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STABILITY OF GORENSTEIN OBJECTS IN TRIANGULATED

CATEGORIES

ZHANPING WANG CHUNLI LIANG

Abstract Let C be a triangulated category with a proper class ξ of triangles. Asadollahi and

Salarian introduced and studied ξ-Gorenstein projective and ξ-Gorenstein injective objects, and

developed Gorenstein homological algebra in C. In this paper, we further study Gorenstein ho-

mological properties for a triangulated category. First, we discuss the stability of ξ-Gorenstein

projective objects, and show that the subcategory GP(ξ) of all ξ-Gorenstein projective objects has

a strong stability. That is, an iteration of the procedure used to define the ξ-Gorenstein projec-

tive objects yields exactly the ξ-Gorenstein projective objects. Second, we give some equivalent

characterizations for ξ-Gorenstein projective dimension of object in C.
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1. Introduction

Triangulated categories were introduced independently in algebraic geometry by Verdier in his

thése [21], and in algebraic topology by Puppe [19] in the early sixies, which have by now become

indispensable in many areas of mathematics such as algebraic geometry, stable homotopy theory

and representation theory [5, 11, 17]. The basic properties of triangulated categories can be found

in Neeman’s book [18].

Let C be a triangulated category with triangles ∆. Beligiannis [6] developed homological algebra

in C which parallels the homological algebra in an exact category in the sense of Quillen. By

specifying a class of triangles ξ ⊆ ∆, which is called a proper class of triangles, he introduced

ξ-projective objects, ξ-projective dimensions and their duals.

Auslander and Bridger generalized in [1] finitely generated projective modules to finitely gen-

erated modules of Gorenstein dimension zero over commutative noetherian rings. Furthermore,

Enochs and Jenda introduced in [9] Gorenstein projective modules for arbitrary modules over a

general ring, which is a generalization of finitely generated modules of Gorenstein dimension zero,

and dually they defined Gorenstein injective modules. Gorenstein homological algebra has been

extensively studied by many authors, see for example [2, 8, 10, 13].

As a natural generalization of modules of Gorenstein dimension zero, Beligiannis [7] defined the

concept of an X -Gorenstein object in an additive category C for a contravariantly finite subcategory

X of C such that any X -epic has kernal in C. In an attempt to extend the theory, Asadollahi and

Salarian [3] introduced and studied ξ-Gorenstein projective and ξ-Gorenstein injective objects, and

then ξ-Gorenstein projective and ξ-Gorenstein injective dimensions of objects in a triangulated
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category which are defined by modifying what Enochs and Jenda have done in an abelian category

[10].

Let A be an abelian category and X an additive full subcategory of A. Sather-Wagstaff,

Sharif and White introduced in [20] the Gorenstein category G(X ), which is defined as G(X ) =

{A is an object in A |

there exists an exact sequence · · · → X1 → X0 → X0 → X1 → · · · in X , which is both HomA(X ,−)-exact

and HomA(−,X ) -exact, such that A ∼= Im(X0 → X0)}. Set G0(X ) = X , G1(X ) = G(X ), and in-

ductively set Gn+1(X ) = Gn(G(X )) for any n ≥ 1. They proved that when X is self-orthogonal,

Gn(X ) = G(X ) for any n ≥ 1; and they proposed the question whether G2(X ) = G(X ) holds for

an arbitrary subcategory X . See [20, 4.10, 5.8]. Recently, Huang [15] proved that the answer to

this question is affirmative. This shows that G(X ), in particular the subcategory GP(A) of all

Gorenstein projective objects, has a strong stability. Kong and Zhang give a slight generalization

of this stability by a different method [16].

Inspired by the above results, we consider the stability of the subcategory GP(ξ) of all ξ-

Gorenstein projective objects, which is introduced by Asadollahi and Salarian [3]. Set G0P(ξ) =

P(ξ), G1P(ξ) = GP(ξ), and inductively set Gn+1P(ξ) = Gn(GP(ξ)) for any n ≥ 1. A natural

question is whether GnP(ξ) = GP(ξ).

