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Abstract

Clustering in data mining is a discovery process that graupget of data such that the intracluster similarity
is maximized and the intercluster similarity is minimizefxisting clustering algorithms, such & means, PAM,
CLARANS, DBSCAN, CURE, and ROCK are designed to find clustieas fit some static models. These algorithms
can breakdown if the choice of parameters in the static miedetorrect with respect to the data set being clustered,
or if the model is not adequate to capture the charactesisticclusters. Furthermore, most of these algorithms
breakdown when the data consists of clusters that are ofsdivghapes, densities, and sizes. In this paper, we present
a novel hierarchical clustering algorithm calle¢i@MELEON that measures the similarity of two clusters based on
a dynamic model. In the clustering process, two clustersnageged only if the inter-connectivity and closeness
(proximity) between two clusters are high relative to theeinal inter-connectivity of the clusters and closeness of
items within the clusters. The merging process using thehyo model presented in this paper facilitates discovery
of natural and homogeneous clusters. The methodology dardicmmmodeling of clusters used inHBMELEON is
applicable to all types of data as long as a similarity mater be constructed. We demonstrate the effectiveness
of CHAMELEON in a number of data sets that contain points in 2D space, ami@iooclusters of different shapes,
densities, sizes, noise, and artifacts. Experimentalitsesn these data sets show thai AMELEON can discover
natural clusters that many existing state-of-the art elirsgy algorithms fail to find.
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1 Introduction

Clustering in data mining [SAD93, CHY96] is a discovery process that groups a set of datathad the intracluster
similarity is maximized and the intercluster similarityrgnimized [JD88, KR90, PAS96, CHY96]. These discovered
clusters can be used to explain the characteristics of tHerlying data distribution, and thus serve as the foundatio
for other data mining and analysis techniques. The apmicatof clustering include characterization of different
customer groups based upon purchasing patterns, catatjoninf documents on the World Wide Web [BG@0a,
BGG™99b], grouping of genes and proteins that have similar fonality [HHS92, NRS 95, SCC 95, HKKM98§],
grouping of spatial locations prone to earth quakes frorsnselogical data [BR98, XEKS98], etc.

Existing clustering algorithms, such Esmeans [JD88], PAM [KR90], CLARANS [NH94], DBSCAN [EKSX96]
CURE [GRS98], and ROCK [GRS99] are designed to find cluskexisfit some static models. For exampte;means,
PAM, and CLARANS assume that clusters are hyper-ellipddiolaglobular) and are of similar sizes. DBSCAN
assumes that all points within genuine clusters are densitghable' and points across different clusters are not.
Agglomerative hierarchical clustering algorithms, such@JRE and ROCK use a static model to determine the
most similar cluster to merge in the hierarchical clustgriCURE measures the similarity of two clusters based on
the similarity of the closest pair of the representativenp®belonging to different clusters, without considerihg t
internal closeness (i.e., density or homogeneity) of the ¢usters involved. ROCK measures the similarity of two
clusters by comparing the aggregate inter-connectivityofclusters against a user-specified static inter-comngct
model, and thus ignores the potential variations in tha-at@nectivity of different clusters within the same data s
These algorithms can breakdown if the choice of paramatetsei static model is incorrect with respect to the data set
being clustered, or if the model is not adequate to captweltaracteristics of clusters. Furthermore, most of these
algorithms breakdown when the data consists of clustetsatiezof diverse shapes, densities, and sizes.

In this paper, we present a novel hierarchical clusterimgthm called GIAMELEON that measures the sim-
ilarity of two clusters based on a dynamic model. In the drtisyy process, two clusters are merged only if the
inter-connectivity and closeness (proximity) between thusters are comparable to the internal inter-connegtivit
of the clusters and closeness of items within the clustere mierging process using the dynamic model presented
in this paper facilitates discovery of natural and homogeseclusters. The methodology of dynamic modeling of
clusters used in BAMELEON is applicable to all types of data as long as a similarity imatan be constructed. We
demonstrate the effectiveness ol &MELEON in a number of data sets that contain points in 2D space, amigico
clusters of different shapes, densities, sizes, noisea#ifdcts.

The rest of the paper is organized as follows. Section 2 gines/erview of related clustering algorithms. Section 3
presents the limitations of the recently proposed statb@ftt clustering algorithms. We present our new clustering
algorithm in Section 4. Section 5 gives the experimentalltes Section 6 contains conclusions and directions for
future work.

2 Related Work

In this section, we give a brief description of existing ¢&rsg algorithms.

1A point pis density reachable from a poigt if they are connected by a chain of points such that eactt pasminimal number of data points,
including the next point in the chain, within a fixed radiusEx96].



2.1 Partitional Techniques

Partitional clustering attempts to break a data set into isters such that the partition optimizes a given crite-
rion [JD88, KR90, NH94, CS96]. Centroid-based approachetypified by K means [JD88] and ISODATA [BH64],
try to assign points to clusters such that the mean squatendis of points to the centroid of the assigned cluster is
minimized. Centroid-based techniques are suitable omyléda in metric spaces (e.g., Euclidean space) in which
it is possible to compute a centroid of a given set of pointedbld-based methods, as typified by PAM (Partition-
ing Around Medoids) [KR90] and CLARANS [NH94], work with sitarity data, i.e., data in an arbitrary similarity
space [GRG99]. These techniques try to find representative points i)l so as to minimize the sum of the
distances of points from their closest medoid.

A major drawback of both of these schemes is that they faitfda in which points in a given cluster are closer
to the center of another cluster than to the center of them oluster. This can happen in many natural clusters
[HKKM97, GRS99]; for example, if there is a large variatiandluster sizes (as in Figure 1 (a)) or when cluster
shapes are convex (as in Figure 1 (b)).
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a) Clusters of widely differente sizes b) Clusters with convex shapes

Figure 1: Data sets on which centroid and medoid approaches fail.

