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Abstract: Text Mining in biology and biomedicine requires a large amount of domain-
specific knowledge. Publicly accessible resources hold much of the information
needed, yet their practical integration into natural language processing (NLP)
systems is fraught with manifold hurdles, especially the problem of semantic
disconnectedness throughout the various resources and components. Ontologies
can provide the necessary framework for a consistent semantic integration, while
additionally delivering formal reasoning capabilities to NLP.

In this chapter, we address four important aspects relating to the integration of
ontology and NLP: (i) An analysis of the different integration alternatives and their
respective vantages; (ii) The design requirements for an ontology supporting NLP
tasks; (iii) Creation and initialization of an ontology using publicly available tools
and databases; and (iv) The connection of common NLP tasks with an ontology,
including technical aspects of ontology deployment in a text mining framework.
A concrete application example—text mining of enzyme mutations—is provided
to motivate and illustrate these points.
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1. INTRODUCTION
Text Mining is an emerging field that attempts to deal with the overwhelming

amount of information available in non-structured, natural language form [1, 14,
40, 46]. Biomedical research and discovery is a particularly important application
area as manual database curation—groups of experts reading publications and
extracting salient facts in structured form for entry into biological databases—
is very expensive and cannot keep up with the rapidly increasing amount of
literature.

Developing suitable NLP applications requires a significant amount of domain
knowledge, and there already exists a large body of resources for the biomedical
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2 Revolutionizing Knowledge Discovery in the Life Sciences

domain, including taxonomies, ontologies, thesauri, and databases [8]. Although
most of these resources have not been developed for natural language analysis
tasks but rather for biologist’s needs, text mining systems typically make use of
several such resources through a number of ad-hoc wrapping and integration
strategies.

In contrast, in this chapter we show how to design an ontology specifically for
NLP, so that it can be used as a single language resource throughout a biomedical
text mining system. Hence, our focus is on analysing and explicitly stating
the requirements for ontologies as NLP resources. In particular, we examine
formal ontologies (in OWL-DL format) that, unlike the informal taxonomies
typically used in NLP, also support automated reasoning and queries based on
Description Logics (DL) [2] theorem provers.

After completing this chapter, the reader should be able to decide whether
(and how) to employ ontology technology in a text mining application, based
on the discussed integration alternatives and their respective properties. The
application scenario, a text mining system analysing full-text research papers
for enzyme mutations, provides the background for a detailed discussion of
ontology design, initialization, and deployment for NLP, including technical
challenges and their solutions.

Chapter outline. The next section analyses and motivates the connection
between NLP and ontology in detail. A real-world scenario for biological
text mining—enzyme mutations—is introduced in Section 3. We then provide
a requirements analysis for ontology design in Section 4. How a concrete
ontology fulfilling these requirements can be designed and initalized from
existing resources is demonstrated in Section 5. And finally, we show in
Section 6 how NLP tasks in a complex workflow can make use of the developed
ontology, followed by a discussion and conclusions in Sections 7 and 8.

2. MOTIVATION FOR ONTOLOGY
IN BIOMEDICAL TEXT MINING

Very little research has been done to show precisely what advantage ontologies
provide vs. other representation formats when considering an NLP system by
itself, i.e., not within a Semantic Web context. This discussion is split into two
separate aspects: (1) Exporting NLP results by populating an ontology; and (2)
Using an ontology as a language resource for processing documents.

2.1 Ontology as Result Format
Text mining results are typically exported in a (semi-)structured form using

standard data formats like XML or stored in (relational) databases for further
browsing or data mining.
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Exporting text analysis results by instantiating a pre-modeled ontology, so-
called ontology population, is one of the most common applications of ontology
in NLP [29]. In [34] this is also referred to as “ontology-based processing,”
where the ontology is not necessarily used during the analysis process itself, but
rather as a container to store and organize the results.

An obvious advantage of ontology population is that text analysis results
are exported according to a standardised format (like OWL-DL), which can be
stored, viewed, and edited with off-the-shelf tools. However, in cases where NLP
results are fed directly into subsequent analysis algorithms for further processing,
this advantage does not necessarily hold. Even so, there are further benefits
that, in our view, outweigh the additional costs incurred by the comparatively
complex ontology formats.

Result Integration. In complex application domains, like biomedical
research and discovery, knowledge needs to be integrated from different resources
(like texts, experimental results, and databases), different levels of scope (from
single macromolecules to complete organisms), and across different relations
(temporal, spatial, etc.). No single system is currently capable of covering a
complete domain like biology by itself. This makes it necessary to develop
focused applications that can deal with individual aspects in a reliable manner,
while still being able to integrate their results into a common knowledge base.
Formal ontologies offer this capability: a large body of work exists that deals
with ontology alignment and the development of upper level ontologies [36],
which can serve as a superstructure for the manifold sub-ontologies, while DL
reasoners can check the internal consistency of a knowledge base, ensuring at
least some level of semantic integrity.

Queries and Reasoning. By linking the structured information extracted
from unstructured text to an ontology, semantic queries can be run on the
extracted data. Moreover, using DL-based tools such as Racer [22] and its query
languages, RQL and nRQL [52], reasoning by inference on T-Boxes (classes;
concepts) and A-Boxes (individuals; instances) becomes possible. User-friendly
interface tools like OntoIQ [5] allow even users without knowledge of DL
to pose questions to an ontological knowledge base populated from natural
language texts. Such functionality means that NLP-derived text segments used
for automatically populating ontology concepts can subsequently be queried
according to a user’s familiarity with the domain content of the ontology.

Given that a multitude of specific text segments are generated when text
mining a large body of scientific literature, querying the ontology is the equivalent
of interrogating a summary of the whole domain of discourse, saving significant
time in finding and reading relevant literature. This may in turn lead scientists
to adopt a new approach to information retrieval, which is cross-platform and
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4 Revolutionizing Knowledge Discovery in the Life Sciences

Figure 13-1. Querying an OWL-DL ontology populated by text mining full-text papers

content-specific rather than document-centric. Accessing the full text of a paper
may become a secondary step occurring after the query of keyword-specific text
segments or tiles from an NLP-instantiated ontology, invoked effortlessly from
a user’s desktop.

An example for this is depicted in Figure 13-1, which shows the query
interface of OntoIQ [5]. The nRQL syntax of the query “Find all references to
organisms that are known to produce xylanases” appears in the uppermost frame.
The descriptors (Document-PMID, Sentence, Protein, and Organism) selected
to appear in the query result are listed in the right hand frame below. The bottom
frame shows the results returned through the interrogation of an NLP-populated
ontology from the protein mutation domain that has been loaded into Racer. A
user could now continue by examining the selected document sentences, connect
with another ontology for further queries, or forward the selected instances to
other (bioinformatics) tools for further automated processing.

