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. Bañosa, F. Manzano-Agugliarob,∗, F.G. Montoyab, C. Gil a, A. Alcaydeb, J. Gómezc

Department of Computer Architecture and Electronics, University of Almería, 04120 Almería, Spain
Department of Rural Engineering, University of Almería, 04120 Almería, Spain
Department of Languages and Computation, University of Almería, 04120 Almería, Spain

r t i c l e i n f o

rticle history:
eceived 23 November 2010
ccepted 27 December 2010

eywords:
enewable energy systems
ptimization

a b s t r a c t

Energy is a vital input for social and economic development. As a result of the generalization of agricul-
tural, industrial and domestic activities the demand for energy has increased remarkably, especially in
emergent countries. This has meant rapid grower in the level of greenhouse gas emissions and the increase
in fuel prices, which are the main driving forces behind efforts to utilize renewable energy sources more
effectively, i.e. energy which comes from natural resources and is also naturally replenished. Despite the
obvious advantages of renewable energy, it presents important drawbacks, such as the discontinuity of
ulti-criteria decision analysis
esign
lanning
ontrol

generation, as most renewable energy resources depend on the climate, which is why their use requires
complex design, planning and control optimization methods. Fortunately, the continuous advances in
computer hardware and software are allowing researchers to deal with these optimization problems
using computational resources, as can be seen in the large number of optimization methods that have
been applied to the renewable and sustainable energy field. This paper presents a review of the current

state of the art in computational optimization methods applied to renewable and sustainable energy,
offering a clear vision of the latest research advances in this field.

© 2010 Elsevier Ltd. All rights reserved.
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. Introduction

With the rapid development of the global economy, energy
equirements have increased remarkably, especially in emergent
ountries. The realization that fossil fuel resources required for the
eneration of energy are becoming scarce and that climate change
s related to carbon emissions to the atmosphere has increased
nterest in energy saving and environmental protection [1]. The
rst strategy to reduce dependence on fossil resources is based
n reducing energy consumption by applying energy savings pro-
rams focused on energy demand reduction and energy efficiency
n industrial [2] and domestic [3] fields spheres.

A second strategy to achieve this goal consists of using renew-
ble energy sources, not only for large-scale energy production,
ut also for stand-alone systems [4]. Renewable energy technolo-
ies are known to be less competitive than traditional electric
nergy conversion systems, mainly because of their intermittency
nd the relatively high maintenance cost. However, renewable
nergy sources have several advantages, such as the reduction in
ependence on fossil fuel resources and the reduction in carbon
missions to the atmosphere. Furthermore, renewable energies
void the safety problems derived from atomic power [5], which
s why, from the social point of view, it has become more desirable
o adopt renewable energy power plants [6]. An important deci-
ion for governments and businesses is whether or not to establish
enewable energy systems in a given place, and to decide which
enewable energy source or combination of sources is the best
hoice. Several authors have evaluated the main renewable energy
echnologies taking into account sustainability indicators, such as
vans et al. [7] who compared wind power, hydropower, photo-
oltaic and geothermal energy taking into account the price of
enerated electricity, greenhouse gas emissions during the full life
ycle of the technology, availability of renewable sources, efficiency
f energy conversion, land requirements, water consumption and
ocial impacts. Evans et al. concluded that wind power has the
owest relative greenhouse gas emissions, the least water con-
umption demands and the most favorable social impacts, but it
equires more land and has high relative capital costs [7]. Lund et al.
8] analyzed strategies for a sustainable development of renew-
ble energy taking into account three major technological changes:
nergy savings on the demand side, efficiency improvements in
nergy production, and the replacement of fossil fuels with various
ources of renewable energy. Others recent studies that evalu-
te energy, economics and environmental impacts of renewable
nergy systems include those presented by Hepbasli [9] and Varun
t al. [10].

The improvement of renewable energy technologies will assist
ustainable development and provide a solution to several energy
elated environmental problems. In this sense, optimization algo-
ithms constitute a suitable tool for solving complex problems in
he field of renewable energy systems. Fig. 1 shows an exponential
volution in the number of research papers that use optimization
lgorithms in the renewable energy sources described in this paper,
sing Scopus database. Some authors have reviewed different types
f models such as renewable energy models, emission reduction
odels, energy planning models, energy supply-demand models,

orecasting models, and control models using optimization meth-
ds [11], but many researchers are continuously proposing and
pplying new methods in the field of renewable energy. For this
eason, this paper presents an updated review of the optimization
ethods that have recently been applied to renewable energies.
. Single and multi-objective optimization: a brief overview

In mathematics, optimization is the discipline concerned with
nding inputs of a function that minimize or maximize its value,
ergy Reviews 15 (2011) 1753–1766

which may be subjected to constraints [12]. Combinatorial opti-
mization is a branch of optimization which is concerned with the
optimization of functions with discrete variables [13]. Computa-
tional optimization can be defined as the process of designing,
implementing and testing algorithms for solving a large variety
of optimization problems. Computational optimization includes
the disciplines of mathematics to formulate the model, operations
research to model the system, computer science for algorith-
mic design and analysis, and software engineering to implement
the model. Nowadays, researchers can solve real-life problems
that in the past were thought to be unsolvable thanks to new
technological developments in algorithms and computer hard-
ware.

Despite its name, optimization does not necessarily mean find-
ing the optimum solution to a problem, since it may be unfeasible
due to the characteristics of the problem, which in many cases are
included in the category of NP-hard problems [14]. Yet, for opti-
mization problems that are NP-hard, no polynomial time algorithm
exists, i.e. the algorithms used might need exponential computa-
tion time in the worst case to obtain the optimum, which leads
to computation times that are too high for practical purposes. As
a result, in recent decades many authors have proposed approxi-
mate methods, including heuristic approaches and artificial neural
networks (ANN), to solve these problems instead of using tra-
ditional optimization methods, such as linear-programming (LP),
Nelder–Mead Simplex (NMS) method, Lagrangian relaxation (LR),
quadratic programming (QP), etc. Heuristic methods can be seen
as simple procedures that provide satisfactory, but not necessarily
optimal, solutions to large instances of complex problems rapidly.
Meta-heuristics are generalizations of heuristics in the sense that
they can be applied to a wide set of problems, needing few mod-
ifications to be adapted to a specific case [15]. In some cases, the
complexity of the problems to solve is so high that even heuris-
tic and meta-heuristic methods are not able to obtain accurate
solutions in reasonable runtimes. In these cases parallel processing
becomes an interesting way to obtain good solutions in reduced
runtimes [16].

The most used way to classify meta-heuristic algorithms is based
on trajectory methods vs. population-based methods, although
other possible classifications are memory-based vs. memory-less
methods, nature-inspired vs. non nature-inspired, etc.

• Trajectory meta-heuristics are those that use a single solution
during the search process and the outcome is also a single
optimized solution. Most of them are extensions of simple itera-
tive improvement procedures that incorporate techniques that
enable the algorithm to escape from local optima. The main
trajectory-based meta-heuristics include: hill climbling (HC),
simulated annealing (SA), tabu search (TS), greedy random-
ized adaptive search procedures (GRASP), variable neighborhood
search (VNS), iterated local search (ILS), etc. [15–17].

