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Summary

1. There is growing recognition that linking patterns to their underlying processes in interconnected and

dynamic ecological systems requires data sampled atmultiple spatial and temporal scales.

2. However, spatially explicit and temporally resolved data sets can be difficult to analyze using classical statisti-

cal methods because the data are typically autocorrelated and thus violate the assumption of independence.

3. Here, we describe the synchrony package for the R programming environment, which provides modern

parametric and nonparametric methods for (i) quantifying temporal and spatial patterns of auto- and cross-cor-

related variability in univariate, bivariate, andmultivariate data sets, and (ii) assessing their statistical significance

viaMonte Carlo randomizations.

4. We illustrate how the methods included in the package can be used to investigate the causes of spatial and

temporal variability in ecological systems through a series of examples, and discuss the assumptions and caveats

of each statistical procedure in order to provide a practical guide for their application in the real world.
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Introduction

Empirical and theoretical research is increasingly focusing on

processes operating at multiple spatial and temporal scales to

understand the dynamics of complex and interconnected

ecological systems (Loreau, Mouquet & Holt 2003; Menge

et al. 2003; Borcard et al. 2004; Leibold et al. 2004; Gouhier,

Guichard & Gonzalez 2010a; Gouhier, Guichard & Menge

2010b). Quantifying patterns and processes across scales is

likely to yield novel insights into classical ecological questions

such as the relative influence of local and regional processes on

the spatiotemporal distribution of species across a range of

ecosystems (Ricklefs 2008). However, the use of spatially and

temporally replicated data sets in ecological studies can present

practical challenges because the data typically violate the

assumption of independence common to many classical

statistical tests (e.g. Legendre 1993; Fortin & Dale 2005). Such

non-independence (or autocorrelation) in the data must be

accounted for when fitting statistical models to avoid making

spurious conclusions (Hurlbert 1984). Yet, non-independence

in the form of auto- and cross-correlated variability in

space and time need not be the bane of our statistical existence.

By embracing and quantifying correlated variability via

proper statistical procedures, we can turn the bane of non-

independence into a veritable boon and reveal previously

hidden relationships between spatiotemporal ecological

patterns and processes (Legendre 1993; Gouhier, Guichard &

Gonzalez 2010a; Dray et al. 2012). Below, we present the

synchrony package for the R programming environment (R

Development Core Team 2013) and use three examples to

demonstrate how it can be used to identify novel relationships

between variables in spatially- and/or temporally resolved data

sets.

Description

The synchrony package includes functions to (i) generate

random matrices with specified levels of auto- and cross-

correlation that are useful for developing ecological theory

(Vasseur & Fox 2007; Vasseur 2007; Gouhier, Guichard &

Menge 2010b), (ii) identify temporally correlated variability

between multiple time series via parametric and nonpara-

metric methods (Buonaccorsi et al. 2001; Cazelles & Stone

2003; Gouhier & Guichard 2007), and (iii) estimate spatial,

temporal, and spatiotemporal patterns of auto- and cross-

correlated variability in univariate, bivariate, and

multivariate data sets (Bjornstad, Ims & Lambin 1999;

Bjornstad & Falck 2001; Fortin & Dale 2005; Gouhier,

Guichard & Gonzalez 2010a, see Table 1). The methods

included in the package have either not been implemented

in R before or have been augmented with Monte Carlo ran-

domization procedures that account for temporal autocorre-

lation and thus generate appropriate type I errors. Hence,

synchrony extends and complements existing packages

such as ncf (Bjornstad & Falck 2001), geoR (Ribeiro &

Diggle 2001), and vegan (Oksanen et al. 2013). We now

describe the functionality of the package using three

examples and provide all the code used to generate the

analyses in Appendix S1.*Correspondence author. E-mail: tarik.gouhier@gmail.com
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Example 1: Community synchrony

Synchrony in the local abundance of species can serve as an

important indicator of stability and persistence (Gouhier, Gui-

chard &Menge 2010b). Although patterns of community syn-

chrony alone cannot be used to identify their causal drivers

(Loreau & deMazancourt 2008; Gouhier, Guichard &Menge

2010b), they can certainly promote our understanding of the

phenomenon. There are several metrics that have been pro-

posed for measuring community synchrony: the mean correla-

tion coefficient, Kendall’s W and Loreau and deMazancourt’s

/. Their performance can be compared by measuring syn-

chrony in randomly assembled communities with a specified

number of species (columns), time steps (rows) and level of syn-

chrony (Fig. 1, Appendix S1). For example, function corre-

lated.matrix can be used to generate a community time

series with nspecies=10, ntimes=100 and the desired

level of synchrony among speciesrho=0.7:

library(synchrony)