2.2 Ontology as NLP Resource
Text mining systems require various language- and domain-specific resour-

ces, such as lexicons, gazetteer lists, or wordnets. These are typically accessed
through ad-hoc data formats, such as flat files or databases. On a purely technical
level, everything that can be expressed in an (OWL) ontology can be represented
in another format, which in addition often can be simpler to develop and process.
So what precisely is the motivation for using an ontology? Two important reasons
are their representational capabilities and the improved semantic consistency
they bring within a text mining system.
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Semantically Richer Representation. An ontology allows for a more
structured and semantically richer representation than many of the resources
typically used in text mining systems, like simple gazetteer lists. This is
particularly useful when the application domain of the texts is complex, as in
biology; In such cases, the additional capabilities of ontologies, like relations,
restrictions, and subsumption, allow for more efficient domain representations
than simple templates. An example of this can be seen in [54], where an ontology
guides information extraction from botanical texts.

Consistent Data Integration. Similar to the problem of result integration
mentioned above, the various resources used throughout an NLP system need
to be carefully managed to ensure semantic integrity. Currently, resources are
typically not shared between analysis components (like a tokeniser, a noun
phrase chunker, or a coreferencer), which can easily lead to inconsistencies. If
an ontology can hold all the information necessary for the various analysis steps,
only a single resource in one format needs to be developed and managed for
the complete text mining system, thereby decreasing development effort while
increasing overall semantic integrity.

3. CASE STUDY: TEXT MINING
ENZYME MUTATIONS

In this section, we introduce a concrete application scenario for biological
text mining, enzyme mutation mining. This example will be revisited several
times in the following sections, e.g., in order to derive the requirements for an
ontology supporting such an NLP system.

3.1 Biological Scenario
A large amount of biological knowledge today is only available from full-text

research papers. Since neither manual database curators nor users can keep
up with the rapidly expanding volume of scientific literature, natural language
processing approaches are becoming increasingly important for bioinformatics
projects.

Enzymes have widespread industrial applications and significant resources are
devoted to the discovery of new enzymes and their development into commercial
enzyme products with enhanced or new capabilities. Within the gene discovery
process, there are numerous tests that newly discovered enzymes must pass
before they can be considered for development into commercial products. Even
enzymes with positive performance characteristics undergo mutational changes
to improve their properties. The technologies used to design better enzymes
involve either random or targeted mutagenesis, but in both cases scientists will
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6 Revolutionizing Knowledge Discovery in the Life Sciences

at some point review mutated residues in the 3D context of the protein structure.
At this time the results of previous mutational analyses of the same or similar
proteins are relevant and a review of the literature describing the mutations is
necessary.

For protein engineers, understanding the impact of all mutations carried
out on a protein family requires a complex mapping of sequence mutants to a
common structure. Concurrent access to protein structure visualisations and
annotations describing the impacts of mutations is possible using the Protein
Mutant Database (PMD).1 The content of this database is limited, however, by
the speed at which newly published papers can be processed: In 1999, the PMD
authors already reported a three-year backlog of unprocessed publications [27].
Thus, there exists a pronounced need to speed up the extraction of mutation-
impact information from the scientific literature and make it more readily
available to protein engineers. This has been our motivation for designing a text
mining system capable of analysing enzyme mutation experiments described in
full-text research papers: Mutation Miner.

3.2 Mutation Miner
The goal of this work is the annotation of 3D protein structures with segments

of literature detailing the consequences of specific mutations. Mutation Miner
[6, 53] is a sophisticated information system designed for this purpose that
comprises an initial stage text mining subsystem linked to subsequent protein
sequence retrieval and analysis subsystems. With Mutation Miner, a protein
engineer can view structural representations of proteins (obtained from protein
databases) combined with annotations describing mutations and their impacts
(extracted through text mining from publications) within a unified visualisation
using a tool like ProSAT [20] (Figure 13-2).

3.2.1 Implementation

The natural language analysis subsystem has been developed based on the
GATE (General Architecture for Text Engineering) framework [16]. GATE
is a component-based architecture, where documents are processed through
pipelines of NLP components. This permits the dynamical assembly of a text
mining application through adding, swapping, or re-ordering its components.
Several standard components are supplied with the architecture, like a part-of-
speech (POS) tagger, a gazetteer that assigns semantic labels to tokens (words)
in a text, and the JAPE language [17] for expressing grammar rules, which
are compiled into finite-state transducers. Results are exchanged between the

1Protein Mutant Database (PMD), http://pmd.ddbj.nig.ac.jp/
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Figure 13-2. ProSAT showing a 3D (Webmol) visualisation of the endo-1,4-β -xylanase protein
with mutations extracted through text mining, selected with the interface on the left. Sections of
the extracted information are displayed on the buttons, the PMID for the original publication and
the GI for the mutated protein are located above.

components through document annotations using a form of stand-off markup.
For more details on GATE, we refer the reader to the online documentation.2

3.2.2 Ontology Extensions

Mutation Miner has originally been developed without innate support for
ontologies: Resources were converted from external formats (like databases or
taxonomies) into structures supported by GATE (like gazetteer lists). For the
reasons stated above, we pursued the integration of the various disparate NLP
resources into a single ontology shared by all NLP analysis components within
the system.

At the same time, we also provide for result output in OWL-DL format
(i.e., NLP-driven ontology population), which additionally enables semantic
queries to instances of an ontological conceptualization, as shown in Figure 13-1.
This becomes particularly interesting when the Mutation Miner ontology is
integrated with other ontologies, as it allows cross-domain queries and reasoning.
Instances generated by Mutation Miner alone provide information about impacts
of mutational change on protein performance. These instances permit queries
such as: “Find the locations of amino acids in xylanase proteins, which when
mutated have resulted in enhanced enzyme thermostability.” Integration of the
Mutation Miner ontology with the instantiated FungalWeb ontology [44] that

2GATE documentation, http://gate.ac.uk/documentation.html
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8 Revolutionizing Knowledge Discovery in the Life Sciences

represents knowledge about the enzyme industry and fungal species additionally
permits cross-disciplinary queries. For example, queries asking “Identify
the industrial benefits derived from commercial enzyme products based on
mutated xylanases” or “What commercial enzyme products are not the result
of mutational improvement” become now possible. Depending on the user,
access to this knowledge can assist in decision making for experimental design
or product development. For further examples illustrating the use of formal
ontology reasoning and querying in concrete application scenarios from fungal
biotechnology, we refer the reader to [4, 7].

4. REQUIREMENTS ANALYSIS FOR
ONTOLOGIES SUPPORTING NLP

In this section, we discuss how to design an ontology explicitly for supporting
NLP-related tasks. We do this in two steps: Section 4.1 briefly discusses the
typical tasks performed by a (biomedical) text mining system. This is followed
by a requirements analysis in Section 4.2, where we state what information
precisely needs to be in an ontology to support the various NLP tasks.

4.1 NLP Tasks
In order to motivate our requirements for designing ontologies as NLP

resources, we briefly outline some of the major subtasks during the analysis of
a biomedical document. These processing steps are shown in the left half of
Figure 13-3.

4.1.1 Named Entity Recognition

Finding Named Entities (NEs) is one of the most basic tasks in text mining. In
biological texts, typical examples for NEs are Proteins, Organisms, or Chemicals.

Named entity recognition, often also called semantic tagging, is a well-
understood NLP task. Basic approaches to finding named entities include
rule-based techniques using finite-state transducers [17, 42] and statistical
taggers, e.g., using Support Vector Machines (SVMs) [32] or Hidden Markov
Models (HMMs) [33].

