
Non-Iterative Approach for Fast and Accurate Vanishing Point Detection

Jean-Philippe Tardif

McGill University, Montréal, QC, Canada

tardifj@cim.mcgill.ca

Abstract

We present an algorithm that quickly and accurately es-

timates vanishing points in images of man-made environ-

ments. Contrary to previously proposed solutions, ours is

neither iterative nor relies on voting in the space of van-

ishing points. Our formulation is based on a recently pro-

posed algorithm for the simultaneous estimation of multiple

models called J-Linkage. Our method avoids representing

edges on the Gaussian sphere and the computations and er-

ror measures are done in the image. We show that a consis-

tency measure between a vanishing point and an edge of the

image can be computed in closed-form while being geomet-

rically meaningful. Finally, given a set of estimated vanish-

ing points, we show how this consistency measure can be

used to identify the three vanishing points corresponding to

the Manhattan directions. We compare our algorithm with

other approaches on the York Urban Database and show

significant performance improvements.

1. Introduction

Computing vanishing points in an image has applications

ranging from camera calibration, pose estimation, single-

view reconstruction, autonomous navigation and rectangu-

lar structure estimation and matching. Since the early 90’s,

the usefulness of estimating the vanishing points is well un-

derstood in camera calibration and pose estimation [6]. For

that reason, most efforts have been put into algorithms for

their automatic detection in images.

Recently, vanishing points have been used for detecting

dominant rectangular structures located on building facades

[14]. Indeed, the structures formed by two pairs of lines on a

plane and corresponding to orthogonal vanishing points can

be rectified into rectangular patches. This has been shown

to improve the matching of these rectangular structures [15]

or the matching of the features located onto the building

facades [21].

In addition, with the appearance of video cameras on

cellphones and personal device assistants, applications for

single-view reconstruction and pose estimation are becom-

ing of very high interest, for example, for augmented real-

ity. But since the resources on these devices are limited,

algorithms should be efficient and avoid sophisticated opti-

mization techniques.

1.1. Contributions

In this work, we are concerned with the computational

aspect of the vanishing point detection. Our first contribu-

tion is a non-iterative solution for simultaneously estimat-

ing the vanishing points in an image given a set of sparse

edges. Our solution is based on an approach recently pro-

posed by Toldo and Fusiello, called J-Linkage [19]. Simi-

larly to RANSAC, it estimates vanishing point hypotheses

using minimal sets of edges and computes consensus sets.

The J-Linkage algorithm requires a measure of consistency

between hypothesized vanishing points and edges that is ge-

ometrically meaningful, threats all vanishing points equally

and does not require distinguishing finite and infinite van-

ishing points. Our second contribution is to give such mea-

sure in closed-form. We will discuss how this measure

is also useful to define a distance between two vanishing

points. Our third contribution is an algorithm that uses that

notion of distance to verify which of the vanishing points

corresponds to Manhattan directions [9, 10].

Our algorithms do not operate on the Gaussian sphere.

Specifically, the consistency and distance measures have

clear geometric interpretation and are given in image pix-

els.

1.2. Organization

Related works are described in Section 2 followed by our

approach for detecting edges in images in Section 3. Our

algorithms are described in detail in Sections 4 to 6. Exper-

imental validation and concluding remarks are presented in

Sections 7 and 8, respectively.

1.3. Notation

Matrices are in sans-serif, e.g. M and vectors in bold,

e.g. v. The 3 × 3 matrix [v]
×

is the skew-symmetric ma-

trix corresponding to v and relates to the cross product with

1250

2009 IEEE 12th International Conference on Computer Vision (ICCV)
978-1-4244-4419-9/09/$25.00 ©2009 IEEE

[v]
×
w = v ×w. The orthogonal distance of a point p to a

line l is

dist(l,p) =
|l�p|√
l2
1

+ l2
2

where l and p ∈ P
2 and p3 = 1, i.e. p is not at infinity. In

this work, p will be a pixel of the image.

2. Related work

2.1. Vanishing point detection

There is a large amount of work on detecting vanishing

points in different contexts and for different applications.

