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a b s t r a c t

The significance of detection and classification of power quality (PQ) events that disturbs the voltage and/
or current waveforms in the electrical power distribution networks is well known. Consequently, in spite
of a large number of research reports in this area, the problem of PQ event classification remains to be an
important engineering problem. Several feature construction, pattern recognition, analysis, and classifi-
cation methods were proposed for this purpose. In spite of the extensive number of such alternatives,
a research on the comparison of ‘‘how useful these features with respect to each other using specific clas-
sifiers” was omitted. In this work, a thorough analysis is carried out regarding the classification strengths
of an ensemble of celebrated features. The feature items were selected from well-known tools such as
spectral information, wavelet extrema across several decomposition levels, and local statistical variations
of the waveform. The tests are repeated for classification of several types of real-life data acquired during
line-to-ground arcing faults and voltage sags due to the induction motor starting under different load
conditions. In order to avoid specificity in classifier strength determination, eight different approaches
are applied, including the computationally costly ‘‘exhaustive search” together with the leave-one-out
technique. To further avoid specificity of the feature for a given classifier, two classifiers (Bayes and
SVM) are tested. As a result of these analyses, the more useful set among a wider set of features for each
classifier is obtained. It is observed that classification accuracy improves by eliminating relatively useless
feature items for both classifiers. Furthermore, the feature selection results somewhat change according
to the classifier used. This observation shows that when a new analysis tool or a feature is developed and
claimed to perform ‘‘better” than another, one should always indicate the matching classifier for the fea-
ture because that feature may prove comparably inefficient with other classifiers.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The necessity of automatic and accurate detection and classifi-
cation of PQ disturbances arises due to the increasing number of
complicated manufacturing processes and delicate electronic de-
vices for almost all purposes and places. Such disturbances, namely
power quality (PQ) events, may interrupt working processes or
even cause electronic devices to malfunction. The literature is rich
in terms of proposals for detection and classification methods for
PQ events (Anis Ibrahim & Morcos, 2002; Gerek, Ece, & Barkana,
2006; Hu, Zhu, & Ren, 2008). The classification of a PQ event is as
important as its detection because a large class of events is due
to the normal operation of power distribution networks, and these
events should not cause nuisance tripping of protection equipment
in the network. On the other hand, arcing faults (no matter how
small the fault current is) correspond to relatively dangerous cases
ll rights reserved.
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and they must be opened by protective equipment in order to
avoid undesirable consequences such as fire in the wiring conduits
and complete loss of a delicate load.

To prevent electronic devices from the undesirable effects of the
PQ events, the protection system must respond quickly. This may
only be accomplished by the careful selection of the classifier and
the best matching feature items to that classifier. To further explain,
the accuracy and the performance of a classifier depend upon the se-
lected features. With a proper feature selection technique, it is pos-
sible to attain higher classification accuracies in low dimensional
feature space. Therefore, the feature selection should be performed
for the purpose of not only increase the classification accuracy, but
also reduce the reaction time of the protection system.

Classical methods for classification of PQ events include two
major steps that constitute a pattern recognition process:

� Feature construction from available observations.
� Application of a statistical/semantic/neural classifier to the con-

structed feature vectors.
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The step of feature construction corresponds to the analysis of
the voltage and/or current waveform, and it is the most thoroughly
analyzed part of the PQ event classification problem. Typically,
researchers in the area of power engineering apply one of the
well-known signal processing analysis tools to the voltage wave-
form data, observe the visible changes at the output, and comment
on the usefulness of the tool according to the observations. Few
researchers proceed further to complete the classification process
to an automated level by incorporating an available classifier and
reporting classification accuracy figures (Angrisani, Daponte, &
D’Apuzo, 2001; Gerek et al., 2006; Wang & Mamishev, 2004; Yang
& Liao, 2001).

Despite the rich literature regarding the above analysis, com-
parison of available PQ event classifier performances has not
gained its most deserved appreciation in related literature. The
lack of a standard test corpus could be a reason for this situation.
On the other hand, research reports usually lack comparisons be-
tween various feature items among the ones that might be intro-
duced as novel or efficient. Furthermore, the case of utilizing the
suggested features with several classifiers and cross comparisons
has never been mentioned.

This paper investigates the efficiency characteristics of some
well known feature items for PQ event analysis, and checks the
variations in efficiency when they are used in combinations. The
efficiency analyses are repeated for two well known classifier tech-
niques, namely the Bayes classifier and the support vector ma-
chines (SVM). The efficiency tests were carried out by selecting
combinations of feature items at various feature vector sizes. Since
the efficiency determination methods are not unique in the litera-
ture, several available methods are applied for the selection of
‘‘better” features among the given set. The methods include

� Sequential forward selection (SFS).
� Sequential backward selection (SBS).
� Generalized sequential forward selection (GSFS).
� Generalized sequential backward selection (GSBS).
� Plus-l takeaway-r (PTA).
� Sequential forward floating selection (SFFS).
� Genetic algorithm (GA).

