
Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
  

Multi-Agent Bidding and Contracting  
for Non-Storable Goods  

 
 

D.J. Wu, Yanjun Sun   
LeBow College of Business, Drexel University, Philadelphia, PA 19104, USA 

{Wudj, ys45}@drexel.edu 

 

Abstract 
We study electronic bidding and contracting for non-
storable goods such as electric power using multi-GA 
agents and game theoretical approaches. In this 
framework, there is a long-term contract market as well 
as a back-stop spot market. Seller agents bid into an 
electronic bulletin board their contract offers in terms of 
price or capacity, while Buyer agents decide how much 
to contract with Sellers and how much to shop from the 
spot market. The problem is modeled as a von-
Stackelberg game with Seller agents as leaders. We 
investigate if artificial agents will be able to discover 
equilibrium strategies if such an equilibrium exists; and 
if the agents can discover good and effective strategies 
when playing repeated non-linear games where there 
does not exist any equilibrium. This study is a companion 
of our earlier theoretical characterizations on optimal 
bidding and contracting strategies for non-storable 
goods, now adopting an agent-based approach.  
 
 
1. Introduction 

In recent years, we have seen a growing interest 
in the study of artificial agents [7, 9] and their 
applications in electronic commerce, such as buying and 
selling goods over the Internet, automated bargaining 
and negotiation [4, 20], dynamic pricing in agent-
mediated knowledge marketplace [24], multi-agent 
supply chain management [3, 5, 23] and multi-agent 
enterprise modeling [6, 12, 13, 15 21], restructuring the 
electric power industry [2, 10, 11, 12, 13, 14, 22],  and 
off-exchange trading [8]. This paper is in this 
“tradition”. We study a general multi-agent bidding, 
auction and contracting support system (called “eBAC”) 
and apply it to the selling and buying of non-storable 
goods such as electric power. eBAC is implemented 
using an earlier theoretical framework developed by Wu 
and his colleagues [2, 16, 17, 18, 19, thereafter WKZ for 
short]. In this framework, there is a long-term 
forward/contract market as well as a back-stop spot 
market. Seller agents bid into an electronic bulletin board 
their contract offers in terms of price or capacity, while 
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Buyer agents decide how much to contract with Seller 
agents and how much to shop from the spot market. The 
problem is modeled as a von-Stackelberg game with 
Seller agents as leaders. Thus, our eBAC auction has 
some unique properties different from traditional 
auctions in the following ways: First, traditional bids are 
discrete choices while our agents’ bids are continuous; 
Second, goods in traditional auctions are storable and 
those in ours are non-storable; Third, traditional auctions 
only consider a single Seller while ours considers 
multiple Sellers; Lastly, traditional auctions consist of 
only one source of procurement (the spot market), while 
ours consists of two sources: in addition to the back-stop 
spot market, we allow Buyers and Sellers sign long-term 
contracts in a forward market.   

The goal of this study is as follows: First, we 
investigate if artificial agents will be able to discover 
equilibrium strategies if such an equilibrium exists; 
Second, we investigate if the agents can discover good 
and effective bidding, auction and contracting strategies 
when playing repeated non-linear games where there 
does not exist any equilibrium; Third, we explore the 
emergence of trust in the sense of what kind of 
mechanisms induce cooperation in the above setting. We 
test eBAC in the multi-Seller electronic marketplace. In 
this paper, we focus only on myopic bidding strategies, 
while in a separate study, we extend to non-myopic 
bidding with an extensive focus on the emergence of trust 
[20].   

The rest of the paper is organized as the 
following. Section 2 provides a brief literature review. 
Section 3 describes our methodology and 
implementation. Section 4 experiments on multi-agent 
price or capacity bidding. Section 5 reports results of 
further experiments. Section 6 summarizes our findings. 
 

2. Literature Review 
In this section, we briefly review the auction of 

non-storable goods in WKZ papers and explain why an 
agent-based approach is interesting in this arena. 