2.2 Hierarchical Techniques

Hierarchical clustering algorithms produce a nested secgief clusters, with a single all-inclusive cluster at tbe t
and single point clusters at the bottom. Agglomerativedrigtical algorithms [JD88] start with all the data points
as a separate cluster. Each step of the algorithm involvegingetwo clusters that are the most similar. After each
merge, the total number of clusters decreases by one. Theseean be repeated until the desired number of clusters
is obtained or the distance between two closest clustetsoigeea certain threshold distance.

There are many different variations of agglomerative highvical algorithms [JD88]. These algorithms primarily
differ in how they update the similarity between existingsters and the merged clusters. In some methods [JD88],
each cluster is represented by a centroid or medoid of thetgpobntained in the cluster, and the similarity between
two clusters is measured by the similarity between the oé&gfmedoids of the clusters. Like partitional techniques
such aK -means an& -medoids, these method also fail on clusters of arbitragpsk and different sizes.

In the single link method [JD88], each cluster is represghig all the data points in the cluster. The similarity
between two clusters is measured by the similarity of theedbpair of data points belonging to different clusters: Un
like the centroid/medoid based methods, this method carcfireders of arbitrary shape and different sizes. However,
this method is highly susceptible to noise, outliers, anifizats.

CURE [GRS98] has been proposed to remedy the drawbacks bfdidhese methods while combining their
advantages. In CURE, instead of using a single centroidgmesent a cluster, a constant number of representative



points are chosen to represent a cluster. The similarityden two clusters is measured by the similarity of the closes
pair of the representative points belonging to differensttrs. New representative points for the merged clusters a
determined by selecting a constant number of well scatigoéds from all the data points and shrinking them towards
the centroid of the cluster according to a shrinking fadtonlike centroid/medoid based methods, CURE is capable of
finding clusters of arbitrary shapes and sizes, as it reptesach cluster via multiple representative points. Hmipn

the representative points towards the centroid helps CWREzdiding the problem of noise and outliers presentin the
single link method. The desirable value of the shrinkingdatn CURE is dependent upon cluster shapes and sizes,
and amount of noise in the data.

In some agglomerative hierarchical algorithms, the sirtjlebetween two clusters is captured by the aggregate
of the similarities (i.e., interconnectivity) among paafitems belonging to different clusters. The rationaletfus
approach is that subclusters belonging to the same cludtdend to have high interconnectivity. But the aggregate
inter-connectivity between two clusters depends on the sfzthe clusters involved, and in general pairs of larger
clusters will have higher inter-connectivity. Hence, maagh schemes normalize the aggregate similarity between
a pair of clusters with respect to the expected inter-cotivigcof the clusters involved. For example, the widely
used group-average method [JD88] assumes fully connektsgrs, and thus scales the aggregate similarity between
two clusters byn x m, wheren andm are the size of the two clusters, respectively. ROCK [GRS89Fcently
developed agglomerative algorithm that operates on aelsimilarity graph, scales the aggregate inter-connigctiv
with respect to a user-specified inter-connectivity model.

Most of the algorithms discussed above work implicitly opksitly with the n x n similarity matrix such thafi, j)
element of the matrix represents the similarity betwidBand j " data items. Some algorithms derive a new similarity
matrix using the original matrix [JP73, GK78, JD88, GRS%8]d then apply one of the existing techniques on this
derived similarity matrix. In many cases, the new derivadikirity matrix is just a sparsified version of this original
similarity matrix from which certain entries (e.g., thosbasge value is below a threshold) have been deleted. In other
cases, the derived similarity matrix has entirely diffaresues [JP73, GK78, GRS99]. The sparsified derived matrix
can help eliminate/reduce noise from the data, and sulistgméduce the execution time of many algorithms. In some
cases, it can also provide a better model of similaritiegHerproblem domain. For example, mutual shared method
presented in [JP73] helps remove noise and outliers andoisrsio provide a better model to capture similarities
among transactions in [GRS99].

A sparse similarity matrix can be represented by a spargehgemd tightly connected clusters of this graph can be
found by divisive hierarchical clustering algorithms swashthose based upon minimal spanning tree (MST) [JD88] or
graph-partitioning algorithms [KK98b, KK99a]. MST-basalgorithms are highly susceptible to noise and artifacts
just like the single link method. Graph-partitioning basedthods are much more robust, but they tend to break
genuine clusters if there is a large variations in clusteesi

3 Limitations of Existing Hierarchical Schemes

A major limitation of existing agglomerative hierarchicethemes such as the Group Averaging Method [JD88],
ROCK [GRS99], and CURE [GRS98] is that the merging decisameshased upon static modeling of the clusters to
be merged. In other words, these schemes fail to take intoustspecial characteristics of individual clusters, and
thus can make incorrect merging decisions when the unaerfjata does not follow the assumed model, or when noise
is present. For example, consider the four sub-clustersiotpin 2D shown in Figure 2. The selection mechanism of
CURE (and of the single link method) will prefer merging dkrs (a) and (b) over merging clusters (c) and (d), since



the minimum distances between the representative poir{t) @ind (b) will be smaller than those for clusters (c) and
(d). But clusters (c) and (d) are better candidates for megrgecause the minimum distances between the boundary
points of (c) and (d) are of the same order as the average ofithienum distances of any points within these clusters
to other points. Hence, merging (c) and (d) will lead to a mtayemogeneous and natural cluster than merging (a) and

(b).

(@) (b) (© (d)

Figure 2: Example of clusters for merging choices.

In agglomerative schemes based upon group averaging [H®#Btelated schemes such as ROCK, connectivity
among pairs of clusters is scaled with respect to the exgexienectivity between these clusters. However, the key
limitation of all such schemes is that they assume a stagier, supplied inter-connectivity model, which is inflexible
and can easily lead to wrong merging decisions when the moukdr- or over-estimates the inter-connectivity of the
data set or when different clusters exhibit different irtennectivity characteristics. Although some schemesaall
the connectivity to be different for different problem doma(e.g, ROCK [GRS99)), it is still the same for all clusters
irrespective of their densities and shapes. Consider tlep@irs of clusters shown in Figure 3, where each cluster
is depicted by a sparse graph where nodes indicate data dedsdges represent that their two vertices are similar.
The number of items in all four clusters is the same. Let uarassthat in this example all edges have equal weight
(i.e., they represent equal similarity). Then both ROCK setectnechanism (irrespective of the assumed model of
connectivity) and the group averaging method will seledt pg),(d)} for merging, whereas the pajfa),(b) is a
better choice.
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Figure 3: Example of clusters for merging choices.

