STABILITY OF GORENSTEIN OBJECTS IN TRIANGULATED CATEGORIES

ZHANPING WANG CHUNLI LIANG

Abstract Let C be a triangulated category with a proper class ξ of triangles. Asadollahi and Salarian introduced and studied ξ -Gorenstein projective and ξ -Gorenstein injective objects, and developed Gorenstein homological algebra in C. In this paper, we further study Gorenstein homological properties for a triangulated category. First, we discuss the stability of ξ -Gorenstein projective objects, and show that the subcategory $\mathcal{GP}(\xi)$ of all ξ -Gorenstein projective objects has a strong stability. That is, an iteration of the procedure used to define the ξ -Gorenstein projective objects yields exactly the ξ -Gorenstein projective objects. Second, we give some equivalent characterizations for ξ -Gorenstein projective dimension of object in C.

2010 Mathematics Subject Classification: 16E05, 16E10, 18G35 Key words: stability; ξ -Gorenstein projective object; triangulated category

1. INTRODUCTION

Triangulated categories were introduced independently in algebraic geometry by Verdier in his thése [21], and in algebraic topology by Puppe [19] in the early sixies, which have by now become indispensable in many areas of mathematics such as algebraic geometry, stable homotopy theory and representation theory [5, 11, 17]. The basic properties of triangulated categories can be found in Neeman's book [18].

Let \mathcal{C} be a triangulated category with triangles Δ . Beligiannis [6] developed homological algebra in \mathcal{C} which parallels the homological algebra in an exact category in the sense of Quillen. By specifying a class of triangles $\xi \subseteq \Delta$, which is called a proper class of triangles, he introduced ξ -projective objects, ξ -projective dimensions and their duals.

Auslander and Bridger generalized in [1] finitely generated projective modules to finitely generated modules of Gorenstein dimension zero over commutative noetherian rings. Furthermore, Enochs and Jenda introduced in [9] Gorenstein projective modules for arbitrary modules over a general ring, which is a generalization of finitely generated modules of Gorenstein dimension zero, and dually they defined Gorenstein injective modules. Gorenstein homological algebra has been extensively studied by many authors, see for example [2, 8, 10, 13].

As a natural generalization of modules of Gorenstein dimension zero, Beligiannis [7] defined the concept of an \mathcal{X} -Gorenstein object in an additive category \mathcal{C} for a contravariantly finite subcategory \mathcal{X} of \mathcal{C} such that any \mathcal{X} -epic has kernal in \mathcal{C} . In an attempt to extend the theory, Asadollahi and Salarian [3] introduced and studied ξ -Gorenstein projective and ξ -Gorenstein injective objects, and then ξ -Gorenstein projective and ξ -Gorenstein injective dimensions of objects in a triangulated

Address correspondence to Zhanping Wang, Department of Mathematics, Northwest Normal University, Lanzhou 730070, P.R. China.

E-mail: wangzp@nwnu.edu.cn (Z.P. Wang).

category which are defined by modifying what Enochs and Jenda have done in an abelian category [10].

Let \mathcal{A} be an abelian category and \mathcal{X} an additive full subcategory of \mathcal{A} . Sather-Wagstaff, Sharif and White introduced in [20] the Gorenstein category $\mathcal{G}(\mathcal{X})$, which is defined as $\mathcal{G}(\mathcal{X}) = {A \text{ is an object in } \mathcal{A} \mid}$

there exists an exact sequence $\cdots \to X_1 \to X_0 \to X^0 \to X^1 \to \cdots$ in \mathcal{X} , which is both $\operatorname{Hom}_{\mathcal{A}}(\mathcal{X}, -)$ -exact and $\operatorname{Hom}_{\mathcal{A}}(-, \mathcal{X})$ -exact, such that $A \cong \operatorname{Im}(X_0 \to X^0)$ }. Set $\mathcal{G}^0(\mathcal{X}) = \mathcal{X}$, $\mathcal{G}^1(\mathcal{X}) = \mathcal{G}(\mathcal{X})$, and inductively set $\mathcal{G}^{n+1}(\mathcal{X}) = \mathcal{G}^n(\mathcal{G}(\mathcal{X}))$ for any $n \ge 1$. They proved that when \mathcal{X} is self-orthogonal, $\mathcal{G}^n(\mathcal{X}) = \mathcal{G}(\mathcal{X})$ for any $n \ge 1$; and they proposed the question whether $\mathcal{G}^2(\mathcal{X}) = \mathcal{G}(\mathcal{X})$ holds for an arbitrary subcategory \mathcal{X} . See [20, 4.10, 5.8]. Recently, Huang [15] proved that the answer to this question is affirmative. This shows that $\mathcal{G}(\mathcal{X})$, in particular the subcategory $\mathcal{GP}(\mathcal{A})$ of all Gorenstein projective objects, has a strong stability. Kong and Zhang give a slight generalization of this stability by a different method [16].