In Section 2, we give some terminologies and some preliminary results. Section 3 is devoted to

answer the above question. We will prove the following theorem.

Main theorem Let C be a triangulated category with enough ξ-projectives, where ξ is a proper

class of triangles. Then GnP(ξ) = GP(ξ) for any n ≥ 1.

The above theorem shows that the subcategory GP(ξ) of all ξ-Gorenstein projective objects has

a strong stability. That is, an iteration of the procedure used to define the ξ-Gorenstein projec-

tive objects yields exactly the ξ-Gorenstein projective objects. Finally, we give some equivalent

characterizations for ξ-Gorenstein projective dimension of an object A in C.

2. Some basic facts in triangulated categories

This section is devoted to recall the definitions and elementary properties of triangulated cate-

gories used throughout the paper. For the terminology we shall follow [3, 4, 6].

Let C be an additive category and Σ : C → C be an additive functor. Let Diag(C,Σ) denote the

category whose objects are diagrams in C of the form A → B → C → ΣA, and morphisms between

two objects Ai → Bi → Ci → ΣAi, i = 1, 2, are a triple of morphisms α : A1 → A2, β : B1 → B2

and γ : C1 → C2, such that the following diagram commutes:

A1

f1
//

α

��

B1

g1
//

β

��

C1
h1

//

γ

��

ΣA1

Σα

��

A2

f2
// B2

g2
// C2

h2
// ΣA2.

A triangulated category is a triple (C,Σ,∆), where C is an additive category, Σ is an autoequiv-

alence of C and ∆ is a full subcategory of Diag(C,Σ) which satisfies the following axioms. The

elements of ∆ are then called triangles.

(Tr1) Every diagram isomorphic to a triangle is a triangle. Every morphism f : A → B in

C can be embedded into a triangle A
f
→ B

g
→ C

h
→ ΣA. For any object A ∈ C, the diagram

A
1A→ A → 0 → ΣA is a triangle, where 1A denotes the identity morphism from A to A.
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(Tr2) A
f
→ B

g
→ C

h
→ ΣA is a triangle if and only if B

g
→ C

h
→ ΣA

−Σf
→ ΣB.

(Tr3) Given triangles Ai
fi
→ Bi

gi
→ Ci

hi→ ΣAi, i = 1, 2, and morphism α : A1 → A2, β : B1 → B2

such that f2α = βf1, there exists a morphism γ : C1 → C2 such that (α, β, γ) is a morphism from

the first triangle to the second.

(Tr4) (The Octahedral Axiom) Given triangles

A
f
→ B

i
→ C′ i′

→ ΣA, B
g
→ C

j
→ A′ j′

→ ΣB, A
gf
→ C

k
→ B′ k′

→ ΣA,

there exist morphisms f ′ : C′ → B′ and g′ : B′ → A′ such that the following diagram commutes

and the third column is a triangle:

A
f

// B

g

��

i
// C′

f ′

��

i′
// ΣA

A
gf

// C

j

��

k
// B′

g′

��

k′

// ΣA

Σf

��

A′

j′

��

A′

j′Σi

��

j′
// ΣB

ΣB
Σi

// ΣC′

Some equivalent formulations for the Octahedral Axiom (Tr4) are given in [6, 2.1], which are

more convient to use. If C = (C,Σ,∆) satisfies all the axioms of a triangulated category except

possible of (Tr4), then (Tr4) is equivalent to each of the following:

Base Change: For any triangle A
f
→ B

g
→ C

h
→ ΣA ∈ ∆ and morphism ε : E → C, there exists

a commutative diagram:

M

α

��

M

δ

��

A
f ′

// G

β

��

g′

// E

ε

��

h′

// ΣA

A
f

// B

γ

��

g
// C

ζ

��

h

// ΣA

Σf ′

��

ΣM ΣM
−Σα

// ΣG

in which all horizontal and vertical diagrams are triangles in ∆.