The selection mechanism in CURE (and related algorithmb ascsingle link method [JD88]) considers only the
minimum distance between the representative points of tusters, and does not consider the aggregate intercon-
nectivity among the two clusters. Similarly, the selectmechanism of algorithms such as ROCK only considers
the aggregate inter-connectivity across the pairs of elssfappropriately scaled by the expected value of the-inter
connectivity), but ignores the value of the strongest edgedges) across clusters. However, by looking at only one



of these two characteristics, these algorithm can eadigcst® merge the wrong pair of clusters. For instance, as the
example in Figure 4 illustrates, an algorithm that focusaly on the closeness of two clusters will incorrectly prefer
to merge clusters (c) and (d) over clusters (a) and (b). Sifgjlas the example in Figure 5 illustrates, an algorithm
that focuses only on the inter-connectivity of two clusteit incorrectly prefer to merge cluster (a) with clustes (c
rather than with (b). (Here we assume that the aggregatecortaectivity between items in clusters (a) and (c) is
greater than that between items in clusters (a) and (b). Mexvthe border points of cluster (a) are much closer than
those of (b) than to those of (c).)

@) (b) © ©)

Figure 4: Example of clusters for merging choices.

(©)

Figure 5: Example of clusters for merging choices.

In summary, there are two major limitations of the agglontieeamechanisms used in existing schemes. First,
these schemes do not make use of information about the natimelividual clusters being merged. Second, one
set of schemes (CURE and related schemes) ignore the infiormabout the aggregate interconnectivity of items
in two clusters, whereas the other set of schemes (ROCK,rthgaveraging method, and related schemes) ignore
information about the closeness of two clusters as defingtdgimilarity of the closest items across two clusters.

In the following section, we present a novel scheme thatesddrs both of these limitations.

4 CHAMELEON: Clustering Using Dynamic Modeling

4.1 Overview

In this section we presentHAMELEON, a new clustering algorithm that overcomes the limitatiohgxisting ag-
glomerative hierarchical clustering algorithms discualsseSection 3. Figure 6 provides an overview of the overall
approach used by AMELEON to find the clusters in a data set.

CHAMELEON operates on a sparse graph in which nodes represent data aechweighted edges represent sim-
ilarities among the data items. This sparse graph reprasentof the data set allowsHAMELEON to scale to large
data sets and to operate successfully on data sets thataitabé only in similarity space [GR&9] and not in
metric spaces [GR&9]. CHAMELEON finds the clusters in the data set by using a two phase algurifhuring the
first phase, @BAMELEON uses a graph partitioning algorithm to cluster the datasterto a large number of relatively
small sub-clusters. During the second phase, it uses awomgghtive hierarchical clustering algorithm to find the
genuine clusters by repeatedly combining together thdsekisters.
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Figure 6: Overall framework CHAMELEON.

The key feature of BAMELEON'’s agglomerative hierarchical clustering algorithm istthaletermines the pair of
most similar sub-clusters by taking into account both therigonnectivity as well as the closeness of the clusters;
and thus it overcomes the limitations discussed in SectitraBresult from using only one of them. Furthermore,
CHAMELEON uses a nhovel approach to model the degree of inter-conitgadnd closeness between each pair of
clusters that takes into account the internal characiesist the clusters themselves. Thus, it does not depend on a
static user supplied model, and can automatically adapietanternal characteristics of the clusters being merged.

In the rest of this section we provide details on how to moleldata set, how to dynamically model the similarity
between the clusters by computing thedlative inter-connectivityandrelative closenesow graph partitioning is
used to obtain the initial fine-grain clustering solutiondénow the relative inter-connectivity and relative closgs
are used to repeatedly combine together the sub-clustarkigrarchical fashion.

4.2 Modeling the Data

Given a similarity matrix, many methods can be used to findagplgrepresentation [JP73, GK78, JD88, GRS99]. In
fact, modeling data items as a graph is very common in mamatakical clustering algorithms. For example, ag-
glomerative hierarchical clustering algorithms basediogle link, complete link, or group averaging method [JD88]
operate on a complete graph. ROCK [GRS99] first construgtsiess graph from a given data similarity matrix using
a similarity threshold and the concept of shared neightzord,then performs a hierarchical clustering algorithm on
the sparse graph. CURE [GRS98] also implicitly employs inecept of a graph. In CURE, when cluster representa-
tive points are determined, a graph containing only thegeesentative points is implicitly constructed. In thisgha
edges only connect representative points from differamters. Then the closest edge in this graph is identified and
the clusters connected by this edge is merged.

CHAMELEON'’s sparse graph representation of the data items is basdtearpmmonly use#-nearest neighbor
graph approach. Each vertex of tkkanearest neighbor graph represents a data item, and thists ar edge between
two vertices, if data items corresponding to either of thde®is among th&-most similar data points of the data
point corresponding to the other node. Figure 7 illustréitesl-, 2-, and 3-nearest neighbor graphs of a simple data
set. Note that since KAMELEON operates on a sparse graph, each cluster is nothing moreateab-graph of the
original sparse graph representation of the data set.