Inspired by the above results, we consider the stability of the subcategory $\mathcal{GP}(\xi)$ of all ξ -Gorenstein projective objects, which is introduced by Asadollahi and Salarian [3]. Set $\mathcal{G}^0\mathcal{P}(\xi) = \mathcal{P}(\xi)$, $\mathcal{G}^1\mathcal{P}(\xi) = \mathcal{GP}(\xi)$, and inductively set $\mathcal{G}^{n+1}\mathcal{P}(\xi) = \mathcal{G}^n(\mathcal{GP}(\xi))$ for any $n \geq 1$. A natural question is whether $\mathcal{G}^n\mathcal{P}(\xi) = \mathcal{GP}(\xi)$.

In Section 2, we give some terminologies and some preliminary results. Section 3 is devoted to answer the above question. We will prove the following theorem.

Main theorem Let \mathcal{C} be a triangulated category with enough ξ -projectives, where ξ is a proper class of triangles. Then $\mathcal{G}^n \mathcal{P}(\xi) = \mathcal{GP}(\xi)$ for any $n \ge 1$.

The above theorem shows that the subcategory $\mathcal{GP}(\xi)$ of all ξ -Gorenstein projective objects has a strong stability. That is, an iteration of the procedure used to define the ξ -Gorenstein projective objects yields exactly the ξ -Gorenstein projective objects. Finally, we give some equivalent characterizations for ξ -Gorenstein projective dimension of an object A in \mathcal{C} .

2. Some basic facts in triangulated categories

This section is devoted to recall the definitions and elementary properties of triangulated categories used throughout the paper. For the terminology we shall follow [3, 4, 6].

Let \mathcal{C} be an additive category and $\Sigma : \mathcal{C} \to \mathcal{C}$ be an additive functor. Let $\text{Diag}(\mathcal{C}, \Sigma)$ denote the category whose objects are diagrams in \mathcal{C} of the form $A \to B \to C \to \Sigma A$, and morphisms between two objects $A_i \to B_i \to C_i \to \Sigma A_i$, i = 1, 2, are a triple of morphisms $\alpha : A_1 \to A_2$, $\beta : B_1 \to B_2$ and $\gamma : C_1 \to C_2$, such that the following diagram commutes:

$$\begin{array}{c|c} A_1 \xrightarrow{f_1} & B_1 \xrightarrow{g_1} & C_1 \xrightarrow{h_1} \Sigma A_1 \\ \alpha & & \beta & & \gamma & & \Sigma \alpha \\ A_2 \xrightarrow{f_2} & B_2 \xrightarrow{g_2} & C_2 \xrightarrow{h_2} \Sigma A_2. \end{array}$$

A triangulated category is a triple $(\mathcal{C}, \Sigma, \Delta)$, where \mathcal{C} is an additive category, Σ is an autoequivalence of \mathcal{C} and Δ is a full subcategory of $\text{Diag}(\mathcal{C}, \Sigma)$ which satisfies the following axioms. The elements of Δ are then called triangles.

(Tr1) Every diagram isomorphic to a triangle is a triangle. Every morphism $f : A \to B$ in \mathcal{C} can be embedded into a triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$. For any object $A \in \mathcal{C}$, the diagram $A \xrightarrow{1_A} A \to 0 \to \Sigma A$ is a triangle, where 1_A denotes the identity morphism from A to A.

 $\mathbf{2}$

(Tr2) $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$ is a triangle if and only if $B \xrightarrow{g} C \xrightarrow{h} \Sigma A \xrightarrow{-\Sigma f} \Sigma B$.

(Tr3) Given triangles $A_i \xrightarrow{f_i} B_i \xrightarrow{g_i} C_i \xrightarrow{h_i} \Sigma A_i$, i = 1, 2, and morphism $\alpha : A_1 \to A_2$, $\beta : B_1 \to B_2$ such that $f_2 \alpha = \beta f_1$, there exists a morphism $\gamma : C_1 \to C_2$ such that (α, β, γ) is a morphism from the first triangle to the second.

(Tr4) (The Octahedral Axiom) Given triangles

$$A \xrightarrow{f} B \xrightarrow{i} C' \xrightarrow{i'} \Sigma A, \ B \xrightarrow{g} C \xrightarrow{j} A' \xrightarrow{j'} \Sigma B, \ A \xrightarrow{gf} C \xrightarrow{k} B' \xrightarrow{k'} \Sigma A,$$

there exist morphisms $f': C' \to B'$ and $g': B' \to A'$ such that the following diagram commutes and the third column is a triangle:

Some equivalent formulations for the Octahedral Axiom (Tr4) are given in [6, 2.1], which are more convient to use. If $\mathcal{C} = (\mathcal{C}, \Sigma, \Delta)$ satisfies all the axioms of a triangulated category except possible of (Tr4), then (Tr4) is equivalent to each of the following:

Base Change: For any triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \in \Delta$ and morphism $\varepsilon : E \to C$, there exists a commutative diagram:

in which all horizontal and vertical diagrams are triangles in Δ .

Cobase Change: For any triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \in \Delta$ and morphism $\alpha : A \to D$, there exists a commutative diagram:

in which all horizontal and vertical diagrams are triangles in Δ .