In the WKZ model (which might be thought of 
as the “month ahead” market), Sellers and Buyers 
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interact through an electronic bulletin board, posting bids 
and offers until agreement has been reached.  Capacity 
not committed through this contracting market is 
assumed to be offered on the spot market, but may go 
unused because of the risk of not finding customers or 
transportation capacity at the last minute.  Buyers face 
another type of risk for demand not contracted for in the 
bilateral market, namely price volatility in the spot 
market.  Such price volatility can be quite severe and has 
caused Buyers, say for example, in the electric power 
market to pay close attention to the proper balance in 
their supply portfolio between long-term contracting and 
spot purchases. 

WKZ papers set up the theoretical framework 
for the optimal bidding and contracting for non-storable 
goods. The framework models the interaction of long-
term contracting and spot market transactions between 
Sellers and Buyers for non-storable goods. Sellers and 
Buyers may either contract for delivery in advance (the 
“contracting” option) or they may sell and buy some or 
all of their output/input in a spot market. Contract 
pricing involves both a reservation fee per unit of 
capacity and an execution fee per unit of output if 
capacity is called. The key question addressed is the 
structure of the optimal portfolios of contracting and spot 
market transactions for these Sellers and Buyers, and the 
pricing thereof in market equilibrium if exists. WKZ 
papers show that when Sellers properly anticipate 
demands to their bids, bidding a contract execution fee 
equal to variable cost (b) dominates all other bidding 
strategies yielding the same contract output. The optimal 
capacity reservation fees are determined by Sellers to 
trade off the risk of underutilized capacity against unit 
capacity costs. Buyers' optimal portfolios are shown to 
follow a merit order (or greedy) shopping rule, under 
which contracts are signed following an index, denoted 
as x, which is an increasing function of the Sellers' 
reservation cost and execution cost.  Existence conditions 
and structure of market equilibrium are characterized in 
WKZ papers for the associated competitive game 
between Sellers, under the assumption that they know 
Buyers’ demand functions.  

However, under some conditions, there does not 
seem to exist any equilibrium in the WKZ repeated 
bidding and auction game (as will further be shown 
below). We see in practice such conditions are violated 
frequently. When the real world is not as “clean” as 
required for WKZ theorems to go through, the literature 
is shy as to what should be a good or reasonable bidding 
strategy under realistic conditions. Maybe artificial 
agents are potential alternatives for business strategy 
discovering in such a complicated setting [10, 11, 12, 13, 
14, 15, 21]. This is why we are interested in using agent-
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based approach to explore. In the next section, we 
describe our model in detail. 
 
3. Models for Myopic Bidding 

We begin our test of eBAC with Singe Seller 
(Single or Multi Buyers) environment, and then move to 
Multi-Seller electronic marketplace, where we test in 
detail both the path independent and path dependent 
repeated games of pure strategy bidding with the Seller 
agents act as leaders, along with a preliminary testing of 
mixed bidding strategies. 
 First, eBAC is used for a Single Seller, Single or 
Multi-Buyers market. As shown in Table 1, eBAC is able 
to discover the optimal bidding, auction and contracting 
strategies as predicted in the WKZ theoretical 
framework. 
  
Table 1: Simulation results in a single Seller 
environment. Parameter are: b = 5, m = 0.1, â = 0.1, 
uniform distribution from 4 to 10, utility function U 
(x) = 10(1-e –x). 

 WKZ 
(Theory) 

eBAC 

s 1.50 1.50 
g 5.00 = b 4.99 = b 

 
Now we introduce our multi-Seller electronic 

marketplace in great detail. We consider two models in 
myopic bidding, the price bidding model and the capacity 
bidding model. We now describe the setting of each 
model in detail, with an emphasis on price bidding. 