There are several advantages of representing data ugimgarest neighbor grapBy. Firstly, data points that are
far apart are completely disconnected in tBg. Secondly,Gk captures the concept of neighborhood dynamically.
The neighborhood radius of a data point is determined by émesitly of the region in which this data point resides.
In a dense region, the neighborhood is defined narrowly araldparse region, the neighborhood is defined more
widely. Compared to the model defined by DBSCAN [EKSX96] inietha global neighborhood density is specified,
Gk captures more natural neighborhood. Thirdly, the denditg@region is recorded as the weights of the edges. The
edge weights of dense regionsGp (with edge weights representing similarities) tend to lbgdand the edge weights
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(a) Original Data in 2D (b) 1-nearest neighbor graph  (c) 2-nearest neighbor graph  (d) 3-nearest neighbor graph

Figure 7: k-nearest graphs from an original data in 2D.

of sparse regions tend to be small. As the consequence, auhbisection of the graph represents the interface layer
of sparse region of the graph. Finallgy provides a computational advantage over a full graph in naggrithms
operating on graphs, including graph partitioning andipaning refinement algorithms.

4.3 Modeling the Cluster Similarity

To address the limitations of agglomerative schemes déstlim Section 3, GAMELEON determines the similarity
between each pair of cluste& andC; by looking both at their relative inter-connectiviigl (Ci, Cj) and their
relative closenesRC(Ci, Cj). CHAMELEON's hierarchical clustering algorithm selects to merge thi pf clusters
for which bothRI(C;j, Cj) andRC(C;, Cj) are highji.e., it selects to merge clusters that are well inter-conrbate
well as close together with respect to the internal interraxtivity and closeness of the clusters. By selectingetas
based on both of these criteriaHEMELEON overcomes the limitations of existing algorithms that laather at the
absolute inter-connectivity or absolute closeness. Ftairce, in the examples shown in Figures 4 and 5 and discussed
in Section 3, GAMELEON will select to merge the correct pair of clusters.

In the remaining of this section we describe how the relatiter-connectivity and relative closeness is computed
for a pair of clusters.

Relative Inter-Connectivity The relative inter-connectivity between a pair of clust€rsandC; is defined as
the absolute inter-connectivity betwe€nandCj normalized with respect to the internal inter-connecioit the two
clustersCj andC;. The absolute inter-connectivity between a pair of cliss@randC; is defined to be as the sum
of the weight of the edges that connect vertice€iirto vertices inCj. This is essentially the edge-cut of the cluster
containing botlC; andC;j such that the cluster is broken ini andC;. We denote this b)EC{ci,cj}. The internal
inter-connectivity of a clustet; can be easily captured by the size of its min-cut biseEtGg; (i.e., the weighted sum
of edges that partition the graph into two roughly equalg)afRecent advances in the graph-partitioning technology
has made it possible to find such bisector quite efficientl9Rb, KK99a].

Thus the relative inter-connectivity between a pair of @usC; andC; is given by

[ECici.cj)l
[ECq, [HIECC, @
2

RI(Ci,Cj) =
which normalizes the absolute inter-connectivity with #verage internal inter-connectivity of the two clusters.
By focusing on the relative inter-connectivity betweenstéus, GIAMELEON can overcome the limitations of
existing algorithms that use static inter-connectivitydals. For instance, in the example shown in Figure 3 that
was discussed in Section 3HEMELEON will correctly prefer to merge clusters (a) and (b) over tdus (c) and



(d), because the relative inter-connectivity betweentehgs(a) and (b) is higher than the relative inter-connégtiv
between clusters (¢) and (d), even though the later pairustets have a higher absolute inter-connectivity. Thies, th
relative inter-connectivity is able to take into accourffetiences in shapes of the clusters (as in Figure 3) as well as
differences in degree of connectivity of different cluster

Relative Closeness The relative closeness between a pair of clusigrandC;j is defined as the absolute close-
ness betwee@; andCj normalized with respect to the internal closeness of thediwstersC; andCj. The absolute
closeness between a pair of clusters can be captured in aemwhdifferent ways. Many existing schemes, capture
this closeness by focusing on the pair of points betweemalpbints (or representative points [GRS98]) fr@mand
C; that are closest. A key drawback of these schemes is thatyipgeonly on a single pair of points, they are less
tolerant to outliers and noise. For this reasoRA®IELEON measures the closeness of two clusters by computing the
average similarity between the pointsGnthat are connected to points@). Since these connections are determined
using thek-nearest neighbor graph, their average strength providesyagood measure of the affinity between the
data items along the interface layer of the two sub-clustamgl at the same time is tolerant to outliers and noise.
Note that this average similarity between the points fromttho clusters is equal to the average weight of the edges
connecting vertices i€; to vertices inC;.

The internal closeness of each clustercan also be measured in a number of different ways. One pesgiproach
is to look at all the edges connecting vertice€jr(i.e., edges that are internal to the cluster), and compute thmial
closeness of a cluster as the average weight of these edgescad argue that in a hierarchical clustering setting,
the edges used for agglomeration early on are stronger tizae tused in later stages. Hence, average weights of the
edges on the internal bisection 6f andC; will tend to be smaller than the average weight of all the edgehese
clusters. But the average weight of these edges is a bedlieaior of the internal closeness of these clusters.

Hence in GIAMELEON, the relative closeness between a pair of clustgrandCj is computed as,

S
C . CJ| | = ©)
i i
\C.\+|cJ|SECc + \c.\+|cJ\SECc

RC(Ci, Cj) =

where§EcCi and§|5cCj are the average weights of the edges that belong in the ntibisrctor of cluster€; andCj,
respectively, anc.‘BEqCi <) is the average weight of the edges that connect vertic€s to vertices inCj. Also note
that a weighted average of the internal closeness of ckSteandC;j is used to normalize the absolute closeness of
the two clusters, that favors the absolute closeness dftltisat contains the larger number of vertices.

By focusing on the relative closeness between clustersMELEON can overcome the limitations of existing
algorithms that look only at the absolute closeness. Feamte, in the example shown in Figure 2 that was discussed
in Section 3, GAMELEON will correctly prefer to merge the clusters (c) and (d) oves tlusters (a) and (b). This
is because, the relative closeness of clusters (c) and (uigker than the relative closeness between clusters (a)
and (b), even though the later pair of clusters have a highsolate closeness. Thus, by looking at the relative
closeness, BAMELEON correctly prefers to merge clusters whose resulting chesthibits a uniformity in the degree
of closeness between the items in the cluster. Also notelleatelative closeness between two clusters is in general
smaller than one, because the edges that connect vertidéteirent clusters have a smaller weight.



