are quite
similar. Different technologies have been developed to explore such communication re-
dundancies. Among them, interest management refers to a group of techniques that try
to identify what are necessary updates for each user and only send these updates. Some
also explore redundancy in users’ shared perspectives in order to apply multicasting
to reduce network traffic. Levels-of-detail is another type of technique that explores
the redundancy in updates of the same object and trade off fidelity of some updates for
reducing network traffic and enabling longer view distances.

3.1. Interest Management

The objective of interest management is to reduce the number of state updates that
need to be sent to a given process by sending only the updates relevant to the process
(e.g., sending only visible updates to remote viewers). The identification of “only the
relevant updates to the process” is subject to the system’s policy. Interest management
can be abstracted using a publish-subscribe model in which publishers are objects that
produce updates, and subscribers are objects that consume updates. This model of up-
date dissemination requires the world to implement mechanisms to allow subscribes
to discover publishers and to subscribe and unsubscribe to their updates. Various in-
terest management techniques have been proposed which can be mainly categorized as
spatially-based and class-based approaches. Generally, spatially-based interest man-
agement is determined based on the relative position of objects in a virtual world, while
class-based interest management is based on an object’s variables (e.g., type).

3.1.1. Spatial-Based Interest Management.

Aura-based filtering. This technique is based on the focus-nimbus model [Benford
and Fahlén 1993], where focus and nimbus are defined to describe the awareness
between two objects. The focus of an object represents a subspace within which the
object can perceive, and nimbus represents a subspace across which an object can be
perceived by others. The aura of an object can be understood as an approximation
of the union of the object’s focus and nimbus. Conceptually, objects carry their auras
with them. When they move through space and when two auras collide, interaction
between the objects becomes a possibility. In this model, an object’s update only needs
to be sent to other objects whose auras intersect with its own. Computation of the

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:11

intersection of auras is also called interest filtering. The pure focus-nimbus approach
has been implemented in multiple systems including MASSIVE-I [Greenhalgh 1998].
Its advantage is that it allows fine-grained interest management and is especially
suitable where there is a connection for each client with the server. However, it does
not scale well due to the cost of computing the intersection of auras, which is of O(mn),
with m being the number of subscribers and n being the number of the publishers.

Region-based filtering. Region-based filtering is an approximation of the pure focus-
nimbus model. In this approach, the world space is partitioned into regions. Regions
that intersect the area of interest (focus) of a subscriber form an area of subscription
from the union of the intersected regions. The area of subscription represents an ap-
proximation of the true area of interest of the subscriber but is easier to compute.
The quality of the approximation is highly dependent on the shape and size of the
regions. In Spline [Barrus et al. 1996], the world is divided into regions which can be
of any shape or size. Yet, it has been shown that hexagons can better approximate the
precision of the pure focus-nimbus model than regular square tiles. They have been
used in systems such as NPSNET [Macedonia et al. 1995] and in the communication
model presented in Fieldler et al. [2002]. More recently, triangular partitioning of vir-
tual space was proposed by Boulanger et al. [2006], which is shown to be successful
at culling update messages and greatly reducing the computational requirements of
spatial-based filtering comparing to square and hexagonal partitioning.

3.1.2. Class Based Interest Management. In class-based filtering, every class of objects
that will participate in a virtual world is defined in advance. Users register their
interests in classes before participating in the virtual world and only receive messages
from their registered classes and subclasses. This approach was adopted by the U.S.
Department of Defence [DoD 1998]. The drawback of class-based filtering is that it
does not work well in virtual worlds where the interest sets of users change frequently.

3.1.3. Interest Management Implementations. There are many approaches to implement-
ing interest filtering. One is to deploy central interest management and filtering, which
is usually combined with unicast to produces a customized stream of data for each user.
Example systems include the following.

—RING [Funkhouser 1995]. All updates are forwarded to a central server, and the
server only forwards updates to the hosts with objects that are visible to each other.

—MASSIVE [Greenhalgh 1998]. Updates are sent to central managers. Viewers must
inform the central managers of which subset of the data they are interested in. The
managers then decide what data to forward to each node based on the selection
criteria.

Interest filtering with unicast communication incurs an additional network cost
when a significant number of participants are interested in the same piece of informa-
tion; hence, multicasting is often used in conjunction with interest filtering to reduce
redundant network traffic. Updates are transmitted to multicast groups, and partic-
ipating processes must join or leave a group to start or stop receiving updates from
that group. Either IP multicast or application-layer multicast [Banerjee et al. 2002]
could be applied. The key challenge is to partition the available updates among a set of
multicast groups and strike a balance between the granularity of update partitioning
and multicast grouping.

Group per object. In this approach, each object is assigned a multicast address. An
object then subscribes to the objects located within its focus and their multicast groups.
This approach can be extended to assign multiple multicast group addresses to an

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:12 H. Liu et al.

object, with each multicast group providing a different level of detail (more discussions
in Section 3.4).

To support group-per-object, a virtual world needs to provide a way for a subscriber
to learn about the objects located nearby and their multicast addresses (content-
addressable communication). Some systems provide an object directory service that
tracks the current state of objects, for example, the beacon servers proposed in Spline
[Barrus et al. 1996]. A beacon server exists for each region in a virtual world and has a
designated multicast address for receiving information about objects in the region. The
beacon servers also share a well-known multicast group for locating the appropriate
beacon server for a particular region.

The most significant drawback with this approach is that one multicast group per ob-
ject is costly in large virtual worlds. It consumes a large number of multicast addresses
and creates significant overhead on participating machines.

Group-per-region. In this approach, a virtual world is divided into regions (also called
grids), and each region is assigned a multicast address. As discussed in Section 3.2.1,
hexagons, triangles, and irregular sizes have been explored in different systems. Each
object transmits its updates to groups corresponding to regions that cover its current
location. A subscriber (e.g., the viewer process of a user) joins multicast groups that
its area of interest intersects with. Thus, the subscribed multicast groups change as
a user’s viewpoint moves around. In general, the filtering efficiency depends on the
region size. If a region is too small, a host has to subscribe to too many multicast
groups. If a region is too large, a host may receive many updates from entities outside
its area of interest.