The following definitions are quoted verbatim from [6, Section 2]. A class of triangles ξ is closed under base change if for any triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \in \xi$ and any morphism $\varepsilon : E \to C$ as in the base change diagram above, the triangle $A \xrightarrow{f'} G \xrightarrow{g'} E \xrightarrow{h'} \Sigma A$ belongs to ξ . Dually, a class of triangles ξ is closed under cobase change if for any triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \in \xi$ and any morphism $\alpha : A \to D$ as in the cobase change diagram above, the triangle $D \xrightarrow{f'} F \xrightarrow{g'} C \xrightarrow{h'} \Sigma D$ belongs to ξ . A class of triangles ξ is closed under suspension if for any triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \in \xi$ and $i \in \mathbb{Z}$, the triangle $\Sigma^i A \xrightarrow{(-1)^i \Sigma^i f} \Sigma^i B \xrightarrow{(-1)^i \Sigma^i g} \Sigma^i C \xrightarrow{(-1)^i \Sigma^i h} \Sigma^{i+1} A$ is in ξ . A class of triangles ξ is called saturated if in the situation of base change, whenever the third vertical and the second horizontal triangles are in ξ , then the triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$ is in ξ . An easy consequence of the octahedral axiom is that ξ is saturated if and only if in the situation of cobase change, whenever the second vertical and the third horizontal triangles are in ξ , then the triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$ is in ξ .

A triangle $(T) : A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \in \Delta$ is called split if it is isomorphic to the triangle $A \xrightarrow{(1 \ 0)} A \oplus C \xrightarrow{\binom{0}{1}} C \xrightarrow{0} \Sigma A$. It is easy to see that (T) is split if and only if f is a section or g is a retraction or h = 0. The full subcategory of Δ consisting of the split triangles will be denoted by Δ_0 .

Definition 2.1. ([6, 2.2]) Let $C = (C, \Sigma, \Delta)$ be a triangulated category. A class $\xi \subseteq \Delta$ is called a proper class of triangles if the following conditions hold.

- (1) ξ is closed under isomorphisms, finite coproducts and $\Delta_0 \subseteq \xi \subseteq \Delta$.
- (2) ξ is closed under suspensions and is saturated.
- (3) ξ is closed under base and cobase change.

It is known that Δ_0 and the class of all triangles Δ in C are proper classes of triangles. There are more interesting examples of proper classes of triangles enumerated in [6, Example 2.3].

Throughout we fix a proper class ξ of triangles in the triangulated category C.

Definition 2.2. ([6, 4.1]) An object $P \in \mathcal{C}$ (resp., $I \in \mathcal{C}$) is called ξ -projective (resp., ξ -injective) if for any triangle $A \to B \to C \to \Sigma A$ in ξ , the induced sequence of abelian groups $0 \to \operatorname{Hom}_{\mathcal{C}}(P, A) \to$ $\operatorname{Hom}_{\mathcal{C}}(P, B) \to \operatorname{Hom}_{\mathcal{C}}(P, C) \to 0$ (resp., $0 \to \operatorname{Hom}_{\mathcal{C}}(C, I) \to \operatorname{Hom}_{\mathcal{C}}(B, I) \to \operatorname{Hom}_{\mathcal{C}}(A, I) \to 0$) is exact.

It follows easily from the definition that the subcategory $\mathcal{P}(\xi)$ of ξ -projective objects and the subcategory $\mathcal{I}(\xi)$ of ξ -injective objects are full, additive, Σ -stable, and closed under isomorphisms

and direct summands. The category C is said to have enough ξ -projectives (resp., ξ -injectives) if for any object $A \in C$, there exists a triangle $K \to P \to A \to \Sigma K$ (resp., $A \to I \to L \to \Sigma A$) in ξ with $P \in \mathcal{P}(\xi)$ (resp., $I \in \mathcal{I}(\xi)$). However, it is not so easy to find a proper class ξ of triangles in a triangulated category having enough ξ -projectives or ξ -injectives in general. Here we present a nontrivial example due to Beligiannis, and also, see more nontrivial examples in [6, Sections 12.4 and 12.5], which are of great interest. Take C to be the unbounded homotopy category of complexes of objects from a Grothendieck category which has enough projectives. Then the so-called Cartan-Eilenberg projective and injective complexes form the relative projective and injective objects for a proper class of triangles in C.

The following lemma is quoted from [6, 4.2].

Lemma 2.3. Let C have enough ξ -projectives. Then a triangle $A \to B \to C \to \Sigma A$ is in ξ if and only if for all $P \in \mathcal{P}(\xi)$ the induced sequence $0 \to \operatorname{Hom}_{\mathcal{C}}(P, A) \to \operatorname{Hom}_{\mathcal{C}}(P, B) \to \operatorname{Hom}_{\mathcal{C}}(P, C) \to 0$ is exact.