4.4 CHAMELEON: A Two-phase Clustering Algorithm

The dynamic framework for modeling the similarity betweduasters discussed in Section 4.3 can be only applied
when each cluster contains a sufficiently large number dfogs (.e., data items). This is because in order to compute
the relative inter-connectivity and relative closenesglabters, GIAMELEON needs to compute the internal inter-
connectivity and closeness of each cluster. Both of whictmoaibe accurately calculated for clusters containing only
a few data points. For this reasonsi@MELEON uses an algorithm that consists of two distinct phases. Tngose

of the first phase is to cluster the data items into a large murabsub-clusters that contain a sufficient number of
items to allow dynamic modeling. The purpose of the secorasehis to discover the genuine clusters in the data
set by using the dynamic modeling framework to merge togdtiese sub-clusters in a hierarchical fashion. In the
remainder of this section, we present the algorithms usethé&se two phases of HAMELEON.

Phase I: Finding Initial Sub-clusters CHAMELEON finds the initial sub-clusters using a graph partitioning
algorithm to partition thé-nearest neighbor graph of the data set into a large numhmrtifions such that thedge-
cut, i.e., the sum of the weight of the edges that straddle partitisminimized. Since each edge in tkenearest
neighbor graph represents the similarity among data poasartitioning that minimizes the edge-cut effectively
minimizes the relationship (affinity) among data pointsoasrthe resulting partitions. The underlying assumption is
that links within clusters will be stronger and more plenitthan links across clusters. Hence, the data in eachipartit
are highly related to other data items in the same patrtition.

Recent research on graph partitioning has lead to the dewelot of fast and accurate algorithms that are based
on the multilevel paradigm [KK99a, KK99b]. Extensive expents on graphs arising in many application domains
have shown that multilevel graph partitioning algorithme gery effective in capturing thglobal structureof the
graph and are capable of computing partitionings that haxeryasmall edge-cut. Hence, when used to partition the
k-nearest neighbor graph, they are very effective in findirggrtatural separation boundaries of clusters. For example,
Figure 8 shows the two clusters produced by applying a neultll graph partitioning algorithm on tHenearest-
neighbor graphs for two spatial data sets. As we can see fi@figure, the partitioning algorithm is very effective in
finding the low-density separating region in the first exaenphd the small connecting region in the second example.

(@) (b)
Figure 8: An example of the bisections produced by multilevel graph partitioning algorithms on two spatial data sets. (a) The

partitioning algorithm cuts through the sparse region. (b) The partitioning algorithms cuts through a small connecting region.

CHAMELEON utilizes such multilevel graph partitioning algorithmsftod the initial sub-clusters. In particular,
it uses the graph partitioning algorithm that is part of HMETS library [KK98a]. hMEIS has been shown [KK98c,
KK99b, Alp98] to quickly produce high-quality partitiorgs for a wide range of unstructured graphs and hypergraphs.



In CHAMELEON we primarily usenMETS to split a clusteC; into two sub-clusteré:iA andCiB such that the edge-cut
betweenC/ andCB is minimized and each one of these sub-clusters contaiesst 25% of the nodes . Note
that this last requirement, often referred to ashlénce constraintis an integral part of using a graph partitioning
approach to find the sub-clustereMETS is effective in operating within the allowed balance coaisits to find a
bisection that minimizes the edge-cut. However, this badaronstraint can fordaMETS to break a natural cluster.
CHAMELEON obtains the initial set of sub-clusters as follows. It @lily starts with all the points belonging to the
same cluster. It then repeatedly selects the largest sisbeclamong the current set of sub-clusters and bSIESS
to bisect. This process terminates when the larger sultecluentains fewer than a specified number of vertices, that
we will refer to it as MNSIZE. The MINSIZE parameter essentially controls the granularity of thaahitlustering
solution. In general, MNSIZE should be set to a value that is smaller than the size of masteoflusters that we
expectto find in the data set. At the same timeNBiIzE should be sufficiently large such that most of the sub-ctaste
contain a sufficiently large number of nodes to allow us tdueate the inter-connectivity and closeness of the items in
each sub-cluster in a meaningful fashion. For most of tha sieits that we encountered, setting\8izE to about 1%
to 5% of the overall number of data points worked fairly well.

Phase II: Merging Sub-Clusters using a Dynamic Framework As soon as the fine-grain clustering solution
produced by the partitioning-based algorithm of the firsigghis found, BAMELEON then switches to an agglomer-
ative hierarchical clustering that combines togetherdtmsall sub-clusters. As discussed in Section 2, the key step
of agglomerative hierarchical algorithm is that of finditg tpair of sub-clusters that are thst similar

CHAMELEON’s agglomerative hierarchical clustering algorithm a#s the dynamic modeling framework dis-
cussed in Section 4.3 to select the most similar pairs otetssy looking both at their relative inter-connectivity
and their relative closeness. There are many ways to deegl@gyglomerative hierarchical clustering algorithm that
takes into account both of these measures. Two differermisel have been implemented iARAMELEON.