Hybrid aggregation. The goal behind a hybrid approach is to strike a balance between
fine-grained partitioning of updates and multicast grouping. On one hand, it aims to
partition updates into fine-grained multicast groups so that participants can tune their
subscriptions based on local interests to better approximate their areas of interest. On
the other hand, it ensures that the partitioning is not too fine-grained such that update
transmission degenerates into unicast communication.

One example of hybrid aggregation is the three-tiered interest management system
[Abrams et al. 1998]. The first tier is a group-per-region scheme with dynamically sized
regions. The information sent to each region is at a low rate and of low fidelity. The
second tier is a group-per-object scheme, allowing hosts to subscribe to each individ-
ual object’s multicast group for fine-grained level of details. The first two layers are
protocol independent, allowing multiple protocols to simultaneously exist within the
same simulation environment while using the same underlying filtering mechanism.
A third tier implements protocol-dependent filtering, allowing a process to receive only
the data from the protocol it needs.

Another example of hybrid aggregation is the Quicksilver Multicast protocol (QSM)
[Ostrowski et al. 2008] used in live distributed object [Ostrowski et al. 2007], where
the design focuses on enterprise-computing environments (shared high-speed LAN) to
leverage IP multicasting. It is based on the observation that by using a group-by-object
scheme, multicast groups often overlap in regular ways (e.g., hierarchically), because
objects related to common topics are often used by people with common interests.
As such, objects are aggregated into regions that are carefully divided based on
receiver interests, and each region is assigned a multicast address. Figure 4 illustrates
the concepts of groups and regions in Quicksilver. There are multiple processes in the
system with copies of objects A, B, and C. The processes that have the copies of the
same object belong to the same group, shown as Groups A, B, and C in the figure. A
region is a set of processeses of members of the same groups. In Figure 4, there are two
regions. Region 1 contains processes a, b, c, and d that are all members of Group A, B,

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:13

Fig. 4. Illustration of groups, regions, and multicasting to groups in Quicksilver.

and C, while Region 2 contains processes e, f, and g that are only members of Group
C. By aggregating groups into regions, it is shown that usually there are much fewer
regions than groups, and each process only needs to subscribe to a limited number of
regions. For instance, assuming the Zipf popularity model of objects, with 250 to 2,000
processes each subscribing to 10% of 1,000 to 10,000 groups, a process on average
belongs to four to ten regions [Ostrowski et al. 2008]. Multicasting to a group is done by
transmitting the message to each region the group spans over. As shown in Figure 4,
messages for Group A and Group B will be forwarded to the region sender of Region 1
for multicasting to processes in that region, while messages for Group C will be
forwarded to the regions senders of Regions 1 and 2 for multicasting into both regions.

3.2. Levels of Detail

By exploiting the inherent limitations of human perception (e.g., inability to perceive
high detail at a distance), we can reduce the number or quality of the updates with-
out reducing or only marginally reducing their perceived quality. Information can be
provided at multiple levels of detail or at different updating rates. Only users whose
viewpoints are located near an object need to receive high-detail information of the
object. In addition, updates of remote objects could be delivered at a lower frequency
without noticeably affecting a user’s experience.

Multi-channel architecture. To meet the needs of different viewer constituencies,
each object can transmit updates via multiple independent channels, each providing
information at a different level of detail and at a different frequency. A viewer then
only subscribes to the channel providing the required level of detail. Different levels of
reliability can also be provided to different channels. For instance, a channel with low
update frequency may require a more reliable multicast scheme so that receivers do
not keep stale information for extended periods of time.

There is a trade-off in deciding how many channels to provide for an entity. If there
are too many channels, the management overhead associated with supporting such
fine-grained quality levels can mitigate the benefits of having different service levels.
It is proposed in Singhal [1997] that typically an object only needs three channels to
support far-range, mid-range, and near-range viewers.

—Rigid-body channel. This channel demands the least network bandwidth and pro-
cessor computation for remote viewers. The source transmits enough information to
allow receivers to represent the object as a rigid body. This channel provides three
types of updates: position, orientation, and significant structure changes.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:14 H. Liu et al.

—Approximate-body channel. This channel provides more position and orientation in-
formation to remote viewers. It also enables remote viewers to render a rough approx-
imation of the object’s dynamic structure, such as the spinning blades of a propeller
airplane. The type of structural information is object specific.

—Full-body channel. Such a channel provides the highest level of detail about an ob-
ject’s dynamic position, orientation, and structure. It imposes the highest bandwidth
and computation.

Aggregated views. Aggregation is another way to explore different levels of detail for
supporting high fidelity and low fidelity views, where aggregated views are provided
first and may be unfolded at a later time.

In the Paradise project [Singhal and Cheriton 1996], projection aggregation is applied
in which each projection aggregation includes objects from a single organization (e.g.,
a tank that consists of wheels, its body, treads, turret, etc.) located within a single
region. Projection updates contain summary information of its objects, such as the
number of objects, a single position point summarizing the location of those objects,
and the distribution of the objects around that point. On the other hand, a projection
is simply an object that transmits summary of one or more subprojections, where the
subprojections can be introduced later, and only those viewers requiring that detail
need to be aware of it.

A crowd scheme is introduced in Benford et al. [1997] to provide an abstraction of a
groups of objects which allows them to be treated as a whole in some cases (e.g., remote
entities) but as individuals in other cases (e.g., for interaction among themselves). The
scheme was implemented and demonstrated in an arena application.

3.3. Reducing Network Traffic by Taking an Object-Oriented View

In the previous discussions, representation of a virtual world system is described as a
set of state variables that represent an instantaneous system state [Singhal and Zyda
1999]. Temporal changes are expressed as a sequence of updates to state variables
which need to be broadcasted to participating processes. This traditional view treats
consistency as a property of the shared state, and each user’s display is derived and
rendered from a snapshot of the shared state.