  
Price Bidding Model. 
We first set up our price-bidding model for the 

multi-Seller case. There are N Sellers, which form a set 

{ }Ξ = 1, ,L N . Each Seller i maximizes its expected 

profit E iπ  by bidding a contract price xi  anticipating 

the Buyer’s optimal contracting strategy Qi . Each Seller 

has a capacity limit Ki  and a minimum cost ci  for 

entering the forward contract market. In the following 
illustrative example, we assume as in standard economics 
literature, linear contract demand, however, eBAC is 
general in handling any demand functions, linear or non-
linear. We assume the demand function as 

D xi i= − +( )100 , where y Max y+ = [ , ]0 . In case 

there is a bid tie, following WKZ [18, 19], we adopt the 
following bid-tie allocation mechanism: If there is a tie in 
bids among any subset of Sellers, then Buyers’ total 
demand for that subset of Sellers is allocated to the 
Sellers in proportion to their respective bid capacities. 
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The following model describes the Seller’s 
problem. ∀ ∈k Ξ , define the following sets: 
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We define myopic bidding as the solution to the 
following optimization problem:  

M a x i m i z e E x t x t
X t i i i

i ( )
( ( ) | ( ) ) .π − − 1  

Here, we assume each Seller can only memorize 
what happened last time, i.e., memory size is 1, 
forgetting previous strategies used by other players. We 
want to study the behavior of artificial agents when 
playing this repeated game. 

The bidding system, as depicted in Figure 1, 
works as follows. There is a blackboard on the market. At 
time period t, each Seller observes other Sellers’ last bids 
(during period t – 1) from the blackboard, then he 
privately chooses and posts on the blackboard a bid for 
the current time period (t). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our agents learn their new bidding strategies via 

genetic algorithms [1]. The following is a description on 
the implementation of genetic algorithms in our system. 
(1) Representation: we employ floating-point 
implementation to represent agents’ continuous strategy 
space. (2) Initial population: initial population is 
identical, we use the Seller’s winning strategy from the 
latest time period. (3) Performance evaluation: the 
performance of winning strategy from last period will be 
re-evaluated according to current market condition. 
Figure 2 describes the flowchart of our myopic bidding 
system.   

Now we consider a three-Seller repeated game 
to illustrate our approach. This three Seller example is 
already complicated enough in the sense that, we can 
only perform some analytical analysis under some 
assumptions/conditions [18, 19], and many times, when 
such conditions are violated, there does not exist any 
equilibrium for this rather simple setting.  However, as 
common in industry practice, such conditions are 
frequently violated. For example, if the Sellers have the 
technology and capacity parameters as listed in Table 2, 
which seems to be trivial, then there does not exist any 
equilibrium in the WKZ repeated game. In the table, ci is 
the technology index that indicates the minimum price 
requirement for Seller i to enter the forward contract 
market, and Ki is the Seller i’s total available capacity. 

Seller 1 Seller 2 Seller 3 

Blackboard 

Adaptive 
Learning 

Seller 1 
Seller 2 
Seller 3 

Figure 1: Myopic bidding system 
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Agents randomly bid for t = 0 

Agent i reads X ( t ) and P i ( t 
) from the blackboard 

Start 

i + 1 

Do GA to generate a new 
population 

K + 1 

Evaluate the new population 
by X –i ( t ) 

Sort the new population 

K > G ? 

Agent i bids the best 
chromosome 

i > A ? 

t > W ? 

t + 1 

End 

i = 0 

No 

Yes 

Yes

No 

Yes

K = 1 

No

Agent i initializes population 
by X i ( t ) and P i ( t ) 

Figure 2: Flowchart of myopic bidding system.  

W: maximum number 
of time periods; 
A: number of agents; 
G: maximum number of 
generations. 
X ( t ): vector of agents’ 
bids at Time t; 
P i ( t ): Agent i’s profit 
at Time t.  
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Table 2: Technology and capacity parameters for the 
three-Seller contract market. 