Cobase Change: For any triangle A
f
→ B

g
→ C

h
→ ΣA ∈ ∆ and morphism α : A → D, there

exists a commutative diagram:
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N

ζ

��

N

δ

��

Σ−1C
−Σ−1h

// A

α

��

f
// B

β

��

g
// C

Σ−1C
−Σ−1h′

// D

η

��

f ′

// F

υ

��

g′

// C

−h

��

ΣN ΣN
−Ση

// ΣA

in which all horizontal and vertical diagrams are triangles in ∆.

The following definitions are quoted verbatim from [6, Section 2]. A class of triangles ξ is closed

under base change if for any triangle A
f
→ B

g
→ C

h
→ ΣA ∈ ξ and any morphism ε : E → C as in the

base change diagram above, the triangle A
f ′

→ G
g′

→ E
h′

→ ΣA belongs to ξ. Dually, a class of triangles

ξ is closed under cobase change if for any triangle A
f
→ B

g
→ C

h
→ ΣA ∈ ξ and any morphism

α : A → D as in the cobase change diagram above, the triangle D
f ′

→ F
g′

→ C
h′

→ ΣD belongs to

ξ. A class of triangles ξ is closed under suspension if for any triangle A
f
→ B

g
→ C

h
→ ΣA ∈ ξ and

i ∈ Z, the triangle ΣiA
(−1)iΣif
−−−−−−→ ΣiB

(−1)iΣig
−−−−−−→ ΣiC

(−1)iΣih
−−−−−−→ Σi+1A is in ξ. A class of triangles

ξ is called saturated if in the situation of base change, whenever the third vertical and the second

horizontal triangles are in ξ, then the triangle A
f
→ B

g
→ C

h
→ ΣA is in ξ. An easy consequence of

the octahedral axiom is that ξ is saturated if and only if in the situation of cobase change, whenever

the second vertical and the third horizontal triangles are in ξ, then the triangle A
f
→ B

g
→ C

h
→ ΣA

is in ξ.

A triangle (T ) : A
f
→ B

g
→ C

h
→ ΣA ∈ ∆ is called split if it is isomorphic to the triangle

A
(1 0)
−→ A⊕ C

(01)
−→ C

0
→ ΣA. It is easy to see that (T ) is split if and only if f is a section or g is a

retraction or h = 0. The full subcategory of ∆ consisting of the split triangles will be denoted by

∆0.

Definition 2.1. ([6, 2.2]) Let C = (C,Σ,∆) be a triangulated category. A class ξ ⊆ ∆ is called a

proper class of triangles if the following conditions hold.

(1) ξ is closed under isomorphisms, finite coproducts and ∆0 ⊆ ξ ⊆ ∆.

(2) ξ is closed under suspensions and is saturated.

(3) ξ is closed under base and cobase change.

It is known that ∆0 and the class of all triangles ∆ in C are proper classes of triangles. There

are more interesting examples of proper classes of triangles enumerated in [6, Example 2.3].

Throughout we fix a proper class ξ of triangles in the triangulated category C.

Definition 2.2. ([6, 4.1]) An object P ∈ C (resp., I ∈ C) is called ξ-projective (resp., ξ-injective) if

for any triangle A → B → C → ΣA in ξ, the induced sequence of abelian groups 0 → HomC(P,A) →

HomC(P,B) → HomC(P,C) → 0 (resp., 0 → HomC(C, I) → HomC(B, I) → HomC(A, I) → 0) is

exact.

It follows easily from the definition that the subcategory P(ξ) of ξ-projective objects and the

subcategory I(ξ) of ξ-injective objects are full, additive, Σ-stable, and closed under isomorphisms



STABILITY OF GORENSTEIN OBJECTS IN TRIANGULATED CATEGORIES 5

and direct summands. The category C is said to have enough ξ-projectives (resp., ξ-injectives) if

for any object A ∈ C, there exists a triangle K → P → A → ΣK (resp., A → I → L → ΣA) in ξ

with P ∈ P(ξ) (resp., I ∈ I(ξ)). However, it is not so easy to find a proper class ξ of triangles in

a triangulated category having enough ξ-projectives or ξ-injectives in general. Here we present a

nontrivial example due to Beligiannis, and also, see more nontrivial examples in [6, Sections 12.4

and 12.5], which are of great interest. Take C to be the unbounded homotopy category of complexes

of objects from a Grothendieck category which has enough projectives. Then the so-called Cartan-

Eilenberg projective and injective complexes form the relative projective and injective objects for

a proper class of triangles in C.