Due to the large number of such methods and because of
obtaining different results using each method, a solid verification
Fig. 1. Experimenta
is performed by applying the exhaustive search (ES) method which
spans the solutions for all possible combinations at all possible fea-
ture length sizes.

By inspecting the results of the search methods, it was observed
that the strength of a feature item is not an isolated entity, but it
rather depends on what kind of other feature items it is used with
and what kind of a classifier is utilized. As an example, the wavelet
extrema at a particular decomposition level was found to perform
well when used alone, however, it was not found to be efficient
when used in pair with another feature; i.e. two other feature
items (say, skewness and variance extrema) were found more effi-
cient if exactly ‘‘two” feature items should be used.

Although PQ event classification is a well-exploited feature gen-
eration application, the counter-intuitive behavior of feature com-
bination according to a classifier is a novel observation.

2. Experimental PQ event generation

In this study, voltage waveforms of real-life PQ events were cap-
tured at a sampling rate of 20 kHz using the experimental system
whose diagram is shown in Fig. 1.

The system is composed of a three-phase wye-connected 400-V,
50-Hz, 25-kVA, five-wire supply loaded with RL load bank and
three-phase induction motors coupled with varying mechanical
loads. The system also includes adjustable speed drives (ASD) con-
trolling the induction motors for studying load generated harmon-
ics. Experimental voltage sag events were obtained by starting
mechanically loaded induction motors in a controlled way. During
the motor starting experiments, mechanical loading was changed
between 50% and 100% of rated load. Also, the instantaneous value
of the supply voltage at the time of motor starting was naturally
random. As a result, various voltage sag levels were obtained and
acquired to be used in the proposed algorithm.

Arcing fault events were staged between a phase wire and the
ground wire by stripping their insulation for a few millimeters,
aligning the stripped parts, and placing several strands high gauge
electrical wire between the stripped portions of the phase and
ground wires. The arcing faults were initiated in a controlled fash-
ion by turning on the switch connected in series to the phase wire.
Once initiated, arcing fault experiments were recorded until the
fault clears itself. Due to the randomness of the physical way of
preparing the wire samples and randomness of the instantaneous
l system setup.
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value of the voltage supplying the fault at the instant of fault initi-
ation, a wide variety of fault sample records was obtained. As an
example to the physical randomness of the process, it was ob-
served that while some of the arcing faults restriked several times
before clearing itself, others striked once and cleared quickly.

The data acquisition unit consists of an analog-to-digital con-
verter (ADC) unit that was set to perform signal sampling at
20 kHz at each channel simultaneously from four different chan-
nels. The data acquisition system also includes programmable dig-
ital filters that can be adjusted to perform sharp frequency
selective filtering operations in real time. The final classes of PQ
events are constructed as:

(1) Class 1: Arcing fault with resistive, inductive, and ASD load.
(2) Class 2: Arcing fault with resistive and inductive load.
(3) Class 3: Motor startup with resistive and inductive load.
(4) Class 4: Motor start-up with resistive, inductive, and ASD

load.

3. Feature vector construction

The critical stage for any pattern recognition problem is the
extraction of discriminative features from the raw observation
data. The combination of several scalar features forms the feature
Table 1
ES method with (a) Bayes and (b) SVM classifier.

Dimension Accuracy
(%)

Selected features

(a)
1 50.00 18
2 73.33 1, 13
3 78.33 1, 11, 13
4 81.67 1, 8, 11, 13
5 82.50 1, 8, 11, 12, 13
6 83.33 1, 3, 11, 13, 14, 18
7 83.33 1, 7, 11, 12, 13, 18, 19
8 85.83 1, 7, 8, 11, 12, 13, 18, 19
9 85.83 1, 3, 7, 8, 11, 13, 14, 18, 19
10 85.00 1, 3, 6, 7, 8, 11, 12, 14, 18, 19
11 85.00 1, 3, 6, 7, 8, 11, 12, 14, 15, 18, 19
12 85.00 1, 2, 3, 6, 7, 8, 10, 11, 12, 14, 18, 19
13 85.83 1, 2, 3, 6, 7, 8, 10, 11, 12, 13, 14, 15, 18
14 83.33 1, 2, 3, 5, 6, 7, 8, 11, 12, 14, 15, 16, 18, 19
15 81.67 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 18
16 80.00 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18
17 78.33 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19
18 72.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19
19 67.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