Scientific publications and other knowledge resources containing natural
language text in the biomedical domain show certain characteristics that make
term recognition unusually difficult [37]. There is a high degree of term variation,
partly caused by the lack of a common naming scheme for the above mentioned
entities, like proteins or organisms. Often, identical names are used for a gene
and the protein encoded by it, further complicating the automatic identification
of genes and proteins. Moreover, there is an abundant use of abbreviations in
the field, where their expansion into the non-abbreviated form is easy for expert
human readers, but difficult for text mining systems.
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Figure 13-3. Workflow of the Mutation Miner NLP subsystem

While NE recognition is a well analysed task for the domain of newspaper
and newswire articles, biomedical text mining requires further processing of
detected entities, especially normalization and grounding.

4.1.2 Entity Normalization

Entities in natural language texts that occur in multiple places are often written
differently: Person names, for example, might omit (or abbreviate) the first
name, and include or omit titles and middle initials. Similarly, in biological
documents, entities are often abbreviated in subsequent descriptions, e.g., the
same organism can be referred to by both of the different textual descriptors,
Trichoderma reesei and T. reesei. Likewise, the same protein mutation can be
encoded using single-letter or three-letter amino acid references. It is important
for downstream processing components that these entities are normalized to a
single descriptor, e.g., the non-abbreviated form. For a thorough discussion on
abbreviations in the biomedical domain, we refer the reader to [13].

4.1.3 Coreference Resolution

A task related to normalization is coreference resolution. In addition to
abbreviations, other variations in names often exist. Within a biological text for
example, the same protein might be referred to as Xylanase II and endo-1,4-β -
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Xylanase II. In addition, pronominal references like it or this can also refer to a
particular entity [12]. Consider the following sentence:3

Interestingly, the Brønsted constants for the hydrolysis of aryl β -glucosides by
Abg, a β -glucosidase from Agrobacterium faecalis, and its catalytic nucleophile
mutant, E358D, [. . . ] are also identical, as also are β1g values for wild-type and
E78D Bacillus subtilis xylanase (Lawson et al., 1996).

In the part “hydrolysis of aryl β -glucosides by Abg, a β -glucosidase from
Agrobacterium faecalis, and its catalytic nucleophile mutant, E358D,” the
pronoun its refers to the β -glucosidase protein Abg, however, this is not obvious
for an NLP system.

Finding all the different descriptors referring to the same entity (both nominal
and pronominal) is the task of coreference resolution. The resulting list of
entities is collected in a coreference chain. Note that even after successful
resolution, a normalized name still needs to be picked from the coreference
chain.

4.1.4 Grounding

As a final step in NE detection, many entities need to be grounded with respect
to an external resource, like a database. This is especially important for most
biological entities, which have corresponding entries in various databases, e.g.,
Swiss-Prot for proteins. When further information is needed for downstream
analysis tasks, like the automatic processing of amino acid sequences, grounding
the textual entity to a unique database entry (e.g., assigning a Swiss-Prot ID to a
protein entity) is a mandatory prerequisite. Thus, even if an entity is correctly
detected from an NLP perspective, it might still be ambiguous with respect to
such an external resource (or not exist at all), which makes it useless for further
automated processing until the entity has been grounded.

4.1.5 Relation Detection

Finding entities alone is not sufficient for a text mining system: most of the
important information is contained within the relations between entities. For
example, the Mutation Miner system described above needs to determine which
organism produces a particular protein (protein↔organism relation) and which
protein is modified by a mutation (mutation↔protein relation).

Relation detection can be very complex. Typical approaches employ pre-
defined patterns or templates, which can be expressed as grammar rules, or
a deep syntactic analysis using a full or partial parser for the extraction of

3Example sentence from: A. M. MacLeod, D. Tull, K. Rupitz, R. A. J. Warren, and S. G. Withers: “Mechanistic
Consequences of Mutation of Active Site Carboxylates in a Retaining beta-1,4-Glycanase from Cellulomonas
fimi,” Biochemistry 1996, 35(40), PMID 8855954.
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predicate-argument structures [34]. The performance of a relation detection
component can be improved given information about semantically possible
relations, thereby restricting the space of possible combinations.

4.2 Detected Requirements
We can now state a number of requirements that an ontology needs to fulfill

in order to support NLP analysis tasks. Note that, although we illustrate these
requirements with the Mutation Miner scenario, they apply equally to a wide
range of biomedical text mining systems.

Requirement #0: Domain Model. As a prerequisite, the ontology needs to
be structured according to the domain of discourse. Entities that are to be
detected in an NLP system need to be contained in the ontology in form of
classes (T-Boxes).

Requirement #1: Text Model. Concepts that model a document’s components
are needed in the ontology in addition to the domain concepts, e.g., classes
for sentences, text positions, or document locations. These are required for
anchoring detected entities (populated instances) in their originating documents.

Location is important to differentiate entities discovered in e.g. the list of
references from those in e.g. abstract or introduction. Note that detecting the
location requires additional text tiling algorithms, which we do not discuss
within this chapter.

Additional classes are needed for NLP-related concepts that are discovered
during the analysis process, like the noun phrases (NPs) and coreference chains
discussed above.

Requirement #2: Biological Entities. The ontology needs instances (in form
of A-Boxes) reflecting biological entities in order to be able to connect textual
instances with their real-world counterparts. That is, if a biological entity is
known to exist (for example, Laccase IV ), it must have a counterpart in the
ontology (namely, an instance in the enzyme subclass oxidoreductase).

It might appear naı̈ve to assume that entities under consideration for text
analysis are already available in biological databases, yet this is often the case:
Publication in this subject domain requires the deposition of the entities under
analysis (e.g., proteins) in publicly accessible databases. The challenge for text
mining is in fact to discover within texts larger semantic connections between
targeted entities (e.g., protein-protein interactions), which are not necessarily
available in databases since it is access to this implicit knowledge that provides
a competitive advantage to scientists.

D R A F T Page 11 August 30, 2006, 10:41am D R A F T



12 Revolutionizing Knowledge Discovery in the Life Sciences

In addition to the main entities of the domain in question, the ontology
might include supplementary classes and relations, like fundamental biological,
medical, or chemical information, which facilitate entity detection and other
text analysis tasks.

Requirement #3: Lexical Information. In order to enable the detection
of named entities in texts, the ontology needs lexical information about the
biological instances stipulated in requirement #2. Lexical information includes
the full names of entities, as well as their synonyms, common variants and
misspellings, which are frequently recorded in databases. If unknown or highly
varying expressions need to be detected in texts, entity-specific pre- and postfixes
(e.g., endo- or -ene) can also be recorded in the ontology.

In addition, specialized NLP analysis tasks usually need further information,
like subcategorization frames. For example, in order to correctly determine
predicate-argument structures for proteins, postnominal phrases need to be
attached to the correct noun phrase [43]. Storing the frame structures required
for this step together with the entities in the ontology helps to maintain the
overall semantic integrity of a system.

Requirement #4: Database Links. As mentioned before, entities detected
in documents need to be connected with their real-world counterparts in a
so-called grounding step. In order to support this task, the ontology must contain
information about database locations and IDs (unique keys) of the various
entities.