The following lemma is quoted from [6, 4.2].

Lemma 2.3. Let C have enough ξ-projectives. Then a triangle A → B → C → ΣA is in ξ if and

only if for all P ∈ P(ξ) the induced sequence 0 → HomC(P,A) → HomC(P,B) → HomC(P,C) → 0

is exact.

Recall that an ξ-exact sequence X is a diagram

· · · −→ X1
d1−→ X0

d0−→ X−1
d−1

−→ X−2 −→ · · ·

in C, such that for each n ∈ Z, there exists triangle Kn+1
fn
−→ Xn

gn
−→ Kn

hn−→ ΣKn+1 in ξ and the

differential is defined as dn = fn−1gn for any n.

Let X be a full and additive subcategory of C. A triangle A → B → C → ΣA in ξ is

called HomC(−,X )-exact (resp., HomC(X ,−)-exact), if for any X ∈ X , the induced sequence of

abelian groups 0 → HomC(C,X) → HomC(B,X) → HomC(A,X) → 0 (resp., 0 → HomC(X,A) →

HomC(X,B) → HomC(X,C) → 0) is exact.

A complete ξ-projective resolution is a diagram

P : · · · → P1
d1−→ P0

d0−→ P−1 → · · ·

in C such that for any integer n, Pn ∈ P(ξ) and there exist HomC(−,P(ξ))-exact triangles

Kn+1
fn
−→ Pn

gn
−→ Kn

hn−→ ΣKn+1

in ξ and the differential is defined as dn = fn−1gn for any n.

Definition 2.4. (see [3]) Let P be a complete ξ-projective resolution in C. So for any integer n,

there exist triangles

Kn+1
fn
−→ Pn

gn
−→ Kn

hn−→ ΣKn+1

in ξ. The objects Kn for any integer n, are called ξ-Gorenstein projective (ξ-Gprojective for short).

Dually, one can define complete ξ-injective resolution and ξ-Gorenstein injective (ξ-Ginjective

for short) objects.

We denote by GP(ξ) and GI(ξ) the subcategory of ξ-Gprojective and ξ-Ginjective objects of C

respectively. It is obvious that P(ξ) ⊆ GP(ξ) and I(ξ) ⊆ GI(ξ); GP(ξ) and GI(ξ) are full, additive,

Σ-stable, and closed under isomorphisms and direct summands.
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3. Main results

Throughout the paper, C is a triangulated category with enough ξ-projectives and enough ξ-

injectives, where ξ is a fixed proper class of triangles.

Recall that in [3] a diagram

P : · · · → P1
d1−→ P0

d0−→ P−1 → · · ·

in C is a complete ξ-projective resolution, if for any n, Pn ∈ P(ξ), and there exist HomC(−,P(ξ))-

exact triangles

Kn+1
fn
−→ Pn

gn
−→ Kn

hn−→ ΣKn+1

in ξ and the differential is defined as dn = fn−1gn for any n. That is, P is an ξ-exact sequence

of ξ-projective objects, and is HomC(−,P(ξ))-exact. The objects Kn for any integer n, are called

ξ-Gorenstein projective (ξ-Gprojective for short). Dually, one can define complete ξ-injective reso-

lution and ξ-Gorenstein injective (ξ-Ginjective for short) objects.

We study only the case of ξ-Gprojective objects since the study of the ξ-Ginjective objects is

dual.

An ξ-Gprojective resolution of A ∈ C is an ξ-exact sequence · · · → Gn → Gn−1 → · · · → G1 →

G0 → A → 0 in C, such that Gn ∈ GP(ξ) for all n ≥ 0. The definition is different from [3, Definition

4.2].

Lemma 3.1. Let C be a triangulated category with enough ξ-projectives, A ∈ C. Then A has an ξ-

projective resolution which is HomC(−,P(ξ))-exact if and only if A has an ξ-Gprojective resolution

which is HomC(−,P(ξ))-exact.