(b)
1 57.50 16
2 70.83 13, 16
3 74.17 14, 16, 18
4 75.83 3, 4, 12, 15
5 75.83 3, 4, 12, 15, 19
6 77.50 3, 12, 14, 15, 16, 18
7 78.33 2, 3, 12, 14, 15, 16, 18
8 –
9 – Requires
10 – Too high
11 – Processing time !
12 –
13 78.33 1, 2, 3, 5, 6, 7, 8, 11, 12, 14, 15, 18, 19
14 77.50 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 15, 16, 17, 18
15 77.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17, 18
16 77.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18
17 75.83 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19
18 74.17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19
19 71.67 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
vector. The feature vector used in this work consists of scalars ob-
tained from three major and classical methods; wavelets, spectrum
analysis, and higher order statistical parameters. The system ac-
quires voltage and current waveforms and their 50 Hz. notch fil-
tered versions at a sampling rate of 20 kHz for each waveform.
For local statistical parameter estimation, a window size as twice
the fundamental period length (which corresponds to a size of
800 samples) is selected.

The overall feature vector used has a length of 19 (Gerek et al.,
2006). The first eight numbers inside the feature vector correspond
to the wavelet transform extrema for the four-level decomposition
of voltage waveform using the Daubechies-4 (db4) orthogonal
wavelet. These four levels depict time-frequency localized signa-
tures at different frequency resolutions. The extrema are, therefore,
the maximum and the minimum transform values around the in-
stance of a PQ event. It was previously shown by several authors
that the transform domain values exhibit high energy at or around
PQ event instances. Usually, a simple thresholding of these coeffi-
cient magnitudes is enough to detect the existence of a PQ event.
However, for classification between different classes of PQ events,
the situation is not simple. In order to verify the validity of the
arguments proposed in this work, several other wavelet types
and much more number of decomposition levels are tested. Due
to the similarity of the results and also due to the lack of space
to present hundreds of tables within a single manuscript, only
Table 2
SFS method with (a) Bayes and (b) SVM classifier.

Dimension Accuracy
(%)

Selected features

(a)
1 50.00 18
2 65.83 17, 18
3 68.33 8, 17, 18
4 70.83 4, 8, 17, 18
5 73.33 4, 8, 14, 17, 18
6 71.67 4, 7, 8, 14, 17, 18
7 73.33 4, 7, 8, 14, 15, 17, 18
8 74.17 3, 4, 7, 8, 14, 15, 17, 18
9 75.83 1, 3, 4, 7, 8, 14, 15, 17, 18
10 78.33 1, 3, 4, 7, 8, 14, 15, 16, 17, 18
11 78.33 1, 3, 4, 6, 7, 8, 14, 15, 16, 17, 18
12 79.17 1, 3, 4, 6, 7, 8, 11, 14, 15, 16, 17, 18
13 79.17 1, 3, 4, 6, 7, 8, 11, 14, 15, 16, 17, 18, 19
14 77.50 1, 3, 4, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19
15 77.50 1, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19
16 75.83 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19
17 73.33 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19
18 70.00 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
19 67.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

(b)
1 57.50 16
2 70.83 13, 16
3 72.50 3, 13, 16
4 73.33 3, 7, 13, 16
5 73.33 2, 3, 7, 13, 16
6 73.33 2, 3, 7, 8, 13, 16
7 74.17 2, 3, 7, 8, 12, 13, 16
8 74.17 2, 3, 7, 8, 9, 12, 13, 16
9 74.17 2, 3, 7, 8, 9, 11, 12, 13, 16
10 73.33 2, 3, 7, 8, 9, 11, 12, 13, 16, 17
11 72.50 2, 3, 7, 8, 9, 11, 12, 13, 14, 16, 17
12 75.83 1, 2, 3, 7, 8, 9, 11, 12, 13, 14, 16, 17
13 75.83 1, 2, 3, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17
14 76.67 1, 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17
15 75.83 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17
16 75.00 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17
17 73.33 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19
18 72.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19
19 71.67 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
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the case of Db4 wavelet with four decomposition levels are exem-
plified in the account of wavelet coefficients.

Consequently, the first 8 coefficients of the considered feature
vector are constructed as:

v i ¼
max diðnÞ; t1 � k < n < t1 þ kf g; i ¼ 1;2;3;4;
min di�5ðntÞ; t1 � k < n < t1 þ kf g; i ¼ 5;6;7;8;

�
ð1Þ

where di corresponds to the ith detail decomposition level of the
wavelet transform, t1 corresponds to the time instance of the PQ
event, and k is a time-window around the vicinity of the event in
which the extrema are calculated.