##synchrony0.2.1loaded.

comm <-correlated.matrix(rho =0.7,nspecies =10,

ntimes =100)$community

The level of synchrony in the randomly assembled commu-

nity comm can then be assessed using each metric. The most

intuitive measure of community synchrony is the mean

correlation coefficient, which is provided by the meancorr

function (Houlahan et al. 2007):

�q ¼
r2

PN
i¼1

xiðtÞ
� �

�PN
i¼1

r2 xiðtÞ½ �

2
PN
i\j

r xiðtÞ½ �r xjðtÞ
� � eqn 1

where r2 is the variance operator. However, the mean correla-

tion coefficient is somewhat flawed because its range is mathe-

matically constrained by the number of species N. Indeed,

because there are only N terms contributing to the numerator

of eqn 1 but N(N�1) terms contributing to its denominator,

the minimum correlation coefficient assuming all species have

the same population variance is (Loreau & de Mazancourt

2008): qmin = �1/(N�1). Increasing species richness N thus

increases the minimum average correlation (Fig. 1). To com-

pute synchrony via the mean correlation coefficient and its

significance via nrands=999 randomizations, one can use

functionmeancorr:

meancorr(data =comm,nrands =999,alternative =

"two.tailed",type =1,quiet =TRUE)

##MeanPearsoncorrelation:0.601.

##Meancorrelationp-value(two-tailedtest):0.001

By default, the P-value is based on a two-tailed test and

generated by a naive randomization procedure specified via

argument type=1 that destroys both the temporal autocorre-

lationwithin each species and the cross-correlation among spe-

cies (Legendre 2005). Alternatively, one can specify a one-

tailed test (e.g. alternative=greater or alterna-

tive=less). Additionally, one can specify argument type=2

to select the ‘caterpillar’ randomization procedure, which pre-

serves the temporal autocorrelation within species but destroys

the cross-correlation among species by displacing the time ser-

ies by a random amount for each randomization (Purves &

Law 2002). By preserving the temporal autocorrelation within

each species, the ‘caterpillar’ procedure generates the correct

type I error regardless of the level of autocorrelation within

each time series.

Table 1. Description of themain functions included in thesynchrony package

Function name Description

community.sync Compute the correlation (and its statistical significance) betweenmultiple time series within a community (Loreau&

deMazancourt 2008)

meancorr Compute themean correlation (and its statistical significance) between all pairs of time series using the Pearson

product–moment correlation

kendall.w Compute the concordance (and its statistical significance) betweenmultiple variables (Zar 1999; Legendre 2005)

phase.sync Determine the strength of phase-locking (and its statistical significance) between pairs of quasiperiodic time series

(Cazelles & Stone 2003)

peaks Determine the proportion of concurrent local extrema (and its statistical significance) between pairs of time series

(Buonaccorsi et al. 2001)

vario Compute variograms and correlograms of univariate (one observation per location) ormultivariate (multiple

observations per location) data sets using the Pearson product–moment correlation, the Spearman’s ranked

correlation,Kendall’sW,Geary’s C,Moran’s I, the covariance, or the semivariance (Bjornstad, Ims&Lambin

1999; Fortin&Dale 2005)

vario.fit Fit spherical, Gaussian, nugget, linear, exponential, sill, periodic, or hole theoretical models to empirical variograms

obtained using function vario (Fortin&Dale 2005;Gouhier, Guichard&Gonzalez 2010a)

correlated.matrix Generate amatrix of values with a specificmean, standard deviation, and column-wise cross-correlation (Legendre

2000)

phase.partnered Generate two vectors of values with a specificmean, standard deviation, autocorrelation, and cross-correlation

(Vasseur 2007)

plot;print Default methods to plot and printsynchrony,vario andvario.fit objects
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Two alternative metrics that overcome the limitations of the

mean correlation coefficient have been proposed. The first is

Kendall’s W, a nonparametric statistic bound between 0 and 1

that measures the level of agreement between several ranked

variables (i.e., species; Zar 1999; Buonaccorsi et al. 2001;

Legendre 2005):

W ¼ 12

P
R2

i �
P

Rið Þ2
T

N2 T3 � Tð Þ �N
P

s
eqn 2

where Ri is the ranked time series of species i, N is the number

of species, T is the number of time steps, and∑s is a correction
for ties such that (Zar 1999):

Pj
i¼ 1

�
t3i � ti

�
. Here, ti is the

number of tied ranks in each group i of j groups of ties.