 
 
 
 
 
To get some insight of the game, we first 

consider a much simplified, static one-shot discrete 
bidding game. Assume Seller 1 and 2, can bid either 18 
or 55, and Seller 3 can bid either 19 or 55. Table 3 shows 
the Nash equilibria, namely (18, 18, 19) and (55, 55, 55), 
for this normal form game. The game becomes 
interesting when it is played repeatedly and in continuous 
strategy space. Notice that the outcome of (55, 55, 55) 
Pareto dominates that of (18, 18, 19). When each Seller 
has a continuous bidding space, (55, 55, 55) is no longer 
the Nash equilibrium. For example, Seller 3 has an 
incentive to bid slightly less than the other players in 
order to contract all its capacity with the Buyers to profit 
more, indeed, there does not exist any equilibrium for 
this game in the continuous bid space under the above 
defined bid-tie allocation mechanism (which is mostly 
used in industry practice). We experiment eBAC to play 
this repeated bidding gaming, the goal is to see if 
artificial agents can discover the equilibrium strategy or 
are able to response optimally over time. We now 
describe agents bidding process.  
 
Table 3: Nash equilibria for three-Seller price bidding 
normal form game. 

 
 
 
 
 
 
 
 
 
 
 
Bidding Process.  We start the game at Time 0, 

each Seller randomly selects its bidding price or, chooses 
a price based on some rules that serve his own interest. 
Then the game proceeds to Time 1, when each Seller 
observers others’ previous bids, and find out whether his 
opponents are “nice” or “nasty” (defined below).  The 
Seller then searches its new bidding strategy for Time 1 
using GA and posts his new bid on the blackboard 
simultaneously with the other two players. The game 
goes on and on until a pre-specified stopping condition 

Ex.1  
30 40 40 Ki 

18 10 10 ci  

3 2 1 i 

x1 

(737, 737, 454) (129, 320, 80) (320, 129, 80) (328, 328, 0) 55 

(338, 338, 30) (0, 320, 30) (320, 0, 30) (328, 328, 1) 19  
x3 

55 18 55 18 

x2 x2 

55 18  
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(such as the maximum number of rounds) has been 
reached.  
 Capacity bidding.  Alternatively, Sellers can 
choose to bid capacity and let the forward contract 
market determine bid price p. Every Seller then sells his 

bid capacity by this same price. In the capacity auction 
mechanism, each Seller’s model becomes the following: 

In the dynamic capacity bidding game, 
similarly, each Seller chooses his current bidding strategy 
taking into account the other players’ last bidding 
strategies, 

  
M a x i m i z e E L t L t

L t
i i i

i ( )
( ( ) | ( )) .π − − 1  

Again, agents learn new strategies via genetic 
algorithms.  
 
4. Initial Experiments on Myopia Bidding  

Based on the model described above, we test the 
multi Seller, single/multi Buyers electronic marketplace. 
We shall use the following three Sellers one Buyers 
market to illustrate some insightful discoveries, however, 
as noted above, eBAC is a general platform.  

Table 4 summarized our experiment design and 
some initial results. While path independent strategy is 
defined earlier, path dependent strategy is defined as 
follows: 

Maximize E
E x t x t

tX t i

i m i i
m

t

i ( )

, ( ( )| ( ))
.π

π
=

−−
=

∑ 1
1  

 
Table 4: eBAC results for example 1, c = (10, 10, 18), 
K = (40, 40, 30), “YES” means that there exists an 
equilibrium and eBAC can find it; “NO” means there 
is no equilibrium. “No co-op” means that agents are 
not cooperating with each other, and “Co-op” means 
agents are cooperating with each other. 

 
 
 
 
 
 
 

 
Figure 3 shows the dynamics of profit (top) and 

agent price bidding (bottom) for a path dependent pure 

YES. Co-op. 
 (27, 28, 18) 

YES. No co-op. 
(18, 18, 19) 

Path Dependent 
(Observed 
Average Profit) 

NO. YES. No co-op. 
(18, 18, 19) 

Path Independent 

 

Bidding Capacity Bidding Price 
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p K L

p c Q p c L

L i

i
i

i
i

i i i i i

i

π

π
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∑ ∑
1

3

1

3
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strategy price bidding game as specified in example 1. 
The agents quickly learn how to play “the price war” and 
find the non-cooperative Nash equilibrium. 