• Population-based meta-heuristics use a population of solutions
which evolve during a given number of iterations, also returning
a population of solutions when the stop condition is fulfilled. The
main population-based meta-heuristics include: genetic algo-
rithms (GA) and evolutionary algorithms (EA), scatter search (SS),
path relinking (PR), memetic algorithms (MA), ant colony opti-
mization (ACO), particle swarm optimization (PSO), estimation of
distribution algorithm (EDA), differential evolution (DE), artificial
bee colony optimization (ABCO), etc. [15–17].
On the other hand, it should be noted that to date most
computational optimization methods have focused on solving
single-objective problems, including constraints in some cases.
Nevertheless, there exist a large number of applications that
require the simultaneous optimization of several objectives which
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re often in conflict, and so some authors have proposed multi-
bjective algorithms. These multi-objective approaches are often
ivided into two main categories: aggregate weight functions and
areto-based optimization methods. Aggregating functions consist
f combining all the objectives to optimize in a single mathemat-
cal function, where the relative importance of each objective is
djusted according to relative weights [18]. Despite its simplic-
ty, this approach has several drawbacks, such as that it is very
ifficult to adjust the weights of the objectives to optimize, espe-
ially when they have different scales. Further, this approach only
eturns a single solution as a result of the search process, which
ecomes an important limitation in the decision-making process,
here the decision maker must select one solution from several

lternatives.
The drawbacks of aggregating functions have been solved using

areto-based multi-objective optimization [19], which establishes
elationships among solutions according to the Pareto-dominance
oncept. Given a multi-objective optimization problem with K ≥ 2
bjectives to optimize, instead of giving a scalar value to the
bjective function f1. . .K(s) of solution s, a partial order is defined
ccording to Pareto-dominance relationships. It is said that solu-
ion s1 dominates another s2 when s1 is better than s2 in at least
ne objective, and not worse in the others. It is said that two solu-
ions, s1 and s2 are indifferent if neither dominates the other one.
he set of non-dominated solutions constitute the so-called Pareto
ptimal set, which usually contains not one solution, but several. As
ll the objectives are equally important, the aim of multi-objective
ptimization is to find this entire set or a representative sample of
t.

A large number of multi-objective meta-heuristics have been
resented in recent decades, and they can also be classified

nto the categories of trajectory methods and population-
ased methods. Trajectory methods include the Pareto archived
volution strategy (PAES), multi-objective simulated annealing
MOSA), etc. Population-based meta-heuristics include the multi-
bjective tabu search (MOTS), non-dominated sorting genetic
lgorithm (NSGA/NSGA-II), Pareto simulated annealing (PSA), sin-
le front genetic algorithm (SFGA), strength Pareto evolutionary
lgorithm (SPEA/SPEA2), Pareto envelope-based selection algo-
ithm (PESA/PESA-II). Some authors have also proposed hybrid
pproaches that combine aspects of two or more methods,
uch as genetic tabu search (GTS), multi-objective genetic local
earch (MOGLS), memetic-PAES (M-PAES), multi-objective simu-
ated annealing and tabu search (MOSATS), etc. [20,21].
Taking into account information from the ISI web of knowledge,
ig. 2 shows the distribution by country of papers that use optimiza-
ion algorithms mentioned in this section, applied to renewable
nergy. It is observed that researchers from 10 countries cover this
esearch line.
Fig. 2. Distribution by country of research papers published using optimization
algorithms studied in this paper applied to renewable energies.

3. Optimization methods applied to renewable and
sustainable energy

Energy resources are very important form an economic and
political perspective for all countries, which is why technological
change in energy systems is a very important and inevitable factor
that researchers need to deal with [22]. In the many papers propose
optimization methods for solving problems found in renewable
energy systems. A review of these methods from the point of view
of design, planning and control is provided below.

Taking into account the increasing worldwide demand for
energy around the world, the expansion of distributions networks
has become a problem of primary interest. Due to the impor-
tant investment costs of creating a renewable energy structure, a
primary interest from the point of view of the design and long-
term planning of energy systems is to select the best alternative
among the different renewable energy systems. Community-scale

renewable energy systems planning is an important problem con-
sisting of justifying the allocation patterns of energy resources
and services, formulation of local policies regarding energy con-
sumption, economic development and energy structure, and
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nalysis of interactions among economic cost, system reliabil-
ty and energy-supply security. Some authors have solved this
omplex problem by applying interval linear programming (ILP),
hance-constrained programming, and mixed integer-linear pro-
ramming (MILP) techniques to obtain solutions that can provide
esired energy resource/service allocation and capacity-expansion
lans with a minimized system cost, maximized system relia-
ility and maximized energy security [23]. Soroudi et al. [24]
resented a long-term dynamic multi-objective planning model
or distribution network expansion along with distributed energy
ptions which, using an immune genetic algorithm-based (I-GA)
lgorithm, optimizes costs and emissions by determining the opti-
al schemes of sizing, placement and dynamics of investments

n distributed generation units and network reinforcements over
he planning period. Kahraman et al. [25] analyzed the use of
uzzy-based multicriteria decision-making procedures in order to
etermine the most appropriate renewable energy alternative.
onnolly et al. [26] reviewed the main computer tools for analyzing
he integration of renewable energy into various energy-systems
nder different objectives. Some authors have analyzed the per-
ormance of mixed-integer programming (MIP), GA, SA and TS
or solving the problem of minimum cost expansion of power
ransmission networks under carbon emission trading programs
27,28]. Zangeneh et al. [29] show that only a few renewable
nergies have proven to be competitive to date, while their eco-
omic viability is also limited to certain regions of the world.
hese authors propose a Pareto-based multi-objective optimiza-
ion algorithm for optimal planning schemes by considering several
eneration technologies: photovoltaic, wind turbine, fuel cell,
icro turbine, gas turbine, and reciprocal engine. Cai et al. [30]

roposed an optimization method that integrates ILP, two-stage
rogramming and superiority–inferiority-based fuzzy-stochastic
rogramming for long-term renewable energy management plan-
ing with the aim of generating decision alternatives and thus
elping decision makers identify desired policies under vari-
us economic and system-reliability constraints. Kowalski et al.
31] evaluated several renewable energy scenarios according
o different sustainability criteria. AlRashidi and EL-Naggar [32]
pplied a PSO algorithm for annual peak load forecasting in
n electrical power system with the aim of minimizing the
rror associated with the estimated model parameters. Dicorato
t al. [33] applied a LP optimization procedure based on the
nergy flow optimization model for evaluating the contribution
f distributed-generation production and energy-efficiency actions
aking into account the exploitation of primary energy sources,
ower and heat generation, emissions and end-use sectors. Other
esearchers have focused their efforts on designing heuristic opti-
ization methods for cost-effective energy conversion systems

34].
The importance of using new optimization techniques for

hort-term energy planning is due to the existence of multiple
ncertainties [35,36]. In a scenario of large-scale penetration of
enewable production, it is fundamental that the electric sys-
em has appropriate means to compensate the effects of the
ariability and randomness of the wind, solar and hydro power
vailability. There are many optimization problems related to
nergy in general which deal with optimization techniques, such
s the prediction of energy demands using ANN [37]. Mitchell
t al. [38] presented a simulator of a renewable energy system
n both grid-connect and stand-alone modes, containing wind,
olar, energy storage and stand-by plants, which is able to cal-

ulate energy flows and optimize the scheduling of the stand-by
lant or grid connection. Other researchers have developed pre-
rocessing techniques and heuristic algorithms for real problems

n timetabling and labor scheduling, obtaining excellent results
39]. Energy planning problems are complex problems with multi-
ergy Reviews 15 (2011) 1753–1766

ple decision makers and multiple criteria. In the literature there
are some reviews about multicriteria decision-making methods
for renewable energy problems [40–42]. Alarcón-Rodríguez et al.
[43] reviewed the state-of-the-art in multi-objective distributed
energy resources planning, and concluded that demand side man-
agement and load controllability will gain prominence in a future
where the impacts of energy use will be managed more care-
fully.