Kendall’s W has several desirable characteristics. First, its

range does not contract with increasing species richness

(Fig. 1). Secondly, its statistical significance can be determined

using a standard v2T�1 test (Zar 1999). Because this test has

been shown to be too conservative, aMonte Carlo randomiza-

tion procedure that shuffles the columns of thematrix indepen-

dently and produces the correct rates of type I and type II

errors in the absence of autocorrelation in the data (Legendre

2005) has also been included in the synchrony package.

Thirdly, Kendall’sW is related to themean Spearman’s ranked

correlation �qs between all pairs of species:

W ¼ 1þ N� 1ð Þ�qs
N

eqn 3

Hence, despite the fact that Kendall’s W cannot distinguish

asynchrony (negatively correlated fluctuations) from the lack

of synchrony (independent fluctuations) because its range falls

between 0 and 1 regardless of the sign of the mean correlation

(Fig. 1), the mean Spearman’s ranked correlation can help dis-

tinguish those two scenarios. The last equation (eqn 3) also

shows that Kendall’s W converges to the mean correlation

coefficient with increasing species richness (Fig. 1). However,

because Kendall’s W depends on species richness, one cannot

directly compare levels of synchrony across communities with

different numbers of species. For instance, species-poor

communities undergoing independent fluctuations (i.e., speci-

fied synchrony of 0) are characterized by a higher Kendall’s W

than species-rich communities undergoing the same level of

independent fluctuations (Fig. 1a vs. c). To compute synchrony

via Kendall’s W and its significance via nrands=999

randomizations, one can use functionkendall.w:

kendall.w(data =comm,nrands =999,type =1,

quiet =TRUE)

##Kendall’sW(uncorrectedforties):0.595

##Kendall’sW(correctedforties):0.595

##Spearman’srankedcorrelation:0.55

##Kendall’sWp-value(one-tailedtest[greater]):

0.001

By default, the P-value is based on a one-tailed test and gen-

erated via the same naive randomization procedure described

above. Alternatively, one can specify argument type=2 to

employ the caterpillar randomization procedure. The other

main metric used to measure community synchrony was

introduced by Loreau & de Mazancourt (2008): / ¼
r2

�PN
i¼ 1 xiðtÞ

�
=
�PN

i¼ 1 r
�
xiðtÞ

��2
, where the numerator

represents the community variance and the denominator

represents the sum of the population variances squared. This

metric also varies between 0 (lack of synchrony) and 1 (perfect

synchrony). Like Kendall’s W, the range of this metric does

not depend on species richness, but its value does. Specifically,

if all species have the same population variance (Loreau & de

Mazancourt 2008):
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Fig. 1. Comparing three measures of community synchrony. For each

desired level of synchrony (i.e., specified synchrony between �0�5 and

1), the function correlated.matrix was used to generate

100 random replicate N 9 T community matrices consisting of

T = 100 time steps for (a) N = 20, (b) N = 5, and (c) N = 3 species.

The three measures of synchrony were then computed and averaged

across all replicates. The dashed black line represents the 1:1 line, and

the horizontal dashed grey line represents the minimum average corre-

lation for each community size (i.e.,�1/(N�1)).
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/ ¼ 1þ N� 1ð Þ�qr
N

eqn 4

Hence, the only difference between / (eqn 4) and Kendall’s

W (eqn 3) is that the former depends on the mean Pearson

product–moment correlation �qr, whereas the latter depends on
the mean Spearman ranked correlation �qs. Given their strong

structural similarities, it is not surprising that these twometrics

behave very similarly, with Kendall’s W typically converging

to the specified mean correlation coefficient more readily

(Fig. 1). To compute synchrony via Loreau and de

Mazancourt’s / and its significance via nrands=999 ran-

domizations, one can use functioncommunity.sync:

community.sync(data =comm,nrands =999,

alternative =“greater”,type=1,quiet=TRUE)

##Community synchrony:0.641

##Mean pairwise correlation:0.601

##Community synchrony p-value(one-tailed test

[greater]):0.001

By default, the P-value is based on a one-tailed test and gen-

erated via the same naive randomization procedure described

above. Alternatively, one can specify argument type=2 to

employ the caterpillar randomization procedure.