Croquet,7 in contrast, takes an object-oriented view of the world’s state and operation.
Croquet is a peer-to-peer system, where each participating process (called an island
or replicated island) simulates the behaviors of the objects it hosts. Instead of viewing
each object as a set of variables with certain values, it views objects as identities
that have behaviors [Smith et al. 2003]. The variables of an object are encapsulated
inside the object and invisible outside. Objects send messages to other objects to trigger
actions and affect behaviors. Hence, the messages are not state updates, but rather,
action triggers. Different objects, or copies of the same object on different islands,
can implement different strategies for computing their behaviors (i.e., objects may
adapt their behaviors to cope with heterogeneous hardware, delay variations, etc.).
One advantage of this model is that in maintaining consistency, the islands do not
have to synchronize the detailed values of object variables, but rather, they only need
to send messages to coordinate the execution of objects so that all behaviors that can
have a visible effect are completed in time and provide the same visible effect to users.
However, Croquet’s model may have to depend on precise timing and precise message
input-output mapping to achieve consistency.

7http://atsosxdev.doit.wisc.edu/croquet2/index.html.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:15

4. CASE STUDIES

In this section, we review several state-of-the-art virtual worlds and analyze the con-
sistency models and methods of state update dissemination used in each system.

4.1. Second Life

Second Life 8 is one of the most widely publicized virtual worlds. Since its opening to the
public in 2003, it has grown rapidly and had more than 13 million registered users as of
2008 [Virtual Worlds News 2008]. Similar to many online gaming systems, Second Life
adopts a client-server architecture. There are two primary components: simulators and
viewers. Simulators are hosted on servers owned and operated by Linden Lab, while
viewers are run on user machines. The virtual world in Second Life is divided into many
256 × 256 square meter regions. Each region is managed by and only by a simulator
process. This is the only process that has an authoritative copy of the objects in the
region and applies all operations to the objects, including physics simulation, script
execution, management of client connection, and manipulation of objects on behalf of
clients. That is, the simulator is solely responsible for updating the state in the region
and disseminating the updates.

To view or interact with a Second Life region, a user’s viewer connects with the
region’s simulator. A user can interact with a Second Life object in three ways.

—Passive interaction. A user can direct his avatar to bump into an object or chat within
audible range of an object. In this case, an update request is sent to the simulator, and
the interaction is wholly calculated on the simulator. The results of the interaction
are sent to viewers as update messages. Meanwhile, a viewer applies dead reckoning
to smooth motions before it receives the updates.

—Direct interaction. A user can touch or sit on an object or send a network message
(email, HTTP, or XML-RPC) to the object. Again, in this case, an update request is
sent to the simulator, the interaction is calculated on the simulator, and updates are
sent to viewers.

—Direct object editing. If a user has appropriate permissions (such as being an owner
of an object), he can modify the object directly, including changing its position and
orientation, size, shape, and color. These modifications are immediately applied lo-
cally, and an update message is sent to the simulator. If the changes are accepted by
the simulator, it is responsible for updating the new object state to all viewers.

Consistency maintenance. In Second Life, since no two simulators share the same
region or portions of a region, there is no state shared between simulators. Consistency
maintenance is mainly concerned with synchronizing the copies at viewers with the
authoritative copies in simulators.

As previously discussed, in Second Life, to enact an operation issued by a user, a
request is sent to the simulator hosting that region. Hence, all operations on an entity
are arbitrated by the simulator, and the simulator is able to enforce a total order of
the operations. In addition, when a user is editing an object, the object is “frozen” by
the simulator and cannot be modified by others. This freezing of the object allows the
server to clearly delineate between operations on the object that happen before and
after the object is modified and maintains a total order of the operations. As a result,
sequential consistency is effectively supported in the system.

On the other hand, update messages are not time-stamped. That is, there is no notion
of the time or deadline that an update needs to be applied. Updates are processed as
they are received, and there is no notion of “late updates”. Hence, Second Life does

8http://secondlife.com/.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:16 H. Liu et al.

not have a mechanism to support timed sequential consistency and only supports
sequential consistency.

Update dissemination. A focus-nimbus type of interest management is applied in
Second Life. Updates to a viewer are filtered based on the viewer’s interests, which are
a function of the avatar’s position, the size of the object that has generated an update,
the position where the update happens, and the viewer’s view frustum.

Each viewer constantly sends messages to the simulator to update its camera position
(view point) and orientation from which the simulator will calculate the view frustum
of the viewer. Periodically, the simulator determines if the state of the region has been
updated and generates updates. For each update and for each viewer, the server will
determine if the viewer would be interested in the update, and if so, unicasts the update
to the viewer. Update messages are sent via UDP packets in a reliable way (viewers
need to ACK), but packets could arrive out of order.

4.2. Eve Online

Eve Online9 is a massively multiplayer online role-playing game (MMORPG) in a
science fiction space setting. As of 2008, it has more than 300,000 players [Guðjónsson
2008]. Activities in Eve Online happen in both physical space and social space. In
the physical space, players pilot customizable ships to participate in battles through
a universe comprising thousands of solar systems. Social space is decomposed into
alliances, corporations, gangs, market regions, chat groups, and so forth [Brandt 2005].
In this section, we focus our discussion on state melding in the physical space.

Consistency maintenance. Eve Online (or Eve in short) is also based on the client-
server architecture. It maintains a single copy of its game universe, which consists of
thousands of connected solar systems on hundreds of blade servers. Each solar system
is loaded as a server process onto any of the servers, with some high-load systems being
given a server all to themselves and many low-load systems being combined and run
together.

Eve uses a technology called causality bubbles to scale simulations and synchronize
operations [Guðjónsson 2008]. The physics model in Eve is relatively simple: ships are
spheres rolling around in vector fields. To scale simulations, Eve dynamically partitions
space into causality bubbles, where each bubble is the smallest box that contains all
the spheres that are within range of each other and could potentially interact. The
space partitioning is done by running a set of differential equations continuously which
takes into account the acceleration of every ship in a solar system in order to determine
which ships can move within range of each other [Guðjónsson 2008]. Figure 5(a) shows
examples of the causality bubbles.