0

2 0 0

4 0 0

6 0 0

1 2 5 4 9 7 3 9 7

S e l l e r  1

S e l l e r  2

S e l l e r  3

 

0

1 0

2 0

3 0

4 0

1 2 5 4 9 7 3 9 7

S e l l e r  1

S e l l e r  2

S e l l e r  3

  
Figure 3: Dynamic pure strategy price bidding, path 
dependent: Profit and price over time for example 1. 
 

However, under capacity auction, agents learn 
how to cooperate with each other. Figure 4 shows that in 
path dependent dynamic pure strategy capacity bidding 
games as specified in example 1, the agents learn to 
converge to a cooperative equilibrium. 
 

0

3 0 0

6 0 0

9 0 0

1 2 5 4 9 7 3 9 7

Se l le r  1

S e l l e r  2

S e l l e r  3
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0

1 0

2 0

3 0

4 0

1 2 5 4 9 7 3 9 7

S e l l e r  1

S e l l e r  2

S e l l e r  3

 
Figure 4: Path dependent dynamic capacity bidding: 
Profit and capacity over time for example 1.  

Back to price auction mechanisms, if we allow 
the agents to use mixed strategies for their bidding, they 
can find optimal mixed strategies if such strategies exist, 
as shown in Figure 5. Each agent in this experiment can 
choose several feasible fixed integer prices: 10, 18 
through 27, and 100 for Seller 1; 10, 18 through 27, and 
100 for Seller 2; and 18 through 28 and 100 for Seller 3. 
Each agent bids mixed strategies to maximize path 
independent expected profit. We found that artificial 
agents quickly discover the equilibrium when using 
mixed bidding strategies. Figure 5 shows the learning 
procedure of artificial agent 2 to discover its optimal 
mixed bidding strategy. 
 

0

2 0 0

4 0 0

6 0 0

8 0 0

1 2 5 4 9 7 3 9 7

Se l le r  1

S e l l e r  2

S e l l e r  3

 

0
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6 0
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S e l l e r  3
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0

0 . 1

0 . 2

0 . 3

0 . 4

1 2 5 4 9 7 3 9 7

1 0

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

1 0 0

 
Figure 5: Dynamic mixed strategy price bidding, path 
independent (top to bottom): Profit, price and Sell 2’s 
optimal strategy over time for example 1. It is 
interesting to notice the learning procedure for Sell 2 
in discovering its optimal mixed strategy. 
 
5. Further Experiments on Myopic Price 
Bidding  

In order to test the stability and usability of our 
system, we design the following orthogonal experiment. 
We consider 2 factors: 1) the technology parameter c; 
and 2) the demand function D. We assume the overall 

capacity available from all Sellers is fixed, e.g., Ki
i =
∑

1

3

 = 

90. We assume further all Sellers have the same total 
cost, so that Ki  is inversely proportionally assigned to 

its cost parameter ci .  

Assume the demand function D a bxi i= − +( ) . 

The only possible cross-effect between ci and Di  is that 

they form a strategy space [ , ]c
a

bi for Seller i . Since 

Di  is the same for all the Sellers, we can view c as the 

factor that decides the relative size of Seller i ’s strategy 
space. Thus, there is no cross-effect between ci and Di , 

therefore we need not repeat the experiment on each level 
combination. There are four levels for ci  (see Table 5) 

due to different strategy space among the three Sellers. 
We randomly select each level from ( , ]0 30 , an interval 

of 

Ki
i =
∑

1

3

3
.  

What the demand function matters is the 
relationship between the intercept a  and total capacity 

supply Ki
i =
∑

1

3

. Since the strategy space of each Seller is 
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determined by 
a

b
, we can let b  equal 1 and pick up a . 

Thus, there are only two levels for Di  (see Table 5), i.e. 

a K i
i

≥
=
∑

1

3

 and a Ki
i

<
=
∑

1

3

. We randomly select each 

level (in integer) from [ , ]90 120  and [ , )60 90  

respectively, left and right around 90 by a distance of 

Ki
i =
∑

1

3

3
. 