Grounding is needed in order to allow downstream analysis tasks to actually
process entities detected in documents. For example, once a protein has been
linked to a database like Swiss-Prot, its particular amino acid sequence can be
retrieved from the database and processed by bioinformatics algorithms (e.g.,
BLAST4 for sequence alignment).

Requirement #5: Entity Relations. Where available, biologically relevant
relations between entities have to be encoded semantically in the ontology as
well. This information is important for many steps, not only relation detection,
where it helps disambiguating possible PP-attachments, but also for coreference
resolution, normalization, and grounding. For instance, the normalized name
of a protein can reflect both the protein function and the originating organism,
which is important semantic information for the protein↔organism relation
detection task.

4Basic Local Alignment Search Tool (BLAST), http://www.ncbi.nlm.nih.gov/BLAST/
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Table 13-1. Ontological concept definitions and instance examples for Mutation Miner

Concept Definition Example Instances

Cellular
Component

Subcellular structures, locations, and macromolecular
complexes

Ribosome,
Golgi, Vesicle

Plasmid Circular double-stranded DNA capable of autonomous
replication found in bacteria

pPJ20

Protein A complex natural substance that has a high molec-
ular weight and a globular or fibrous structure com-
posed of amino acids linked by peptide bonds

Protein,
Immunoglobulin

Organism A virus or a unicellular or multicellular prokaryote or
eukaryote

S. lividans, Clostridium
thermocellum

Enzyme A protein that acts as a catalyst, speeding the rate at
which a biochemical reaction proceeds but not altering
the nature of the reaction

Xylanase A,
endo-1,4-β -xylanase

Recombinant
Enzyme

Enzymes produced from new combinations of DNA
fragments using molecular biology techniques

Xylanase A+E210D

Mutant Indicates that something is produced by or follows a
mutation; also a mutant gene or protein

E210D, Phe37Ala,
Arg115

Measurement Units of measurement half life (s), Kcat, hydrol-
ysis efficiency, pH

Property The description of a biological, chemical or physical
property of a protein that can be quantified

denaturation, catalysis,
stabilization, unfolding

Impact An examination of two or more enzymes (wild type or
mutant) to establish similarities and dissimilarities

shift, increase, more ac-
tive, fold, destabilize

5. BUILDING ONTOLOGICAL RESOURCES
FOR BIOMEDICAL TEXT MINING

This section shows in detail how to design and initialize an ontology that sup-
ports the stated requirements. Although we focus our discussion on information
required for the mutation scenario, the principles apply to other biological text
mining tasks as well.

5.1 The Mutation Miner Ontology
An ontology that can house instances from Mutation Miner requires concepts

for the main units of discourse—proteins, mutations, organisms—as well as
supplementary concepts that characterize changes in enzyme properties, the
direction of the change, and the biological property of the enzyme that has been
altered (Req. #0). Table 13-1 shows the main concepts together with a brief
definition and Figure 13-4 shows a part of the ontology graphically.

The ontology is represented in OWL-DL [45] and was created using the
Protégé-OWL extension of Protégé,5 a free ontology editor. Here, we made

5Protégé ontology editor, http://protege.stanford.edu/
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Figure 13-4. A part of the Mutation Miner ontology

use of two OWL language elements that model important information about
the domain. Firstly, using object properties,6 which specify relations between
class instances, we register several relationships between instances of ontology
classes. For example, the Mutation class has a changedGene object property,
which is defined as having the domain “Mutation” and the range “Gene,” linking
a mutation instance to the instance of the gene it modifies. Secondly, cardinality
restrictions are included to model the possible alternatives for denoting an
organism. For example, the organism description in a text may consist of at
most one genus, species, and strain, respectively, where strain is optional but
only if both genus and species are given.

Several other enhancements to the ontology’s expressiveness are possible, like
placing additional restrictions on relations. They are not necessary, however, for
the ontology-enhanced NLP analysis, but could be added to improve reasoning
over extracted entities, e.g., for advanced querying.

6OWL Web Ontology Language Guide, Object Properties, http://www.w3.org/TR/2004/
REC-owl-guide-20040210/\#SimpleProperties
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Before the ontology can be deployed in an NLP system, instances for the
various classes like protein or organism need to be created. Since adding and
maintaining these instances and their relations manually is not an option, we
now show how ontology instances can be automatically created and updated
with respect to external biological databases.

5.2 Initializing the Ontology for Organisms
The systematic classification of organisms is called taxonomy. The individual

species are set in relation to each other according to the degree of their genetic
relationship. The names of organisms consist of parts called taxonomic units,
giving the position in the classification tree. Usually, the taxonomic units
genus and species are used in biomedical texts, resulting in a name such as
Escherichia coli. Sometimes a strain is also given, which designates a more
precise identification.

5.2.1 The NCBI Taxonomy Database

We use the Taxonomy database [19] from NCBI7 to initialize our ontology
(Req. #2). The Taxonomy database is “a curated set of names and classifications
for all of the organisms that are represented in GenBank” (see [19] for a
detailed description). GenBank8 is another NCBI database, containing “publicly
available DNA sequences for more than 165,000 named organisms.” As of
2006-06-05, the Taxonomy database contained 310,756 classified taxa, with
409,683 different names in total.

In NCBI’s database, every species and taxonomic unit has exactly one entry
with a name classified as scientific name, as well as other possible variants. The
scientific name is the “correct” one, and the others can be synonyms, common
misspellings, or past names if the organism has been reclassified. Table 13-2
shows an example entry, constricted to the most important columns, for the
organism Escherichia coli (E. coli). It can be seen that there are seven synonyms
and two common misspellings recorded in addition to the scientific name.

5.2.2 Ontology Creation with Jena

To convert the taxonomy data, it is possible to download the whole database,
which is available as structured plain text files from NCBI’s FTP server. A
Python program was developed for this purpose, which reads these files and
inserts their contents into an SQL database, preserving the structure by directly
mapping each file to a database table and its columns to SQL columns in that
table.

7NCBI Taxonomy Homepage, http://www.ncbi.nlm.nih.gov/Taxonomy/
8GenBank sequence database, http://www.ncbi.nih.gov/Genbank/index.html
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The Mutation Miner ontology can now be populated from the contents of
this database with a custom Java program using the Jena library. Jena9 is an
open source “Semantic Web Framework for Java,” providing an API for OWL
generation. Figure 13-5 shows the function creating the Organism instances
from the Taxonomy data.

1 public static OntModel populateOrganisms( OntModel m ) {
2 // Instantiate the necessary OWL properties. ”mmNS” is the Mutation Miner namespace.
3 DatatypeProperty organismName = m.getDatatypeProperty( mmNS+”organismName” );
4 DatatypeProperty organismAllNames = m.getDatatypeProperty( mmNS+”organismAllNames” );
5 DatatypeProperty ncbiId = m.getDatatypeProperty( mmNS+”ncbiId” );
6
7 // Plain text lists with mappings written out from the SQL DB.
8 Map id2sciName = listToMap(id2sciNameFile);
9 Map id2nonsciName = listToMap(id2nonsciNameFile);

10
11 Set oids = id2sciName.keySet();
12 String curOid, orgName;
13 ArrayList otherNames;
14 Individual curOrg;
15 /* For each organism, get its scientific name and create the Individual, then
16 * get the other names and store them in the organismAllNames property. */
17 for( Iterator oidsIt = oids. iterator (); oidsIt .hasNext() ) {
18 curOid = (String) oidsIt .next ();
19 orgName = (String)((ArrayList)id2sciName.get(curOid)).get(0);
20 curOrg = m.createIndividual( mmNS+createClassName(orgName, curOid), organismClass );
21 curOrg.addProperty( organismName, orgName );
22 curOrg.addProperty( ncbiId, curOid );
23 otherNames = (ArrayList)id2nonsciName.get( curOid );
24 if ( otherNames != null )
25 curOrg.addProperty( organismAllNames, otherNames.toString() );
26 }
27 return m;
28 }

Figure 13-5. Creating Organism instances in the Mutation Miner ontology using Jena

The resulting comprehensive set of instances can be queried by all language
processing components through GATE’s ontology layer (we explain the technical
details for this in Section 6.1).

