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Abstract

In this paper, we describe a new interactive image com-
pletion system that allows users to easily specify various
forms of mid-level structures in the image. Qur system sup-
ports the specification of four basic symmetric types: re-
flection, translation, rotation, and glide. The user inputs
are automatically converted into guidance maps that en-
code possible candidate shifts and, indirectly, local trans-
formations of rotation and scale. These guidance maps are
used in conjunction with a color matching cost for image
completion. We show that our system is capable of handling
a variety of challenging examples.

1. Introduction

Image completion is a useful form of image editing,
ranging from seamless object removal to filling in edges of a
stitched panorama. A substantial amount of work has been
done on automating the image completion process via so-
phisticated image analysis and optimization schemes. De-
spite recent advances, it is still an unsolved problem. One
fundamental problem is that natural images consist of a
wide range of structural scales: from fine textures such as
sand, mid-level textures such as rocks, and high-level struc-
tures as in man-made environment, e.g., buildings. In addi-
tion, textures can exhibit a variety of structural properties,
ranging from highly regular to stochastic.

Most automatic techniques (such as [1, 7, 6, 22, 14, 8])
are able to handle a specific set of structural conditions, but
mostly fine to mid-level textures. They typically fail with
large structures. Semi-automatic or interactive techniques
have been proposed to improve completion quality, but ei-
ther require a fair amount of user interaction (e.g., manually
specifying regions of similar textures [12]) or are able to
handle only specific conditions such as line constraints [23].

A completely automatic image completion technique is
hard to realize without highly sophisticated computer vi-
sion analysis of the image, and even then it may still fail
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Figure 1. Overview of our system. Given an input image with
holes to be filled, the user specifies the structure using a simple
interface (inputs in red). The system generates a guidance map,
which is then used to complete the image (outputs in green).

on occasion (since computer vision techniques are typically
far from perfect). Moreover, the user typically has no con-
trol over the quality of the completion results. In contrast,
interactive systems allow humans to provide high-level ex-
pertise, while the system carries out low- and mid-level pro-
cessing. Examples include interactive image segmentation,
colorization, or learning for visual recognition. The goal of
our work is to more fully capitalize this idea in the context
of image completion for general scenes.

We describe a new interactive system to allow the user
to control and generate the desired image completion result.
In the absence of any user input, it defaults to assuming the
input image contains low to mid-level textures (since the
underlying technique is based on the framework of Wexler
et al. [25]). Our system is easy to use and is flexible with
the following features:

e Point-based user inputs for structure specification.
e Ability to update and refine the inputs at any stage.

e Four basic symmetric types (reflection, translation, ro-
tation, and glide) for mid-level image structure.

e Piecewise planar assumption for surface approxima-
tion.

Once the structure is specified, the system automatically
generates a set of constraints on local scaled similarity



transform used to complete the image. We call this set of
constraints the transformation guidance map.

There are three main technical contributions. First, we
develop a simple user interface that allows the user to di-
rectly control the desired image completion results by spec-
ifying various image structures. Second, we automatically
generate the transformation guidance maps which serve as
soft constraints in guiding the completion process. Third,
we present an optimization framework with probabilistic in-
terpretation that generalizes existing work using interactive
techniques for image completion.

2. Previous Work

Image completion methods can be roughly categorized
into three main classes: statistical, diffusion-based, and
example-based. We briefly survey these methods in this sec-
tion.

Statistical methods: These methods first analyze the in-
put texture image by fitting parametric statistical models,
e.g., joint statistics of wavelet coefficients [21], or color his-
tograms [11] and then synthesize new texture image by per-
turbing the model until the statistics of the image are similar
as the estimated models. Statistical-based methods are par-
ticularly suitable for synthesizing pure stochastic texture,
but usually fail to do so for textures containing certain struc-
tures, e.g., near-regular textures.

Diffusion-based approaches: Also known as “image in-
painting”, these methods fill in small or narrow holes in
photographs by propagating nearby image structure (e.g.,
edges) with boundary conditions. The diffusion process
is typically formulated as a partial differential equation.
Bertalmio ez al. [5] fill holes by propagating image Lapla-
cians in the isophote direction. This was later extended by
Ballester et al. [2] within a variational framework. Levin
et al. [17] incorporated global image statistics such as gra-
dient magnitude and relative gradient angle for inpaint-
ing. Diffusion-based approaches generally work well with
smooth and small regions. However, as they implicitly as-
sume that the content of the missing region is relatively
smooth, they have difficulties handling large and textured
missing regions.