Recall that an ξ -exact sequence X is a diagram

$$\cdots \longrightarrow X_1 \xrightarrow{d_1} X_0 \xrightarrow{d_0} X_{-1} \xrightarrow{d_{-1}} X_{-2} \longrightarrow \cdots$$

in \mathcal{C} , such that for each $n \in \mathbb{Z}$, there exists triangle $K_{n+1} \xrightarrow{f_n} X_n \xrightarrow{g_n} K_n \xrightarrow{h_n} \Sigma K_{n+1}$ in ξ and the differential is defined as $d_n = f_{n-1}g_n$ for any n.

Let \mathcal{X} be a full and additive subcategory of \mathcal{C} . A triangle $A \to B \to C \to \Sigma A$ in ξ is called $\operatorname{Hom}_{\mathcal{C}}(-,\mathcal{X})$ -exact (resp., $\operatorname{Hom}_{\mathcal{C}}(\mathcal{X},-)$ -exact), if for any $X \in \mathcal{X}$, the induced sequence of abelian groups $0 \to \operatorname{Hom}_{\mathcal{C}}(C,X) \to \operatorname{Hom}_{\mathcal{C}}(B,X) \to \operatorname{Hom}_{\mathcal{C}}(A,X) \to 0$ (resp., $0 \to \operatorname{Hom}_{\mathcal{C}}(X,A) \to \operatorname{Hom}_{\mathcal{C}}(X,B) \to \operatorname{Hom}_{\mathcal{C}}(X,C) \to 0$) is exact.

A complete ξ -projective resolution is a diagram

$$\mathbf{P}: \dots \to P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} P_{-1} \to \dots$$

in C such that for any integer $n, P_n \in \mathcal{P}(\xi)$ and there exist $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact triangles

$$K_{n+1} \xrightarrow{f_n} P_n \xrightarrow{g_n} K_n \xrightarrow{h_n} \Sigma K_{n+1}$$

in ξ and the differential is defined as $d_n = f_{n-1}g_n$ for any n.

Definition 2.4. (see [3]) Let **P** be a complete ξ -projective resolution in C. So for any integer n, there exist triangles

$$K_{n+1} \xrightarrow{f_n} P_n \xrightarrow{g_n} K_n \xrightarrow{h_n} \Sigma K_{n+1}$$

in ξ . The objects K_n for any integer n, are called ξ -Gorenstein projective (ξ - \mathcal{G} projective for short).

Dually, one can define complete ξ -injective resolution and ξ -Gorenstein injective (ξ - \mathcal{G} injective for short) objects.

We denote by $\mathcal{GP}(\xi)$ and $\mathcal{GI}(\xi)$ the subcategory of ξ - \mathcal{G} projective and ξ - \mathcal{G} injective objects of \mathcal{C} respectively. It is obvious that $\mathcal{P}(\xi) \subseteq \mathcal{GP}(\xi)$ and $\mathcal{I}(\xi) \subseteq \mathcal{GI}(\xi)$; $\mathcal{GP}(\xi)$ and $\mathcal{GI}(\xi)$ are full, additive, Σ -stable, and closed under isomorphisms and direct summands.

ZHANPING WANG CHUNLI LIANG

3. Main results

Throughout the paper, C is a triangulated category with enough ξ -projectives and enough ξ injectives, where ξ is a fixed proper class of triangles.

Recall that in [3] a diagram

$$\mathbf{P}: \dots \to P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} P_{-1} \to \dots$$

in \mathcal{C} is a complete ξ -projective resolution, if for any $n, P_n \in \mathcal{P}(\xi)$, and there exist $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ exact triangles

$$K_{n+1} \xrightarrow{f_n} P_n \xrightarrow{g_n} K_n \xrightarrow{h_n} \Sigma K_{n+1}$$

in ξ and the differential is defined as $d_n = f_{n-1}g_n$ for any n. That is, \mathbf{P} is an ξ -exact sequence of ξ -projective objects, and is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact. The objects K_n for any integer n, are called ξ -Gorenstein projective (ξ - \mathcal{G} projective for short). Dually, one can define complete ξ -injective resolution and ξ -Gorenstein injective (ξ - \mathcal{G} injective for short) objects.

We study only the case of ξ - \mathcal{G} projective objects since the study of the ξ - \mathcal{G} injective objects is dual.

An ξ - \mathcal{G} projective resolution of $A \in \mathcal{C}$ is an ξ -exact sequence $\cdots \to G_n \to G_{n-1} \to \cdots \to G_1 \to G_0 \to A \to 0$ in \mathcal{C} , such that $G_n \in \mathcal{GP}(\xi)$ for all $n \ge 0$. The definition is different from [3, Definition 4.2].

Lemma 3.1. Let C be a triangulated category with enough ξ -projectives, $A \in C$. Then A has an ξ -projective resolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact if and only if A has an ξ - \mathcal{G} projective resolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact.