5.2.3 Adding Lexical Organism Information

In order to support named entity detection of organisms, the ontology must
contain the taxonomical names so that they can be matched against words in a
text using a gazetteer NLP component (Req. #3). This information can also be
directly extracted from the NCBI database, including the names themselves and
information like the hierarchical structure of taxa and organisms.

9Jena, http://jena.sourceforge.net/
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Table 13-2. The NCBI Taxonomy entry for E. coli (tax id 562, rank="species")

name txt name class

”Bacillus coli” Migula 1895 synonym
”Bacterium coli commune” Escherich 1885 synonym
”Bacterium coli” (Migula 1895) Lehmann and Neumann 1896 synonym
Bacillus coli synonym
Bacterium coli synonym
Bacterium coli commune synonym
Escherchia coli misspelling
Escherichia coli scientific name
Escherichia coli (Migula 1895) Castellani and Chalmers 1919 synonym
Escherichia coli retron Ec107 includes
Escherichia coli retron Ec67 includes
Escherichia coli retron Ec79 includes
Escherichia coli retron Ec86 includes
Eschericia coli misspelling

Together with the taxonomical information we store additional metadata,
like the originating database and the “scientific name,” for each instance. This
becomes important when delivering provenance information to scientists working
with the populated ontology. An additional advantage of replacing flat organism
lists with an ontology is that the taxonomical hierarchy is directly represented
and can be queried by e.g. grammar rules. An example for this is given in
Section 6.2.

5.2.4 Entity Normalization and Grounding

The initialized ontology now also holds the information required for named
entity normalization and grounding: Firstly, by encoding the taxonomic relations
we can ensure that only valid organism names are extracted from texts. For
example, we can reject a genus-species combination that might look like a valid
name to a simple organism tagger, yet is not supported by the NCBI database
and therefore cannot be grounded in the ontology. Secondly, by encoding the
“scientific name” given by NCBI, we can assign each detected organism a
normalized name, which is at the same time grounded in the taxonomic database.
Here, we extract and encode the database IDs when creating the ontology, linking
each instance to the external NCBI resource (Req. #4).

5.3 Ontology Initialization for Proteins
We now need ontology support for analysing protein information (Req. #2),

just as for organisms.
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Figure 13-6. Swiss-Prot entry for Xylanase II

5.3.1 The Swiss-Prot Protein Database

The UniProt Knowledge Base [3] is a set of two protein databases, Swiss-
Prot10 and TrEMBL. Both hold entries about proteins appearing in published
works, including information about protein functions, their domain structure,
associated organisms, post-translational modifications, variants, among others.
Swiss-Prot, which consisted of 228,670 entries as of 2006-07-02, contains
“manually-annotated records with information extracted from literature and
curator-evaluated computational analysis,”11 while TrEMBL is populated by
automatic analysis tools. In the Mutation Miner system, we use the manually
curated Swiss-Prot database to gain reliable grounding (see Section 4.2) of
proteins found in biological documents (Req. #4).

Figure 13-6 shows the Swiss-Prot entry for a variant of the xylanase 2 protein.
The entries most important for NLP analysis are the various “Synonyms,” as
they can all appear in a given biomedical document (Req. #3), the canonical
name (“Protein name”) that can depend on its host organism, and a unique ID
(“Primary accession number”) that allows unambiguous linking to the protein’s
entry.

A further essential feature of Swiss-Prot is that its entries are linked to other
databases, notably to the NCBI Taxonomy database described in the previous
section. This can be seen in the “From” line where the ID of the host organism
(“TaxID”) is recorded. Thus, proteins found in documents can easily be linked
to their hosting organisms (Req. #5).

10Swiss-Prot protein database, http://www.expasy.org/sprot/
11Swiss-Prot manual, http://www.expasy.org/sprot/userman.html
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The Swiss-Prot data can be downloaded from the Swiss-Prot website in XML,
FASTA [38], and plain text format. We adapted our tool for writing NCBI data
to an SQL database by exchanging its parser component in order to add the
Swiss-Prot data to the database as well, thus enabling queries spanning the two
datasets, using the NCBI ID recorded in both to join the results.

The database entry corresponding to Figure 13-6 contains the fields ID for
the unique identifier, DE for the possible names, GN for the corresponding gene’s
name, and OX for the identifier linking to the Taxonomy database:

ID XYN2_TRIRE STANDARD; PRT; 222 AA.
DE Endo-1,4-beta-xylanase 2 precursor (EC 3.2.1.8) (Xylanase 2) (1,4-
DE beta-D-xylan xylanohydrolase 2).
GN Name=xyn2;
OS Trichoderma reesei (Hypocrea jecorina).
OX NCBI_TaxID=51453;
RX MEDLINE=93103679; PubMed=1369024;
[...]

The protein data is then encoded in the ontology, similar to the information
concerning organisms. Thus, the ontology now has all the required information
for detecting protein named entities, as well as assigning normalized names
and grounding them to Swiss-Prot IDs (note that some additional processing is
required for Protein analysis, including abbreviation detection [13], however,
we cannot cover these steps within the scope of this chapter).

Of particular interest are the relations between proteins and organisms inferred
from the NCBI TaxID value, which are also transferred into our ontology
according to Req. #5 (note the organismProteinRel relation in Figure 13-
4). We can now create relation instances, again using Jena (cf. Figure 13-5):

ObjectProperty organismProteinRel = m.getObjectProperty( mmNS+”organismProteinRel” );
for( Iterator protIt = proteinClass. listInstances (); protIt .hasNext() ) {

[. . .] // Find the ncbiId stored in the protein ’s record.
// Query for the organism with this id
org = (Object)rdfLiteralQuery( ox, ncbiId, organismClass, m );
prot .addProperty( organismProteinRel, org );

}

How we exploit the relation information from the ontology for the NLP analysis
of entity relations is covered in Section 6.5.

There is further potentially interesting information available in Swiss-Prot
records that could also be transferred to the ontology, for instance the Medline
and Pubmed IDs of the publications where primary information concerning
the protein is found (shown in the RX line of the listing), as well as the protein
sequence (see Figure 13-9) needed for further automatic processing of text
mining results.

5.4 Ontology Initialization for Mutations
In protein engineering literature, mutations describe changes to amino acid or

gene sequences. Mutations are somewhat different from the previously discussed
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entities like proteins and organisms, in that they are not exhaustively listed in
some database, which could be converted into an ontology. However, it is still
necessary to model the different kinds of mutations to allow the population of
the result ontology with the detected instances (Req. #0, see Figure 13-4).