Example 2: Noise and synchrony in the real world

In a noisy and interconnected world, quantifying synchrony

can be challenging because multiple processes can generate

complex dynamics that may either prevent the detection of

synchronized fluctuations when they occur (i.e., type II error)

or lead to their false detection (i.e., type I error). To illustrate

this issue, one can generate two independent realizations of a

second-order auto-regressive (AR(2)) process:

#Setrandom seed

set.seed(65)

t1 <-arima.sim(n =500,list(ar =c(1.61,�0.77)),

sd =0.1) +1.055

t2 <-arima.sim(n =500,list(ar =c(1.61,�0.77)),

sd =0.1) +1.055

We can then generate perfectly cross-correlated (rho=1)

white noise (gamma=0) by using function phase part-

nered:

(corr <-phase.partnered(n =length(t1),rho =1,

gamma =0))

##Cross-correlation:1

##Autocorrelation:0

##Standarddeviation:0.1

##Mean:0

Here, argument rho controls the cross-correlation between

the time series (varies between �1 and 1), and argument

gamma controls the autocorrelation of each time series.

Setting gamma to values between �2 and 0 will generate time

series dominated by high frequencies (i.e., blue noise) whereas

setting gamma to values between 0 and 2will generate time ser-

ies dominated by low frequencies (i.e., red noise). We can then

add the correlated white noise to each independent AR(2) time

series to determine whether synchrony metrics are able to cor-

rectly conclude that they are unrelated (i.e., have correct type I

error; Fig. 2):

t1.corr <-t1 +corr$timeseries[,1]

t2.corr <-t2 +corr$timeseries[,2]

Conversely, one can generate two perfectly correlated time

series (sinusoidal models):

t1 <-10*sin(seq(from =0,to =20*pi,

length.out =500)) + 50

t2 <-10*sin(seq(from =0,to =20*pi,

length.out =500)) + 50 + 2

Wecan then generate uncorrelated and negatively correlated

noise:

#Setrandomseed

set.seed(1)

uncorr <-phase.partnered(n =500,rho =0,gamma =0,

sigma =8,mu = 0)

negcorr <-phase.partnered(n =500,rho =�1,gamma =0,

sigma =8,mu = 0)

Finally, we can add the uncorrelated and negatively corre-

lated noise to the original sinusoidal models to determine

whether synchronymetrics are able to accurately conclude that

the time series are synchronized (i.e., have correct type II error;

Fig. 3):

t1.uncorr <-t1 +uncorr$timeseries[,1]

t2.uncorr <-t2 +uncorr$timeseries[,2]

t1.negcorr <-t1 +negcorr$timeseries[,1]

t2.negcorr <-t2 +negcorr$timeseries[,2]

We then use the mean correlation coefficient, Kendall’s W,

and Loreau & de Mazancourt (2008)’s / to measure spatial

synchrony between these two time series. These metrics errone-

ously suggest that two independent (unrelated) realizations of

an AR(2) process are synchronized in the presence or absence

of correlated noise (Table 2). Furthermore, these metrics also

fail to detect synchrony between the sinusoidal models in the

presence of negatively correlated noise (Table 2). Noise can

thus significantly hamper our ability to detect synchrony in the

real world by bothmasking truly synchronized dynamics (false

negatives) and making unrelated dynamics appear synchro-

nized (false positives).