After constructing the first 8 coefficients from wavelets, the
ninth coefficient of the feature vector was selected according to a
classical spectral analysis. The signal energy corresponding to the
exact line frequency (50 Hz) is evaluated and proportioned to the
remaining spectral energy at all other frequencies. The reciprocal
of this proportion is considered as the ninth feature coefficient,
which can be expressed as:

v9 ¼
R 2p50�

�1 UvðxÞdxþ
R1

2p50þ UvðxÞdx
UvðxÞjx¼2p50

; ð2Þ

where Uv (x) is the power spectral density of the voltage wave-
form, v(t).

The remaining ten coefficients are obtained from the extrema of
statistical parameters (second, third, and fourth order) of 50 Hz.
Table 3
SBS method with (a) Bayes and (b) SVM classifier.

Dimension Accuracy
(%)

Selected features

(a)
1 30.00 14
2 66.67 13, 14
3 75.00 11, 13, 14
4 75.83 10, 11, 13, 14
5 78.33 3, 10, 11, 13, 14
6 79.17 3, 10, 11, 13, 14, 15
7 82.50 2, 3, 10, 11, 13, 14, 15
8 80.83 2, 3, 6, 10, 11, 13, 14, 15
9 81.67 2, 3, 5, 6, 10, 11, 13, 14, 15
10 82.50 2, 3, 4, 5, 6, 10, 11, 13, 14, 15
11 82.50 2, 3, 4, 5, 6, 10, 11, 13, 14, 15, 19
12 83.33 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 15, 19
13 81.67 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 19
14 80.00 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 19
15 77.50 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19
16 75.83 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19
17 74.17 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19
18 72.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19
19 67.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

(b)
1 50.00 14
2 65.83 14, 18
3 74.17 14, 16, 18
4 73.33 14, 15, 16, 18
5 72.50 12, 14, 15, 16, 18
6 77.50 3, 12, 14, 15, 16, 18
7 76.67 3, 8, 12, 14, 15, 16, 18
8 78.33 3, 8, 10, 12, 14, 15, 16, 18
9 77.50 2, 3, 8, 10, 12, 14, 15, 16, 18
10 75.83 2, 3, 5, 8, 10, 12, 14, 15, 16, 18
11 75.00 2, 3, 5, 8, 10, 12, 14, 15, 16, 18, 19
12 73.33 2, 3, 5, 8, 10, 12, 14, 15, 16, 17, 18, 19
13 74.17 2, 3, 5, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19
14 74.17 2, 3, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19
15 75.00 2, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19
16 75.00 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
17 74.17 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
18 74.17 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
19 71.67 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
notch filtered voltage waveforms. Besides the central cumulants
for orders 3 and 4, normalized parameters, i.e. the skewness and
kurtosis, are also added to the ensemble. Since the extremas have
a minimum and a maximum value, these 5 parameters produce a
total of 10 coefficients. These vector elements can be compactly ex-
pressed as

v10;11 ¼max and minfc2g ¼max and min r2
x

� �
;

v12;13 ¼max and minfbSg;
v14;15 ¼max and minfbKg;
v16;17 ¼max and minfc3g;
v18;19 ¼max and minfc4g:

ð3Þ

In these equations, for a signal x[n] of length N and mean, m̂x, the
variance is calculated as

r2
x ¼

PN
i¼1 x½i� � m̂xð Þ2

N � 1
ð4Þ

the third central cumulant is

c3 ¼
PN

i¼1 x½i� � m̂xð Þ3

N � 1
ð5Þ

and the fourth central cumulant is

c4 ¼
PN

i¼1 x½i� � m̂xð Þ4

N � 1
: ð6Þ

The skewness and kurtosis terms are calculated as below

bS ¼PN
i¼1 x½i� � bmx
� �3

ðN � 1Þr3
x

; ð7Þ

bK ¼PN
i¼1 x½i� � m̂xð Þ4

ðN � 1Þr4
x

� 3: ð8Þ

During all the calculations, it was observed that it is reasonable to
keep the parameter estimation window size (N) a small integer
multiple (i.e. twice) of the fundamental period length since this is
statistically long enough to accurately estimate statistical parame-
ters, and short enough to accurately resolve the time localization.
Table 4
GSFS method with (a) Bayes and (b) SVM classifier.