Mutations are typically identified using NLP techniques, like transducers (see,
e.g., [26, 41]) or HMMs. To facilitate their detection, the ontology needs lexical
information concerning amino acids, with their various textual representations
(for instance, “Asn”= “N”=“Asparagine” all denote the same amino acid).
This lexical information is then evaluated for the detection of Mutation entities
(Reqs. #2 and #3).

6. NLP-DRIVEN ONTOLOGY POPULATION
This section discusses how to employ the modeled and initialized ontology for

the various NLP analysis tasks stated in Section 4.2 (see Figure 13-3). For the
sake of brevity, we omit several standard NLP analysis steps in this discussion,
like part-of-speech (POS) tagging, noun phrase (NP) chunking, or stemming.
Readers unfamiliar with these tasks should consult [23] and the GATE user’s
guide.12

6.1 Interfacing Ontology and NLP
Before we go into detail on individual NLP analysis steps, we discuss some

technical issues concerning current implementations when interfacing ontologies
with NLP systems. This is an essential part of an ontology-centered system as
outlined in Section 2, as it allows replacement of the different data resources
needed within the various NLP tasks with an ontology as a single source that
can then be queried by each component in different ways.

Ontology Support in GATE. Starting with version 3.0, GATE has been
featuring built-in ontology support in form of an abstraction layer between the
components of an NLP system and the various ontology representations [9].
This layer is built on Jena as RDF-Store, enabling the use of OWL ontologies
from within GATE. Also, an integrated SPARQL13 query engine allows querying
the ontology’s RDF graph. With SPARQL it is possible to perform SQL-like
queries, e.g., for selecting instances based on their ID.

For example, in order to construct a SPARQL query for the Mutation Miner
ontology to retrieve the scientific name of the organism with NCBI ID 1423, one
has to ask for a name (variable?name) that is the value of a scientificName

12GATE user’s guide, http://gate.ac.uk/sale/tao/index.html
13SPARQL RDF query language, http://www.w3.org/TR/rdf-sparql-query/
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property of an organism (variable ?organism), which in turn also has an
ncbiTaxId property with the value “1423”:

SELECT ?name
WHERE { ?organism mm:scientificName ?name

?organism mm:ncbiTaxId 1423 }

However, SPARQL is not OWL-capable in the sense that semantically richer
queries considering the ontology classes and the class hierarchy, e.g., formally
restricting the queried subjects to instances of the Organism class, can not be
expressed. If this functionality is required, interfacing with an ontology reasoner
(like Racer [22]) and using one of its supported query languages (like nRQL
[52]) becomes necessary.

Limitations of GATE’s Ontology Support. While the GATE architecture
supports OWL-DL, very few NLP components are ontology-aware. In particular,
the gazetteer as well as the JAPE transducer component can evaluate information
from an ontology. However, at present they only make use of is-a relations
between classes. For the gazetteer, this is sufficient because its sole purpose is
to map ontology classes to names. It should be noted, however, that it currently
cannot access an existing ontology via Jena, instead it must be provided with
plain text lists whose entries are then mapped to ontology classes. Nevertheless,
this is an implementation detail with little impact on the general ontology
design; these lists can easily be generated from an ontology filled with the NCBI
and Swiss-Prot data as described in Section 5. For an alternative approach to
ontological gazetteering, see the Semantic Gazetteer component [39] developed
within the KIM platform [29], which is also based on GATE.

The JAPE transducer component also features only limited ontology support.
It currently considers the feature class of an annotation to be special and
takes the ontological hierarchy into account when equality tests are performed
on its value in grammar rules. For example, if a grammar contains the pattern
Token.class == "TaxonomicUnit", the rule will also match if the
value of class is “Species,” as Species is-a TaxonomicUnit in the Mutation
Miner ontology.

Consequences for Ontology Design. The discussed implementation re-
strictions also have an impact on ontology design, as illustrated in Figure 13-7.
The left part shows the protein section, initialized with the Xylanase 2 protein,
modeled using the full capabilities of OWL-DL: All proteins are instances of a
single class and have a name property that is further subclassed to distinguish
the standard name from its variants. On the right side, a design alternative is
shown, where each protein is represented by its own subclass.

The second design alternative allows direct leverage of the capabilities of
GATE components to analyse texts with respect to an ontology despite their being
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name

Protein

 Xylanase 2

 1,4−beta−D−xylan xylanohydrolase 2

 EC 3.2.1.8
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P12763
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<owl:ObjectProperty/> <owl:ObjectProperty/>

Endo−1,4−beta−xylanase 2 
[Precursor]

<owl:subPropertyOf/>
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<rdfs:subClassOf/>

normalizedName

has<owl:ObjectProperty/>

<owl:subPropertyOf/>

scientificName

<owl:InverseFunctionalProperty/>

synonym

Figure 13-7. Ontology design alternatives for NLP analysis using GATE

limited to is-a class relationships. When the first, somewhat cleaner version is
used, it becomes necessary to use a custom query interface for accessing the
encoded information. These implementation issues will most likely change,
however, in future versions of GATE.

6.2 Named Entity Detection
The basic process in GATE for recognizing entities of a particular domain

starts with the gazetteer component. It matches given lists of terms against the
tokens of an analysed text and, in case of a match, adds an annotation named
Lookup whose features depend on the list where the match was found. Its
ontology-aware counterpart is the OntoGazetteer, which incorporates mappings
between its term lists and ontology classes and assigns the proper class in case
of a term match. For example, using the instantiated Mutation Miner ontology,
the gazetteer will annotate the text segment Escherichia coli with two Lookup
annotations, having their class feature set to “Genus” for Escherichia and
“Species” for coli.

In a second step, grammar rules written in the JAPE language are used
to detect and annotate complex named entities. Those rules can refer to the
Lookup annotation generated by the OntoGazetteer, and also evaluate the
same ontology. For example, in a comparison like class=="Species", the
ontological hierarchy is taken into account so that also subspecies match, since
a Subspecies is-a Species in the ontology. This can significantly reduce the
overhead for grammar development and testing.

Hence, to detect Organisms in texts, an OntoGazetteer instance first annotates
all tokens in a text that match instances in the ontology corresponding to Genus
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or Species (additional grammar rules are employed to detect Strains). Specific
grammar rules can then detect legal organism notations, for example, [genus
species strain?], which can be encoded in JAPE as:

Rule: OrganismRule1
Priority: 50
(

({Genus} ):gen
({Species} ):spec
(({Strain} ):str)?

):org1 --> (right hand side of the rule)

Similar processing takes place for detecting proteins, mutations, and other
entities. The result of this stage is a set of named entities, which are, however,
not yet normalized or grounded.

6.3 Normalization and Grounding
Normalization needs to decide on a canonical name for each entity, like a

protein or an organism. Since the ontology encodes information about e.g.
scientific names for organisms, a corresponding normalized entry can often be
uniquely determined with a simple lookup. In case of abbreviations, however,
finding the canonical name usually involves an additional disambiguation step.