From the point of view of control, one of the main problems
is that of determining the impact of renewable energy on power
systems, especially on distribution networks. Renewable energy
sources are mainly used in the electrical sector. Electricity is not
a storable commodity, i.e. it is necessary to produce the requested
quantity and distribute it through the system in such a way as to
ensure that electricity supply and demand are always evenly bal-
anced. Franco and Salza [44] applied several optimization methods
for solving the problem of new renewable energy sources penetra-
tion and congestion management. Sood and Singh [45] presented
an optimal model of congestion management for the deregulated
power sector that dispatches the pool in combination with privately
negotiated bilateral and multilateral contracts while maximizing
social benefit. Niknam and Firouzi [46] proposed a hybrid method
that combines NMS and PSO, whose results outperformed those
obtained by other population-based algorithms such as original
PSO, honey bee mating optimization (HBMO), ANN, ACO, and GA.
The utilization of fluctuating renewable energy sources is increas-
ing, but how to integrate these resources into the energy systems
is a difficult question. Ostergaard [47] reviewed and subsequently
applied several optimization criteria to an energy system model
with the aim of analyzing how to use heat pumps for the inte-
gration of wind power. Niknam et al. [48] proposed an algorithm
based on fuzzy adaptive PSO to solve the optimal operation man-
agement of distribution networks including fuel cells power plants
which obtain good results in comparison with GA, PSO, DE, ACO
and TS. In order to improve energy systems, some researchers are
investigating how to store energy efficiently, which is an impor-
tant problem whose solution would effectively disassociate the
timing of supply and delivery. Yongping et al. [49] analyzed a multi-
objective optimization of load dispatch of power systems including
renewable energy and CO2 capture and storage technologies. Other
researchers have proposed models for optimal bidding strategy for
a hybrid system of renewable power generation and energy storage
[50].

The advantages of renewable energy resources are not lim-
ited to the generation of energy, they also include using it for
multi-purpose functions such as water pumping. Water distribu-
tion is an optimization problem with important environmental
derivations [51–54]. Some authors have analyzed the use of solar
photovoltaic pumps, windmill pumps and biogas based dual fuel
engine pumps for irrigation water pumping [55], while others have
used wind turbine water-pumping applications either by direct
pumping through mechanical means, or indirectly by generating
electric power to drive pumps [56]. Further, water supply systems
[51,54] frequently present high-energy consumption values, which
correspond to the major expenses of these systems. Energy costs
are a function of their real consumption and of the variability of the
daily energy tariff. Vieira and Ramos [57] optimized operational
planning for wind-hydro hybrid water supply systems. Further,
there has been considerable interest in the design of renewable-
energy-based greenhouses. Chinese et al. [58] determined under
which conditions the combination of a floor-heating-based green-

house with a waste-to-energy plant can be profitable using a mixed
integer optimization model.

This review goes on to offer an overview of the latest research
advances in optimization algorithms for renewable energy classi-
fied by different energy sources.
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.1. Wind power

Wind is one of the most promising sources of alternative energy.
ecently, Hernández et al. [59] demonstrated that wind is a peri-
dical phenomenon for large geographical areas like Mexico. The
enefits of past research and development in the wind energy
ector have been clearly demonstrated by the increasing sizes of
urbines and the lower prices per installed production capacity
f electricity [60]. There are studies that demonstrate the poten-
ial wind power around the world [61]. Trends in wind power
nclude new growth in off shore development, the growing popu-
arity of distributed, small-scale grid-connected turbines, and new

ind projects in a much wider variety of geographical locations
round the world. Many researchers are continuously developing
ew strategies for optimal design and operation of wind energy
ystems [62]. However, wind energy systems may not be techni-
ally viable in all locations because of low wind speeds and the
act that it is more unpredictable than solar energy. Areas where
inds are stronger and more constant, such as offshore and high

ltitude sites, are preferred locations for wind farms. The opera-
ional scheme of wind energy systems, an accurate estimation of
ind speed distribution, the site selection of wind farms, and the

perations management of wind power conversion systems are
ritical aspects that determine wind energy potential. However, the
nvestment decision on generation capacity of a wind park is diffi-
ult when wind studies or data are neither available nor sufficient to
rovide adequate information for developing a wind power project.
ome papers have analyzed in detail how to determine the probable
ind power availability at a given site according to historical wind

elocity data, and its capacity to meet a target demand [63]. Li et al.
64] applied the Bayesian model averaging in modelling long-term
ind speed distributions. Zhao et al. [65] proposed a GA where the
ain components of a wind farm and key technical specifications

re used as input parameters and the electrical system design of
he wind farm is optimized in terms of both production cost and
ystem reliability.

Another primary interest for researchers of wind power is
elated to the optimal design of wind farms. In particular, two
mportant problems are often considered: the optimal design of

ind turbines and the wind farm layout.
In reference to wind turbine design, trends include new growth

n off-shore development, the growing popularity of distributed,
mall-scale grid-connected turbines, and new wind projects in a
uch wider variety of geographical locations around the world and
ithin countries. The power output of a turbine is a function of the
ensity of the air, the area swept out by the turbine blades and
he cube of the wind speed. As the generation of wind energy is
elatively new, the area of improvement in power quality is still
pen, which is why some authors have centred their interest on
ptimizing the turbine settings in order to maximize their perfor-
ance. Numerous metrics are used to measure the power quality of
wind turbine, such as the power factor, reactive power, harmonic
istortion, etc. Firms continue to increase average turbine sizes and

mprove technologies, such as with gearless designs [66]. Benini
nd Toffolo [67] presented a multi-objective evolutionary algo-
ithm (MOEA) for the optimization of the geometrical parameters
f the rotor configuration of stall-regulated horizontal-axis wind
urbines with the aim of achieving the best trade-off performance
etween the total energy production per square meter of wind
ark and cost. Maalawi and Negm [68] presented an optimization
odel for the design of a typical blade structure of horizontal-
xis wind turbines where the optimization variables are chosen
o be the cross-sectional area, radius of gyration and length of each
egment, and the optimal design is pursued with respect to maxi-
um frequency design criterion. Other authors [69] simplified the

esign of wind turbine systems by removing any active electronic
ergy Reviews 15 (2011) 1753–1766 1757