Dimension Accuracy
(%)

Selected features

(a)
2 73.33 1, 13
4 81.67 1, 8, 11, 13
6 82.50 1, 5, 8, 11, 12, 13
8 80.00 1, 3, 5, 8, 9, 11, 12, 13
10 80.00 1, 2, 3, 5, 7, 8, 9, 11, 12, 13
12 76.67 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 18
14 75.00 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18
16 76.67 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18
18 71.67 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19
19 67.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

(b)
2 70.83 13, 16
4 73.33 3, 7, 13, 16
6 75.00 3, 7, 13, 14, 16, 17
8 76.67 3, 4, 7, 9, 13, 14, 16, 17
10 75.83 3, 4, 7, 8, 9, 13, 14, 15, 16, 17
12 75.83 1, 2, 3, 4, 7, 8, 9, 13, 14, 15, 16, 17
14 75.00 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 17
16 75.00 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17
18 72.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
19 71.67 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19



Table 6
PTA method with (a) Bayes and (b) SVM classifier.

Dimension Accuracy
(%)

Selected features

(a)
1 48.33 16
2 73.33 1, 13
3 78.33 1, 11, 13
4 78.33 1, 11, 13, 14
5 79.17 2, 11, 13, 14, 15
6 83.33 1, 3, 11, 13, 14, 18
7 80.83 1, 3, 11, 13, 14, 15, 18
8 81.67 1, 3, 11, 12, 13, 14, 15, 18
9 80.83 1, 2, 3, 11, 13, 14, 15, 18, 19
10 85.00 2, 3, 5, 6, 11, 13, 14, 15, 18, 19
11 83.33 2, 3, 4, 5, 6, 11, 13, 14, 15, 18, 19
12 84.17 2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 18, 19
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4. Feature selection methods

In this work, several methods are tried for the selection of use-
ful and elimination of useless feature identifiers among the de-
scribed 19-dimensional feature vector. The work gives useful
information about

� Which features are, indeed, better identifiers for the engineering
problem of PQ event classification?

� Which feature selection strategy is more accurate for the partic-
ular case?

� Is there a pronounced relation between the useful features and
the desired feature size?

� Is there a pronounced relation between the useful features and
the utilized classification method?

Before proceeding with the observations, the feature selection
methods used in the study are briefly described below.

4.1. Exhaustive search (ES)

In this selection method, N
d

� �
possible feature combinations

are analyzed to obtain optimal d dimensional feature subset out
of N dimensional full feature set. Although this method guarantees
to reach the optimal solution, required processing time is quite
high even for moderate number of features.

4.2. Sequential forward selection (SFS)

SFS was first proposed in (Whitney, 1971). It operates in bot-
tom-to-top manner. The selection procedure starts with an empty
set initially. Then, at each step, the feature maximizing the crite-
rion function is added to the current set. This operation continues
until the desired number of features is selected. The nesting effect
is present such that a feature added into the set in a step can not be
removed in the subsequent steps. As a consequence, SFS method
can offer only suboptimal result.

4.3. Sequential backward selection (SBS)

SBS method proposed in (Marill & Green, 1963) works in a top-
to-bottom manner. It is the reverse case of SFS method. Initially,
Table 5
GSBS method with (a) Bayes and (b) SVM classifier.

Dimension Accuracy
(%)

Selected features

(a)
1 25.00 12
3 75.83 7, 11, 12
5 77.50 1, 7, 8, 11, 12
7 81.67 1, 7, 8, 11, 12, 18, 19
9 85.00 1, 3, 7, 8, 11, 12, 14, 18, 19
11 85.00 1, 3, 6, 7, 8, 11, 12, 14, 15, 18, 19
13 84.17 1, 2, 3, 6, 7, 8, 11, 12, 13, 14, 15, 18, 19
15 81.67 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 18, 19
17 78.33 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19
19 67.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
(b)
1 48.33 17
3 70.00 4, 13, 17
5 73.33 1, 3, 4, 13, 17
7 73.33 1, 3, 4, 8, 13, 15, 17
9 75.00 1, 3, 4, 6, 8, 12, 13, 15, 17
11 76.67 1, 3, 4, 6, 8, 12, 13, 15, 16, 17, 18
13 77.50 1, 2, 3, 4, 5, 6, 8, 12, 13, 15, 16, 17, 18
15 77.50 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18
17 75.83 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19
19 71.67 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
complete feature set is considered. At each step, single feature is
removed from the current set so that the criterion function is max-
imized for the remaining features within the set. Removal opera-
tion continues until the desired number of features is obtained.
The nesting effect is present in this method as in SFS. Once a fea-
ture is eliminated from the set, it can not enter into the set in
the subsequent steps. Thus, SBS offers suboptimal solution.