For example, if we encounter E. coli in a text, it is first recognised as
an organism from the pattern “species preceded by abbreviation.” The NLP
component can now query the ontology for a genus instance with a name
matching E* and a species named coli, and filter the results for valid genus-
species combinations denoting an existing organism. Ideally, this would yield
the single combination of genus Escherichia and species coli, forming the correct
organism name. However, the above query returns in fact four entries. Two
can be discarded because their names are classified by NCBI as misspellings of
Escherichia coli, as shown by the identical tax id (cf. Table 13-2). Yet the
two remaining combinations, with the names Escherichia coli and Entamoeba
coli, are both classified as “scientific name.” A disambiguation step now has to
determine which one is the correct normalized form for E. coli: This is the task
of coreference resolution covered in Section 6.4 below.

Once the normalized name (and thus the represented ontology instance)
has been determined, in the case of organisms and proteins the corresponding
database ID can be trivially retrieved from the instance, where it was stored
as an OWL datatype property as described in Section 5.1. Since the database
record can now be unambiguously looked up, the entity is grounded with respect
to an external source. For our examples, these IDs are P36217 for the xylanase
variant shown in Figure 13-6, and 562 for E. coli, whose database entries are
shown in Figure 13-2.
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Figure 13-8. An organism annotation in GATE showing normalization and grounding of the
textual entity B. subtilis to Bacillus subtilis with the NCBI database ID 1423

The end result of this step is a semantic annotation of the named entities as
they appear in a text, which includes the detected information from normalization
and grounding, as shown in Figure 13-8.

Mutation Normalization and Grounding. Mutation normalization and
grounding exhibits some interesting additional properties. As mentioned in
Section 5.4, protein mutations are first normalized to a single-letter format from
their textual description, which can be easily achieved using the amino acid
information stored in the ontology.

More involved is the grounding of a mutation with respect to its protein
sequence. Using the already grounded protein information, an amino acid
sequence is retrieved from Entrez14 using eFetch15 (see Figure 13-9). Mutated
residues can then be located on the retrieved sequences and only those mu-
tation/sequence combinations bearing the declared wild type residues at the
specified coordinates with the correct offset between multiple mutations are
eligible for subsequent processing. Single point mutations must match the
amino acid at the designated coordinate exactly. Mutations detected in a text
that cannot be grounded to its designated protein are discarded [53].

6.4 Coreference Resolution
Coreference resolution (see Section 4.1.3) is another important step in a

text mining system, as its results, coreference chains, form the basis for many

14Entrez, http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi
15NCBI Entrez Programming Utilities (eUtils), http://eutils.ncbi.nlm.nih.gov/entrez/
query/static/eutils help.html
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1: P36217. Reports Endo-1,4-beta-xyl...[gi:549461] BLink, Domains, Links

>gi|549461|sp|P36217|XYN2_TRIRE Endo-1,4-beta-xylanase 2 precursor
(Xylanase 2) (1,4-beta-D-xylan xylanohydrolase 2)

MVSFTSLLAASPPSRASCRPAAEVESVAVEKRQTIQPGTGYNNGYFYSYWNDGHGGVTYTNGPGGQFSVN
WSNSGNFVGGKGWQPGTKNKVINFSGSYNPNGNSYLSVYGWSRNPLIEYYIVENFGTYNPSTGATKLGEV
TSDGSVYDIYRTQRVNQPSIIGTATFYQYWSVRRNHRSSGSVNTANHFNAWAQQGLTLGTMDYQIVAVEG
YFSSGSASITVS

Figure 13-9. Protein sequence data in FASTA format for xylanase 2 retrieved from Entrez using
the grounded protein entity P36217 obtained by NLP analysis

downstream analysis tasks. Mutation Miner, for example, needs to identify the
impact of a certain enzyme mutation. This requires the identification of all
mentions of a mutation throughout the text, in order to examine their context,
thereby extracting and summarizing the impact descriptions.

While coreference resolution has been studied extensively in the general
newspaper/newswire domain, the resolution of biological entities (nominal
and pronominal) is a rather new area of research. Here, we only focus on
the ontological extensions of coreference resolution, not the basic approaches
covered in the literature [12, 21, 28, 50]. In our system, we employ a fuzzy-based
coreference resolution strategy using a number of heuristics that can use the
instantiated ontology as a knowledge source. For example, coreference between
an organism entity in abbreviated and several candidates in non-abbreviated form
(cf. the last section) can be resolved by examining their context and picking the
closest one of the candidates that was previously mentioned in non-abbreviated
form. Entities that have been successfully grounded can be unambiguously
identified as being equal by comparing their unique database IDs recorded in
the ontology and thusly grouped in a coreference chain.

A common problem during coreference analysis are ambiguities occurring at
the linguistic level. Here, the ontology can facilitate disambiguation by allowing
comparisons considering different hierarchy levels in the ontology. For example,
the NCBI Taxonomy database records the “parent” for each species. Thus,
when testing for coreferring entities of an organism classified as “species” in the
taxonomic tree, not only other species but also all subspecies can be taken into
account by retrieving their parent IDs and using them in the comparison. For
the subspecies Batis mixta mixta, for instance, the hierarchical relationship to
its parent species Batis mixta can be established without resorting to substring
tests by comparing the parent ID of the subspecies with the species’ ID.

An example for successful coreference resolution on organisms can be seen in
Figure 13-10, which shows GrOWL16 visualising a segment of the result ontology
for a document, with ontology classes depicted by filled boxes and class instances

16GrOWL ontology visualiser, http://ecoinformatics.uvm.edu/dmaps/growl
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Figure 13-10. Organism coreference chains from the NLP-populated result ontology

by boxes with empty background. The Chain class representing coreference
chains, here confined to Organism chains, is connected to its members by the
object property hasNP. On the instance level, we see four chains, one for each
organism found in the document. The chain for Cellulomonas fimi is expanded
in the figure to show its eight members, which are instances of the Organism
class.

6.5 Relation Detection
Relation detection, for example between organisms and proteins, requires

more involved NLP analysis, like full or partial parsing for predicate-argument
extraction [23, 31, 51].

A common problem in relation extraction is the high amount of ambiguity,
especially when using full parsers [55]. Employing an ontology encoding
semantically valid relations (Req. #5) allows to constrain the number of detected
relation candidates to the semantically valid ones, which ideally results in a
unique relation and otherwise boosts precision [30].

We give an example for detecting and disambiguating protein-organism
relations, which is illustrated in Figure 13-11. Information from Swiss-Prot,
including protein synonyms and taxonomic origin, is encoded in our ontology
as detailed in Section 5.3. We can use this information to resolve ambiguous
entities in a relation by discarding possible combinations that are not supported
by the ontology, as each protein in Swiss-Prot is linked to its hosting organism
via the latter’s NCBI Taxonomy ID.