part (power and control) then constructing a low-cost fully passive
structure. There has been increasing interest in the optimal design
of laminated composite shell structures, especially wind turbine
blades. For instance, Lund and Stegmann [70] solved this problem
using as optimization algorithm the method of moving asymptotes
proposed by Svanberg [71]. A review of methods applied to the
optimal design of wind turbine blades was presented by Jensen
et al. [72]. Li et al. [73] optimized the ranges of gearbox ratios
and power ratings of multihybrid permanent-magnet wind gen-
erator systems by using a GA. Kusiak et al. [74] presented a MOEA
for evaluating wind turbine performance, where the objective to
maximize is the wind power output, while minimizing the vibra-
tion of the drive train and of the tower. Roy et al. [75] applied a
new methodology for optimum sizing of the rotor and other com-
ponents of a stand-alone wind-battery system. Other authors [76]
optimized wind turbine blades, where shape parameters, including
chord, twist and relative thickness are adjusted with the objec-
tive of minimizing the cost of energy which is calculated from
the annual energy production and the cost of the rotor. Fuglsang
and Thomsen [77] proposed a numerical optimization algorithm
together with an aero elastic load prediction code and a cost model
for site-specific design of wind turbines where cost of energy is
minimized. Fuglsang et al. [78] presented a method for minimum
energy cost where numerical optimization and aero elastic cal-
culations are combined. Kusiak and Zheng [79,80] optimized the
power produced by wind turbines by combining data mining and
evolutionary computation. Other authors have proposed decision
analysis techniques, including mixed-integer nonlinear program-
ming (MINLP), for determining the optimum capacity taking into
account uncertainties arising from wind speed distribution and
power–speed characteristics [81]. As wind turbines are used to tap
the potential of wind energy, the reliability of the turbine is critical
to extract the maximum amount of energy from the wind. Hameed
et al. [82] offered a review of the techniques, methodologies and
optimization algorithms developed to monitor the performance of
wind turbines and for early fault detection to avoid catastrophic
conditions due to sudden breakdowns. Technically, wind turbine
capacity has been improved to high levels. However, electricity
cannot be generated at all wind speeds and so there are some lim-
its related to cut-in and cut-out data. One of the main problems
in wind engineering is that estimating output data of wind tur-
bines depends on wind speed and system values, which is why
some researchers have used fuzzy logic modelling for wind turbine
power curve estimation [83]. Shimizu et al. [84] presented a study
of the flapping wind power generator which extracts energy via the
flutter phenomenon, where the aim is to optimize both the power
and the efficiency of the system using a multi-objective adaptive
neighboring search.

On the other hand, wind farm layout consists of determining
the optimum positions of wind turbines within the farm in order
to maximize energy production [85]. Grady et al. [86] presented
a GA to determine the optimal placement of wind turbines for
maximum production capacity while limiting the number of tur-
bines installed and the acreage of land occupied by each wind farm.
Emami and Noghreh [87] solved this problem with a new coding
and also a novel objective function in GA which performs better
that other previously proposed approaches in terms of control of
the cost, power, and efficiency of the wind farm. Serrano et al. [88]
implemented an EA for the optimum wind farm configuration prob-
lem which is driven by an integral wind farm cost model based on
the cumulative net cash flow value throughout the wind farm’s

lifespan. Kusiak and Song [89] proposed a MOEA for wind turbine
placement based on wind distribution with the aim of both maxi-
mizing the wind energy capture and minimizing a second objective,
namely an index that determines constraint violations. The related
problem of wind turbine selection, consists of selecting the best
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urbine combination from a given list of available turbines. Herbert
t al. [90] analyzed the performance, failure and reliability of a wind
arm using a Pareto-based analysis. Mustakerov and Borissova [91]
roposed a MINLP optimization method to determine the optimal
ype, number and placement of wind turbines considering the given
ind conditions and wind park area.

One of the main problems related to wind generation consists of
orecasting the output with uncertainties. These uncertainties pose

challenge while computing optimal bids necessary for partici-
ating in the day-ahead unit commitment process. Some authors
olved this problem by applying fuzzy optimization techniques,
ith the aim of both maximizing benefits while minimizing risks

onsidering forecast uncertainties [92]. Kusiak and Li [93] validated
methodology for prediction of wind speed at a selected loca-

ion based on the data collected at neighboring locations. Abdel-Aal
t al. [94] dealt with the problem of wind speed forecast by using
bductive networks, which offer the advantages of simplified and
ore automated model synthesis and transparent analytical input-

utput models than other machine learning approaches reported in
he literature. Despite the research into predicting wind conditions,
he magnitude of power fluctuations at large off-shore wind farms
an be said to have a significant impact on the control and manage-
ent strategies of their power output. Pinson et al. [95] investigated

he use of statistical regime-switching models, thus demonstrating
hat the magnitude of fluctuations of off-shore wind power can-
ot be considered as being only influenced by the generation level.
ome authors have tackled the problem of discontinuity in the gen-
ration of wind power. Zhang and Wirth [96] proposed an online
euristic for short-term energy management of a wind power plant
ith battery storage in order to offset variations in power output

o the external grid in which decision making is independent of
istorical wind data and forecasts. Due to the intermittent nature
f wind power generation, many new problems arise when infus-
ng wind power into power network with conventional generators.
oqiang and Chuanwen [97] discussed how to manage risk in the
lectric market using wind power, and evaluated in detail different
ptimized algorithms for this purpose, including a direct search
ethod, PSO, SA, GA, and a scenario construction method. The con-

rol problem of a wind turbine involves determining rotor speed
nd tip-speed ratio to maximize power and energy capture from the
ind. This problem has also been solved with heuristic approaches,

ncluding PSO [98]. Although wind generation does not produce
armful emissions, its effect on the thermal generation dispatch
an actually cause an increase of emissions, especially during low
r medium power demand periods in the day. Kuo [99] presented a
ulti-objective energy dispatch that considers environment and

uel cost. Ko and Jatskevich [100] used a fuzzy-linear-quadratic
egulator controller for a wind-hybrid power generation system
o enhance power quality which is effective against disturbances
aused by the wind speed and load variations. Kusiak et al. [101]
resented a multi-objective model for intelligent wind turbine con-
rol based on integrating data mining, model predictive control and
volutionary computation considering five different objectives and
aking into account wind speed, turbulence intensity, and electric-
ty demand as control factors. Li et al. [102] tackled the optimal
esign problem of integrating the number of actuators, the configu-
ation of the actuators and the active control algorithms in buildings
xcited by strong wind force using a multi-level GA.

.2. Solar energy
Solar energy is radiant energy that is produced by the sun. In
any parts of the world, direct solar radiation is considered to be

ne of the best prospective sources of energy. The main ways to con-
ert solar radiation into energy are active and passive solar design.
assive solar design is often based on the optimal design of build-
ergy Reviews 15 (2011) 1753–1766

ings that capture the sun’s energy in order to reduce the need for
artificial light and heating. Regarding passive solar systems, a pri-
mary interest for researchers in solar energy is related to the design
and optimization of solar energy homes [103]. Improving energy
efficiency in buildings is a major priority worldwide. The measures
employed to save energy vary in nature, and the decision maker is
required to establish an optimal solution, taking into account multi-
ple and usually competing objectives such as energy consumption,
financial costs, environmental performance, etc. [104,105]. Active
solar design is based on water heating converting solar radiation
into heat using photovoltaic panels and solar cells to convert the
solar radiation into energy.

In order to design both active and passive solar energy systems,
radiation data are needed for the studied location. Solar radiation
is usually measured by means of radiometric station nets with a
low spatial resolution. To estimate the radiation some interpola-
tion/extrapolation techniques are often used, but they are valid for
places where the spatial variability of radiation is not significant
and are less accurate if there are complex areas of terrain between
the radiometric stations. Bosch et al. [106] presented an artificial
intelligence technique based on ANN for calculating solar radia-
tion levels over complex mountain terrains using data from only
one radiometric station. Other algorithms applied to the forecast
of solar irradiation include ANN [107,108] and neuro-fuzzy infer-
ence systems [109]. Despite huge development in predicting solar
radiation data, there is a gap in extraction of pertinent information
from such data, which is why some methods, including ANN [110],
have been proposed for identifying and optimizing the statistics
representing solar radiation availability.