To contend with the disruptive effect of noise, it can be

useful to turn to nonlinear measures of synchrony. These

metrics quantify the relationship between the phases of pairs

of data sets (Blasius, Huppert & Stone 1999; Cazelles &

Stone 2003). Hence, they are ideally suited for linking noisy

time series whose amplitudes are uncorrelated or imperfectly

correlated, but whose phase relationship remains relatively

constant or locked over time (Cazelles & Stone 2003). The

simplest such metric is what we have termed concurrency
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(implemented in function peaks), which simply measures

the proportion of concurrent peaks (local maxima) and

troughs (local minima) between pairs of time series (Buonac-

corsi et al. 2001). This metric varies between 0 when the time

series never peak and trough together, and 1 when the time

series always peak and trough simultaneously. The statistical

significance of concurrency can be determined via a Monte

Carlo randomization procedure that either (i) shuffles the

time series independently (type=1) or (ii) shuffles the

order of the time series and thus maintains the level of auto-

correlation in each time series while destroying their cross-

correlation (type=2).

The second main nonlinear metric, implemented in function

phase.sync, measures phase synchrony between quasiperi-

odic times series (Cazelles & Stone 2003). This is done by (i)

finding the local extrema (minima ormaxima) of each time ser-

ies, (ii) assigning them successive phase values (0 for first extre-

mum, 2p for second extremum, 4p for the third, etc.), and (iii)

assigning points that fall between the extrema phase values via

linear interpolation (Cazelles & Stone 2003). This procedure

thus converts a time series of amplitudes into a time series of

phases that is more robust to noise. The relationship between

the time series of phases can be determined by computing and

then plotting the frequency distribution of their instantaneous

difference at each time step (Fig. 2). Time series that are phase

synchronized or locked exhibit a modal distribution with a

prominent peak at a given phase difference (Fig. 2d), whereas

unrelated times series are characterized by a uniform or diffuse

distribution (Fig. 2c). The strength of phase synchrony can be

quantified by a Q index that falls between 0 (no phase syn-

chrony) and 1 (full phase synchrony) and is computed as fol-

lows (Cazelles & Stone 2003):

Q ¼ Smax � S

Smax
eqn 5

where S ¼ �PNh

k¼1 pk lnðpkÞ is the Shannon entropy of the

frequency histogram of phase differences, with Nh being the

number of phases in the frequency histogram and pk being

the proportion of points in bin k of the frequency histogram.

Here, Smax = ln (Nh) is the maximum entropy possible

(i.e., uniform frequency distribution). The statistical signifi-

cance of the Q values can be determined via Monte Carlo

randomizations that shuffle the time series while maintaining

their temporal (autocorrelation) structure (Cazelles & Stone
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Fig. 2. The effect of stochastic noise on detecting phase synchrony between two unrelated time series. The two time series depicted in (a) represent

independent realizations of an AR(2) process with first- and second-order coefficients 1�61 and�0�77, mean 1�055, and standard deviation 0�1. The
functionphase.partneredwas used to add (b) positively correlatedwhite noise (cross-correlation of 1) to theAR(2) time series. (c, d) Phase

analysis of theAR(2) time series without (c) vs. with (d) correlated noise.
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2003).We can put these nonlinear synchronymetrics to the test

by analyzing the previously-generated time series:

#ComputePhasesynchrony/locking

phase.t1t2.negcorr <-phase.sync(t1.negcorr,

t2.negcorr,nrands =999,quiet =TRUE)

#ComputeConcurrency

peaks.t1t2.negcorr <-peaks(t1.negcorr,t2.negcorr,

nrands =999,type =1,quiet =TRUE)

Here, both nonlinear metrics are able to correctly identify

the independent second-order autoregressive (AR(2)) realiza-

tions as uncorrelated (Table 2, Fig. 2). However, when the

AR(2) processes are overlain with correlated noise, both met-

rics suggest that the time series are synchronized (Table 2,

Fig. 2). Furthermore, concurrency is unable to detect the cor-

related sinusoidal models in the presence of either uncorrelat-

ed or negatively correlated noise (Table 2). Phase synchrony

detects that the time series are locked in phase in the presence

of the uncorrelated noise, but incorrectly suggests that the

time series are locked in anti-phase (phase difference of p) in
the presence of negatively correlated noise even though their

underlying sinusoidal models are positively correlated (Table

2, Fig. 3). Overall, this shows that there is no ‘magic bullet’

method for quantifying synchrony in noisy observational

data, especially if multiple factors are operating simulta-

neously.