In the given example sentence, the phrase “Bacillus subtilis xylanase” refers
to a protein of the Xylanase family. This can be automatically determined by the
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Figure 13-11. Protein disambiguation exploiting a detected relation

named entity detection (see Section 6.2), semantically annotating “xylanase” as
Protein and “Bacillus subtilis” as Organism. But it is not yet clear which
protein is meant precisely. As can be seen in Figure 13-6, canonical protein
names can change according to the organism they have been generated from:
Xylanase 2 from Trichoderma reesei has the normalized name Endo-1,4-beta-
xylanase 2 [Precursor] and a grounded ID in Swiss-Prot of P36217. Querying
the ontology for proteins with “xylanase” in their name yields no less than 72
different proteins. However, in this example, Bacillus subtilis, which was tagged
as organism by the NE component, can be unambiguously grounded, because it
is a name occurring in the NCBI Taxonomy database, with the ID 1423 (see
Figure 13-8).

So, the ontology query can be refined by including the organism’s NCBI ID,
which is used in Swiss-Prot to record the organism producing a protein. The
resulting query for a protein named “∗xylanase∗” that is linked to the NCBI entry
1423 yields exactly one result, the correct protein “Endo-1,4-beta-xylanase A
precursor (EC 3.2.1.8) (Xylanase A) (1,4-beta-D-xylan xylanohydrolase A).”

6.6 Exporting the Populated Ontology
Finally, the instances found in the document and the relations between them

are exported to an OWL-DL ontology. Note that for the instances and relations
available in the external databases, the result ontology is a subset of the one
populated initially (cf. Figure 13-3).

In our implementation, ontology population is done by a custom GATE com-
ponent, the OwlExporter, which is application domain-independent. It collects
two special annotations, OwlExportClass and OwlExportRelation,
which specify instances of classes and relations (i.e., object properties), respec-
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Figure 13-12. Mutation Miner ontology populated by NLP visualised in GrOWL

tively. These must in turn be created by application-specific components, since
the decisions as to which annotations have to be exported, and what their OWL
property values are, depend on the domain.

The class annotation carries the name of the class, a name for the instance
like the Swiss-Prot official name for a protein, and the GATE internal ID of
an annotation representing the instance in the document. If there are several
occurrences of the same entity in the document, the final representation annotation
is chosen from the ones in the coreference chain by the component creating the
OwlExportClass annotation.

From the representative annotation, all further information is gathered. When
it has read the class name, OwlExporter queries the ontology via Jena for
the properties of the class and then looks for equally named features in the
representation annotation, using their values to set the OWL properties.

The exported, populated ontology also contains document specific informa-
tion; for example, for each class instance the sentence it was found in is recorded.
Additional entity-specific information, like an automatically created summary
for a mutation’s impact, can also be exported.

Figure 13-12 shows an excerpt of such an ontology populated by Mutation
Miner, visualised using GrOWL.

7. DISCUSSION
In this chapter, we motivated and illustrated the use of ontology within a

text mining system from an NLP perspective. When deciding on whether to
employ ontology technology in a (biological) text mining application, one needs
to be clear about the motivation in order to properly assess its cost/benefit
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ratio. Partly due to its novelty and complexity, semantic web technology still
requires significant upfront investments before one can reap the benefits of their
integration.

So what precisely are the benefits again? In Section 2 we discussed the various
reasons for ontology integration. In short, exporting NLP into an OWL-DL
ontology (ontology population) allows for standardised data exchange, which
in particular includes reasoning tools that can be used to query the ontology,
as shown in Figure 13-1. Using an ontology during NLP analysis allows
one to consolidate the various resources, stored in different representational
formats, into a single datastructure, thereby ensuring semantic integrity between
the various analysis steps. In this case, however, ontology design needs to
take the actual NLP analysis tasks into account, like named entity detection,
normalization, entity grounding, coreference resolution, relation detection, and
others. An ontology might be well-defined and instantiated, but lacking necessary
relations, attributes, or other information to support those tasks, it will require
expensive transformations or even a re-design before it can be used in a text
mining system.

But we believe that the most interesting benefits will emerge when both
approaches are combined in a unified, ontological NLP system. Tasks like
normalization, relation detection, and coreference resolution can be seen as
different facets of the same problem, namely, the construction of ontology
concepts, instances, and relations. For example, every member of a coreference
chain must be normalized and grounded to the same external protein instance,
which in turn requires consistent relations between the chain members and other
entities in a text. Inconsistencies, caused by e.g. a pronoun with an incompatible
relation to another textual entity, would be immediately flagged by an automated
reasoner. Thus, current algorithms for these tasks could be enhanced or replaced
by new ones employing formal reasoning over the ontology. This is, however,
an ongoing research target (with still diverging views [49]), requiring extensive
re-design of existing NLP tools and algorithms, which is why we presented a
more gentle, canonical extension of existing, standard NLP tasks in this chapter.

It is important to note that we covered only a single, very specific connection
of ontology with biological text mining in this chapter. Other related work
includes: Firstly, ontology learning, where NLP is used to determine potential
classes and their relations from texts [10, 47]. However, at present these
technologies are not capable of generating an ontology that would fulfill all
the requirements we outlined in Section 4. Secondly, using text mining with
existing ontologies, like the Gene Ontology (GO),17 to annotate database entries
with segments from the literature [11, 15, 48]. Recent work in this area has
also been carried out within the Critical Assessment for Information Extraction

17The Gene Ontology, http://www.geneontology.org/
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systems in Biology (BioCreAtIvE)18 competition. Thirdly, information retrieval
using ontologies that have been automatically linked to documents using NLP
techniques. Examples for this category are systems like Textpresso [35] and
GoPubMed [18]. And lastly, work concerning ontology proper, like ontology
linking, merging, alignment, and ontology evaluation [47].

Note that we also did not discuss the evaluation of a text mining system
[24, 25]. This is an issue largely orthogonal to ontology integration, since
virtually all existing resources can, in a first step, be transformed from their ad-
hoc representations into an ontology without impacting a system’s performance.
Ontological NLP, in this respect, addresses software engineering concerns of
text mining systems—an issue for which computational linguists often seem to
have little love left.

8. CONCLUSIONS
This chapter describes the combination of two still emerging technologies—

Semantic Web Ontologies and Text Mining—for the biomedical domain. The
integration can take several forms: Ontology-based NLP simply exports results
by populating an ontology, using other resources for the actual processing.
Ontology-driven NLP actively uses ontological resources for NLP tasks, which
requires ontologies that hold all the information needed for the various language
analysis algorithms. A combined approach—Ontological NLP—offers the most
benefits, including semantic consistency within a text mining system and formal
reasoning capabilities for querying NLP-populated ontologies.

We believe these advantages over ad-hoc NLP resource formats will lead to a
rapid increase of ontology-enabled language tools, as well as ontologies encoding
the necessary domain- and language-specific information. Frameworks like
GATE already have basic ontology support; however, it will take much longer
for individual NLP tools (like full or partial parsers, coreference resolution
engines, word sense disambiguators) to adapt and make use of ontologies. This,
in turn, requires more attention from the ontology community to recognize and
deliver support for language analysis tasks.

The emergence of ontological NLP is also likely to give rise to an increase in
the abundance of instantiated ontologies serving as knowledge bases. Having
domain-specific text segments from the scientific literature available in a formal
and interoperable format is consistent with the vision of the Semantic Web.
Given that the scientific community can see beyond the challenges of new query
tools and workflows for information retrieval, it is reasonable to expect that
NLP techniques connected with ontologies will contribute significantly to the
discovery processes in the life sciences.

18BioCreAtIvE, http://biocreative.sourceforge.net/
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