In this section, we present the ones that are most related

to the present work. Techniques for estimating vanishing

points can be roughly divided into three categories. The

first two require the knowledge of the internal parameters

of the camera and the last one operates in an uncalibrated

setting.

Given the internal parameters, image lines as well as

vanishing points, including the ones at infinity, can be rep-

resented by normalized 2d homogeneous coordinates, i.e.

unit vectors on the Gaussian sphere centered on the optical

center of the camera [7, 5]. Since Barnard et al. [4], detec-

tion was performed on a quantized Gaussian sphere using a

Hough transform, until this was shown to lead to spurious

vanishing points [18]. Since then, most of the works rely

on 3D parallelism or orthogonality of dominant structures

in the scene to avoid any false detection [2].

More recent techniques, requiring the knowledge of in-

ternal parameters, are based on the “Manhattan assump-

tions” that the prominent structures of the scene are orthog-

onal to each other [9, 10]. The algorithms directly estimate

the so-called Manhattan directions or equivalently the cam-

era orientation. In this setting, algorithms using either edge

gradients [17] or edges [11] have been successfully demon-

strated.

Finally, some algorithms assume no knowledge of the in-

ternal parameters and their main goal is to estimate possibly

non-orthogonal vanishing points. These are especially use-

ful for calibration of the camera using one or more views,

but also to recover building facades. Almansa et al. use

the Helmholtz principle to partition the image plane into

Meaningful vanishing regions and use Minimum Descrip-

tion Length to reject spurious vanishing points [2]. The

Expectation Maximization (EM) approach of Antone and

Teller requiring entities represented on Gaussian sphere

[3] was extended to the uncalibrated case by Kosecka and

Zhang [13]. The EM approach requires an initial estimate of

the vanishing points. A typical solution is to cluster edges

based on their orientation and to compute vanishing points

for each of the clusters. Heuristics based on RANSAC have

also been suggested [1]. Finally, Rother proposes heuristics

to recover the vanishing points corresponding to Manhattan

directions [16]. Unfortunately, it is computationally expen-

sive and requires a criteria to distinguish finite from infinite

vanishing points.

Our work relates to the last two categories of approaches.

Our main method is to detect possibly non-orthogonal van-

ishing points. In addition, we propose an algorithm for de-

termining the ones corresponding to Manhattan directions

in the case of known internal parameters.

2.2. Multiple model estimation

The problem of simultaneous multiple model estima-

tion within a dataset containing outliers is very important

in computer vision. A popular method, called Random-

ized Hough Transform (RHT), is based on random sam-

pling over minimal sets and voting in a discretized parame-

ter space. The models can be recovered by finding peaks in

this histogram. The shortcoming of such a Hough transform

is that the accuracy is limited and computational efficiency

is inversely proportional to the number of bins used to sam-

ple the parameter space. Other techniques do not require the

partitioning of the parameter space [20]. They proceed sim-

ilarly to RHT, but the models correspond to modes in the

parameters space, which can be identified using the mean

shift algorithm [8]. In this sort of technique, the parameter-

ization of the solution space is critical.

Multi-RANSAC was introduced by Zuliani et al. as an

extension to RANSAC [22]. However it requires knowl-

edge of the number of models in the image. Recently, Toldo

and Fusiello presented an algorithm called J-Linkage that

overcome the weakness of Multi-RANSAC [19]. Each data

point is represented by its “characteristic function of the set

of models prefered by that point”. The models are built us-

ing minimal sample sets similar to RANSAC. Our approach

for detecting vanishing points relies on the J-Linkage algo-

rithm. We will describe it in more details in Section 4.1.

3. Edge detection

The algorithms tested in this work use a sparse set of

edges, as this was shown to be more accurate than edge gra-

dients [11]. This section gives a brief description of our al-

gorithm for detecting them in an image. Examples are show

in Figure 1.

The first step uses the Canny edge detector followed by

non-maximal suppression to obtain a map of one pixel thick

edges. The following steps are done to recover straight

edges within this edge map. First, we eliminate junctions

within the edge map. Then, connected components are

found using flood fill. Each component is then divided into

straight edges by browsing the list of coordinates and split-

ting when the standard deviation of fitting a line becomes

larger than a one pixel. Finally, we obtain sub-pixel accu-

racy by fitting a line to each edge.