We now in a position to set up the orthogonal 
experiment as shown in Table 5.  
 
Table 5: Myopic repeated price bidding. PD: Path 
dependent; PI: Path independent; No: No equilibrium. 
No cooperation observed in all test cases. 
 D xi i= − +( )77

 

D xi i= − +( )115
 

*D xi i= − +( )100  

PD (16, 16, 16) (30, 30, 30) (21, 21, 21) 
ci  = 13, 

13, 13 

Ki = 

30, 30, 
30 

PI (16, 16, 16) (30, 30, 30) (21, 21, 21) 

PD (21, 22, 22) (No, No, No) (23, 24, 24) 
ci  = 11, 

21, 21 

Ki = 

44, 23, 
23 

PI (21, 22, 22) (No, No, No) (23, 24, 24) 

PD (No, No, 26) (31, 31, 31) (No, No, No) 
ci  = 16, 

16, 25 

Ki = 

34, 34, 
22 

PI (No, No, 26) (31, 31, 31) (No, No, No) 

PD (No, No, 19) (No, No, No) (No, No, No) 
 ci  =  7, 

12, 17 

Ki = 

45, 26, 
19 

PI (No, No, 19) (No, No, No) (No, No, No) 

PD (No, No, 19) (No, No, No) (18, 18, 19) * ci =10,

10,18 

Ki =40,

40,30 
PI (No, No, 19) (No, No, No) (18, 18, 19) 

PD (14, 14, 15) (No, No, No) (No, No, No) * ci =10,

12,14 

Ki =40,

30,20 
PI (14, 14, 15) (No, No, No) (No, No, No) 

 
As listed in Table 5, we find that: (1) no 

cooperation exists under any climate (for the given 
demand function), even in “friendly” environment, when 
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the market is big enough to absorb all Seller’s full 
capacity, Sellers do not cooperate with each other; (2) 
there is no statistical difference between path dependent 
and path independent strategies.  

The result of cross point of Row 6 and Column 3 
in Table 5, where c = (10, 12, 14), K = (40, 30, 20), 
shows an interesting phenomenon. As expected, when 
bidding prices, eBAC shows a bloody fight among agents 
over prices with no equilibrium strategies and no 
cooperation, as plotted in Figure 6. However, artificial 
agents are able to learn smart “dog-fighting” strategies 
that take advantage of other players’ previous bids. 

 

0

3 0 0

6 0 0

9 0 0

1 2 0 0

1 2 5 4 9 7 3 9 7

Se l le r  1

S e l l e r  2

S e l l e r  3

 

0

1 5

3 0

4 5

1 2 5 4 9 7 3 9 7

Se l le r  1

S e l l e r  2

S e l l e r  3

 
Figure 6: Dynamic pure strategy price bidding, path 
independent: Profit and price over time for example 
2.   

 

6. Summary  
We now briefly summarize findings of various 

experiments conducted. First, and most importantly, we 
find that artificial agents are viable in automated 
marketplace: they can discover optimal bidding and 
contracting strategies in the equilibrium if exist. Second, 
they can find better strategies in a complex dynamic 
environment where equilibrium does not exist. Third, 
auction mechanism design plays a significant role to 
induce agent cooperation. Under myopic bidding, 
capacity-bidding mechanism induces cooperation, while 
pricing-bidding does not. In our orthogonal experiment, 
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even when the market is big enough to buy each Seller’s 
full capacity, i.e., the environment is “friendly”, Sellers 
still would not cooperate with each other under our pure 
strategy pricing bidding mechanism. However, when 
agents are allowed to bid mixed strategies, they quickly 
learn how to discover the equilibrium strategies after 
several rounds of price war, the resulting equilibrium has 
some degree of cooperation. It is close-to the ideal full 
cooperation outcome. We have further extended the work 
here to non-myopic bidding with an extensive focus on 
the emergence of trust in part II of this work, see, [20].  
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