Proof Since $\mathcal{P}(\xi) \subseteq \mathcal{GP}(\xi)$, it is enough to show the "if" part. Assume that A has an ξ - \mathcal{G} projective resolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact. Then there exists a triangle $\delta : B \to G_0 \to A \to \Sigma B \in \xi$ which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact, where $G_0 \in \mathcal{GP}(\xi)$ and B has an ξ - \mathcal{G} projective resolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact. Since $G_0 \in \mathcal{GP}(\xi)$, there exists a triangle $\eta : G'_0 \to P_0 \to G_0 \to \Sigma G'_0 \in \xi$ such that $G'_0 \in \mathcal{GP}(\xi)$, $P_0 \in \mathcal{P}(\xi)$ and it is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact. By base change, we have the following commutative diagram:

Since ξ is closed under base change, we have $\eta' \in \xi$. Applying the functor $\operatorname{Hom}_{\mathcal{C}}(\mathcal{P}(\xi), -)$ to the above diagram, we obtain the following commutative diagram

By snake lemma, we get that the second vertical sequence is exact, and so $L \to P_0 \to A \to \Sigma L \in \xi$ by Lemma 2.3. For any $Q \in \mathcal{P}(\xi)$, applying $\operatorname{Hom}_{\mathcal{C}}(-,Q)$ to the above base change diagram, we obtain the following commutative diagram:

 $\operatorname{Hom}_{\mathcal{C}}(\eta, Q) \qquad \qquad \operatorname{Hom}_{\mathcal{C}}(\eta', Q)$

By snake lemma, one can get that $\operatorname{Hom}_{\mathcal{C}}(\delta', Q)$ and $\operatorname{Hom}_{\mathcal{C}}(\eta', Q)$ are exact. Since *B* has an ξ -*G*projective resolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact, there exists a triangle $C \to G_1 \to B \to \Sigma C \in \xi$ which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact, where $G_1 \in \mathcal{GP}(\xi)$ and *C* has an ξ -*G*projective resolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact. By base change and the similar method above, we have the following commutative diagram:

such that ϵ' and ζ' are in ξ . Since $G'_0 \in \mathcal{GP}(\xi)$ and $G_1 \in \mathcal{GP}(\xi)$, by [3, Theorem 3.11], we have $M \in \mathcal{GP}(\xi)$. Thus L has an ξ - \mathcal{G} projective resolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact. Note that the triangle $L \to P_0 \to A \to \Sigma L$ is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact. By repeating the preceding process, we have that A has an ξ -projective resolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact, as required. \Box

An ξ -projective (ξ - \mathcal{G} projective) coresolution of $A \in \mathcal{C}$ is an ξ -exact sequence $0 \to A \to X^0 \to X^1 \to \cdots$ in \mathcal{C} , such that $X^n \in \mathcal{P}(\xi)$ ($X^n \in \mathcal{GP}(\xi)$) for all $n \ge 0$.

Lemma 3.2. Let C be a triangulated category with enough ξ -projectives, $A \in C$. Then A has an ξ -projective coresolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact if and only if A has an ξ - \mathcal{G} projective coresolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact.

Proof It is completely dual to the proof of Lemma 3.1. So we omit it.

Lemma 3.3. Let C be a triangulated category with enough ξ -projectives, $A \in C$. Then the following statements are equivalent:

(1) A is an ξ -G projective object.

(2) A has an ξ -projective resolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact and has an ξ -projective coresolution which is $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact.

(3) There exist $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact triangles $K_{n+1} \to P_n \to K_n \to \Sigma K_{n+1} \in \xi$ such that $P_n \in \mathcal{P}(\xi)$ and $K_0 = A$.

Proof It follows from the definition of ξ - \mathcal{G} projective object.

Theorem 3.4. Let C be a triangulated category with enough ξ -projectives, $A \in C$. The following are equivalent:

(1) A is ξ -G projective.

(2) There exist $\operatorname{Hom}_{\mathcal{C}}(-,\mathcal{GP}(\xi))$ -exact and $\operatorname{Hom}_{\mathcal{C}}(\mathcal{GP}(\xi),-)$ -exact triangles $K_{n+1} \to G_n \to K_n \to \Sigma K_{n+1} \in \xi$ such that $G_n \in \mathcal{GP}(\xi)$ and $K_0 = A$.

(3) There exist $\operatorname{Hom}_{\mathcal{C}}(-,\mathcal{GP}(\xi))$ -exact triangles $K_{n+1} \to G_n \to K_n \to \Sigma K_{n+1} \in \xi$ such that $G_n \in \mathcal{GP}(\xi)$ and $K_0 = A$.

(4) There exist $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{P}(\xi))$ -exact triangles $K_{n+1} \to G_n \to K_n \to \Sigma K_{n+1} \in \xi$ such that $G_n \in \mathcal{GP}(\xi)$ and $K_0 = A$.

(5) There exists a Hom_C($\mathcal{GP}(\xi)$, -)-exact and Hom_C(-, $\mathcal{GP}(\xi)$)-exact triangle $A \to G \to A \to \Sigma A \in \xi$ such that $G \in \mathcal{GP}(\xi)$.

(6) There exists a Hom_{\mathcal{C}} $(-, \mathcal{GP}(\xi))$ -exact triangle $A \to G \to A \to \Sigma A \in \xi$ such that $G \in \mathcal{GP}(\xi)$.