Example-based methods: Here, the unknown regions
are filled by exploiting redundancy in natural images. Given
the success in texture synthesis (e.g., [9, 24, 16]), it is not
surprising that that the example-based approaches are used
for image completion. However, a major drawback stem
from their greedy strategies, which often result in percep-
tually implausible regions. Several approaches have been
proposed to specifically address the filling ordering issue.
For example, Criminisi et al. [6] use structure-based pri-
ority ordering, Drori et al. [8] use hierarchical filtering as

initialization and “points of interests” for ordering, and Xu
et al. [26] use patch sparsity to guide the filling process.

Global optimization: In contrast to the local image com-
pletion methods discussed above, several methods solve the
problem using global optimization instead. The main ad-
vantage of global optimization is its well-defined objective
function, which can be solved using off-the-shelf optimiza-
tion methods. The global optimization methods are typ-
ically formulated as a deterministic EM-like optimization
scheme (i.e., coordinate descent) [25, 15] or MRF models
[14, 13] which can be solved efficiently using belief propa-
gation. However, either EM-like or MRF models are prone
to bad local minima. To reduce this possibility, a multi-
scale version (i.e., coarse-to-fine searching scheme) is usu-
ally employed. Our system is based on the non-parametric
formulation of Wexler et al. [25] because of its simplicity
and effectiveness. We implemented the optimization as de-
scribed in that paper using the weighted average updating
rule.

Transformations beyond translation: Another major
problem in image completion is the appearance changes due
to local scene shape variation. As a result, it may be difficult
to find similar patches if only translated patches are consid-
ered. To address this problem, additional motion parame-
ters have been incorporated into the search space, e.g., scale
[16], similarity transform [19, 4, 10] and similarity with flip
over y axis [7]. While the additional motion parameters
do help when needed, overfitting or bad local minima may
occur (especially where there is actually little appearance
change).

Semi-automatic approaches: While it is desirable to
have a fully automatic approach, there is no such technique
that works in all cases. It is not unusual to see results that do
not appear to be meaningful, e.g., broken linear structures.
To alleviate this problem, various types of user-specified
constraints are added. Sun et al. [23] use manually specified
line or curves for segmenting the missing regions, while in
[12, 3], textures are synthesized from label maps provided
by users (“texture-by-numbers”). Pavic et al. [20] complete
missing regions from user-specified homography to account
for perspective distortion of image patches.

3. Specifying Image Structure

Our system allows the user to define image structural
regularity in the image in order to facilitate image comple-
tion. The information provided by the user is used to gen-
erate guidance maps, which in turn is used for guiding the
patch search process.

3.1. User interface

A screenshot of our user interface is shown in Figure 1.
There is a variety of controls that the user can operate; in



Figure 2. Example of label map constraint. Left: input image with
hole, right: user-provided label map.

addition, the user can directly add information on the image
to specify where symmetry occurs. Our system generates a
color-coded guidance map that the user can inspect before
completing the image. We now describe the types of image
structures that the user can specify.

3.2. Image structures

Using our interface, the user can specify label maps,
ramp gradients, and various forms of symmetry structures
or regional surface orientations.

Label maps: Natural images are usually composed of a
variety of textures. By labeling the image regions (both in
known and unknown), one can constrain the image comple-
tion process to search source patches only from patches with
the same label. With patch search space constraints, one
can not only gain computational efficiency, but also avoid
implausible completion results. This approach is generally
referred to as “texture-by-numbers” [12]. In the context of
image completion, curves or line segments [23] as well as
the label maps [3] have been explored for improving the
completion quality.

We allow the user to provide a region-based label map
similar to the concept of “texture-by-numbers” [12]; such
an example is shown in Figure 2. The label map can be
obtained using any easily available interactive segmentation
tool such as GIMP (http://www.gimp.org/).

Ramp gradient: In many natural scenes, the content of
an image along a certain direction is likely to be at similar
depth and scale. To exploit this property, we allow the user
to specify the direction corresponding to the image content
changes. Figure 3 shows two examples of where the ramp
gradient constraints could be applied.

Symmetry: Symmetry is ubiquitous in both natural and
man-made environments. By specifying symmetry struc-
tures in images, the user can provide rich and useful con-
straints to guide the completion process.