1251

Table 1. Summary of the notation.

Entities Definition

En Edge indexed n

e
1

n, e2

n The two end points of En, ∈ P
2

ēn Centroid of the end points, ∈ P
2

ln Implicit line passing by En, ∈ P
2

Sm Subset of edges of E
|Sm| Size of the set Sm

(a) Indoor scene (b) Outdoor scene

Figure 1. Example of edge map given by the procedure described

in Section 3. Images can be found in the York Urban Database

[11].

We denote E the set of all the edges. The nth edge of the

set is given by En and consists of its pixels. In addition, the

following entities corresponds to each edge. The end points

are given by e1

n and e2

n and their centroid is given by ēn.

The implicit representation of the line passing by the En is

given by ln. Finally, a subset of edges is given by S and the

size of a set is given by |S|. This notation is summarized in

Table 1.

4. Algorithm

The input of our algorithm is a set of N edges. The out-

put is a set of vanishing points and a classification for each

edge: assigned to a vanishing point or marked as an outlier.

Our solution relies on the J-Linkage algorithm to perform

the classification. Then, the results can be refined using

Expectation Maximization or an other iterative algorithm.

These algorithms require two functions. The first one, de-

noted D(v, Ej), provides a measure of the consistency be-

tween a vanishing point v and an edge Ej . The second one

is a function that computes a vanishing point using a set

of edges S. We denote it V(S,w) where w is a vector of

weights. The weights are only useful for the EM algorithm.

We postpone the description of the functions to Section 5 as

our algorithm is not tailored to any specific formulation.

In the case of the J-Linkage algorithm, the parameters

are the consensus threshold φ and the number of vanishing

point hypotheses M . In our work, we used φ = 2 pixel and

M = 500.

0 50 100 150 200 250 300 350 400 450 500

0
20
40
60
80

Model hypotheses

E
dg

es

Figure 2. Preference matrix for N = 100 edges and M = 500
vanishing point hypotheses.

4.1. J-Linkage

In this section, we give a brief overview of the J-Linkage

algorithm in the context of our work. More details on J-

Linkage in general can be obtained in [19].

The first step is to randomly choose M minimal sample

sets of 2 edges S1...M and to compute a vanishing point hy-

pothesis vm = V(Sm,1) for each of them (1 is a vector of

ones, i.e. the weights are equal). The second step consists of

constructing the preference matrix P, a N×M Boolean ma-

trix. Each row corresponds to an edge En and each column

to a hypothesis vm. The consensus set of each hypothesis is

computed and copied to the mth column of P. An example

of matrix P is given in Figure 2. Each row r of P is called

the characteristic function of the preference set of the edge

En: the mth entry is 1 if vm and En are consistent, i.e. when

D(vm, En) ≤ φ, and 0 otherwise.

The J-Linkage algorithm is based on the assumption that

edges corresponding to the same vanishing point tend to

have similar preference sets. Indeed, any non-degenerate

choice of two edges corresponding to the same vanishing

point should yield solutions with similar, if not identical,

consensus sets. The algorithm represents the edges by their

preference set and clusters them as described below. Note

that at this point, the hypothesized vanishing points are

completely forgotten by the algorithm. The algorithm de-

fines the preference set of a cluster of edges as the intersec-

tion of the preference sets of its members. It also uses the

Jaccard distance between two clusters, given by

dj(A, B) =
|A ∪B| − |A ∩B|

|A ∪B|

where A and B are the preference sets of each of them. It

equals 0 if the sets are identical and 1 if they are disjoint.

The algorithm proceeds by placing each edge in its own

cluster. At each iteration, the two clusters with minimal Jac-

card distance are merged together. The operation is repeated

until the distance between all clusters is equal to 1. Typi-

cally, between 3 and 7 clusters are obtained. This procedure

is generally quite fast if the number of edges and hypotheses

if not too high. For example, for around 150 edges and 500

hypotheses, clustering takes around one-tenth of a second

on an Intel Core 2 cpu. Once clusters of edges are formed,

a vanishing point can be computed for each of them. Outlier

edges appear in very small clusters, typically of two edges.