The first scheme merges only those pairs of clusters whosgveinter-connectivity and relative closeness are both
above some user specified threshttd andTrc, respectively. In this approachHEMELEON visits each clustet;,
and checks to see if any one of its adjacent clusigrsatisfy the following two conditions:

RI(Ci, Cj) = Tri and RC(C;, Cj) > Trc. 3

If more than one of the adjacent clusters satisfy the abomditions, then GAMELEON selects to merg€; with the
cluster that it is most connected ic., it selects the clusteZ; such that the absolute inter-connectivity between these
two clusters is the highest. Once every cluster has been gieopportunity to merge with one of its adjacent clusters,
the combinations that have been selected are performedharahtire process is repeated. Note that this algorithm is
different than traditional hierarchical clustering algbms, as it allows multiple pairs of clusters to be mergegetber

at any given iteration. The parametéiis; andTrc can be used to control the characteristics of the desirestarial

In particular, the parametdrr| allows us to control the variability in the degree of intemaectivity of the items

in the cluster. The paramet&rc allows us to control the uniformity of the similarity amortgiins that belong to a
particular cluster. Depending on the choice of Thg and Trc parameters, GAMELEON’s merging algorithm may
reach a point from which it cannot proceed any further beeaase of the adjacent clusters satisfy the two conditions
of Equation 3. At this point we have the choice of either tevating the algorithm and output the current clustering
as the solution or try to merge additional pairs of clustegrsbccessively relaxing the two parameters, possibly at
different rates.
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The second scheme implemented iIRAMELEON uses a function to combine the relative inter-connectiaity
relative closeness, and then selects to merge the pair stectuthat maximizes this function. Since our goal is to
merge together pairs for which both the relative inter-cagtivity and the relative closeness are high, a natural viay o
defining such a function is to take their product. That isgsethe pair of cluster€; andC; to merge that maximize
RI(Ci, Cj) = RC(Cj, Cj). This formula gives an equal importance to both of theserpatars. However, quite often
we may prefer clusters that give a higher preference to orthesfe two measures. For this reasomARELEON
selects the pair of clusters that maximizes

RI(Ci, Cj) * RC(C;j, Cj)*, (4)

wherec is a user specified parameteralf> 1, then GIAMELEON gives a higher importance to the relative closeness,
and wherx < 1, it gives a higher importance on the relative inter-coninéyg. In the experimental results presented
in Section 5 we used this second approach as it allows us ily gaserate the entire dendrogram for the hierarchical
clustering.

4.5 Performance Analysis

The overall computational complexity ofHAMELEON depends on the amount of time it requires to construct the
k-nearest neighbor graph and the amount of time it requiregtform the two phases of the clustering algorithm.

The amount of time required to compute #h@earest neighbor graph depends on the dimensionalityeairtider-
lying data set. In particular, for low-dimensional datassetigorithms based dan— d trees [Sam90] can be used to
quickly compute thék nearest neighbors. It has been shown thanfidems, the average cost of inserting, as well
as the expectekl-nearest neighbor search timeG@glogn) [FBF77], leading to an overall complexity @(nlogn).
However, for high dimensional data sets, schemes baséd-od trees are not applicable [BBKK97, BBK98]. For
such data sets, the amount of time required to finkthearest neighbors of a data itemQgn), leading to an overall
complexity ofO(n?).

The amount of time required by HFAMELEON's two-phase clustering algorithm depends on the nunmivexf
initial sub-clusters produced by the graph partitioningoaithm used in the first phase. To simplify the analysis,
we will assume that (i) each initial sub-cluster has the sanmaber of nodes/m, and (ii) during each successive
merging step, BAMELEON selects to merge only a single pair of clusters. Moreover,amalysis will be focused
on CHAMELEON's second scheme for combining the relative inter-conmigtand relative closeness described in
Section 4.4. However, the overall complexity is similar fioe first scheme as well.

The amount of time required by the the Phase | efA@ELEON depends on the amount of time required by
hMETS. Given a graptG = (V, E), hMETS requiresO(|V| + |E|) [KK98c, KK99b] time to compute a bisection.
Since GHAMELEON operates on th&-nearest neighbor graphiE| = O(|V|); thus, the computational complexity
of hMETS is O(]V|). CHAMELEON’s Phase | algorithm obtain® clusters by repeatedly partitioning successively
smaller graphs; hence, its overall computational complégiO(n log(n/m)) which is bounded by (nlogn). Note
that one can potentially use a faster partitioning algamitb obtain the initiam clusters in timeO (n+ mlogm) using
the multilevelm-way partitioning algorithm described in [KK99b].

The amount of time required by the second phase depends thre @nount of time needed to compute the internal
inter-connectivity and internal closeness for each ihamwell as intermediate cluster, and (b) the amount of time
needed to select thmost similarpair of clusters to merge. Since the internal inter-conimi¢ggiand internal closeness
for a particular cluster is computed by bisecting the cqrogglingk-nearest neighbor sub-graph of the cluster, its
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complexity is proportional to the number of items in eachstdn In particular, the amount of time required to bisect
each one of the initiam clusters isO(n/m), leading to an overall complexity dd(n). Next, during each of the
merging steps, GAMELEON needs to bisect the resulting cluster, and there are a tbtal © 1 such stepsi.g.,

until all the initial sub-clusters have been merged toggtlkhe worst case complexity is obtained when the merging
algorithm repeatedly selects the same cluster and merg@thitanother;i.e., it grows a single large cluster. This
corresponds to the worst case because during each mergmgise algorithm needs to bisect a cluster that has the
largest possible number of data items. In this case, the ahafuime required to bisect then — 1 intermediate
sub-clusters iiim:_zl(i x n/m)y which isO(nm).

The overall amount of time required to find thest similarpair of clusters i90(m? logm) by using a heap-based
priority queue. In the worst case, the initial clusterindgusion can be such that each cluster is connected to all the
remaining clusters. In this case, it tak€gm?logm) time to insert the similarity of th@(m?) possible pairs of
sub-clusters into the priority queue. Now, during each rmgrgtep, the pair residing at the top of the priority queue
is selected, and the similarity of recently combined clustethe remaining sub-clusters is updated. Each of these
update operations requir€Xmlogm) time, leading to an overall complexity @(m?2logm), as a total ofm— 1 such
updates needs to be performed (one for each pair of clustargéts merged).

Thus, the overall complexity of AMELEON’s two-phase clustering algorithm @(nm+ nlogn + m?logm).