Due to the intermittent nature of solar energy, energy storage
is needed in a stand-alone photovoltaic system for the purpose
of ensuring continuous power flow. The large-scale utilization of
this form of energy is possible only if effective technology can
be developed for its storage with acceptable capital and run-
ning costs [111]. The industry of grid-connected photovoltaic solar
power has been responding to price declines and rapidly changing
market conditions by consolidating, scaling up and moving into
project development [66]. Kalogirou [112] solved the problem of
maximizing the economic benefits of a solar-energy system using
ANN and GA. ANN are trained to learn the correlation of collec-
tor area and storage-tank size on the auxiliary energy required
by the system from which life-cycle savings can be estimated,
while GA are then employed to estimate the optimum size of
these two parameters for maximizing life-cycle savings. Aronova
et al. [113] proposed an optimization model for determining the
energy generated by tracking photoelectric power modules, while
also estiming the optimal variant of solar module arrangement
for different locations, and the ground area required by a single
tracking photoelectric power module of given size. Klychev et al.
[114] presented a study about the optimization of the geometric
parameters of the parabolic-cylinder-receiver system of thermal
power plants, and they conclude that the optimal opening angles
of the parabolic-cylindrical concentrator in the system can increase
the solar concentration. García-Fernández et al. [115] present an
overview of the parabolic-trough collectors built and marketed
over the last century, as well as the prototypes currently under
development. Szargut and Stanek [116] dealt with the problem of
optimizing the performance of a solar collector by correctly deter-
mining the collector area per unit of heat demand, the diameter
of collector pipes and the distance of the pipe axes in the col-
lector plate. Varun [117] implemented a GA for maximizing the

thermal performance of flat plate solar air heaters by considering
the different system and operating parameters. Chang and Ko [118]
designed a hybrid heuristic method which combines PSO with non-
linear time-varying evolution in order to determine the tilt angle
of photovoltaic modules with the aim of maximizing the electrical
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nergy output of the modules. Zagrouba et al. [119] proposed a GA
o identify the electrical parameters of photovoltaic solar cells and

odules to determine the corresponding maximum power point
rom the illuminated current–voltage characteristic. Marston et
l. [120] presented an optimization algorithm for designing linear
oncentrating solar collectors using stochastic programming and a
onte Carlo technique to quantify the performance of the collector

esign in terms of an objective function, which is then minimized
sing a modified Kiefer–Wolfowitz algorithm that uses sample size
nd step size controls.

An interesting problem related to photovoltaic systems is the
ptimal determination of their size. The sizing optimization of a
tand-alone photovoltaic system is a complex optimization prob-
em which aims to obtain acceptable energy and economic cost for
he consumer, and a relatively correct energy supply quality. Mellit
121] analyzed the performance of artificial intelligence techniques
or sizing stand-alone photovoltaic, grid-connected photovoltaic
nd photovoltaic-wind hybrid systems. Mellit et al. [122] applied
NN and GA for sizing photovoltaic systems. Yang et al. [123]
roposed a sizing method to optimize the capacity sizes of differ-
nt components of hybrid solar-wind power generation systems
mploying a battery bank. Li et al. [124] dealt with the sizing opti-
ization problem of stand-alone photovoltaic power systems using

ybrid energy storage technology. Thiaux et al. [125] applied NSGA-
I to optimize stand-alone photovoltaic systems with the aim of
uantifying the gross energy requirement reduction by minimizing
he storage capacity. Kornelakis and Koutroulis [126] analyzed the
ptimization of photovoltaic grid-connected systems as follows:
iven a list of commercially available system devices, they select
he optimal number and type and the optimal values of the pho-
ovoltaic module installation details, in such way that the total net
conomic benefit achieved during the system’s operational lifetime
eriod is maximized. Kornelakis and Marinakis [127] also applied
SO to this problem.

Cirre et al. [128] implemented two hierarchical approaches,
uzzy logic and physical model-based optimization, for control of

distributed solar collector field. The results obtained demon-
trated that it is possible to automatically control the plant and
xploit solar performance while remaining within operating con-
traints. Ammar et al. [129] applied a neuro-fuzzy algorithm for
he daily optimum management of household photovoltaic panel
eneration without using storage equipment. The optimization of
nergy generation in a photovoltaic system is necessary to allow
he photovoltaic cells to operate at the maximum power point cor-
esponding to the maximum efficiency according to the irradiation
nd cell temperatures. Other authors have proposed an adaptive
erturb and observe method that has fast dynamics and improved
tability [130]. Water heating is often obtained with solar energy.
n order to encourage wider application of centralized solar water
eating systems for high-rise residential buildings, it is important
o pursue an optimal design to achieve significant energy-saving
otential. Fong et al. [131] implemented an EA for maximizing
he energy saving of solar heating against conventional domes-
ic electric heating. Kulkarni et al. [132] determined the water
eplenishment profile that optimizes the overall system using opti-
ization methods.

.3. Hydropower

Hydropower, hydraulic power or water power is power that is
erived from the force or energy of moving water, which may be

arnessed for useful purposes. Taking into account the fact that
ater is much denser than air, even a slow flowing stream of
ater, or moderate sea swell can yield considerable amounts of

nergy. There are several forms of water power currently in use
r development. Broad categories include hydroelectricity, which
ergy Reviews 15 (2011) 1753–1766 1759

is based on generating electrical power through the use of the
gravitational force of falling or flowing water; and ocean energy,
which mainly refers to the energy carried by ocean waves and
tides.

In recent decades there has been increasing interest in the area
of hydropower plant model development and its control [133].
The sizing of a small hydropower plant of the run-of-river type
is very critical for the cost effectiveness of the investment. Anag-
nostopoulos and Papantonis [134] presented a stochastic EA for
the optimal sizing of a small hydropower plant that simulates in
detail the plant operation during the year with the aim of maxi-
mizing the economic benefit and the energy produced. Peña et al.
[135] estimated the capacity of a mini-hydro plant based on time
series forecasting. Yoo [136] tested a LP method for maximizing
hydropower energy generation that also analyzes the effect and
sensitivity of the model and reservoir storage on the maximiza-
tion of hydropower energy generation based on calculations of
optimal values. In the deregulated power market, the hydro pro-
ducer has in principle no other objective than to produce electricity
and sell with maximum and minimum market risk. Attention must
focus on profit uncertainty caused by uncertainty in spot prices and
reservoir inflow. Hongling et al. [137] presented a review of the
state-of-the-art in hydropower operations considering profit risk
under uncertainty and suggesting future directions for additional
research and application. Ladurantaye et al. [138] analyzed deter-
ministic and stochastic mathematical models for maximizing the
profits obtained by selling electricity produced through a cascade
of dams and reservoirs in a deregulated market. Numerical results
based on historical data demonstrate the superiority of stochas-
tic models over deterministic ones. Kuby et al. [139] presented
a multi-objective combinatorial optimization method to analyze
ecological-economic tradeoffs and to support complex decision-
making associated with dam removal in a river system with the
aim of minimizing loss of hydropower and maximizing storage
capacity. Daily hydrothermal generation scheduling is an impor-
tant problem that consists of determining the optimal amount of
generated power for the hydro and thermal units of the system
in the scheduling horizon of one day while satisfying the con-
straints of the hydroelectric system, thermal plants and electrical
power system. This problem has been dealt with using heuris-
tic optimization techniques, including a Modified Adaptive PSO
algorithm [140]. Finardi et al. [141] solved the optimal schedul-
ing of hydropower plants in a hydrothermal interconnected system
by means of Lagrangian relaxation (LR) and sequential quadratic
programming (SQP). Liu et al. [142] presented a stochastic LP frame-
work for the hydropower portfolio management problem with
uncertainty in market prices and inflows in the medium term. The
results obtained showed that it is necessary to consider the uncer-
tainty in inflows and market prices and incorporate the impact of
uncertainties on the portfolio management problem. Pérez-Díaz
et al. [143] applied a non-linear programming (NLP) scheduling
model that determines both the optimal unit commitment (start-
ups and shut-downs scheduling) and the generation dispatch of
the committed units (hourly power output) for short-term opera-
tion scheduling of a hydropower plant. The results denote the good
performance of this model which provides feasible and locally opti-
mal operation schedules given by both the plant status (on/off)
and the power to be generated in each hour of the day in order
to maximize revenue. Khanmohammadi et al. [144] solved the
unit commitment problem using NMS and PSO algorithms, while
other approaches, such as stochastic programming have also been