4.4. Generalized sequential forward selection (GSFS)

In generalized version of SFS, instead of single feature, n fea-
tures are added to the current feature set at each step (Kittler,
1978). The nesting effect is still present.

4.5. Generalized sequential backward selection (GSBS)

In generalized form of SBS (GSBS), instead of single feature, n
features are removed from the current feature set at each step (Kit-
tler, 1978). The nesting effect is present here, too.

4.6. Plus-l takeaway-r (PTA)

The nesting effect present in SFS and SBS can be partly avoided
by moving in the reverse direction of selection for certain number
of steps. With this purpose, at each step, l features are selected
using SFS and then r features are removed with SBS. This method
13 83.33 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 15, 18, 19
14 83.33 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 18, 19
15 81.67 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 18, 19
16 80.00 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 19
17 78.33 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19
18 71.67 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19
19 67.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

(b)
1 57.50 16
2 70.83 3, 16
3 72.50 3, 13, 16
4 73.33 13, 14, 16, 17
5 73.33 1, 3, 4, 13, 17
6 75.83 1, 3, 4, 13, 16, 17
7 75.83 1, 3, 4, 9, 13, 16, 17
8 75.00 1, 2, 3, 4, 6, 13, 16, 17
9 76.67 1, 2, 3, 4, 13, 15, 16, 17, 18
10 76.67 1, 2, 3, 4, 9, 13, 15, 16, 17, 18
11 76.67 1, 2, 3, 4, 8, 12, 13, 15, 16, 17, 18
12 77.50 1, 2, 3, 4, 6, 8, 12, 13, 15, 16, 17, 18
13 77.50 1, 2, 3, 4, 6, 7, 8, 12, 13, 15, 16, 17, 18
14 77.50 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 15, 16, 17, 18
15 77.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17, 18
16 77.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18
17 75.83 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19
18 74.17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19
19 71.67 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19



Table 7
SFFS method with (a) Bayes and (b) SVM classifier.

Dimension Accuracy
(%)

Selected features

(a)
1 50.00 18
2 70.00 4, 15
3 75.00 4, 11, 12
4 76.67 4, 5, 11, 12
5 78.33 3, 4, 13, 14, 15
6 80.00 3, 4, 11, 13, 14, 15
7 80.83 2, 4, 5, 6, 8, 11, 12
8 80.83 2, 3, 4, 5, 6, 8, 11, 12

9 81.67 2, 3, 4, 5, 6, 8, 11, 12, 13
10 82.50 2, 3, 4, 5, 6, 8, 11, 13, 14, 15
11 83.33 2, 3, 4, 5, 6, 8, 11, 12, 13, 14, 15
12 84.17 2, 3, 4, 5, 6, 10, 11, 13, 14, 15, 18, 19
13 83.33 2, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 18, 19
14 83.33 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 18, 19
15 81.67 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 18, 19
16 80.00 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 19
17 78.33 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19
18 72.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19
19 67.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

(b)
1 57.50 16
2 70.83 13, 16
3 72.50 3, 13, 16
4 73.33 3, 7, 13, 16
5 75.00 8, 13, 14, 16, 17
6 76.67 3, 4, 13, 14, 16, 17
7 76.67 3, 4, 11, 13, 14, 16, 17
8 76.67 3, 4, 11, 13, 14, 15, 16, 17
9 76.67 3, 4, 9, 11, 13, 14, 15, 16, 17
10 76.67 3, 4, 9, 11, 13, 14, 15, 16, 17, 19
11 76.67 1, 2, 3, 4, 9, 10, 13, 14, 15, 16, 17
12 77.50 1, 2, 3, 4, 6, 8, 12, 13, 15, 16, 17, 18
13 77.50 1, 2, 3, 4, 5, 6, 8, 12, 13, 15, 16, 17, 18
14 77.50 1, 2, 3, 4, 5, 6, 8, 11, 12, 13, 15, 16, 17, 18
15 77.50 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 18
16 77.50 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18
17 75.83 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19
18 74.17 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19
19 71.67 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

Table 8
GA method with (a) Bayes and (b) SVM classifier.

Dimension Accuracy (%) Selected features

(a)
13 85.83 1, 2, 3, 6, 7, 8, 10, 11, 12, 13, 14, 15, 18

(b)
12 77.50 1, 2, 3, 8, 9, 11, 12, 13, 14, 15, 16, 17
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is called as PTA (Stearns, 1976). Although the nesting effect is re-
duced with respect to SFS and SBS, PTA still provides suboptimal
results.