If no refinement is performed, we classify small clusters as

1252

(a) J-Linkage (b) Refinement using EM

Figure 3. Detection using our J-Linkage approach and refinement

using EM. Blue and purple clusters were merged after three EM

iterations.

Algorithm 1 Summary of our algorithm.

INPUT

E1..N : Set of N edges and associated entities (Table 1)

φ: consensus threshold (2 pixels)

M : number of vanishing point hypotheses

K: internal parameters (optional)

OUTPUT

V: set of vanishing points

V ′: Three most orthogonal amongst them (given K)

ALGORITHM

Build the preference matrix P ∈ {0, 1}N×M :

For: m← 1 to M //columns of P

Randomly select a subset of 2 edges S from E

vm ← V(S,1), //weights are set to 1

For: n← 1 to N //rows of P

Pn,m ← D(vm, En) ≤ φ

Classify edges using J-Linkage clustering on P (§4.1)

V ← Re-compute vanishing points for each cluster (§5.2)

V ← Refine V using EM (Optional) (§4.2)

If K is known: (Optional)

V ′ ← find 3 most orthogonal vanishing points (§6)

outliers. Finally, the vanishing points and classification can

be refined using an iterative approach, such as EM.

4.2. Expectation-Maximization

The most frequent mistake made by the J-Linkage algo-

rithm is to divide a cluster of edges of a vanishing point into

two groups. However, this is easily corrected by refining the

solution using EM [3, 13]. An example is shown in Figure

3. We refer the reader to these references for a description of

the algorithm. In the original work, the functions D and V

are defined on the Gaussian sphere, but using our own func-

tions instead provides significant improvements (details in

Section 7).

The summary of our algorithm is given in Algorithm 1.

At this point, the only pieces missing are the definition of

the consistency measure D and function V for estimating

vanishing points.

Centroid
e1

Vanishing point v
Constrained line l̂

Edge Ej

e2

ē

Figure 4. The proposed approximation for estimating l̂ used in the

computation of our consistency measure given in (1).

5. Vanishing points estimation

In this section, we give the two functions required by the

J-Linkage and the EM algorithms:

• D(v, Ej): measure of consistency between a vanishing

point and an edge;

• V(S,w): function performing a weighted estimation

of a vanishing point using a set of edges S, where w is

a vector of the weights.

Since these operations are performed a large number of

times, they must be efficient. We will first describe D and

then V in Sections 5.1 and 5.2, respectively. We proceed in

this order because a result of the first section will be used in

the second one.

5.1. Consistency measure

In this section we consider only one edge Ej (j ∈
{1...N}) and one vanishing point v. We will describe the

function D(v, Ej) and discuss its differences with the one

of [3, 13] which operates on the Gaussian sphere.

When edges and vanishing points are represented on

the Gaussian sphere, a typical error is given by (l�j v)2 or

sin−1(l�j v) where lj is the implicit line representation of

Ej (see Table 1). This formulation has two inconveniences.

Firstly, this quantity is not geometrically meaningful in the

uncalibrated case. Secondly, the length and position of the

edge is not taken into account so that any two co-linear

edges will have the same error even if their distances to the

vanishing point or their lengths are different.

In computer vision, consistency measures in the image

space are usually prefered because that is where the uncer-

tainty originates [12]. In this context, one example would

be the average orthogonal distance of a line l̂ to the end

points of Ej , such that l̂ intersects v and minimizes that dis-

tance. Note that this distance is given in pixels, even for

a vanishing point located at infinity. The computation of l̂

is non-linear and requires iterative refinement of an initial

estimate.

For the J-Linkage algorithm, the consistency measure

must be computed a few hundred thousand times. We seek a

closed-form approximation for l̂. Instead of finding the line

minimizing the average distance to end points, we find the

one minimizing the maximal distance. It is given in closed-

form by

1253

D(v, Ej) = dist(e1

j , l̂), where l̂ = [ēj]×v. (1)

This is illustrated in Figure 4. The proof is given in Ap-

pendix A.