applied to this problem [145]. Lee [146] demonstrated the good
performance of PSO to solve short-term hydroelectric generation
scheduling of a power system with wind turbine generators in
terms of computation efficiency and quality. The issue of load
distribution among cascade hydropower stations is a dynamic opti-
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ization problem with multiple dimensions and multiple stages.
i et al. [147] applied an immune-based algorithm with PSO for
ptimizing load distribution among cascade hydropower stations,
hose results show that it achieve a good load distribution with
igh convergence precision. Real-time hydropower reservoir oper-
tion is a continuous decision-making process that consists of
etermining the water level of a reservoir or the volume of water
eleased from it. The hydropower operation is usually based on
perating policies and rules defined and decided upon in strategic
lanning. Moeini et al. [148] proposed a fuzzy rule-based model
or the operation of hydropower reservoirs whose rules are based
n ideal or target storage levels. It is common practice in the
ydropower industry to either shorten the maintenance duration
r to postpone maintenance tasks in a hydropower system when
here is expected unserved energy based on current water stor-
ge levels and forecast storage inflows. Foong et al. [149] tackled
he problem of maintenance scheduling for these systems using a

ethod that combines ACO and power plant maintenance schedul-
ng.

Wave power, along with renewable energy-generating sources
ike tides and streams, has advantageous physical properties and
redictability. Ocean waves represent a form of renewable energy
reated by wind currents passing over open water. Wave energy
otential varies considerably in different parts of the world, and
ave energy cannot be harnessed effectively everywhere. As com-
ented above, the prediction of wind speed is a basic challenge

or wind power generation. In the same manner, the prediction
f water level is fundamental for ocean energy generation. Huang
t al. [150] developed an ANN for water level predictions, with an
pplication to coastal inlets taking into account long-term water
evel observations. Kazeminezhad et al. [151] analyzed an adap-
ive network-based fuzzy inference system and coastal engineering

anual methods for predicting wave parameters. Reikard [152]
valuated the ability of time-series models to predict the energy
rom ocean waves by a hybrid model that combines ANN with
ime-varying regressions. Child and Venugopal [153] analyzed the
nfluence of the spatial configuration of a wave energy device
rray upon total power output using two different approaches:
he Parabolic Intersection method and a GA. The results obtained
how that, although more computational effort is required, supe-
ior results may be obtained using GA compared to the Parabolic
ntersection method. Ocean energy technologies for generating
lectricity include wave, tidal (barrages and turbines), and ocean
hermal energy conversion systems [66]. Falcão [154] presented a
tochastic optimization method for the energy conversion process
rom wave to air turbine, where the decision variable is the tur-
ine size, represented by its rotor diameter, and the objectives to
aximize are the electrical energy produced and the annual profit.
nother interesting problem is that of the optimization of the shape
f a wave energy collector to improve energy extraction, which is
ften solved with heuristic methods, such as GA [155]. Batten et al.
156] applied NMS for designing and optimizing energy output with
idal data for marine current turbines.

.4. Bioenergy

Bioenergy is renewable energy made available from materi-
ls derived from biological sources. Biomass, a renewable energy
ource, is biological material from living, or recently living organ-
sms, including plants and animals. Biomass is one of the most
romising renewable energy sources, but more research is required

o prove that power generation from biomass is both technically
nd economically viable. Biomass can be burned to produce steam
or making electricity, or to provide heat to industries and homes.
n addition biomass can be converted to other usable forms like

ethane gas, ethanol fuel and biodiesel fuel. Biomass power plants
ergy Reviews 15 (2011) 1753–1766

exist in over 50 countries around the world and supply a grow-
ing share of electricity. European countries are expanding their
total share of power from biomass, such as Austria (7% of the
renewable energy generation), Finland (20%), and Germany (5%)
[66], while biogas for power generation is also a growing trend in
many countries. Trends include growing use of solid biomass pel-
lets, use of biomass in building-scale or community-scale combined
heat and power plants, and use of biomass for centralized district
heating systems [66]. The sustainability of electricity generation
from biomass must be assessed according to the key indicators
of price, efficiency, greenhouse gas emissions, availability, limita-
tions, land use, water use and social impacts. Biomass produced
electricity generally provides favorable price, efficiency, emissions,
availability and limitations but often has unfavorably high land
and water usage as well as social impacts [157]. Reche et al. [158]
presented a binary PSO-based method to accomplish optimal loca-
tion of biomass-fuelled systems for distributed power generation
with forest residues as biomass source, and the results outper-
formed those obtained by a GA when maximizing a profitability
index taking into account technical constraints. Rentizelas et al.
[159] proposed an optimization method for multi-biomass energy
conversion applications taking into account various technical, reg-
ulatory, social and logical constraints. PSO has also been applied
for the optimal location and supply area for biomass-based power
plants where the maximum electric power generated by the plant is
considered as a constraint [160]. Vera et al. [161] applied a nature-
inspired algorithm for the optimal location of a biomass power
plant with the aim of providing the best profitability for investors.

With recent increases in oil prices, uncertainties concerning its
availability and the need for clean and environment friendly fuels,
there is renewed interest in vegetable oil fuels for diesel engines
[162]. Biodiesel fuel can be made from new or used vegetable oils
and animal fats, which are non-toxic, biodegradable, renewable
resources. Sharma and Singh [163] presented a review addressing
various aspects of biodiesel production. There is much discussion
about the strengths and weaknesses of different biofuel support
policies based on the experiences gained in pioneering countries
and exploring scenarios for their possible impacts in the long-term
[164]. Naik et al. [165] offer an interesting review of the first and
second generations of biofuels from the sustainable point of view.
Among this second generation of biofuels there are some promis-
ing alternatives, such as thermochemical conversion of biomass
to biofuels. However, the complexity of the conversion process
requires the modelling and optimization of the process integration
methods to demonstrate an effective way for the exploitation of
these interactions [166]. Alfonso et al. [167] developed a method to
assess optimal management and energy use of distributed biomass
resources, considering features such as biomass resources prop-
erties, plant size effect, available technologies for power, heat and
solid biofuels generation, CO2 emissions balance and quantification
of potential biofuel consumers.