5 Experimental Results

In this section, we present experimental evaluation BR@ELEON, and compare its performance with a publicly
available version of DBSCAN and a locally implemented vensaf CURE. Even though KAMELEON is applicable

to any data set for which a similarity matrix is available @n be constructed), we chose to perform evaluation
for data sets containing points in two dimensional spacdviorreasons. First, similar data sets have been used to
evaluate the performance of other state-of-the art algaét such as DBSCAN and CURE. Second, clusters in 2D
data sets are easy to visualize, making the comparisonfefeiift schemes much easier. We do not report results of
ROCK [GRS99] (and other interconnectivity based agglomerachemes such as group averaging method [JD88]),
as they tend to perform worse than algorithms such as CURE @tricspace data sets. Many of these results are
available at URL http://www.cs.umn.edutan/chameleon.html.

5.1 Data Sets

We experimented with five different data sets containingntsoin two dimensions whose geometric shape are shown
in Figure 9. The first data set, DS1, has five clusters that baéferent size, shape, and density, and contains noise
points as well as special artifacts. The second data set, &8ains two clusters that are close to each other and
different regions of the clusters have different densiti&he third data set, DS3, has six clusters of different size,
shape, and orientation, as well as random noise points auibd@rtifacts such as streaks running across clustees. Th
fourth data set, DS4, has eight clusters of different shajze, and orientation, some of which are inside the space
enclosed by other clusters. Moreover, DS4 also containdormmoise and special artifacts, such as a collection of
points forming vertical streaks. Finally, the fifth data, 4885, has eight clusters of different shape, size, derssity,
orientation, as well as random noise. A particularly chradieg feature of this data set is that clusters are very dlmse
each other and they have different densities. The size séttata sets ranges from 6,000 to 10,000 points, and their
exact size is indicated in Figure 9. Note that DS1 was obthireen [GRS98], whereas we synthetically generated the
remaining data sets.
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DS4: 10000 points DS5: 8000 points

Figure 9: The five data sets used in our experiments.
5.2 Qualitative Comparison

CHAMELEON To cluster a data set usingtHBMELEON, we need to specify the following parameters: the value of
for computing thek-nearest neighbor graph, the value ofN\&IzE for the Phase | of the algorithm, and the choice of
scheme for combining relative inter-connectivity and tigkacloseness and associated parameters. In the expésimen
presented in this section, we used the same set of paranaéiesyfor all five data sets. In particular, we ugesd 10,
MINSIZE = 2.5% of the total items in the data set, and used the second scfeermombining Rl and RC, and used

o = 2.0 in Equation 4 for combining relative inter-connectivitydarelative closeness of each pair of clusters. We
also performed a parameter study to determine the semgitif"CHAMELEON on the above set of parameters by using
k = {5, 10, 15, 20}, MINSIZE = {2%, 3%, 4%} anda = {1.5, 2.0, 2.5, 3.0}. Our results (not shown here) show that
CHAMELEON is not very sensitive on the above choice of parameters,tamas able to discover the correct clusters
for all of these combinations of values forMINSIZE, andw.

Figure 10 shows the clusters found byi@ELEON for each one of the five data sets. The points in the different
clusters are represented using a combination of differelurs and different glyphs. As a result, points that belong
to the same cluster have both the same color as well as thisitspare drawn using the same glyph. For example,
in the clustering solution shown for DS4, there are two @tsthat have cyan color (one contains the points in the
region between the two circles inside the ellipse, and theratontains the points that form a line between the two
horizontal bars and the 'c’ shaped cluster), and there acectusters that have a dark blue color (one corresponds
to the upside-down 'c’ shaped cluster and the other cormdpto the circle inside the candy-cane); however, their
points are represented using different glyphs (bells andss for the first pair, and squares and bells for the second
pair), so they denote different clusters.

Since GHAMELEON is hierarchical in nature, it creates a dendrogram of péssilustering solutions at different
levels of granularity. The clustering solutions shown igui¥e 10 correspond to the earliest point in the agglomegrativ
process in which @AMELEON was able to find the genuine clusters in the data set. Thdtdyg,dorrespond to the
lowest level of the dendrogram at which the genuine clustetse data set have been identified and each one has been
placed together in one cluster. As a result, the number ateta shown in Figure 10 for each one of the data sets can
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be larger than the number of genuine clusters, and thesgatdiclusters contain points that are outliers.

Looking at Figure 10, we can see thaH@VELEON is able to correctly identify the genuine clusters in all five
data sets. In the case of DSIHAMELEON finds six clusters, five of which correspond to the genuinstels in the
data set, and the sixth one (shown with brown-colored "*'giilg) corresponds to outlier points connecting the two
ellipsoid clusters. In the case of DS2H@MELEON finds two clusters, each one corresponding to a genuinesclumst
the data set. In the case of DS3HAMELEON finds eleven clusters, out of which six of them correspontiéoenuine
clusters in the data set, and the rest contain outliers.dicéise of DS4, GAMELEON also finds eleven clusters, out of
which nine of them correspond to the genuine clusters, amdds$t contain outlier points. Finally, in the case of DS5,
CHAMELEON finds eight clusters, each one corresponding to a genuirsteclin the data set. As these experiment
illustrate CHAMELEON is very effective in finding clusters of arbitrary shape, sign and orientation, and is tolerant
to outlier points, as well as artifacts such as streaks nmacross clusters.

CURE We evaluated the performance oHE@MELEON against CURE (described in Section 2) which has been
shown to be effective in finding clusters in two dimension@ihp data sets [GRS98]. CURE was able to find the right
clusters for DS1 and DS2, but it failed to find the right clusten the remaining three data sets. Figure 11 shows the
results obtained by CURE for each one of the DS3, DS4, and Bfbsets. Since CURE is also hierarchical clustering
algorithm, it also produces a dendrogram of possible ctingjesolutions at different levels of granularity. For eante

of the data sets, Figure 11 shows two different clusteringt&ms containing different number of clusters. The first
clustering solution (first column of Figure 11) correspotathe earliest point in the agglomerative process in which
CURE merges together sub-clusters that belong to two diftegenuine clusters. As we can see from Figure 11, in
the case of DS3, CURE selects the wrong pair of clusters tgeietogether when going from 18 down to 17 clusters,
resulting in the red-colored sub-cluster which containgipos of the twor-shaped clusters. Similarly, in the case
of DS4, CURE makes a mistake when going from 26 down to 25@lsisas it selects to merge together one of the
circles inside the ellipse with a portion of the ellipse. &y, in the case of DS5, CURE also makes a mistake when
going from 26 down to 25 clusters by merging together the boialular cluster with a portion of the upside-down
'"Y’-shaped cluster. The second clustering solution cqroggls to solutions that contain as many clusters as those
discovered by @AMELEON. These solutions are considerably worse than the first sstlofions (especially for DS4
and DS5), indicating that the merging scheme used by CURi6npes multiple mistakes.