5.2. Vanishing point estimation

In this section, we describe the function V(S,w) that

computes a vanishing point using a set of edges. In this

work, computing vanishing points occurs in two contexts:

• for the construction of preference matrix using pairs of

edges;

• after J-Linkage classification and in EM with usually

more than two edges.

The case of two edges E1 and E2 is straightforward: the van-

ishing point is given by v̂ = l1× l2. Thus, every step of the

construction of the preference matrix involves solutions that

can be obtained in closed-form. In the rest of the section,

we give our solution in the case of more than two edges.

On the Gaussian sphere, V is typically defined as

VGS(S,w) = arg min
v

∑
Ej∈S

(wjl
�
j v)2, s. t. ‖v‖ = 1

which can be computed in closed-form, but which optimizes

an algebraic error [3, 13].

In this work, the measurements are kept in the image

space. As a result, one could refine the solution provided

by VGS using a Maximal Likelihood Estimator (MLE). One

would seek to determine a set of lines passing by a single

point and such that the orthogonal distance to the end points

is minimized [12]. The function can be written as

VMLE(S,w) = arg min
v,̂l1,,,n

∑
Ej∈S

2∑
i=1

w2

j dist2(̂lj , e
i
j)

such that ‖v‖ = 1 and ∀j : l̂�j v = 0, ‖lj‖ = 1. This is

a function which would have to be minimized iteratively.

Proper parameterization of the variables avoids the bilinear

constraints and the unity constraints. Overall, n variables

are necessary to represent the l̂j , two for v (in spherical

coordinate) and the number of residuals is 2n.

We propose a replacement for VMLE which is also non-

linear. However, it is more efficient to compute and gives

virtually the same performance in practice (see Section 7).

We find

v̂ = arg min
v

∑
Ej∈S

w2

j max
(

dist2(̂lj , e
1

j), dist2(̂lj , e
2

j)
)

such that ∀j : l̂�j v = 0,∀j : l̂�j ej = 0, ‖v‖ = 1. The

difference with VMLE is that the summation of the distance

to the end points as been replaced by the maximal distance

to end points, per edge. Using the result of Section 5.1, we

replace l̂j by [ēj]×v, and also get rid of the max function.

As a result, we can rewrite this problem without relying on

extra parameters l̂j :

v̂ = arg min
v

∑
Ej∈S

w2

j dist2([ēj]×v, e1

j) (2)

where v is represented in spherical coordinates. Compared

to VMLE , the number of variables is reduced from n + 2 to

two and the number of residuals is divided by two. A dense

solver rather than a sparse solver can thus be used.

Finally, our definition for V is given by

V(S,w) =

{
l1 × l2 if S contains 2 edges

v̂ given by (2) otherwise
(3)

In Section 7, we compare V with VMLE and VGS and confirm

that iterative refinement of the vanishing points is useful in

practice. On the other hand, we found that using a MLE has

no significant advantage over this formulation. In addition,

if both optimization are done using a dense solver, VMLE is

around 14 times slower than V.

6. Finding Manhattan directions

In this section, we assume that a set of vanishing points

has been obtained using our method. Clusters of less than

three edges are discarded so that each edge is assigned to

one of the vanishing points. Given the knowledge of the in-

ternal parameters, our goal is to select the three vanishing

points corresponding to the Manhattan directions. This is

useful for computing the orientation of the camera or to give

an initial solution to global methods relying on the Manhat-

tan assumption. To this end, we will use our consistency

criterion between a vanishing point and an edge to define a

distance measure between two vanishing points given a set

of edges.

Denote K the 3 × 3 matrix of the internal parameters. It

is well known that two orthogonal vanishing points v and

v⊥ satisfy
v�ωv⊥ = 0 (4)

where ω is the Image of Absolute Conic (IAC) given by

K
−�

K
−1 [12]. Typically, this constraint is used for cali-

brating a camera by estimating ω given previously recov-

ered vanishing points. Here, ω is given and we seek the

three vanishing points that best satisfy (4) two by two. We

will consider every possible triplet. For each of them, given

by say v1,2,3, we need a measure of their orthogonality.