In 2D Euclidean space, there are four basic types of sym-
metry: reflection, translation, rotation and glide (see [18]
for a comprehensive survey on computational symmetry).
The minimum required user inputs (via mouse clicks) for
specifying the symmetry structures in an image are:

Figure 3. Two examples of positional guidance maps from ramp
gradient. Left pair: landscape photograph and ramp gradient map
which corresponds to the similar depth and scale. This map en-
courages similarly shaped patches to be searched along the hor-
izontal direction. Right pair: image with linear structures in the
background and its positional guidance map, which encourages
search along vertical direction.

Figure 4. Example positional guidance maps on various types of
symmetry: (a) image and user inputs for specifying the underly-
ing image structure, (b) positional guidance map, serving as a soft
constraints in guiding the completion process, (c) and (d) the de-
composition of (b) in two channels.

o Reflection: two points to specify axis of symmetry.

e Rotation: one point for rotation center and one number
n for n-fold rotational symmetry.

e Translation: four points for specifying “tiles.”

e Glide: two points for axis of glide reflection and an-
other one point for the offset.

Figure 4 shows representative examples of four symme-
try types along with their guidance maps. For each type of
the symmetry in (a), the required user inputs (marked as red
points) are overlaid on the images; at most four points are
required to fully specify the underlying symmetric struc-
tures. The corresponding visualization of positional guid-
ance maps are shown in (b), along with their decomposi-
tions in orthogonal directions shown in (c) and (d). The
user can also select only one of the channels for images
with variations along one direction.



Figure 5. Generation of guidance map from a few clicks. Left: the
user clicks on four points to specify a “tile.” Right: the guidance
map is automatically generated by extrapolation. Note that the
translational symmetry structure only applies on one region.

Note that the symmetry-based constraints are comple-
mentary to the label map when certain structures are avail-
able. For example, in Figure 5, the user just needs to select
translation symmetry by clicking on four points (shown on
the left). The system then generates the corresponding po-
sitional guidance map shown on the right. Similar colors in
the guidance map indicate similar image content. By con-
trast, if the label map approach is used instead, the user may
need to go through a tedious labeling process by drawing a
large number of line segments (as in [23]) or regions (as
in [3]) to achieve similar structural guidance for the system
provided by the symmetry-based ones.

Moreover, the automatically generated guidance map is
smoothly varying, which serves as soft constraints (as op-
posed to the label map providing hard constraints) in the
optimization process. There are two main reasons why soft
constraints are preferable. First, the user input is unlikely to
be perfect, so that the uncertainty of the user input should
be taken into account. Second, the underlying image struc-
ture may not percisely follow the specified image structures,
e.g., the texture is actually only near-regular.

Surface. We also provide interactive tools for the user to
specify piece-wise planar 3D geometry for approximating
surface of the scene. The surface normals, encoded us-
ing homography, are then used in the completion process
to guide the local transformation. An example is shown in
Figure 6.

4. Objective Function for Image Completion

Our algorithm minimizes a “texture energy” term which
measures the extent to which the synthesized region devi-
ates from the known region over a set of overlapping local
patches. The basic form of the energy minimization prob-
lem is

E = Z ECO]Or(Si7 tz) + )\Eguide(siv tz) 9 (1)
i€eK

where K is the set of known pixel indices and K are the
unknown pixel indices, A > 0 controls the importance of
the guidance map. We denote t; = (t7,tY)T the center
of a target patch and s; = (s¥,sY

¢ s¥, s0,s3)T the parameters

Figure 6. Specification of piecewise planar geometry. Left: im-
age with hole, the user inputs for specifying scene geometry are
overlaid. Right: grid lines for assisting user for refining the input
during the interactive process.

for the corresponding source patch, with s!, s’

T, s being the
rotation and scale parameters, respectively. Note that the
target patches are image-aligned, i.e., no rotation and uni-
form scale. The components of the energy capture how well
overlapping patches match in color and how well transfor-

mations agree with the guidance map.

4.1. Appearance cost

The color matching term is the same as in [25]:
Ecolor(siati) = Hp(sl) 7p(tl)|| . (2)

p(si) and p(t;) denote 7 x 7 patches sampled using the trans-
formation s; and around t; and stacked up to vectors. Simi-
larity between patches is measured using the /; norm in the
sRGB space.