4.7. Sequential forward floating selection (SFFS)

SFFS is like a dynamic version PTA. In this selection method, l
and r parameters float in each step where they are constant in case
of PTA (Pudil, Novovicova, & Kittler, 1994). Thus, in each step of
selection, different number of features can be added to or removed
from the set until a better criterion value is attained. This flexible
structure causes the feature dimension to float at each step.

4.8. Genetic algorithm (GA)

Genetic algorithm is a probabilistic search method inspired by
the biological evolution process (Goldberg, 1989). The principle
of GA is the survival of the fittest solutions among a population
of potential solutions for a given problem. Thus, new generations
produced by the surviving solutions are expected to provide better
approximations to the optimum solution. The solutions correspond
to chromosomes that are encoded with an appropriate alphabet.
The fitness value of each chromosome is determined by a fitness
function. New generations are obtained using genetic operators,
crossover and mutation, with certain probabilities on the fittest
members of the population. Initial population can be randomly
or manually defined. Population size, number of generations, prob-
ability of crossover and mutation are defined empirically.

In genetic selection, chromosome length is equal to the dimen-
sion of full feature set. The chromosomes are encoded with {0,1}
binary alphabet. In a chromosome, the indices represented with
‘‘1” indicate the selected features while ‘‘0” indicates the unse-
lected ones. For example, a chromosome defined as

1 0 1 0 1 1 0 0 0 1f g ð9Þ

specifies that the features with index 1, 3, 5, 6, and 10 are selected
while the others are unselected. The fitness value corresponding to
a chromosome is usually defined as the classification accuracy ob-
tained with the selected features. (Huang & Wang, 2006; Siedlecki
& Sklansky, 1989; Yang & Honavar, 1998) are some examples of ge-
netic feature selection studies in the literature.

5. Experimental study

The feature selection methods described in previous section are
separately applied to the 19-dimensional initial feature vector. The
results are first tabulated in Tables 1–8 to provide a complete set of
experimental observations in their raw forms. The tables are cap-
tioned by the utilized feature selection method with the abbrevia-
tions indicated above. For each method, two popular classifiers are
applied: Bayesian classifier and support vector machine (SVM). The
selection results for the two classifiers are tabulated immediately
after one another. In order to show the effect of including (or
excluding) a feature, the classification accuracy is also presented
where the highest accuracies together with the lowest feature
dimensions are displayed in bold for each table.
5.1. Observations about features

Despite the sparse look of the information presented in the ta-
bles, some critical observations are possible regarding the success
of feature selection methods and the significance of certain
features.

The first important observation is regarding the ‘‘difference” be-
tween the optimization results obtained from Bayes and SVM
methods. The results indicate that the choice of classifier has a di-
rect impact on the feature subset obtained. Use of another classifier
could also provide different results than ones obtained herein.
Therefore, it can be argued that there is no unique solution to
the problem of finding the best feature subset for PQ event
classification.

The unified consideration of the two classifiers, however, also
has clear indications and results about some of the features. As
an example, 8D feature subset {1,7,8,11,12,13,18,19} obtained
from ES offers the highest classification accuracy (85.83%) with
Bayes classifier. Among these eight features, only the three are
wavelets while the remaining five features are related to second
and fourth order cumulant and skewness. Similarly, 7D feature
subset {2,3,12,14,15,16,18} provides the highest accuracy
(78.33%) in case of SVM classifier. Although, the content of this
subset is not identical to one obtained with Bayes classifier, dom-



Table 10
Similarity ratios (%) of the suboptimal feature selection methods for (a) Bayes and (b)
SVM classifier.

Dimension SFS SBS GSFS GSBS PTA SFFS GA

(a)
1 100.00 0.00 – 0.00 0.00 100.00 –
2 0.00 50.00 100.00 – 100.00 0.00 –
3 0.00 66.67 – 33.33 100.00 33.33 –
4 25.00 50.00 100.00 – 75.00 25.00 –
5 20.00 40.00 – 80.00 40.00 20.00 –
6 33.33 66.67 50.00 – 100.00 66.67 –
7 28.57 28.57 – 85.71 57.14 28.57 –
8 37.50 25.00 62.50 – 62.50 37.50 –
9 55.56 44.44 – 88.89 77.78 44.44 –
10 60.00 40.00 60.00 – 60.00 50.00 –
11 72.73 54.55 – 100.00 63.64 63.64 –
12 66.67 66.67 75.00 – 66.67 66.67 –
13 69.23 76.92 – 92.31 76.92 76.92 100.00
14 85.71 78.57 78.57 – 85.71 85.71 –
15 80.00 80.00 – 93.33 93.33 93.33 –
16 87.50 87.50 93.75 – 93.75 93.75 –
17 94.12 88.24 – 100.00 100.00 100.00 –
18 94.44 100.00 94.44 – 94.44 100.00 –
19 100.00 100.00 100.00 100.00 100.00 100.00 –