Example 3: Spatial synchrony

Correlated fluctuations in species abundance can also occur

between spatially isolated populations. Such spatial synchrony

can be caused by endogenous factors such as dispersal between

populations and trophic interactions with species whose

dynamics are spatially synchronized, or exogenous factors

such as spatially correlated environmental noise (Bjornstad,

Ims & Lambin 1999; Liebhold, Koenig & Bjornstad 2004).

Unfortunately, the multiplicity of causal factors makes identi-

fying the drivers of spatial synchrony difficult unless some can

be excluded a priori because of ‘natural barriers’. For instance,

in systems where distinct populations do not ‘interact’ via dis-

persal (e.g. sheep on isolated islands or fish in different lakes),

spatially synchronized dynamics can be attributed to corre-

lated environmental noise (Grenfell et al. 1998; Tedesco et al.

2004). However, can spatially synchronized dynamics and
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Fig. 3. The effect of stochastic noise on detecting phase synchrony between two time series with perfectly correlated underlying skeletons. The skele-

ton time series were generated by two in-phase sinusoidal waves with the same frequency (10) and slightly different means (50 and 52, respectively).

Thephase.partnered functionwas then used to add (a) uncorrelated noise (cross-correlation of 0) or (b) negatively correlated noise (cross-

correlation of�1). (c, d) Phase analysis of the sinusoidal model time series with (c) uncorrelated or (d) negatively correlated noise.
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their drivers be identified in ecological systems that lack such

‘natural barriers’?

One way of limiting this issue is to quantify the spatial

scale of variation of potential causal processes. For instance,

synchronized fluctuations between populations that lie

beyond the spatial range of autocorrelated variation of a

potential causal process are unlikely to be driven by that pro-

cess. Hence, we can erect ‘statistical barriers’ that would

allow us to largely exclude certain processes and thus make it

easier to identify the drivers of spatially synchronized popula-

tion fluctuations by (i) reducing the pool of candidate factors

and (ii) limiting false positives. These ‘statistical barriers’ are

analogous to the ‘natural barriers’ that have long been

exploited to ascribe patterns of synchrony to their underlying

cause in nature (Grenfell et al. 1998; Post & Forchhammer

2002; Tedesco et al. 2004).

Spatial patterns of variability are typically quantified by

computing a specific statistic (e.g. correlation, covariance,

semivariance) between pairs of locations and plotting that

value as a function of the lag distance that separates them

(Figs 4 and 5). These types of analyses are commonly referred

to as variograms and have a rich history in geostatistics (Rossi

et al. 1992; Fortin & Dale 2005). The most widely used metric

is the semivariance (Fortin&Dale 2005):

cðhÞ ¼ 1

2nðhÞ
XN
i¼1

zðxiÞ � zðxi þ hÞ½ �2 eqn 6

where h is the lag distance, n(h) is the number of points in lag

distance h, and z is the value of the variable at location x. The

semivariance function thus measures how the (semi) variance

of a given variable between pairs of locations changes with the

(lag) distance that separates them. These so-called empirical

variograms can be computed by using function vario. Func-

tion vario.fit can then be used to fit statistical models to

these empirical variograms to extract important characteristics

such as (i) the nugget, which represents the semivariance at the

smallest lag distance and indicates observational error; (ii) the

spatial range which corresponds to the maximum distance at

which the variable is spatially autocorrelated; (iii) and the sill,

the semivariance at the spatial range (Fortin & Dale 2005).

Variogram fitting is performed via (optionally weighted) non-

linear least squares with the standard function nls. Because

nls can be finicky about initial parameter estimates, va-

rio.fit seamlessly shifts to fallback functions when nls

fails. Multiple statistical models with varying levels of com-

plexity can be fit with vario.fit, and their relative perfor-

mance can be determined via AIC (Burnham & Anderson

2002):

AIC ¼ 2pþ nlog

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i

x̂i � xið Þ2
s

eqn 7

where n is the number of data points in the variogram, xi are

the variogram values, x̂i are the variogram values predicted by

the model,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i x̂i � xið Þ2

q
is the root-mean-square error

(RMSE), and p is the number of parameters in the model.

Function vario can also be used to compute (cross)

correlograms using the covariance, correlation, Geary’s C, and

Moran’s I (Fortin&Dale 2005).