The use of biomass as a source of energy has been further
enhanced in recent years and special attention has been paid to
biomass gasification. Agugliaro [168] proposed the use of vegetable
biomass from greenhouse residues to produce electrical energy by
the gasification process. Due to the increasing interest in biomass
gasification, some models that explain the design, simulation, opti-
mization and process analysis of gasifiers have been presented,
including gasification models based on thermodynamic equilib-
rium, kinetics and ANN [169]. Biogas, a byproduct of fermenting
solid and liquid biomass, can be converted by a combustion engine

to heat, power, and transport [66]. Madlener [170] performed a
multi-criteria study with the aim of evaluating the performance of
a large number of agricultural biogas plants in order to determine
their relative performance in terms of economic, environmental,
and social criteria and corresponding indicators.
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.5. Geothermal energy

Geothermal energy is the energy contained as heat inside the
arth. Geothermal heat pumps are a highly efficient, renewable
nergy technology for heating and cooling. This technology relies
n the fact that, at depth, the Earth has a relatively constant tem-
erature, warmer than the air in winter and cooler than the air in
ummer. The main advantage of using geothermal energy is that
his renewable energy source can provide power 24 h a day due to
t is constant, without intermittence problems compared to other
enewable resources such as wind or solar energy. It is expensive
o build a power station but operating costs are low, resulting in
ow energy costs for suitable sites. Geothermal power plants now
xist in 19 countries, and new plants are commissioned annually,
.g. Indonesia, Italy, Turkey, and the United States in 2009 [66].
owever, only a small fraction of the geothermal potential has
een developed so far, and there is ample space for an accelerated
se of geothermal energy both for electricity generation and direct
pplications. Geothermal energy, with its proven technology and
bundant resources, can make a significant contribution towards
educing the emission of greenhouse gases [171]. Advantages of
eothermal energy are especially visible in arid areas, where the
stablishment of human habitats strongly depends on the avail-
bility of fresh water. Further, geothermal resources are also used
o heat greenhouses and to provide fresh water [172].

A geothermal heat pump can transfer heat stored in the Earth
nto a building during the winter, and transfer heat out of the
uilding during the summer [173]. One of the most commonly
sed heating devices in geothermal systems is the heat exchanger,
hose output conditions are based on several parameters. Among

hese parameters, the heat transfer area is one of the most impor-
ant for heat exchangers. Dagdas [174] proposed an optimization

ethod to solve this problem which provides maximum annual
et profit. Tselepidou and Katsifarakis [175] presented a GA for the
ptimization of the exploitation system of a low enthalpy geother-
al aquifer, with the aim of determining the annual pumping cost

f the required flow and the amortization cost of the pipe network,
hich carries the hot water from the wells to a central water tank,

ituated on the border of the geothermal field. The results show that
pplication of the proposed methodology allows better planning of
ow enthalpy geothermal heating systems.

.6. Hybrid systems

The previous sections have presented the main problems related
o different renewable energy sources. The discontinuity in the gen-
ration of most of the renewable energy sources often involves
eliability problems associated with their operation. For instance,
ommercialized stand-alone street lighting systems based on the
lassical configuration coupling photovoltaic cells and battery can-
ot work all the year round in regions that are far from the equator
176]. Research and development efforts in solar, wind, and other
enewable energy technologies must continue to improve their
erformance, establish techniques for accurately predicting their
utput and reliably integrate them with other conventional sources
177]. In the last decade, there has been a spectacular increase the
nterest in optimizing the design and control of stand-alone hybrid
ower generation systems in order to manage energy between the
aximum energy captured and consumed energy [178]. If these

ybrid systems are optimally designed, they can be more cost
ffective and reliable than single-renewable systems, and so there

s increasing interest in determining the necessary conditions to
nstall hybrid power plants systems due to their operational and
conomical advantages [179]. With the aim of optimizing the mix of
he renewable system maximizing its contribution to the peak load,
hile minimizing the combined intermittence, at a minimum cost,
ergy Reviews 15 (2011) 1753–1766 1761

some multi-objective algorithms have been proposed [180]. Kat-
sigiannis et al. [181] presented a multi-objective algorithm which
aims to minimize the energy cost of the system, while the total
greenhouse gas emissions of the system during its lifetime are
also minimized. Practical economic dispatch problems have non-
linear, non-convex type objective function with intense equality
and inequality constraints. The conventional optimization methods
are not able to solve such problems due to local optimum solution
convergence. Mahor et al. [182] applied PSO to solve this problem,
and concluded that its performance was better than conventional
optimization techniques. Brini et al. [183] solved the economic
environmental dispatching of a hybrid power system including
wind and solar thermal energies using a MOEA that simultane-
ously minimizes the fuel costs and the emission of polluting gases,
while GA are also used for economic load dispatch optimization of
power systems that include wind generation. Bernal-Agustín et al.
[184] applied the well-known MOEA (SPEA) to the multi-objective
design of isolated hybrid systems where the objectives to mini-
mize are the total cost throughout the useful life of the installation
and the pollutant emissions. The results obtained when design-
ing a photovoltaic–wind–diesel system demonstrate the practical
utility of the design method used. These authors later applied a
MOEA to solve a three-objective version of this problem which, in
addition to considering the useful life of the installation and the
pollutant emissions, also considers, the unmet load in this hybrid
system [185]. Ould [186] proposed a multi-objective GA for sizing a
hybrid solar–wind-battery system with the aim of minimizing the
annualized cost system and the loss of power supply probability.
Bilal et al. [187] proposed a Pareto-based multi-objective GA for
sizing a hybrid solar–wind-battery system with the aim of mini-
mizing the annualized cost and minimizing the probability of loss
of power supply. Montoya et al. [188] presented a hybrid Pareto-
based multi-objective meta-heuristic that combined PAES with SA
and TS to minimize voltage deviations and power losses in power
networks, which can be extended to hybrid systems.

Hybrid renewable energy systems are becoming popular for
remote area power generation applications due to advances in
renewable energy technologies. With the aim of supervising this
new kind of production system some papers discuss optimization
techniques, including LP [189], fuzzy logic [190], etc. However,
the design of hybrid systems is complex because of the uncertain
renewable energy supplies, load demands and the non-linear char-
acteristics of some components. Further, the overall evaluation of
autonomous hybrid power systems that contain renewable and
conventional power sources depends on economic and environ-
mental criteria, which are often conflicting objectives. Therefore
some authors have dealt with the problem of determining the
optimal combination of renewable energy technologies taking into
account not only the renewable energy resources, but also the
technology characterization, incentives and economic parameters
(installed cost, maintenance costs, etc.). Lee and Chen [2] pro-
posed a PSO algorithm to solve the wind-photovoltaic capacity
coordination for a time-of-use rate industrial user with the aim
of maximizing the economic benefits of investing in a wind gener-
ation system and a photovoltaic generation system. Kaviani et al.
[191] optimized a hybrid wind-photovoltaic-fuel cell generation
system with a PSO with the aim of minimizing the annual cost of the
hybrid system subject to reliable supply for the demand. Lagorse
et al. [176] applied the GA and the simplex algorithm for optimizing
a hybrid system coupling a photovoltaic, a battery and a fuel cell
for stand-alone street lighting systems. Eke et al. [192] presented

an optimization method for designing a wind-photovoltaic hybrid
system to cover the electricity consumption taking into account
the monthly average solar irradiation and wind speed data. Gian-
nakoudis et al. [193] proposed an optimization method for the
design and operation of a hybrid power generation system that
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onsists of photovoltaic panels, wind generators, accumulators, an
lectrolysis apparatus, hydrogen storage tanks, a compressor, a fuel
ell and a diesel generator.