The naive measure is given by the sum of squares of the

constraint: (v�
1

ωv2)
2 + (v�

1
ωv3)

2 + (v�
1

ωv3)
2. Instead,

one should seek vanishing points v′i as close as possible to

the original vi’s, while exactly satisfying (4). We won’t

be solving this problem, but consider a similar criteria that

avoids any optimization. The approach requires a measure

of the distance between two vanishing points.

1254

Figure 5. Determining Manhattan directions using the approach of

Section 6. Top) Three largest clusters of edges corresponding to

vanishing points. Bottom) Three sets of edges corresponding to

Manhattan directions.

Assume that we want to compute the distance between

vi and v′i. Using the set of edges Si that is known to be

consistent with vi, we define it as

C(v′i,Si) =
1

|Si|

∑
Ej∈Si

D(v′i, Ej)

In other words, the distance between v′i and vi is indirectly

given by the average consistency between the edges and v′i.

This distance is given in pixels.

We come back to our triplet of vanishing points. Accord-

ing to (4), a vanishing point v̂′
3

that is perfectly orthogonal

to the first ones is given by

v̂′
3

= Null
(
ω
(
v1 v2

))
, (5)

where Null(M) returns the left nullspace of M. To measure

how close v̂3 is to v̂′
3
, all we need to compute is C(v̂′

3
,S3).

Repeating this operation for v̂1 and v̂2, we define the or-

thogonality measure as

3

max
i=1

C(v̂′i,Si) (6)

where all v̂′i’s are computed similarly to (5).

To summarize, our algorithm consists of evaluating (6)

for every triplet of vanishing points. The triplet yielding the

minimal value is selected. Typical results of this procedure

are shown in Figure 5.

7. Experiments

We implemented our algorithms in MATLAB, with most

of the computation being done in MEX files (compiled C

code)1. We tested our algorithms using the York Urban

1Available at http://www-etud.iro.umontreal.ca/

˜tardifj/fichiers/VPdetection.tar.gz

Database provided by Denis et al. [11]. It consists of 102

indoor or outdoor images of man-made environments. For

each image, edges were manually selected so that they cor-

respond to one of the three Manhattan directions. Classifi-

cation of the edges and estimation of the vanishing points

was done using the approach of Collins and Weiss which

operates on the Gaussian sphere [7]. Each image contains

either two or three vanishing points. Contrary to the work

of Denis et al. , ours does not involve training using a subset

of the images, so we could use the whole database.

We tested the following algorithms:

• JL: J-Linkage clustering;

• JL+EM: the above followed by EM;

• calib JL: J-Linkage clustering and detection of Man-

hattan directions;

• calib JL+EM: the above followed by EM;

• GS EM: original EM approach operating on the Gaus-

sian sphere [3, 13], using the internal parameters as

normalization transformation;

• EM: a modified EM approach operating in image

space.

The results using the ground truth are referred to GT. We

use our own implementation of the EM algorithm. Both

variants were initialized by grouping edges according to

their orientation as proposed by Kosecka and Zhang. Note

that we don’t compare our work to the one of Denis et al. or

any other approach that globally estimates the Manhattan

directions. Indeed, our main goal is to detect all (possi-

bly non-orthogonal) vanishing points, without knowing the

camera internal parameters. For the J-Linkage algorithms,

we used φ = 2 pixels and M = 500 in all our tests.

We automatically detected straight edges in the 102 im-

ages of the database as described in Section 3. Results

given by our approach for four of the images of database

are shown in Figure 6. Two error measures were consid-

ered.

The first one is the consistency of the ground truth edges

with the estimated vanishing points. Each image contains

three sets of ground truth edges, corresponding to the three

orthogonal vanishing points: Si,1, Si,2 and Si,3 which we

ordered so that ∀i=1...102 : |Si,1| ≥ |Si,2| ≥ |Si,3|. Thus,

the sets Si,1 very often consist of vertical edges, the easi-

est to detect. On the other hand, the smallest sets Si,3 are

the most problematic. They sometimes contain just a few

edges. Furthermore, the images sometimes contain larger

sets of edges corresponding to non Manhattan directions

(examples in Figure 5). We tested the consistency of the

estimated vanishing points on each group of edges. The

results are given in Figure 7. The advantages of our meth-

ods are clearly observed on the estimation of the third and

most difficult vanishing points. Our method for detecting

the Manhattan directions also improves the accuracy of the

1255

Figure 6. Results given by our algorithm on four images of the York Urban Database [11].