(7) There exists a Hom_{\mathcal{C}} $(-, \mathcal{P}(\xi))$ -exact triangle $A \to G \to A \to \Sigma A \in \xi$ such that $G \in \mathcal{GP}(\xi)$.

Proof

 $(1) \Rightarrow (2)$ Let A be an ξ -G projective object of C. Consider the triangles

$$0 \to A \xrightarrow{1} A \to 0$$
 and $A \xrightarrow{1} A \to 0 \to \Sigma A$

Since ξ is proper, it contains Δ_0 . So the above two triangles are in ξ . It is easy to see that they are $\operatorname{Hom}_{\mathcal{C}}(-, \mathcal{GP}(\xi))$ -exact and $\operatorname{Hom}_{\mathcal{C}}(\mathcal{GP}(\xi), -)$ -exact triangles.

 $(2) \Rightarrow (3)$ and $(3) \Rightarrow (4)$ are clear.

 $(4) \Rightarrow (1)$ It follows from Lemma 3.1 and Lemma 3.2.

 $(1) \Rightarrow (5)$ Let A be an ξ - \mathcal{G} projective object of \mathcal{C} . Consider the split triangle

$$\delta: A \xrightarrow{\binom{1}{0}} A \oplus A \xrightarrow{(0\ 1)} A \xrightarrow{0} \Sigma A$$

Since ξ is proper, it contains Δ_0 . So δ is in ξ . For any $Q \in \mathcal{GP}(\xi)$, applying the functors $\operatorname{Hom}_{\mathcal{C}}(Q, -)$ and $\operatorname{Hom}_{\mathcal{C}}(-, Q)$ to the above triangle, we get the following exact sequences

 $0 \to \operatorname{Hom}_{\mathcal{C}}(A, Q) \to \operatorname{Hom}_{\mathcal{C}}(A \oplus A, Q) \to \operatorname{Hom}_{\mathcal{C}}(A, Q) \to 0,$

$$0 \to \operatorname{Hom}_{\mathcal{C}}(Q, A) \to \operatorname{Hom}_{\mathcal{C}}(Q, A \oplus A) \to \operatorname{Hom}_{\mathcal{C}}(Q, A) \to 0.$$

By [3, Theorem 3.11], we can obtain $A \oplus A \in \mathcal{GP}(\xi)$. So we are done.

 $(5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (1)$ are clear.

Denote by $\mathcal{GP}(\xi)$ the subcategory of all ξ - \mathcal{G} projective objects. Set $\mathcal{G}^0\mathcal{P}(\xi) = \mathcal{P}(\xi)$, $\mathcal{G}^1\mathcal{P}(\xi) = \mathcal{GP}(\xi)$, and inductively set $\mathcal{G}^{n+1}\mathcal{P}(\xi) = \mathcal{G}^n(\mathcal{GP}(\xi))$ for any $n \ge 1$. Now we can obtain our main theorem.

Theorem 3.5. Let C be a triangulated category with enough ξ -projectives. Then $\mathcal{G}^n \mathcal{P}(\xi) = \mathcal{GP}(\xi)$ for any $n \geq 1$.

Proof It is easy to see that $\mathcal{P}(\xi) \subseteq \mathcal{GP}(\xi) \subseteq \mathcal{G}^2\mathcal{P}(\xi) \subseteq \mathcal{G}^3\mathcal{P}(\xi) \subseteq \cdots$ is an ascending chain of subcategories of \mathcal{C} . By (1) \Leftrightarrow (3) of the above theorem, we have that $\mathcal{G}^2\mathcal{P}(\xi) = \mathcal{GP}(\xi)$. By using induction on n we get easily the assertion.

In order to give some equivalent characterizations for ξ -Gorenstein projective dimension of an object A in \mathcal{C} , one needs the following lemma.

Lemma 3.6. Let $0 \to B \to G_1 \to G_0 \to A \to 0$ be an ξ -exact sequence with $G_1, G_0 \in \mathcal{GP}(\xi)$. Then there exist the following ξ -exact sequences:

$$0 \to B \to P \to G'_0 \to A \to 0$$

and

$$0 \to B \to G'_1 \to Q \to A \to 0$$

where $P, Q \in \mathcal{P}(\xi)$ and $G'_0, G'_1 \in \mathcal{GP}(\xi)$.

Proof Since G_1 is in $\mathcal{GP}(\xi)$, there exists a triangle $G_1 \to P \to G_2 \to \Sigma G_1 \in \xi$ with $P \xi$ -projective and $G_2 \xi$ - \mathcal{G} projective. Since $0 \to B \to G_1 \to G_0 \to A \to 0$ is an ξ -exact sequence, there exist triangles $B \to G_1 \to K \to \Sigma B \in \xi$ and $K \to G_0 \to A \to \Sigma K \in \xi$. Then we have the following commutative diagrams by cobase change.

Since ξ is closed under cobase change, we get $K \to C \to G_2 \to \Sigma K \in \xi$ and $C \to G'_0 \to A \to \Sigma C \in \xi$.