For a solar system, the server process solves the set of differential equations for
the entire solar system. To provide low response time, each client process runs some
complex dead-reckoning algorithm which solves the set of differential equations for
the causality bubble it belongs to. The dead-reckoning algorithm on clients relies on
correct timestamps, and the client and server processes are time-synched together.

The server process is the central authority that enforces a total order of the operations
and holds the authoritative copy of the system’s state. To synchronize the state on each
client, the server process regularly sends updates to the initial conditions for a time
step. A client process can work its way backwards to adjust for changes in initial
conditions and derive how they affect the current state. In this sense, it can be said
that Eve supports timed sequential consistency.

9http://www.eveonline.com/.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:17

(a) (b)

Fig. 5. (a) Causality bubbles; (b) Eve online architecture [Guðjónsson 2008].

Update dissemination. Unlike Second Life and many other online game systems, Eve
adopts a different architecture for update dissemination, as shown in Figure 5(b). The
solar system servers (SOL servers) are responsible for simulating and evolving the so-
lar systems. SOL servers are all connected to the SQL server—the main database—to
persist the world’s state. Clients are not connected to SOL servers directly. Rather, they
are connected through proxy servers which keep track of which SOL server a player is
on. State updates are therefore multicast to clients via proxies using TCP/IP [Brandt
2005]. It is a simple form of application-layer multicast [Banerjee et al. 2002]. Effec-
tively, the load of update dissemination is off-loaded from SOL servers and distributed
among proxy servers.

4.3. Project Darkstar

Project Darkstar [Waldo 2008] is a research effort attempting to build a server-side
infrastructure for virtual worlds, especially massively multiplayer online games, with
the ability to support dynamic allocation of hardware to scale server operations. Red-
Dwarf10 is a fork of Darkstar, continuing the research and development effort since
Feburary 2010. Unlike other online game systems which are built for the specific
gameplay of their games, Darkstar strives to be a well-designed server infrastructure
that can be used to build different specific game systems.

Traditionally, virtual world systems follow a simulator-centric architecture [Liu et al.
2010] in which each server process (a simulator) owns both the state (the data) and
the simulation work of a unique space (e.g., regions in Second Life, solar systems in
Eve Online, and shards in World of Warcraft). The data and the simulation operations
in the space are tightly coupled and physically co-located in the same simulator. This
simulator-centric architecture has been observed to be a critical scalability bottleneck
[Liu and Bowman 2010; Liu et al. 2010] and does not have the flexibility to dynamically
allocate hardware to scale operations.

Darkstar took a different approach and broke away from the simulator-centric archi-
tecture. Instead of having a set of simulators, each hosting a space, and all the data and
operations in that space, it views a virtual world as a collection of tasks that operate
on the data (the world state). Figure 6 presents the high-level architecture of a Dark-
star system. In general, Darkstar models virtual world operations as an event-based
system in which events (e.g., a client’s input) trigger tasks, and tasks simulate world
operations and evolve the world state. When an input from a client is received by a
Darkstar game server (a machine that runs the Darkstar stack and the game logic), a

10http://www.reddwarfserver.org/.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:18 H. Liu et al.

Fig. 6. High-level architecture of Darkstar system.

task is set off in response to that event. The world state (the data) is stored on the data
store, where a Berkeley Database system is used to achieve fast access to persistently
stored objects. By requiring that all data be kept in the data store and all tasks access
data through the data service, tasks become portable among game servers, since the
data store can be accessed by any game server. As a result, tasks can be dynamically as-
signed to different game servers to scale the system’s operations by adding or removing
hardware.

Consistency maintenance. In a virtual world built upon Darkstar, there are two levels
of consistency controls. One level is to maintain the state on client machines to be
consistent with the authoritative copy on the servers. The basic consistency control
provided in Darkstar is similar to that of Second Life in that the servers impose an
order on user inputs and disseminate state updates to clients. Since servers have the
authoritative copy of the state, the updates will overwrite any inconsistent state on
clients. This basic consistency model effectively achieves sequential consistency.

The second level of consistency control in Darkstar is to synchronize the state among
the servers. In general, each Darkstar server hosts a set of tasks that access the world
state through the data service. But to reduce data access delays, each game server also
maintains its own data cache to store local copies of recently used objects [Blackman
and Waldo 2009]. Hence, different game servers might share copies of the same object.
To maintain consistency of each server’s local copy, a task running on a server is
wrapped in a transaction. If a task tries to change data that is being modified by
another concurrent task, the data service will detect the conflict, and one of the tasks
will be aborted and rescheduled. This essentially achieves serializability for operations
across game servers.

Update dissemination. Currently, there is no disseminate protocol implemented in
Darkstar. It does implement a thin communication API for clients to exchange messages
with servers, and it is possible that a pub/sub-system can be built on top of it. A design
goal of Darkstar is to enable clients to migrate among servers so that clients that access
similar sets of data could be co-located on the same server. This helps balance the load
as well as reduce access delays for clients.

4.4. Croquet

Croquet11 is an open-source software development environment and is focused on
context-based collaborative applications. Qwaq ForumTM12 is built based on Croquet

11http://atsosdev.doit.wisc.edu/croquet2.html.
12http://teleplace.com/company/qwaq_is_now_telepalce.php.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:19

Fig. 7. Timing in Croquet [Smith et al. 2005].

and focused on business collaboration usages. Croquet adopts a decentralized peer-to-
peer architecture where each participating host has a replicated copy of an object and
applies operations to the object to simulate and evolve the world. Croquet objects reside
in islands (object containers), and the islands are replicated across hosts.

Consistency maintenance. Sequential consistency is achieved in a Croquet system.
For a set of replicated islands, there is one router that acts as the clock and time-stamps
messages, as shown in Figure 7. The router is a centralized entity, and the same set
of replicated islands communicate with the same router. By time-stamping messages,
the router effectively places a total order on the messages. Thus, all replicated islands
execute the messages in the same order and produce the same visible effect to users.