The Mantel correlogram can be used to quantify spatial

synchrony in multivariate data sets (i.e., multiple observations

per location) by computing the correlation between the time

series of pairs of locations as a function of the lag distance that

separates them (Bjornstad, Ims & Lambin 1999; Bjornstad &

Falck 2001). Statistical significance is assessed viaMonte Carlo

randomizations, whereby the data are randomly assigned to

each lag distance, and the correlation values are then calcu-

lated. This procedure is repeated multiple times, and the

p-value for each lag distance is then computed as the propor-

tion of randomizations that produce correlation values that

are equal to or more extreme than those observed in the

Table 2. The effect of stochastic noise on detecting synchronized fluctuations between pairs of time series

Synchronymetric

Mean correlation

(q)

Kendall’s

concordance

(W) LdM (/)
Concurrency

(C)

Phase

synchrony (Q)

Value P-value Value P-value Value P-value Value P-value Value P-value

AR(2) 0�201 0�028 0�584 0�006 0�601 0�038 0�132 1�000 0�005 0�996
AR(2) + positively correlated noise 0�212 0�024 0�591 0�003 0�606 0�009 0�504 0�001 0�052 0�001
Sinusoidalmodel + uncorrelated noise 0�450 0�085 0�735 0�000 0�725 0�043 0�338 0�388 0�041 0�049
Sinusoidalmodel + negatively correlated noise �0�123 0�782 0�474 0�793 0�439 0�638 0�000 1�000 0�253 0�001

The sinusoidalmodel represents two 500-step time series simulated by two in-phase sinusoidal waves (cross-correlation of 1) with the same frequency

(10), and slightly different means (50 and 52, respectively). The two AR(2) time series are independent realizations of a second-order autoregressive

process with first- and second-order coefficients 1�61 and �0�77, mean 1�055, and standard deviation 0�1. The uncorrelated, negatively correlated,

and positively correlated noise was generated with thephase.partnered function by adding two independent, positively correlated, or neg-

atively correlated white noise signals with the samemean (0) and standard deviation (8) to the sinusoidalmodel and theAR(2) time series. The statis-

tical significance of the mean correlation (q), Kendall’s W, Loreau and de Mazancourt’s (LdM) index of synchrony /, concurrency (C), and phase

synchrony (Q) was determined via 999 Monte Carlo randomizations using functions meancorr, kendall.w, comm.sync, peaks,
andphase.sync.
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original data set. By default, the p-values obtained are for a

two-tailed test where the null hypothesis is that the correlation

values within each lag distance are equal to the regional mean.

Alternatively, the vario function can also compute a one-

tailed test and determine its direction automatically for each

lag distance based on the observed correlation value.

As a practical example, three separate statistical models

were fit to the empirical variogram of mean annual upwelling

currents along the West Coast of the United States (Fig. 4,

Table 2), where these currents have been shown to affect

population growth (Menge, et al. 2003, 2004). We begin by

loading the PISCO data from the synchrony package and

selecting the variables of interest for year 2000 via the subset

function:

data(pisco.data)

d <-subset(pisco.data,subset =year = =2000,

select =c(“latitude”,“longitude”, “upwelling”))

We then compute the empirical (semi)variogram over the

full spatial extent of the data set by specifying argument

extent=1

semiv <-vario(data =d,extent =1)

Finally, we can fit three different theoretical models to the

empirical (semi)variogram:

var.gaussian <-vario.fit(semiv$vario,

semiv$mean.bin.dist,type =“gaussian”)

var.spherical <-vario.fit(semiv$vario,

semiv$mean.bin.dist,type =“spherical”)

var.linear <-vario.fit(semiv$vario,

semiv$mean.bin.dist,type =“linear”)

The best fit was obtained using the Gaussian model, which

predicts a range of autocorrelated variability of approximately

1426 km (Table 3). These results suggest that upwelling may

exert an effect on biological patterns of abundance at lag

distances of up to 1426 km. However, a closer look at the

variogram shows a sharp change in semivariance at a lag
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Fig. 4. Fitting statistical models (lines) to the empirical (semi)vario-

gram (open circles) of mean annual upwelling along the West Coast of

the United States for the year 2000 computed using functionvario.
The dashed lines represent weighted versions of the statistical models

described in the legend using the proportion of points within each lag

distance as weights when calling functionvario.fit.
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Fig. 5. Fitting statistical models to (centered Mantel) correlograms of

(a) mean annual mussel cover and (b) mean annual upwelling along the

West coast of the United States from 2000 to 2003. Filled circles repre-

sent statistically significant levels of synchrony (a < 0�05; two-tailed
test) based on 999Monte Carlo randomizations computed via function

vario. The gray region represents the 95% confidence intervals of

the Monte Carlo randomizations. The horizontal dashed line repre-

sents themean correlation across the entire region.