Proof Since P(ξ) ⊆ GP(ξ), it is enough to show the “if” part. Assume that A has an ξ-Gprojective

resolution which is HomC(−,P(ξ))-exact. Then there exists a triangle δ : B → G0 → A → ΣB ∈ ξ

which is HomC(−,P(ξ))-exact, where G0 ∈ GP(ξ) and B has an ξ-Gprojective resolution which is

HomC(−,P(ξ))-exact. Since G0 ∈ GP(ξ), there exists a triangle η : G′
0 → P0 → G0 → ΣG′

0 ∈ ξ

such that G′
0 ∈ GP(ξ), P0 ∈ P(ξ) and it is HomC(−,P(ξ))-exact. By base change, we have the

following commutative diagram:

Σ−1A

��

Σ−1A

��

η′ : G′
0

// L

��

// B

��

// ΣG′
0

η : G′
0

// P0

��

// G0

��

// ΣG′
0

ΣA A

Since ξ is closed under base change, we have η′ ∈ ξ. Applying the functor HomC(P(ξ),−) to the

above diagram, we obtain the following commutative diagram
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0

��

0

��

HomC(P(ξ), η′) : 0 // HomC(P(ξ), G′
0)

// HomC(P(ξ), L)

��

// HomC(P(ξ), B)

��

// 0

HomC(P(ξ), η) : 0 // HomC(P(ξ), G′
0)

// HomC(P(ξ), P0)

��

// HomC(P(ξ), G0)

��

// 0

HomC(P(ξ), A)

��

HomC(P(ξ), A)

��

0 0

By snake lemma, we get that the second vertical sequence is exact, and so L → P0 → A → ΣL ∈ ξ

by Lemma 2.3. For any Q ∈ P(ξ), applying HomC(−, Q) to the above base change diagram, we

obtain the following commutative diagram:

HomC(η,Q) HomC(η
′, Q)

0

��

0

��

HomC(δ,Q) : 0 // HomC(A,Q) // HomC(G0, Q)

��

// HomC(B,Q)

��

// 0

HomC(δ
′, Q) : 0 // HomC(A,Q) // HomC(P0, Q)

��

// HomC(L,Q)

��

// 0

HomC(G
′
0, Q)

��

HomC(G
′
0, Q)

��

0 0

By snake lemma, one can get that HomC(δ
′, Q) and HomC(η

′, Q) are exact. Since B has an ξ-

Gprojective resolution which is HomC(−,P(ξ))-exact, there exists a triangle C → G1 → B → ΣC ∈

ξ which is HomC(−,P(ξ))-exact, where G1 ∈ GP(ξ) and C has an ξ-Gprojective resolution which

is HomC(−,P(ξ))-exact. By base change and the similar method above, we have the following

commutative diagram:
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ζ′ ζ

C

��

C

��

ǫ′ : G′
0

// M

��

// G1

��

// ΣG′
0

ǫ′ : G′
0

// L

��

// B

��

// ΣG′
0

ΣC ΣC

such that ǫ′ and ζ′ are in ξ. Since G′
0 ∈ GP(ξ) and G1 ∈ GP(ξ), by [3, Theorem 3.11], we have

M ∈ GP(ξ). Thus L has an ξ-Gprojective resolution which is HomC(−,P(ξ))-exact. Note that the

triangle L → P0 → A → ΣL is HomC(−,P(ξ))-exact. By repeating the preceding process, we have

that A has an ξ-projective resolution which is HomC(−,P(ξ))-exact, as required. �

An ξ-projective (ξ-Gprojective) coresolution of A ∈ C is an ξ-exact sequence 0 → A → X0 →

X1 → · · · in C, such that Xn ∈ P(ξ) (Xn ∈ GP(ξ)) for all n ≥ 0.

Lemma 3.2. Let C be a triangulated category with enough ξ-projectives, A ∈ C. Then A has

an ξ-projective coresolution which is HomC(−,P(ξ))-exact if and only if A has an ξ-Gprojective

coresolution which is HomC(−,P(ξ))-exact.