Update dissemination. As discussed in Section 3.1, Croquet defines objects as entities
that have behaviors, and messages affect these behaviors. State variables are invisible
outside the object. An object is a time-independent programmed mapping from a set
of input messages to a set of output messages, where the programming of the object
just defines the mapping. Hence, in Croquet, only messages for triggering behaviors
need to be exchanged, and objects are free to implement a wide variety of strategies for
computing their behaviors. This could potentially reduce network traffic by avoiding
delivery of detailed updates

Croquet uses a virtual overlay structure to implement some-to-some (one-to-many,
many-to-one, many-to-many) deliveries to facilitate message dissemination [Reed
2005].

5. DISCUSSIONS

Maintaining a consistent view for a virtual world and updating users with unnoticeable
delay is a great challenge, especially when scaling virtual worlds far beyond their
current capability in supporting a large number of concurrent users, complex scenes,
high fidelity of interactions, and long viewing distances. Besides applying appropriate
consistency models and optimized update disseminations, it also requires redesign of
system architectures or other innovative approaches. In this section, we discuss the
challenges and potential solutions for state melding in large-scale virtual worlds.

5.1. Addressing Scalability in State Melding

Most virtual worlds, including online games, have adopted the client-server archi-
tecture, where the role for the server is two-fold. First, it enforces a total order of
operations, resolves concurrent access conflicts, and persists the world’s state, hence
providing users with a consistent context to interact in real time. Second, it holds the

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:20 H. Liu et al.

authoritative copy of the world’s state and is the arbiter of the true state for users. It is
used both to discourage cheating and detect cheating. The client-server architecture,
however, could greatly limit the scalability of the system if not designed carefully. Most
of today’s virtual worlds have applied a simulator-centric architecture [Liu et al. 2010],
where each server process manages a portion of the space in the world and owns all
the work in that space: managing the data structure (the state), running simulations
(the operations that alter and evolve the state), and disseminating state updates to all
connected clients. In practice, a system using this architecture, such as Second Life and
World of Warcraft, has difficulty in supporting more than 100 users interacting with
each other concurrently (where each user is able to observe and respond to any other
users’ actions) [Gupta et al. 2009]. Such systems use sharding or region partitioning to
partition users into separate, isolated groups. Users can only interact with others that
are also in the same shard or region. Eve Online applies specific optimizations based
on deterministic physics models (where ships are modeled as spheres rolling around)
to scale a solar system’s operation and the number of concurrent users in the same so-
lar system. Such specific optimizations, however, cannot be easily extended to general
operations in virtual worlds. On the other hand, an architecture improvement in Eve
Online, that is, off-loading the client management work to proxy servers, mitigates the
communication bottlenecks between servers and clients and can be extended to other
systems.

To address the scalability limitations and scale virtual worlds beyond their current
capabilities, several approaches have been proposed to break the simulator-centric
architecture: scalable system architecture [Horn et al. 2009, Liu et al. 2010], scalable
data storage [Waldo 2008], scalable message exchanging [Horn et al. 2010], and scalable
synchronization protocol [Gupta et al. 2009].

Distributed Scene Graph (DSG) is a new server architecture proposed in Liu et al.
[2010] for virtual worlds based on client-server models. Here, scene graph is a general
term that refers to the scene in the virtual world. More specifically, scene graph refers
to the data structure that stores the state of the world, including meta-data of the
space (e.g., sun’s position, ocean level, etc.), all the objects in world, and the current
values of each object’s properties, such as shape, scale, position, orientation, etc.

DSG shares a similar spirit with Darkstar in that it views operations in virtual
worlds as a collection of the scene and the actors operating on the scene. Each actor
observes a portion of the scene and applies a specific set of operations to the objects
in this portion of the scene. For instance, physical engine, script engine, and client
managers (receiving inputs from clients and manipulating objects on their behalf and
disseminates updates to them) are examples of actors. These actors operate on the
objects through the scene interface and thus become portable, which in turn enables
them to run on separate hardware and scale independently. For efficient data access,
each actor also maintains a local copy of the portion of the scene it operations on. Note
that actors could be either computation or communication intensive. As illustrated in
Figure 8, for computation-intensive actors, DSG enables application of dynamic load
balancing to scale their operations. For communication-intensive actors (e.g., the client
managers), DSG enables them to be detached from other actors and run on separate
hardware that is provisioned for high-speed networking. A DSG prototype based on
OpenSimulator13 has demonstrated the ability to support more than 1,000 concurrent
client connections, each having an avatar interacting with each other concurrently in
the same space [Lake et al. 2010].

However, disaggregating actors brings back the challenges that were bypassed in the
simulator-centric architecture. In the simulator-centric architecture, since a simulator

13http://opensimulator.org/wiki/Main_Page.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:21

Fig. 8. Simulator-centric architecture versus Distributed Scene Graph.

does not share data with others, it is the sole arbitrator of user inputs and dictates the
state of the space it hosts. In DSG, however, actors need to synchronize their replicated
state of the world, since two actors may operate on the same portion of the scene. In
the DSG prototype, a timestamp-based synchronization service has been implemented
to provide the synchronization service, assuming the servers’ clocks are synchronized
with very limited clock drifting (e.g., using NTP). When an actor modifies any prop-
erty of an object, it time-stamps the updated value and propagates the update with
the timestamp. For other actors, they compare the timestamp of the update with that
in their local copy and apply the update if it has a newer timestamp; otherwise, the
update is discarded. For update conflicts, (two updates on the same property having
the same timestamps), a policy is implemented to be the tie-breaker, and all actors
implement the same policy. Usually, different actors perform write operations at dif-
ferent frequencies, and they each tend to only modify a subset of object properties (e.g.,
physics engine modifies only physics properties). Hence, in practice, write conflicts
happen very infrequently.

For maintaining consistency of the copies on clients (so that they are also consistent
with those on servers), DSG follows the same model as in Second Life and Eve Online:
the collective state on servers holds the authoritative copy of the system’s state. To syn-
chronize the state on each client, servers (the client managers in particular) regularly
send out updates. A client may run algorithms, such as dead reckoning, to advance its
local state for fast responsiveness but needs to correct its local state upon receiving
updates from servers and detecting that its local state is inconsistent.