For the results shown in Figure 11 experiments, the shripfactor is 03 and the number of representative points
is 10, which are the default values recommended in [GRS9&].alsb performed experiments with shrinking factor
varying from Q1 to 0.9 and the number of representative points varying from 100@. IThese experiments showed
similar trends as shown in Figure 11. Furthermore, to fet#i fair comparisons, we also removed the noise as
suggested in [GRS98], by identifying “slowly” growing ctess as noise point and removed them. For comparison
purposes we reassigned these noisy data points back to #telfisters using the assignment method discussed in
[GRS98],i.e., noise points are assigned to the cluster with the clospstsentative points. Note that these assignments
did not affect the overall clustering results.

DBSCAN DBSCAN [EKSX96] is a well-known spatial clustering algdwih that has been shown to find clusters
of arbitrary shapes. DBSCAN defines a cluster to be a maximetrofsdensity-connected points. Every core point
in a cluster must have at least a minimum number of points R&nwithin a given radius (Eps). DBSCAN can find
arbitrary shape of clusters if the right density of the acdustcan be determined in a priori and the density of clusgers i
uniform.
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DBSCAN finds the right clusters on data sets DS3 and DS4 asdsriigis supplied the right combination of Eps
and MinPts. If MinPts is fixed to 4 (default value specified EKEX96]), then the algorithm works fine as long as
Eps is within the range (5.0,5.4) for DS3 and (5.7,6.1) fodDHowever, it fails to perform well on DS1, DS2, and
DS5, as these data sets contain clusters of different densit

Figure 12 shows the clusters found by DBSCAN for DS1 and DSXiflerent values of theEps parameter.
Following the recommendation of [EKSX96], thdinPtswas fixed to 4 andEpswas changed in these experiments.
The clusters produced for DS1 illustrate that DBSCAN carfiigtctively find clusters of different density. In the first
clustering solution (Figure 12(a)), whé&ips = 0.5 DBSCAN puts the two ellipses into the same cluster, becthese
outlier points connecting satisfy the density requireraastdictated by thEpsandMinPtsparameters. These clusters
can be separated by decreasing the vallEpsfis was done in the clustering solution shown in Figure 12¢bjyhich
Eps=0.4 However, DBSCAN keeps the ellipses together, but now itfteeggmented the lower density cluster into a
large number of small sub-clusters. Our experiments hasistitat DBSCAN exhibits similar characteristics on DS5.
The clusters produced for DS2 illustrate that DBSCAN camfiictively find clusters that their internal density vatie
The sequence of the three clustering solutions (Figure)2g£€y) for decreasing values of tepsparameter illustrates
that as we decreadepsin hope of separating the two clusters, the natural clustethe data set are fragmented
into a large number of smaller clusters. On DS3 and DS4, DBS@G#naged to find the genuine clusters with right
parameter values. Figure 12 (f)—(h) shows the sensitifilf®SCAN with respect to the Eps parameter.

6 Concluding Remarks

In this paper, we have presented a novel hierarchical cingtalgorithm called @AMELEON which takes into account
the dynamic model of clusters.HBMELEON can discover natural clusters of different shapes and sbexsause its
merging decision dynamically adapts to the different @tisg model characterized by the clusters in consideration
Experimental results on several data sets with varyingastiaristics show that ICAMELEON can discover natural
clusters that many existing clustering algorithms fail talfi

All the data sets presented in the paper are in 2D spacey fthuse similar data sets have been used most ex-
tensively by other authors [NH94, EKSX96, GRS98], and gdrticause it is easy to evaluate the quality of clustering
on 2D data sets. Note that many of these schemes [EKSX96, RE9 specifically suited for spatial data and/or
data in metric spaces. Hence, it is noteworthy that our sehemperforms them, even though it does not make use
of the metric-space/spatial nature of the data. The metbggimf dynamic modeling of clusters in agglomerative
hierarchical methods is applicable to all types of data ag s a similarity matrix is available or can be constructed.

Even though we chose to model the data usingearest neighbor graph in this paper, it is entirely pdesib
use other graph representations suitable for particulpliegiion domains, e.g., such as those based upon mutual
shared neighbors [GK78, JD88, GRS99]. Furthermore, diffedomains may require different models for capturing
relative closeness and inter-connectivity of pairs of s In any of these situations, we believe that the two-
phase framework of EAMELEON would still be highly effective. Our future research inchsidthe verification of
CHAMELEON on different application domains and the study of effectess of different techniques for modeling
data as well as cluster similarity.

In this paper, we ignored the issue of scaling to large ddtatkat cannot fit in the main memory. These issues are
orthogonal to the ones discussed here and are covered ird@RFR98, GRS98, GR®9].
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Figure 10: The clusters discovered by CHAMELEON for the five data sets.
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Figure 11: Clusters of CURE with shrinking factor 0.3 and number of representative points 10.
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(d) DS2: Eps=3.5, MinPts=4 (e) DS2: Eps=3.0, MinPts=4

(f) DS4: Eps=5.5, MinPts=4 (g) DS4: Eps=5.9, MinPts=4 (h) DS4: Eps=6.2, MinPts=4

Figure 12;: DBSCAN on the DS1, DS2, and DS4 data sets with different values of the Eps parameter.
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