4.2. Guidance cost

The guidance term FEgyige(S;,t;) makes use of several
guidance maps for constraining the position where source
patches are drawn from (Gpos, Gig) and their transforma-
tions (Grot, Gscale). We show some examples of posi-
tional guidance maps (Gpos, Giq) in Figures 2, 3 and 4. In
addition, each guidance map has associated weight maps
Whos, Wid; Wiot, Wecale that are used to locally enable or
disable its contribution. The guidance energy term consists
of two terms, namely positional and non-positional:

Eguidc(si» tz) = Epos(sia tl) + Enonfpos(sia tz) ) (3)

where FEpos(s;,t;) penalizes positional deviation sug-
gested by positional guidance map (Gpos and Gig) and
Eron—pos(8i; ti) penalizes deviation from local shape warp-

ing at positional (s7,s;).



Positional guidance cost. The term

Epos(s;, t;) has the form
EPOS(Siv ti) = Wpos(t:‘b Y

positional
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where L(-) is the e-insensitive loss function (L(z)
max (0, z — €)) and the indicator function [-] is 1 if its argu-
ment is true and 0 otherwise. The first term penalizes that
the target patch and the source patch should have different
values in G0 (see Figure 3 and 4 for examples). The sec-
ond term add penalties on copying patches from positions
with different labels in the label map Gigq.

Gpos(t7,tY)

Non-positional guidance cost. With the positional term,
we regularize the optimization process to synthesize miss-
ing regions while respecting the underlying image struc-
tures provided by users. However, the source patches usu-
ally need to be properly transformed before being copied to
the target location. Thus, we introduce the non-positional
term Epon_pos(Si, t;) penalizing the deviation from the
ideal local shape warping parameters. The ideal local shape
warping parameters, e.g., scale and rotation, are encoded in
the Grot (57, s7,t%,t7) and Gscate (s, 87, 17, tY)!. Our non-
positional cost function consists of rotation and scale terms:
Enon—pos (Sia ti) = FErot (Si7 tz’) + Egcale (si) ti)~
The rotation term penalizes how much s} deviates from
the ideal rotation in Go¢:
Erot (Si7 tl) = Wrot (t"T ty

Y 4o 4y
it s, b5, ¢

17717 (3

“)

) D(Grot(sima ) - sr)v
where D(«) = min(c, 27— «).

The scale term penalizes how much s; deviates from the
ideal scale parameter encoded in Gycale,

Escale (si7 tz) = Wscale (tr ty) |GSC&16 (Sf’

Y x4y
it 85,15, t;

1?71

) =il
®)
Intuitively, the ideal local shape warping parameters
capture how the source patch should deform given the

source-target patch position pair (s7,s?), (t7,¢/). An il-
lustration of computing Gyot(s7,sY,t¥,¢/) for an image

with rotational symmetry is shown in Figure 7. For
translational symmetry and planar surfaces, we also show
in Figure 8 the computation of Gpo(s?,s?,¢7,t?) and
Gscale(s7, sY,t%,tY) using similarity registration of patch
corner points in the rectified space. The ideal local shape
warping parameters can be similarly generated for other

symmetry types and surfaces.

5. Probabilistic Interpretation of Guidance
Map

We present in this section a probabilistic interpretation
of the term FEguide(S;,t;) induced by user inputs (com-

!Precomputing and storing the non-positional guidance map is memory
intensive. We compute Grot(s¥, s¥,t%,tY) and Gycale(s¥, s¥,t%,tY)
on-the-fly instead.
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Figure 7. Computing Grot(s7, sY,ti,t?) for rotational symme-
try and planar surface. For a given source-target patch position
pair (s7,s?), (t7,tY) (shown in orange and green box, respec-
tively), the ideal rotation warping parameter for the source patch
Grot(s7,sY,t7,tY) is simply the included angle with respect to

the center position (marked in red point) provided by the user.
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Figure 8. Computing Grot(s7,8Y,t5,tY) and

Gscale (ST, sY,t7,tY) for translational symmetry. For a given
source-target patch position pair (s7,s?), (¢7,tY) (shown in
orange and green box, respectively), the ideal rotation and scale
parameters can be obtained by similarity registration of four
point correspondences, i.e., corners of patches, in the wrapped

coordinate (homography is provided by the user).

pactly denoted as u). Essentially, the guidance energy term
FEguide (s, ti) corresponds to the minus log likelihood of the
conditional prior probability Py(s;|t;), which has the fol-
lowing form:

PU(Si‘ti) = PU(SZC7 Si‘!’ 8;’ S;?'ti)
= P“(Siw? S?“Z’)Pu(sﬂsfv s%tl-)Pu(sﬂsf, Szgvti)’
(6)

where we assume that Py(s!, sf|s¥,s?,t;) factors, i.e.,
conditional independence. By taking the minus log-
likelihood of Py(s;|t;), the right-hand-side of Eqn (6)
turn into a sum of three terms corresponding to the po-
sitional term Fpyos(s;,t;) and two non-positional terms in