Proof It is completely dual to the proof of Lemma 3.1. So we omit it. �

Lemma 3.3. Let C be a triangulated category with enough ξ-projectives, A ∈ C. Then the following

statements are equivalent:

(1) A is an ξ-Gprojective object.

(2) A has an ξ-projective resolution which is HomC(−,P(ξ))-exact and has an ξ-projective cores-

olution which is HomC(−,P(ξ))-exact.

(3) There exist HomC(−,P(ξ))-exact triangles Kn+1 → Pn → Kn → ΣKn+1 ∈ ξ such that

Pn ∈ P(ξ) and K0 = A.

Proof It follows from the definition of ξ-Gprojective object. �

Theorem 3.4. Let C be a triangulated category with enough ξ-projectives, A ∈ C. The following

are equivalent:

(1) A is ξ-Gprojective.

(2) There exist HomC(−,GP(ξ))-exact and HomC(GP(ξ),−)-exact triangles Kn+1 → Gn →

Kn → ΣKn+1 ∈ ξ such that Gn ∈ GP(ξ) and K0 = A.

(3) There exist HomC(−,GP(ξ))-exact triangles Kn+1 → Gn → Kn → ΣKn+1 ∈ ξ such that

Gn ∈ GP(ξ) and K0 = A.

(4) There exist HomC(−,P(ξ))-exact triangles Kn+1 → Gn → Kn → ΣKn+1 ∈ ξ such that

Gn ∈ GP(ξ) and K0 = A.

(5) There exists a HomC(GP(ξ),−)-exact and HomC(−,GP(ξ))-exact triangle A → G → A →

ΣA ∈ ξ such that G ∈ GP(ξ).
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(6) There exists a HomC(−,GP(ξ))-exact triangle A → G → A → ΣA ∈ ξ such that G ∈ GP(ξ).

(7) There exists a HomC(−,P(ξ))-exact triangle A → G → A → ΣA ∈ ξ such that G ∈ GP(ξ).

Proof

(1)⇒(2) Let A be an ξ-Gprojective object of C. Consider the triangles

0 → A
1
→ A → 0 and A

1
→ A → 0 → ΣA

Since ξ is proper, it contains ∆0. So the above two triangles are in ξ. It is easy to see that they

are HomC(−,GP(ξ))-exact and HomC(GP(ξ),−)-exact triangles.

(2)⇒(3) and (3)⇒(4) are clear.

(4)⇒(1) It follows from Lemma 3.1 and Lemma 3.2.

(1)⇒(5) Let A be an ξ-Gprojective object of C. Consider the split triangle

δ : A
(10)
→ A⊕A

(0 1)
→ A

0
→ ΣA

Since ξ is proper, it contains ∆0. So δ is in ξ. For anyQ ∈ GP(ξ), applying the functors HomC(Q,−)

and HomC(−, Q) to the above triangle, we get the following exact sequences

0 → HomC(A,Q) → HomC(A⊕A,Q) → HomC(A,Q) → 0,

0 → HomC(Q,A) → HomC(Q,A⊕A) → HomC(Q,A) → 0.

By [3, Theorem 3.11], we can obtain A⊕A ∈ GP(ξ). So we are done.

(5)⇒(6)⇒(7)⇒(1) are clear. �

Denote by GP(ξ) the subcategory of all ξ-Gprojective objects. Set G0P(ξ) = P(ξ), G1P(ξ) =

GP(ξ), and inductively set Gn+1P(ξ) = Gn(GP(ξ)) for any n ≥ 1. Now we can obtain our main

theorem.

Theorem 3.5. Let C be a triangulated category with enough ξ-projectives. Then GnP(ξ) = GP(ξ)

for any n ≥ 1.

Proof It is easy to see that P(ξ) ⊆ GP(ξ) ⊆ G2P(ξ) ⊆ G3P(ξ) ⊆ · · · is an ascending chain of

subcategories of C. By (1) ⇔ (3) of the above theorem, we have that G2P(ξ) = GP(ξ). By using

induction on n we get easily the assertion. �

In order to give some equivalent characterizations for ξ-Gorenstein projective dimension of an

object A in C, one needs the following lemma.