5.2. Addressing the Consistency-Responsiveness Trade-off

Another big challenge in state melding is to reduce the response delay while maintain-
ing consistent views across users so as to improve interaction fidelity and provide truly
immersive experiences. However, as discussed before, optimization of response time
and avoidance of short-term inconsistency are conflicting goals due to network delays.

To reduce network delays in disseminating updates, one approach is to extend the
two-tier client-server architecture into three tiers. For example, based on the DSG
architecture just discussed, a middle layer can be added in between clients and servers
to assist in efficiently customizing, aggregating, and disseminating updates to clients.
This middle layer is referred to as the reduction pipeline. It could be an extension of the
client management, as shown in Figure 8, and include operations of client management,
interest management, and detail reduction (reduction of frequency and/or fidelity of
updates) and aggregations. It is similar to the role of Akamai servers14 in providing
content-delivering services for Web applications. Servers in the reduction pipeline can

14http://www.akamai.com/.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:22 H. Liu et al.

be strategically placed (e.g., geographically closer to a group of clients) so as to reduce
delays in delivering updates to clients.

There are, however, several challenges in developing reduction pipelines for virtual
worlds, as compared to content delivery networks. First, it needs to meet the strong
real-time requirements in delivering updates and synchronizing the states. Second,
each client in a virtual world usually has a unique viewpoint and hence has its own
perspective of the world. That is, the reduction pipeline needs to meet the requirement
of real-time visualization for many users with customized perspectives. The solution
presented in Chaudhuri et al. [2008] is one attempt to address this above challenges
in which overlay services are introduced for fast customization and delivery of world
views to many concurrent users.

6. CONCLUSIONS

This article presents a comprehensive survey of state melding-related techniques in
virtual worlds. The fundamental goal of virtual worlds is to provide users with the
illusion that they are all seeing the same things and interacting with each other in a
highly connected virtual world. Scalable and efficient state melding implementations
are key to achieving this fundamental goal.

There are two main steps in state melding: state consistency maintenance and state
update dissemination. In this survey, we reviewed several ultimate consistency models
and deadline-based consistency models. In general, deadline-based consistency models
are more suitable for virtual world applications due to their better support for real-time
interactions. However, in practice, almost no large-scale virtual world has implemented
such a model. This may be due to the complexity of the protocols and the lack of
understanding of their performance in large-scale systems.

To provide desired consistency support with acceptable complexity, one approach
may be to identify and categorize objects and operations with different consistency
requirements and to apply different consistency models to different categories instead
of applying the same consistency model across the system.

There are still many open research questions in developing state melding technolo-
gies, especially when scaling virtual worlds far beyond their current capabilities in
terms of concurrent users, scene complexity, fidelity of interaction, and viewing dis-
tances. There are several promising research directions in addressing the big chal-
lenge. In particular, research has shown that it is essential to break the simulator-
centric architecture and decouple the state with the operations that evolve the state.
By doing so, different operations could run on different hardware and be optimized
and load-balanced independently. In addition, decoupling data and operations enables
introducing a reduction pipeline service between servers and clients for customizing
and accelerating update delivery for clients and for addressing the conflicting goal of
maintaining a consistent view while providing fast responsiveness to user inputs.

ACKNOWLEDGMENTS

The authors thank John Hurliman, Robert Adams, Dan Lake, and John D. Miller from Intel, Andreas Raab
from Qwaq Forums, DaviðBrandt from NARC (formerly with Eve Online), Jeff Kesselman from Blue Fang
(formerly with Project Darkstar), and the reviewers for their valuable inputs.

REFERENCES

ABRAMS, H., WATSEN, K., AND ZYDA M. 1998. Three-tiered interest management for large-scale virtual environ-
ments. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST’98).
ACM, New York, NY, 125–129.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:23

AHAMAD, M., BURNS, J. E., HUTTO, P. W., AND NEIGER, G. 1991. Causal memory. In Proceedings of the 5th
International Workshop on Distributed Algorithms (WDAG’91), S. Toueg, P. G. Spirakis, and L. M.
Kirousis, Eds., Lecture Note in Computer Science, vol. 579, Springer-Verlag, Berlin, 9–30.

BANERJEE, S., BHATTACHARJEE, B., AND KOMMAREDDY, C. 2002. Scalable application layer multicast. SIGCOMM
Comput. Commun. Rev. 32, 4, 205–217.

BARRUS, J. W., WATERS, R. C., AND ANDERSON, D. B. 1996. Locales and beacons: Efficient and precise support for
large multi-user virtual environments. In Proceedings of the IEEE Virtual Reality Annual International
Symposium, 204–213.

BENFORD, S. AND FAHLÉN, L. 1993. A spatial model of interaction in large virtual environments. In Proceedings
of the 3rd European Conference on Computer-Supported Cooperative Work (ECSCW’93), G. de Michelis,
C. Simone, and K. Schmidt, Eds. 109–124.

BENFORD, S., GREENHALGH, C., AND LLOYD, D. 1997. Crowded collaborative virtual environments. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI’97). ACM, New York, NY, 59–
66.

BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, N. 1987. Concurrency Control and Recovery in Database
Systems, Addison-Wesley, Boston, MA.

BLACKMAN, T. AND WALDO, J. 2009. Scalable data storage in Project Darkstar. Tech. rep. UMI order number:
SERIES13103. Sun Microsystems, Inc.

BOUILLOT, N. 2004. The auditory consistency in distributed music performance: A conductor based synchro-
nization. Inf. Sci. Decision Making 13, 129–137.

BOUILLOT, N. AND GRESSIER-SOUDAN, E. 2004. Consistency models for distributed interactive multimedia appli-
cations. SIGOPS Operat. Syst. Rev. 38, 4, 20–32.