Enonfpos (Si7 ti):

Epos (Sia ti)

—log(Pu(s7, 57 |ti))

Erot(siati) = log(Pu(S”SzT? Si/vtl))
Escale(si7ti) = - log(Pu(sflszl7 Szya tl)) (7)

5.1. Positional prior
Yy

The first term in Eqn (6) P, (s7, s} |t;) refers to the posi-
tional prior. In general, the exact expression is complicated

because it is dependent on the structural constraints. Let us



consider the case of reflective symmetry. The user input u
consists of two points (u”!, u¥'), (u®2, u¥') specifying the
axis of symmetry, i.e., u = (u,u¥*,u*2, u¥*)?. Assum-
ing first u is a known constant vector, we can write down the
exact expression between the source patch position (s¥, sY)
in terms of (¢¥,¢Y) and u:

177
s7 = 2(u™ + a(u™ — u™)) — 7

xT
7
St = 2(u + a(u® — ut)) ~ 1,

where

(u — ) (0 — ) — (u — ) (" — 1)
(u$2 — U}wl)Q _|_ (uUZ — uyl)2

The uncertainty in user input u leads to the uncertainty in
position (s7, s?); the exact form of P,(s?, s!|t;) is highly
non-trivial (even if we assume u as Gaussian distributed). In
practice, we approximate this term by the probability func-
tion corresponding to e-insensitive loss function (see defini-
tion of L(.) in Section 4.2) centered at the predicted position

to account for uncertainty in the human input process.

5.2. Non-positional prior

The non-positional prior Py(st|s?, s?,t;),

Py(sf|s¥,s?,t;) also models the uncertainty induced
from the user interaction. As with the case in positional
prior, the exact expression is complicated and is likely to
be computationally expensive. In practice, we assume that
the non-positional prior term follows Laplace distributions

(corresponding to the {; penalty) to account for outliers.

5.3. A unified framework

We can view previous techniques on interactive image
completion using various constraints types as special cases
within our formulation. Table 1 summarizes a few interac-
tive image completion methods and the underlying distribu-
tion assumption.

For instance, in the label map approach [23, 12, 3], the
labeling of the image provides a uniform distribution over
the finite spatial support within regions with the same label.
While it provides useful information on where the source
patch should be copied from, all the potentially helpful im-
age structures are not fully exploited. In contrast, with
our user-specified symmetry-based or surface-based con-
straints, we further reduce the uncertainty of the prior dis-
tribution P, (s;|t;). Therefore, we are able to produce better
results on images with these structures.

6. Energy Minimization

To minimize the energy function in Eqn (2), we adopt an
EM-like iterative algorithm. At each iteration, the algorithm
estimates the nearest neighbor field and then updates the
missing pixels.

To estimate the nearest neighbor field, we use the Patch-
Match algorithm [3]. In addition to searching over trans-
lational patches, we also search scale, rotation, as well as
flip along y axis. To update the missing pixels, we per-
form weighted average with emphasis on the pixels closer to
the hole boundary (with weight w(z,y) = 2-4*¥), where
d(x,y) is the distance to the closest known pixel.)

Since the scale- and rotation-augmented space is signif-
icantly larger than that for just translation, we require more
iterations for convergence to acceptably good results. We
can improve convergence by biasing the random sample
generation in the PatchMatch algorithm towards more likely
spaces.

Given a source-target position pairs, we sample ran-
domly from Gaussian distributions, i.e., s ~ N (q},0,)
and sf ~ N(qf,o05), where o, and o are the predefined
variances for sampling rotation and scale parameters and g ,
g; are the ideal local warp parameters provided by G, and
Giscale- In our experiments, we set 05 = 0.1 and 0. = 7/32.

When computing patch distances, we compensate the
affine changes in intensity using the bias and gain model.
We restrict the bias/gain compensation with predefined
ranges: [-50, 50] for bias, and [0.5, 1.5] for gain.

7. Experimental Results

Our system was implemented in C++. Image completion
was done in a coarse-to-fine fashion using an image pyra-
mid, with the image width at the coarsest level set to the
range [64, 128]. At each level, we run 30 PatchMatch itera-
tions for updating the nearest neighbor field. To account for
noisy human inputs, we adopted a time-varying weighting
parameter A for controlling the importance of the guidance
map during the optimization. At each level, A is linearly
varied as A\(t) = 1 — N:m’ with Ny, = 30. We con-
strain the scale parameter to within [0.5, 3] and the rotation
parameter to within [—7 /2, 7/2].