Lemma 3.6. Let 0 → B → G1 → G0 → A → 0 be an ξ-exact sequence with G1, G0 ∈ GP(ξ). Then

there exist the following ξ-exact sequences:

0 → B → P → G′
0 → A → 0

and

0 → B → G′
1 → Q → A → 0

where P,Q ∈ P(ξ) and G′
0, G

′
1 ∈ GP(ξ).

Proof Since G1 is in GP(ξ), there exists a triangle G1 → P → G2 → ΣG1 ∈ ξ with P ξ-projective

and G2 ξ-Gprojective. Since 0 → B → G1 → G0 → A → 0 is an ξ-exact sequence, there exist

triangles B → G1 → K → ΣB ∈ ξ and K → G0 → A → ΣK ∈ ξ. Then we have the following

commutative diagrams by cobase change.
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B

��

B

��

Σ−1G2
// G1

//

��

P //

��

G2

Σ−1G2
// K //

��

C //

��

G2

ΣB ΣB

Σ−1G2

��

Σ−1G2

��

Σ−1A // K //

��

G0
//

��

A

Σ−1A // C //

��

G′
0

//

��

A

G2 G2

Since ξ is closed under cobase change, we get K → C → G2 → ΣK ∈ ξ and C → G′
0 → A → ΣC ∈

ξ.

For anyQ ∈ P(ξ), applying the functor HomC(Q,−) to the above diagrams, we have the following

commutative diagrams:

0

��

0

��

HomC(Q,B)

��

HomC(Q,B)

��

0 // HomC(Q,G1)

��

// HomC(Q,P )

��

// HomC(Q,G2) // 0

0 // HomC(Q,K) //

��

HomC(Q,C)

��

// HomC(Q,G2) // 0

0 0
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0

��

0

��

0 // HomC(Q,K)

��

// HomC(Q,G0)

��

// HomC(Q,A) // 0

0 // HomC(Q,C) //

��

HomC(Q,G′
0)

��

// HomC(Q,A) // 0

HomC(Q,G2)

��

HomC(Q,G2)

��

0 0

By snake lemma and Lemma 2.3, we have B → P → C → ΣB ∈ ξ and G0 → G′
0 → G2 → ΣG0 ∈ ξ.

Because both G0 and G2 are in GP(ξ), G′
0 is also in GP(ξ) by [3, Theorem 3.11]. Connecting the

triangles B → P → C → ΣB and C → G′
0 → A → ΣC, we get the first desired ξ-exact sequence.

Since G0 is ξ-Gprojective, there is a triangle G3 → Q → G0 → ΣG3 ∈ ξ with Q ∈ P(ξ) and

G3 ∈ GP(ξ). Then we have the following two commutative diagrams by base change:

G3

��

G3

��

Σ−1A // W //

��

Q //

��

A

Σ−1A // K //

��

G0
//

��

A

ΣG3 ΣG3

G3

��

G3

��

B // G′
1

//

��

W //

��

ΣB

B // G1
//

��

K //

��

ΣB

ΣG3 ΣG3

Since ξ is closed under base change, we get that the triangles G3 → W → K → ΣG3 and B → G′
1 →

W → ΣB are in ξ. Applying the functor HomC(P(ξ),−) to the above two diagrams, by snake lemma

and Lemma 2.3 we have that the triangles W → Q → A → ΣW and G3 → G′
1 → G1 → ΣG3 are

in ξ. Because both G1 and G3 are in GP(ξ), G′
1 is also in GP(ξ) by [3, Theorem 3.11]. Connecting

the triangles B → G′
1 → W → ΣB and W → Q → A → ΣW , we get the second desired ξ-exact

sequence. �

In particular, we have the following corollary.
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Corollary 3.7. Let G1 → G0 → A → ΣG1 be in ξ with G1, G0 ∈ GP(ξ). Then there exist the

following triangles:

P → G′
0 → A → ΣP

and

G′
1 → Q → A → ΣG′

1

in ξ where P,Q ∈ P(ξ) and G′
0, G

′
1 ∈ GP(ξ).