BOULANGER, J., KIENZLE, J., AND VERBRUGGE, C. 2006. Comparing interest management algorithms for massively
multiplayer games. In Proceedings of the 5th ACM SIGCOMM Workshop on Network and System Support
for Games (NetGames’06). ACM, New York, NY.

BRANDT, D. H. 2005. Scaling EVE Online: Under the hood of the network layer. In Proceedings of the 4th
Workshop on Network & System Support for Games.

CHAUDHURI, S., HORN, D., HANRAHAN, P., AND KOLTUN, V. 2008. Distributed rendering of virtual worlds. Tech.
Rep., CSTR 2008-02, Stanford University, Stanford, CA.

CRONIN, E., FILSTRUP, B., KURC, A. R., AND JAMIN, S. 2002. An efficient synchronization mechanism for mirrored
game architectures. In Proceedings of the 1st Workshop on Network and System Support for Games
(NetGames’02). ACM, New York, NY, 67–73.

DELANEY, D., WARD, T., AND MCLOONE, S. 2006. On consistency and network latency in distributed interactive
applications: A survey—part I. Presence: Teleoper. Virtual Environ. 15, 2, 218–234.

DoD. 1998. U.S. Department of Defense, High Level Architecture Interface Specification, Version 1.3.
ELLIS, C. A. AND GIBBS, S. J. 1989. Concurrency control in groupware systems. In Proceedings of the ACM

SIGMOD International Conference on Management of Data (SIGMOD’89), J. Clifford, B. Lindsay, and
D. Maier, Eds. ACM, New York, NY, 399–407.

FIEDLER, S., WALLNER, M., AND WEBER, M. 2002. A communication architecture for massive multiplayer games.
In Proceedings of the 1st Workshop on Network and System Support for Games (NetGames’02). ACM,
New York, NY, 14–22.

FUNKHOUSER, T. A. 1995. RING: A client-server system for multi-user virtual environments. In Proceedings
of the Symposium on Interactive 3D Graphics (I3D’95). ACM, New York, NY.

FUJIMOTO, R. M. 1999. Parallel and distributed simulation. In Proceedings of the Winter Simulation Confer-
ence. vol. 1, 122–131.

FUJIMOTO, R. M. 2003. Distributed simulation systems. In Proceedings of the Winter Simulation Conference.
vol. 1, 124–134.

GAUTIER, L. AND DIOT, C. 1998. Design and evaluation of MiMaze, a multi-player game on the Internet. In
Proceedings of the IEEE International Conference on Multimedia Computing and Systems (ICMCS’98).
IEEE Computer Society, Los Alamitos, CA.

GREENHALGH C. 1998. Awareness-based communication management in the MASSIVE systems. Distrib. Syst.
Eng. 5, 3, 129–137.

GREENHALGH, C., PURBRICK, J., AND SNOWDON, D. 2000. Inside MASSIVE-3: Flexible support for data consistency
and world structuring. In Proceedings of the 3rd International Conference on Collaborative Virtual
Environments (CVE’00), E. Churchill and M. Reddy, Eds. ACM, New York, NY, 119–127.

GUÐJÓNSSON, H. F. 2008. The server technology of EVE Online: How to cope with 300,000 players on one
server. In Proceedings of the Austin Game Developers Conference (Austin GDC’08).

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

21:24 H. Liu et al.

GUPTA, N., DEMERS, A., GEHRKE, J., UNTERBRUNNER, P., AND WHITE, W. 2009. Scalability for virtual worlds.
In Proceedings of the IEEE International Conference on Data Engineering (ICDE’09). IEEE Computer
Society, Los Alomitos, CA, 1311–1314.

HORN, D., CHESLACK-POSTAVA, E., AZIM, T., FREEDMAN, M. J., AND LEVIS, P. 2009. Scaling virtual worlds with a
physical metaphor. IEEE Pervasive Comput. 8, 3, 50–54.

HORN, D., CHESLACK-POSTAVA, E., MISTREE, B., AZIM, T., TERRACE, J., FREEDMAN, M. J., AND LEVIS, P. 2010.
To infinity and not beyond: Scaling communication in virtual worlds with Meru. Stanford Computer
Science Tech. rep. CSTR 2010-01.

IEEE. 1993. IEEE standard for information technology—protocols for distributed simulation applications:
Entity information and interaction. IEEE Standard 1278–1993. IEEE Computer Society, New York, NY.

JEFFERSON, D. R. 1985. Virtual time. ACM Trans. Prog. Lang. Syst. 7, 3, 404–425.
JOHNSON, D. B. AND MALTZ, D. A. 1996. Dynamic source routing in ad hoc wireless networks. Mob. Comput.

353, 153–181.
KANAWATI, R. 1997. LICRA: A replicated-data management algorithm for distributed synchronous groupware

application. Parallel Comput. 22, 13, 1733–1746.
KEATING, T. 2007. Dupes, speed hacks and black holes: How players cheat in MMOs. In Proceedings of the

Austin Game Developers Conference (Austin GDC’2007).
LAKE, D., BOWMAN, M., AND LIU, H. 2010. Distributed scene graph to enable thousands of interacting users in

a virtual environment. In Proceedings of the 9th Annual Workshop on Network and Systems Support for
Games (NetGames’10).

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21, 7,
558–565.

LAMPORT, L. 1979. How to make a multiprocessor computer that correctly executes multi-process programs.
IEEE Trans. Comput. C28, 9, 690–691.

LIU, H. AND BOWMAN, M. 2010. Scale virtual worlds through dynamic load balancing. In Proceedings of
the 14th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications
(DS-RT’10). IEEE Computer Society, Los Alamitos, CA, 43–52.

LIU, H., BOWMAN, M., ADAMS, R., HURLIMAN, J., AND LAKE, D. 2010. Scaling virtual worlds: Simulation require-
ments and challenges. In Proceedings of the Winter Simulation Conference, 778–790.

LUI, J. C. S., SO, O. K. Y., AND TAM, P. T. S. 1999. Deriving communication sub-graph and optimal synchro-
nizing interval for a distributed virtual environment system. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems.