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Consistency error (pixel)

GT
JL
JL+EM
Calib JL
Calib JL+EM
GS EM
EM

(a) Si,1

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Consistenty error (pixel)

(b) Si,2

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Consistency error (pixel)

(c) Si,3

Figure 7. Cumulative histograms of the error for three groups of ground truth edges (See text for details). The vanishing points were

estimated using edges automatically detected.

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

Focal Length error (pixel)

GT
JL
JL+EM
Calib JL
Calib JL+EM
GS EM
EM

(a) Edges automatically detected

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

Focal Length error (pixel)

GT
JL
JL+EM
Calib JL
Calib JL+EM
GS EM
EM

(b) Ground truth edges

Figure 8. Cumulative histograms of the error on the focal length

estimation.

vanishing points. Both EM algorithms are quite sensitive

to the initial solution, although our variant seem to perform

better.

The second error measure is the accuracy of the esti-

mated focal length using the vanishing points. We compute

the internal parameters using the linear solution based on

(4) [12] and don’t rely on bundle adjustment. The results

are given in Figure 8(a). Finally, the algorithms were also

tested on the ground truth edges. Results for the focal length

estimation are in Figure 8(b).

Minimal, average and maximal computation time are

reported in Figure 9 with average computation time of

roughly two-tenth of a second. When initialized using J-

Linkage clustering, the EM algorithm converged after just a

few iterations.

We compare the approaches for estimating vanishing

points using sets of edges discussed in Section 5.2: our ap-

proach V, a MLE estimator VMLE and the algebraic on the

Gaussian sphere VGS. We used the ground truth edges of

the York Urban Database and applied our algorithm with no

EM refinement. Final vanishing points were obtained for

each cluster using the three above functions and were used

Min. Mean Max.

0

0.2

0.4

0.6

0.8

1

C
om

pu
tio

n
tim

e
(s

ec
.)

JL
JL+EM
Calib JL
Calib JL+EM
GS EM
EM

Figure 9. Computation time of the tested algorithms.

0 50 100 150

0

0.2

0.4

0.6

0.8

1

Focal Length error (pixel)

GT
MLE JL
JL
GS JL

Figure 10. Cumulative histogram of the error of the estimated focal

length for vanishing points estimated using VMLE, V and VGS, as

discussed in 5.2.

for estimating the internal parameters of the camera. Re-

sults are reported in Figure 10 and show a clear advantage

of the two iterative approaches, but no clear winner amongst

them. Consistency of the ground truth edges with the van-

ishing points estimated using our algorithms were always

below two pixels and was sometimes even below than the

consistency of the ground truth vanishing points.

8. Conclusion

The detection of vanishing points in images is a typ-

ical problem of robust simultaneous multiple model esti-

mation. The J-linkage algorithm proposes a new perspec-

tive for solving this multiple model estimation problem. It

1256

e1 e2

d1

d2

θ
θl1 l2

l′

l

v

c

e2

d2

θe

θ2

le
l̂

l′

v

ē

de

Figure 11. The line passing by the vanishing point v and minimiz-

ing the maximal distance to the end points of the edge intersect the

edge at then centroid of the edge (see text for details).

avoids clustering on the Gaussian sphere and does not re-

quire a guess of the number of vanishing points. Based on

this algorithm, our approach is fast and accurate. In ad-

dition, we gave an approach for determining which of the

vanishing points correspond to Manhattan directions.

We plan to extend our approach to estimate vanishing

points in images of fish-eyes and catadioptric cameras.

A. Proof for Section 5.1

The proof involves showing that the maximal distance

to the end points is minimized when it is equal for both,

which can only happen when l̂ intersects the centroid ēj .

We prove this in two steps. Consider the top of Figure 11,

where we drop the subscript j. The orthogonal distances

of the end points to l′ are given by d1 and d2, respectively.