Proposition 3.8. Let C be a triangulated category with enough ξ-projectives, A ∈ C, and n be a

non-negative integer. Then the following statements are equivalent:

(1) ξ-Gpd(A) ≤ n.

(2) For every 0 ≤ i ≤ n, there is an ξ-exact sequence

0 → Pn → · · · → Pi+1 → G → Pi−1 → · · · → P0 → A → 0

with Pj ∈ P(ξ) for all 0 ≤ j ≤ n, j 6= i, and G ∈ GP(ξ).

(3) For every 0 ≤ i ≤ n, there is an ξ-exact sequence

0 → Gn → · · · → Gi+1 → P → Gi−1 → · · · → G0 → A → 0

with Gj ∈ GP(ξ) for all 0 ≤ j ≤ n, j 6= i, and P ∈ P(ξ).

Proof The case n = 0 is trivial. We may assume n ≥ 1.

(1)⇒(2) we proceed by induction on n. Suppose ξ-Gpd(A) ≤ 1. Then there exists a triangle

G1 → G0 → A → ΣG1 in ξ with G0, G1 ∈ GP(ξ). By Corollary 3.7, we get the triangles P →

G′
0 → A → ΣP and G′

1 → Q → A → ΣG′
1 in ξ with P,Q ∈ GP(ξ) and G′

0, G
′
1 ∈ GP(ξ).

Now suppose n ≥ 2. Then there exists an ξ-exact sequence

0 → Gn → Gn−1 → · · · → G1 → G0 → A → 0

with Gi ∈ GP(ξ) for all 0 ≤ i ≤ n. Applying Proposition 3.6 to the relevant ξ-exact sequence

0 → K → G1 → G0 → A → 0, we get an ξ-exact sequence 0 → K → G′
1 → P0 → A → 0 with

G′
1 ∈ GP(ξ) and P0 ∈ P(ξ), which yields an ξ-exact sequence

0 → Gn → Gn−1 → · · · → G2 → G′
1 → P0 → A → 0.

Taking into account the relevant ξ-exact sequence

0 → Gn → Gn−1 → · · · → G2 → G′
1 → L → 0,

it follows that ξ-Gpd(L) ≤ n− 1. By the induction hypothesis, there exists an ξ-exact sequence

0 → Pn → · · · → Pi+1 → G → Pi−1 → · · · → P1 → L → 0

with Pj ∈ P(ξ) for all 1 ≤ j ≤ n, j 6= i, and G ∈ GP(ξ). Now one can paste the above ξ-exact

sequence and the triangle L → P0 → A → ΣL together to obtain the desired ξ-exact sequence.

(2)⇒(1) and (3)⇒(1) are clear.

(1)⇒(3) Suppose ξ-Gpd(A) ≤ n. Then there exists an ξ-exact sequence

0 → Gn → Gn−1 → · · · → G1 → G0 → A → 0

with Gi ∈ GP(ξ) for all 0 ≤ i ≤ n. For every 0 ≤ i < n, considering the relevant ξ-exact sequence

0 → Gn → Gn−1 → · · · → Gi+1 → Gi → M → 0,
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it follows that ξ-Gpd(M) ≤ n− i. By the proof of (1)⇒(2), we get an ξ-exact sequence

0 → G′
n → G′

n−1 → · · · → G′
i+1 → P → M → 0

with G′
i ∈ GP(ξ) and P ∈ P(ξ). So we obtain the ξ-exact sequence

0 → G′
n → · · · → G′

i+1 → P → Gi−1 → · · · → G0 → A → 0.

Now we only need to prove the result for i = n. Applying Corollary 3.7 to the relevant triangle

Gn → Gn−1 → L → ΣGn, we get the triangle P → G′
n−1 → L → ΣP with G′

n−1 ∈ GP(ξ) and

P ∈ P(ξ). Thus we obtain the desired ξ-exact sequence

0 → P → G′
n−1 → Gn−2 → · · · → G0 → A → 0.

�
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