MACEDONIA, M. R., ZYDA, M. J., PRATT, D. R., BRUTZMAN, D. P., AND BARHAM, P. T. 1995. Exploiting reality with
multicast groups. IEEE Comput. Graphics Appl. 15, 5, 38–45.

MAUVE, M. 1999. TeCo3D: A 3D telecooperation application based on VRML and Java. In Proceedings of the
SPIE Multimedia Computing and Networking (MMCN).

MAUVE, M. 2000. Consistency in replicated continuous interactive media. In Proceedings of the ACM Confer-
ence on Computer Supported Cooperative Work (CSCW’00). ACM, New York, NY, 181–190.

MOSS, E. 1985. Nested transactions: An approach to reliable distributed computing. The MIT Press,
Cambridge, MA, 31–38.

NEWMAN-WOLFE, R. E., WEBB, M. L., AND MONTES, M. 1992. Implicit locking in the ensemble concurrent object-
oriented graphics editor. In Proceedings of the ACM Conference on Computer-Supported Cooperative
Work (CSCW’92). ACM, New York, NY, 265–272.

OSTROWSKI, K., BIRMAN, K., AND DOLEV, D. 2007. Live distributed objects: Enabling the active Web. IEEE
Internet Comput. 11, 6, 72–78.

OSTROWSKI, K., BIRMAN, K., AND DOLEV, D. 2008. Quicksilver Scalable Multicast (QSM). In Proceedings of the
7th IEEE International Symposium on Network Computing and Applications (NCA’08). IEEE Computer
Society, Los Alamitos, CA, 9–18.

QIN, X. 2002. Delayed consistency model for distributed interactive systems with real-time continuous dedia.
J. Softw. 13, 6, 1029–1039.

RAMJEE, R., KUROSE, J., TOWSLEY, D., AND SCHULZRINNE, H. 1994. Adaptive playout mechanisms for packetized
audio applications in widearea networks. In Proceedings of the Conference on Computer Communications
(InfoCom’94), 680–688.

RAYNAL, M. AND SCHIPER, A. 1995. From causal consistency to sequential consistency in shared memory
systems. In Proceedings of the 15th Conference on Foundations of Software Technology and Theoretical
Computer Science, P. S. Thiagarajan, Ed. Lecture Notes in Compouter Science, vol. 1026, Springer-
Verlag, Berlin, 180–194.

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

Survey of State Melding in Virtual Worlds 21:25

RAYNAL, M. AND SCHIPER, A. 1996. A suite of formal definitions for consistency criteria in distributed shared
memories. In Proceedings of the ISCA 12th International Conference on Parallel and Distributed Com-
puting (PDCS’96).

RAYNAL, M., THIA-KIME, G., AND AHAMAD, M. 1997. From serializable to causal transactions for collaborative
applications. In Proceedings of the 23rd Euromicro Conference: New Frontiers of Information Technology
(Euromicro’97).

REED, D. P. 2005. TeaTime: Designing the architectural framework for Croquet. http://atsosxdev.doit.
wisc.edu/croquet2/about_croquet/papers.html.

ROBERTS, D. J. 1996. A predictive real time architecture for multi-user, distributed, virtual reality. Ph.D.
dissertation University of Reading.

ROBERTS, D. J., AND SHARKEY, P. M. 1997. Minimising the latency induced by consistency control, within a large
scale multi-user distributed virtual reality system. In Proceedings of the IEEE International Conference
on Computational Cybernetics and Simulation. 4492–4497

SECOND LIFE WIKi. 2008. AWG: State melding exploration. http://wiki.secondlife.com/wiki/AWG:
_state_melding_exploration.

SINGHAL, S. K. 1997. Effective remote modeling in large-scale distributed simulation and visualization envi-
ronments. Ph.D. dissertation. Stanford University, Stanford, CA. UMI order No. GAX97-14191.

SINGHAL, S. K., AND CHERITON, D. R. 1996. Using projection aggregations to support scalability in distributed
simulation. In Proceedings of the 16th International Conference on Distributed Computing Systems
(ICDCS’96). IEEE Computer Society, Los Alamitos, CA.

SINGHAL, S. AND ZYDA, M. 1999. Networked Virtual Environments. ACM Press/Addison-Wesley, New York, NY.
SMITH, D. A., KAY, A., RAAB, A., AND REED, D. P. 2003. Croquet—A collaboration system architecture. In

Proceedings of the 1st Conference on Creating, Connecting and Collaborating through Computing.
SMITH, D. A., RAAB, A., REED, D. P., AND KAY, A. 2005. Hedgehog architecture. http://atsosxdev.doit.wisc.

edu/croquet2/about_croquet/papers.html.
STEINMAN, J. 1993. Breathing time warp. ACM SIGSIM Simul. Digest, 23, 1, 109–118.
SUN, C. AND CHEN, D. 2000. A multi-version approach to conflict resolution in distributed groupware systems.

In Proceedings of the 20th International Conference on Distributed Computing Systems (ICDCS’00).
IEEE Computer Society, Los Alamitos, CA.

TORRES-ROJAS, F. J., AHAMAD, M., AND RAYNAL, M. 1999. Timed consistency for shared distributed objects. In
Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing (PODC’99).
ACM, New York, NY, 163–172.

VIRTUAL WORLDS NEWS. 2008. Interview: Strategy analytics’ Barry Gilbert—137M virtual worlds users
now; 1B by 2017. Engage Digital, June 2008.

WALDO, J. 2008. Scaling in games and virtual worlds. Commun. ACM 51, 8, 38–44.
WELCH, J. L. 1994. Sequential consistency versus linearizability. ACM Trans. Comput. Syst. 12, 2, 91–122.
ZHOU, S., CAI, W., LEE, B., AND TURNER, S. J. 2004. Time-space consistency in large-scale distributed virtual

environments. ACM Trans. Model. Comput. Simul. 14, 1, 31–47.

Received April 2009; revised December 2010; accepted March 2011

ACM Computing Surveys, Vol. 44, No. 4, Article 21, Publication date: August 2012.