For any $Q \in \mathcal{P}(\xi)$, applying the functor $\operatorname{Hom}_{\mathcal{C}}(Q, -)$ to the above diagrams, we have the following commutative diagrams:

By snake lemma and Lemma 2.3, we have $B \to P \to C \to \Sigma B \in \xi$ and $G_0 \to G'_0 \to G_2 \to \Sigma G_0 \in \xi$. Because both G_0 and G_2 are in $\mathcal{GP}(\xi)$, G'_0 is also in $\mathcal{GP}(\xi)$ by [3, Theorem 3.11]. Connecting the triangles $B \to P \to C \to \Sigma B$ and $C \to G'_0 \to A \to \Sigma C$, we get the first desired ξ -exact sequence.

Since G_0 is ξ - \mathcal{G} projective, there is a triangle $G_3 \to Q \to G_0 \to \Sigma G_3 \in \xi$ with $Q \in \mathcal{P}(\xi)$ and $G_3 \in \mathcal{GP}(\xi)$. Then we have the following two commutative diagrams by base change:

Since ξ is closed under base change, we get that the triangles $G_3 \to W \to K \to \Sigma G_3$ and $B \to G'_1 \to W \to \Sigma B$ are in ξ . Applying the functor $\operatorname{Hom}_{\mathcal{C}}(\mathcal{P}(\xi), -)$ to the above two diagrams, by snake lemma and Lemma 2.3 we have that the triangles $W \to Q \to A \to \Sigma W$ and $G_3 \to G'_1 \to G_1 \to \Sigma G_3$ are in ξ . Because both G_1 and G_3 are in $\mathcal{GP}(\xi)$, G'_1 is also in $\mathcal{GP}(\xi)$ by [3, Theorem 3.11]. Connecting the triangles $B \to G'_1 \to W \to \Sigma B$ and $W \to Q \to A \to \Sigma W$, we get the second desired ξ -exact sequence.

In particular, we have the following corollary.

Corollary 3.7. Let $G_1 \to G_0 \to A \to \Sigma G_1$ be in ξ with $G_1, G_0 \in \mathcal{GP}(\xi)$. Then there exist the following triangles:

$$P \to G'_0 \to A \to \Sigma P$$

and

$$G_1' \to Q \to A \to \Sigma G_1'$$

in ξ where $P, Q \in \mathcal{P}(\xi)$ and $G'_0, G'_1 \in \mathcal{GP}(\xi)$.

Proposition 3.8. Let C be a triangulated category with enough ξ -projectives, $A \in C$, and n be a non-negative integer. Then the following statements are equivalent:

- (1) ξ -Gpd(A) $\leq n$.
- (2) For every $0 \le i \le n$, there is an ξ -exact sequence

$$0 \to P_n \to \cdots \to P_{i+1} \to G \to P_{i-1} \to \cdots \to P_0 \to A \to 0$$

with $P_j \in \mathcal{P}(\xi)$ for all $0 \leq j \leq n, j \neq i$, and $G \in \mathcal{GP}(\xi)$.

(3) For every $0 \le i \le n$, there is an ξ -exact sequence

$$0 \to G_n \to \dots \to G_{i+1} \to P \to G_{i-1} \to \dots \to G_0 \to A \to 0$$

with $G_j \in \mathcal{GP}(\xi)$ for all $0 \leq j \leq n, j \neq i$, and $P \in \mathcal{P}(\xi)$.

Proof The case n = 0 is trivial. We may assume $n \ge 1$.

 $(1) \Rightarrow (2)$ we proceed by induction on n. Suppose ξ -Gpd $(A) \leq 1$. Then there exists a triangle $G_1 \to G_0 \to A \to \Sigma G_1$ in ξ with $G_0, G_1 \in \mathcal{GP}(\xi)$. By Corollary 3.7, we get the triangles $P \to G'_0 \to A \to \Sigma P$ and $G'_1 \to Q \to A \to \Sigma G'_1$ in ξ with $P, Q \in \mathcal{GP}(\xi)$ and $G'_0, G'_1 \in \mathcal{GP}(\xi)$.

Now suppose $n \geq 2$. Then there exists an ξ -exact sequence

$$0 \to G_n \to G_{n-1} \to \dots \to G_1 \to G_0 \to A \to 0$$

with $G_i \in \mathcal{GP}(\xi)$ for all $0 \leq i \leq n$. Applying Proposition 3.6 to the relevant ξ -exact sequence $0 \to K \to G_1 \to G_0 \to A \to 0$, we get an ξ -exact sequence $0 \to K \to G'_1 \to P_0 \to A \to 0$ with $G'_1 \in \mathcal{GP}(\xi)$ and $P_0 \in \mathcal{P}(\xi)$, which yields an ξ -exact sequence

$$0 \to G_n \to G_{n-1} \to \cdots \to G_2 \to G'_1 \to P_0 \to A \to 0.$$

Taking into account the relevant ξ -exact sequence

$$0 \to G_n \to G_{n-1} \to \dots \to G_2 \to G'_1 \to L \to 0,$$

it follows that ξ -Gpd(L) $\leq n-1$. By the induction hypothesis, there exists an ξ -exact sequence

$$0 \to P_n \to \dots \to P_{i+1} \to G \to P_{i-1} \to \dots \to P_1 \to L \to 0$$

with $P_j \in \mathcal{P}(\xi)$ for all $1 \leq j \leq n, j \neq i$, and $G \in \mathcal{GP}(\xi)$. Now one can past the above ξ -exact sequence and the triangle $L \to P_0 \to A \to \Sigma L$ together to obtain the desired ξ -exact sequence.