The timings for the user to specify the image structure
are usually within a few seconds (as the user inputs are just
a few mouse clicks). The automatically generated guidance
maps are real-time. The user can update and refine the user
inputs at any stage. The timings for image completion op-
timization vary, depending on the image/hole sizes, types
of symmetry, as well as the positional guidance map; for a
400 x 600 image with 100 x 100 hole, the processing took
between 1-3 mins in a 2.80 GHz PC with 12 GB RAM.
In general, images with reflective symmetry take the least
amount of time to process as the corresponding guidance
map can be used for early rejection of impossible nearest
neighbor patch candidates, thereby speeding up the process.
Images with rotational symmetry take slightly more time to
process than that of reflective symmetry. Images with trans-
lational symmetry require the longest time to process as the
similarity registration is involved. As our nearest neighbor
field estimation is based on the PatchMatch algorithm [3], a




Table 1. Comparison of interactive image completion methods in terms of probabilistic interpretation.

Pu(sf, 57]ti)

2

Positional prior

Non-positional prior
Py(sT|s?,s?,t;)

3923

label map [12, 3] uniform distribution with finite support N/A
line-based [23] degenerate distribution along the curve N/A
perspective [20] N/A constant, no uncertainty modeled

Ours

distribution corresponds to e-insensitive loss

Laplacian distribution

fully parallelized variant on the GPU can be developed by
alternating between iterations of random search and propa-
gation as in [3].

7.1. Comparisons

We show two sets of results, one comparing with image
melding [7] (Figure 9) and another set comparing with Pho-
toshop content-aware fill [1], Criminisi et al. [6], and Mans-
field et al. (“transforming” image completion) [19] (Fig-
ure 10). In both sets, the missing image content can be com-
pleted using source patches with proper domain transforma-
tions such as scale and rotation. The Photoshop content-
aware fill tool [1] (as well as a number of other approaches
[6,25, 14, 22]) consider only translational patches, resulting
in images with broken structures, as seen in Figure 10. To
deal with these cases, scale- and rotation-augmented search
space for source patches are used [19, 7]. With larger search
spaces, it is more likely to reach a bad local minimum, as
seen by the wiggly lines or blurry results (Figure 9(d)).

Since these methods are automatic, the user is not given
the option to refine the completion result. In contrast, with
minimum user inputs (one click for the lemon image and
four points for the facade image in Figure 9), our system
automatically generates the appropriate guidance maps to
yield desirable completion results.

7.2. Effect of positional and non-positional infor-
mation

To get some intuition on the importance of positional
and non-positional information, we illustrate four cases of
information usage in Figure 11. In (a), we show an im-
age with translational symmetry where missing contents
are marked as red (the guidance map for this image is
shown in Figure 5). In (b), we show the completion re-
sult where both positional Gos and non-positional guid-
ance maps Grot, Gseale are all ignored. Since translational-
only patches are not adequate, we obtain broken structures,
i.e., implausible content. We show in (c) the completion
result from Photoshop [1]. In (d), we use only the non-
positional guidance map Gy, Gscale during the optimiza-
tion process. While the completed regions do have the de-
sired scale changes with respect to the known region, with-
out the help of positional guidance, the completed result
quickly gets stuck in a bad local minimum. On the other

hand, if we enable the positional map G,.s and disable the
non-positional guidance, the result is shown in (e), which is
blurry. The best result is obtained by using both positional
and non-positional guidance, shown in (f).

7.3. Failure mode

Given the current design of our system, it is less effective
in handling images with structural regularity (e.g., transla-
tional symmetry) on a curved surface. The user will need
to approximate the surface as piecewise planar, which is la-
borious and error-prone. An example with such a surface is
shown in Figure 12. As can be seen, using a simple piece-
wise planar approximation is not effective enough. Notice,
though, that other techniques also failed to generate satis-
factory results.

8. Concluding Remarks

We have presented a new interactive system for image
completion. Through a simple interface, the user can spec-
ify various forms of image structure or regularity: ramp
gradient, four types of symmetry, and piecewise planar for
surface approximation. The user inputs are automatically
“translated” into a transformation guidance map, which is
used to guide the optimization process. We give a proba-
bilistic interpretation of the guidance map which general-
izes previous techniques on semi-automatic image comple-
tion. Finally, we demonstrate the effectiveness of our ap-
proach by showing results on various challenging scenes.
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