Isolated electrical power generating units can be used as an
conomically viable alternative to electrify remote villages where
rid extension is not feasible. One of the options for building iso-
ated power systems is by hybridizing renewable power sources
ike wind, solar, micro-hydro, etc. along with energy storage sys-
ems [194]. Bernal-Agustín and Dufo-López [195] analyzed the

ain research strategies on optimization of hybrid systems with
attery energy storage. Zhou et al. [4] presented a review of the
urrent state of the art in the simulation, optimization and control
echnologies for the stand-alone hybrid solar-wind energy systems
ith battery storage, which concludes that there is a large variety

f techniques for accurately predicting their output and reliably
ntegrating them with other renewable or conventional power gen-
ration sources. Other authors have applied GA for the optimal
onfiguration of power system on islands installing a renewable
nergy power production plant consisting of diesel generators,
ind turbine generators, photovoltaic system and batteries [196].
alamurugan et al. [197] proposed a hybrid energy system con-
isting of biomass, wind, solar photovoltaic and battery to deliver
nergy at optimum efficiency, maintaining a fair level of energy
torage to meet the peak load demand during low or no solar radia-
ion periods or during low wind periods. Nema et al. [198] reviewed
he current state of the design, operation and control requirements
f the stand-alone photovoltaic solar–wind hybrid energy systems
ith conventional backup source, diesel or grid, and highlighted

he future developments.
When designing a hybrid system both the sizing of the ele-

ents and the control strategy must be correctly analyzed [199].
arcía and Weisser [200] applied LP and fixed dispatch to deter-
ine the size of grid units and dispatch in a wind-diesel power

ystem with hydrogen storage with the aim of minimizing cost tak-
ng as data one-year time series of hourly wind speed and electricity
emand. Koutroulis et al. [201] proposed a GA for optimal sizing of
tand-alone photovoltaic-wind generator systems, which selects
he optimal number and type of units to minimize the cost subject
o the constraint that the load energy requirements are completely
overed. Yang et al. [202] presented a GA for optimal sizing to opti-
ize the configurations of a hybrid solar–wind system employing

attery banks, where the decision variables are the number of pho-
ovoltaic modules, wind turbines and batteries, the photovoltaic

odule slope angle and wind turbine installation height. Del Real
t al. [203] presented a procedure to evaluate the optimal element
izing of a hybrid power system that incorporates a wind generator,
atteries and intermediate hydrogen storage according to real wind
ata and averaged residential demands. Bernal-Agustın and Dufo-
ópez [204] presented an EA for the efficient design and control
f a hybrid system of electrical energy generation that consists of
complex photovoltaic–wind–diesel–batteries–hydrogen system.
he results obtained show that the EA was able to obtain good solu-
ions with low computational effort. Zervas et al. [205] studied a
ybrid power generation system consisting of a photovoltaic array,
lectrolyser, metal hydride tanks, and proton exchange membrane
uel cells, which has advantages compared to stand-alone photo-
oltaic systems, but the optimization of its operation is a rather
omplicated task. Diaf et al. [206] analyzed how to estimate the
ppropriate dimensions of a stand-alone hybrid photovoltaic-wind
ystem that guarantees the energy autonomy of a typical remote
onsumer with the lowest levelized cost of energy. Hakimi and

oghaddas-Tafreshi [207] demonstrated that PSO is able to mini-
ize the total costs of a hybrid power system formed by fuel cells,
ind units, electrolysers, a reformer, anaerobic reactor and hydro-

en tanks and which uses biomass as an available energy resource,
uch that the demand is met. The same authors also applied PSO
ergy Reviews 15 (2011) 1753–1766

to the problem of sizing in a hybrid power system such that the
total costs of the system is minimized and the demand of residen-
tial area is met [207]. Another interesting problem is the impact of
renewable energy on power system operation. In particular, there
exist several studies about hybrid power systems where electrical
networks include renewable energy sources. Razak et al. [208] pre-
sented an optimization method for minimizing the excess energy
and cost of energy in a hybrid renewable system that combines
pico hydro turbines, wind turbines, solar photovoltaic panels and
diesel generator, and results showed that it is important to con-
sider the amount of excess energy the system produces in order
to reduce the energy cost. The planning algorithm accounts for
the uncertainty of wind power forecasts and power market price
uncertainty. Chakraborty et al. [209] implemented GA and PSO
for solving a planning problem for thermal units integrated with
wind and solar energy systems. Matevosyan et al. [210] proposed
a day-ahead planning algorithm for a multi-reservoir hydropower
system coordinated with wind power and sharing the same trans-
mission lines, though hydropower has priority for transmission
capacity. Castronuovo and Lopes [211] proposed an optimization
algorithm to identify the optimum daily operational strategy to be
followed by wind turbines and hydro generation pumping equip-
ment. Jurado and Saenz [212] presented a neuro-fuzzy controller
for a wind–diesel system composed of a stall regulated wind tur-
bine with an induction generator connected to an ac bus-bar in
parallel with a diesel generator set having a synchronous gener-
ator. The authors show that this approach achieves better results
than fixed-parameter fuzzy logic controllers and PID controllers.
Dufo-López and Bernal-Agustín [213] implemented a GA for the
design and control of a hybrid photovoltaic-diesel hybrid system.
The hybrid wind-hydro power generation is an attractive solution
for isolated, autonomous electric grids in order to increase the wind
energy penetration and cost-effectiveness. Anagnostopoulos and
Papantonis [214] combined an evaluation algorithm that simulates
in detail the plant operation and an automated optimization soft-
ware based on EA for optimum sizing of the various components
of a reversible hydraulic system, i.e. turbine size, the size and the
number of the pumps, the penstock diameter and thickness, the
capacity of the reservoirs and some financial parameters. Anarbaev
et al. [215] modelled a double-loop solar plus fuel boiler installation
scheme that increases the hot water load replacement factor thanks
to the heat produced by the solar technical part with increase of the
thermal efficiency of the solar attachment.

4. Conclusions

This paper provides an overview of the latest research develop-
ments concerning to the use of optimization algorithms for design,
planning and control problems in the field of renewable and sus-
tainable energy. The review of over two hundred papers from the
major referenced journals in the fields of renewable energy and
computational optimization offers interesting conclusions that can
be useful for renewable energy researchers. The first conclusion
of this review is that the number of research papers that use
optimization methods to solve renewable energy problems has
increased dramatically in recent years, especially for wind and
solar energy systems. Some of these optimization methods are
based on traditional approaches, such as mixed-integer and interval
linear-programming, Lagrangian relaxation, quadratic program-
ming, and Nelder–Mead Simplex search, while a growing number
of research papers tackle these problems using heuristic optimiza-

tion methods, especially genetic algorithms and particle swarm
optimization. On the other hand, some researchers have solved
multi-objective problems related to renewable energy systems
using Pareto-optimization techniques. However, parallel process-
ing has not been sufficiently explored for solving these problems.
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herefore, it can be concluded that the use of heuristic approaches,
areto-based multi-objective optimization and parallel processing
re promising research areas in the field of renewable and sustain-
ble energy.
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