 $(2) \Rightarrow (1)$ and $(3) \Rightarrow (1)$ are clear.

(1) \Rightarrow (3) Suppose ξ -Gpd(A) $\leq n$. Then there exists an ξ -exact sequence

$$0 \to G_n \to G_{n-1} \to \dots \to G_1 \to G_0 \to A \to 0$$

with $G_i \in \mathcal{GP}(\xi)$ for all $0 \le i \le n$. For every $0 \le i < n$, considering the relevant ξ -exact sequence

$$0 \to G_n \to G_{n-1} \to \dots \to G_{i+1} \to G_i \to M \to 0,$$

it follows that ξ -Gpd $(M) \leq n-i$. By the proof of $(1) \Rightarrow (2)$, we get an ξ -exact sequence

$$0 \to G'_n \to G'_{n-1} \to \dots \to G'_{i+1} \to P \to M \to 0$$

with $G'_i \in \mathcal{GP}(\xi)$ and $P \in \mathcal{P}(\xi)$. So we obtain the ξ -exact sequence

$$0 \to G'_n \to \dots \to G'_{i+1} \to P \to G_{i-1} \to \dots \to G_0 \to A \to 0.$$

Now we only need to prove the result for i = n. Applying Corollary 3.7 to the relevant triangle $G_n \to G_{n-1} \to L \to \Sigma G_n$, we get the triangle $P \to G'_{n-1} \to L \to \Sigma P$ with $G'_{n-1} \in \mathcal{GP}(\xi)$ and $P \in \mathcal{P}(\xi)$. Thus we obtain the desired ξ -exact sequence

$$0 \to P \to G'_{n-1} \to G_{n-2} \to \dots \to G_0 \to A \to 0$$

References

- [1] M. Auslander, M. Bridger, Stable Module Theory, Mem. Amer. Math. Soc., vol.94, 1969.
- [2] L.L. Avramov, A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimensions, Proc. Lond. Math. Soc. 85(2002)393–440.
- [3] J. Asadollahi, Sh. Salarian, Gorenstein objects in triangulated categories, J. Algebra 281(2004)264–286.
- [4] J. Asadollahi, Sh. Salarian, Tate cohomology and Gorensteinness for triangulated categories, J. Algebra 299(2006)480–502.
- [5] A.A. Beilinson, J. Bernstein, P. Deligne, Perverse sheaves, in: Analysis and Topology on Singular Space, I, Luminy, 1981, in:Asterisque, vol.100, 1982, 5–171.
- [6] A. Beligiannis, Relative homological algebra and purity in triangulated categories, J. Algebra 227(2000), 268–361.
- [7] A. Beligiannis, The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization, Comm.Algebra 28(2000)4547-4596.
- [8] L.W. Christensen, Gorenstein Dimensions, Lecture Notes in Math., vol.1747, Springer-Verlag, Berlin, 2000.
- [9] E.E. Enochs, O.M.G. Jenda, Gorenstein injective and projective modules, Math.Z. 220(1995)611–633.
- [10] E.E. Enochs, O.M.G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., vol.30, Walter De Gruyter, NewYork, 2000.
- [11] D. Happel, Triangulated Categories in the Representation Theory of Finite-dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119, Cambridge University Press, Cambridge, UK, 1988.
- [12] R. Hartshorne, Residues and Duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, Lecture Notes in Math., vol. 20, Springer-Verlag, Berlin, 1966.
- [13] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189(2004)167–193.
- [14] Z.Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393(2013), 142–169.
- [15] A. Hubery, Notes on the octahedral axiom. Available at http://www.maths.leeds.ac.uk/

- [16] F. Kong, P. Zhang, From CM-finite to CM-free, Preprint. Available at http://arxiv.org/abs/1212.6184
- [17] H.R. Margolis, Spectra and the Steenrod Algebra, North-Holland Math. Library, vol.29, North-Holland, Amsterdam, 1983.
- [18] A. Neeman, Triangulated Categories, Ann. Math. Stud., vol. 148, Princeton Univ. Press, Princeton, NJ, 2001.
- [19] D. Puppe, On the structure of stable homotopy theory, in: Colloquim on Algebraic Topology, Aarhus Universitet Matematisk Institut, 1962, 65–71.
- [20] S. Sather-Wagstaff, T. Sharif, D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. 77(2008)481–502.
- [21] J.L. Verdier, Catégories dérivées: état 0, in: SGA 412, in: Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin, 1977, 262–311.