Table 3. Summary statistics obtained by fitting multiple statistical

models to the empirical (semi)variogram of mean annual upwelling

along theWest Coast of theUnited States for the year 2000

Model

Parameter estimates Model fit

Nugget (c0) Sill (c1) Range (a) RMSE AIC

Spherical 0�00 10157�07 1845�23 1473�00 297�80
Gaussian 0�00 10188�00 1427�09 1217�74 290�19
Linear 7�23 – – 1665�07 300�70

The nugget (c0) and the sill (c1), respectively, represent the semivariance

at the smallest lag distance and as it begins to plateau. The range (a)

corresponds to the lag distance of the sill.
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distance of about 800 km, with the autocorrelation

(semivariance) in upwelling declining (increasing) markedly

beyond that distance (Fig. 4).

Mussel populations have been shown to depend on upwell-

ing currents for larval and food supply at local scales (e.g.

Connolly, Menge & Roughgarden 2001; Menge et al. 2004).

We can compute the spatial synchrony of upwelling and mus-

sel cover to determine whether this relationship holds at regio-

nal to continental scales. We begin by extracting the relevant

variables from the PISCOdata set:

upw <-subset(pisco.data,select =

c(“latitude”,“longitude”, “year”, “upwelling”))

mus <-subset(pisco.data,select =c

(“latitude”, “longitude”, “year”, “mussel_abund”))

Then, wereshape the data from ‘long’ to ‘wide’ format:

upw.wide <-reshape(data =upw,idvar =c(“latitude”,

“longitude”),timevar =c(“year”),

direction =“wide”)

mus.wide <-reshape(data =mus,idvar =c(“latitude”,

“longitude”),timevar =c(“year”),

direction =“wide”)

Finally, we compute spatial synchrony for each variable by

calculating the average correlation within n.bins=12 equi-

distant lag distances:

sync.upw <-vario(n.bins =12,data =upw.wide,

type =“pearson”,extent =1,nrands =999,

is.centered =TRUE,alternative =“two”,quiet =TRUE)

sync.mus <-vario(n.bins =12,data =mus.wide,

type =“pearson”,extent =1,nrands =999,

is.centered =TRUE,alternative =“two”,quiet =TRUE)

Despite the established link at local scales, theMantel corre-

lograms of mean annual mussel abundance and upwelling

along the West Coast of the United States show strikingly dif-

ferent patterns of spatial synchrony (Fig. 5). Upwelling exhib-

its a statistically significant linear decay with lag distance,

whereas mussel abundance exhibits a statistically significant

nonlinear (periodic) pattern with lag distance, going from syn-

chrony (lag distance <200 km), to asynchrony (200 km < lag

distance <1000 km), and back to synchrony (lag distance

� 1300 km). Because upwelling becomes asynchronous at

intermediate lag distances (� 800 km), we can safely rule it

out as themain driver of synchrony inmussel abundance at lag

distances greater than 800 km (Gouhier, Guichard & Gonz-

alez 2010a). Hence, this example shows that in interconnected

ecological systems where multiple plausible drivers of spatial

synchrony operate and cannot be ruled out a priori because of

‘natural barriers’, ‘statistical barriers’ may be erected so that

processes whose synchrony patterns do not match those of the

response variable of interest can be excluded a posteriori.

Conclusion

The examples above demonstrate how the synchrony can

be used to help understand the relationship between ecological

patterns and processes across scales. Future versions of syn-

chrony will both (i) extend existing functionality by provid-

ing methods to analyze anisotropic (or directional) spatial

synchrony patterns (Hagen et al. 2008) and (ii) provide addi-

tional approaches such as symbolic methods to identify associ-

ations between multiple time series based on their intrinsic

rhythms (Cazelles 2004).
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