Since both triangles are identical up to scale factor, d1 and

d2 are proportional to l1 and l2. Thus, the maximal distance

occurs at the end point whose distance to intersection point

of l′ with l is the largest. Now consider the bottom of Figure

11 where in addition to l′, we draw l̂. The distance between

e2 and ē is given by le. If l2 is larger than le, d2 is larger

than de. Indeed, these are respectively given by c sin θ2 and

c sin θe. Since both θ’s are between 0 and π/2, sin θ is a

monotonic function. Thus, d2 > de.

Acknowledgments To Mike Langer for useful comments on

the paper and to Patrick Denis for providing the York Database.

References

[1] D. G. Aguilera, J. G. Lahoz, and J. F. Codes. A new method

for vanishing points detection in 3d reconstruction from a

single view. Proceedings of the ISPRS Commission V, 2005.

[2] A. Almansa, A. Desolneux, and S. Vamech. Vanishing

point detection without any a priori information. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

25(4):502–507, 2003.

[3] M. E. Antone and S. Teller. Automatic recovery of relative

camera rotations for urban scenes. In IEEE Conference on

Computer Vision and Pattern Recognition, 2000.

[4] S. T. Barnard. Interpreting perspective images. Artificial

Intelligence, 21(4):435–462, 1983.

[5] B. Brillault-O’Mahony. New method for vanishing point

detection. CVGIP: Image Understanding, 54(2):289–300,

1991.

[6] B. Caprile and V. Torre. Using vanishing points for cam-

era calibration. International Journal of Computer Vision,

4(2):127–139, 1990.

[7] R. T. Collins and R. S. Weiss. Vanishing point calculation

as a statistical inference on the unitsphere. In International

Conference on Computer Vision, pages 400–403, 1990.

[8] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. IEEE Transactions on pattern

analysis and machine intelligence, 24(5):603–619, 2002.

[9] J. M. Coughlan and A. L. Yuille. Manhattan world: com-

pass direction from a single image by bayesian inference. In

International Conference on Computer Vision, 1999.

[10] J. M. Coughlan and A. L. Yuille. Manhattan world: Orien-

tation and outlier detection by bayesian inference. Neural

Computation, 15(5):1063–1088, 2003.

[11] P. Denis, J. H. Elder, and F. J. Estrada. Efficient Edge-Based

methods for estimating manhattan frames in urban imagery.

In European Conference on Computer Vision, pages 197–

210, 2008.

[12] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. Cambridge university press, 2003.

[13] J. Košecká and W. Zhang. Video compass. European Con-

ference on Computer Vision, pages 476–490, 2002.

[14] J. Košecká and W. Zhang. Extraction, matching, and pose re-

covery based on dominant rectangular structures. Computer

Vision and Image Understanding, 100(3):274–293, 2005.

[15] B. Micusik, H. Wildenauer, and J. Kosecka. Detection

and matching of rectilinear structures. In IEEE Conference

on Computer Vision and Pattern Recognition, 2008. CVPR

2008, pages 1–7, 2008.

[16] C. Rother. A new approach to vanishing point detection in

architectural environments. Image and Vision Computing,

20(9-10):647–655, 2002.

[17] G. Schindler and F. Dellaert. Atlanta world: an expectation

maximization framework for simultaneous low-level edge

grouping and camera calibration in complex man-made en-

vironments. In IEEE Conference on Computer Vision and

Pattern Recognition, 2004.

[18] J. A. Shufelt. Performance evaluation and analysis of vanish-

ing point detectiontechniques. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 21(3):282–288, 1999.

[19] R. Toldo and A. Fusiello. Robust multiple structures estima-

tion with J-Linkage. In European Conference on Computer

Vision, pages 537–547, 2008.

[20] R. Vidal, Y. Ma, and S. Sastry. Generalized principal compo-

nent analysis (GPCA). IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 27(12):1945–1959, 2005.

[21] C. Wu, F. Fraundorfer, J. M. Frahm, and M. Pollefeys. 3D

model search and pose estimation from single images using

VIP features. In IEEE Conference on Computer Vision and

Pattern Recognition, 2008.

[22] M. Zuliani, C. S. Kenney, and B. S. Manjunath. The multi-

ransac algorithm and its application to detect planar homo-

graphies. In International Conference on Image Processing,

2005.

1257