Average 58.44 60.20 81.43 77.36 76.15 62.40 100.00

(b)
1 100.00 0.00 – 0.00 100.00 100.00 –
2 100.00 0.00 100.00 – 50.00 100.00 –
3 33.33 100.00 – 0.00 33.33 33.33 –
4 25.00 25.00 25.00 – 0.00 25.00 –
5 20.00 40.00 – 40.00 40.00 0.00 –
6 33.33 100.00 50.00 – 33.33 50.00 –
7 57.14 85.71 – 28.57 28.57 42.85 –
8 – – – – – – –
9 – – – – – – –
10 – – – – – – –
11 – – – – – – –
12 – – – – – – –
13 69.23 69.23 – 69.23 69.23 69.23 –
14 85.71 78.57 78.57 – 100.00 92.86 –
15 86.67 80.00 – 93.33 100.00 93.33 –
16 93.75 81.25 93.75 – 100.00 100.00 –
17 94.12 88.24 – 100.00 100.00 100.00 –
18 94.44 94.44 94.44 – 100.00 100.00 –
19 100.00 100.00 100.00 100.00 100.00 100.00 –

Average 70.91 67.32 77.40 53.89 68.18 71.90 –
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inant features are again the statistical parameters as in Bayes.
Based on this outcome, the statistical parameters are arguably
more discriminative than the wavelet based features.

When the results of Bayes classification are separately exam-
ined for the features selected by ES, it can be easily observed that
the classification accuracy constantly improves up to 8D feature
subset. During this improvement, dominant features present in
the subsets are {1,11,13} corresponding to wavelet, second order
cumulant and skewness features, respectively. 3D subset contain-
ing these features offers a considerable improvement in accuracy
from 50% to approximately 79%. After this point, addition of new
features to the subset does not have a significant effect considering
the increase in processing time of higher dimensional data. After
nine dimensions, new features even degrade the classification
accuracy.

Another important point revealed is that even if an individual
feature alone seems important, that feature may not be helpful
at all when used together with other features. The opposite case
may also be true. As an example, although the feature #18 is the
best in 1D feature subset, it is not included in 2, 3, 4 and 5D best
feature subsets. Consequently, correlations among features are
proven to be critical when searching the best set.

5.2. Observations about feature selection methods

If the size of initial feature set is large, exhaustive search may
not be feasible due to processing time considerations. In that case,
suboptimal selection algorithms should be preferred. However,
none of these algorithms guarantee that the best feature set is ob-
tained. This study also compares the outcome of exhaustive search
and the other feature selection techniques in terms of the classifi-
cation accuracies and feature similarities. Thus, the answer to the
question ‘‘which suboptimal selection method can offer a compa-
rable performance with the exhaustive search” is obtained for
the case of PQ event classification.

A weighted score is constructed to evaluate the accuracy of the
feature selection method with more weight being given in favor of
better accuracy at lower dimensions (Gunal & Edizkan, 2008)
according to the following equation:

Score ¼ 1
k

Xk

i¼1

dimtotal

dimi

� �
Ri; ð10Þ

where k is the total number of trials, dimi is the feature dimension
at the ith trial, dimtotal is the total feature dimension and Ri is the
average recognition rate achieved at the ith trial. The scores of the
tested feature selection methods for both classifiers are given in Ta-
ble 9. According to the weighted scores obtained by the feature
dimension and classification accuracy information, SFFS and PTA
methods provide the closest results to the exhaustive search.

In addition to the efficiency of the selection method at lower
dimensions, the ‘‘similarity” of the selection results between the
selection method and the exhaustive search is investigated using
the straightforward similarity ratio. This ratio is defined as the per-
Table 9
Weighted scores of the selection methods.

Method Bayes score SVM score Average score

ES 254.25 310.32 282.29
SFS 233.03 243.82 238.42
SBS 223.66 236.20 229.93
GSFS(2) 214.52 204.40 209.46
GSBS(2) 217.92 249.80 233.86
PTA(1,2) 249.19 246.40 247.79
SFFS 246.73 247.20 246.97
GA 125.44 122.71 124.08
centage of the selected features matching to ones selected by the
exhaustive search for regarding feature dimension. The similarity
ratio with respect to ES can be formulated as

Similarity ¼ 1
dimtotal

Xd

i¼1

mimi ¼
0 f i

method R fES;

1 f i
method 2 fES;

(
ð11Þ

where d is the dimension at which the similarity is computed, f i
method

is the ith feature of d-dimensional feature subset selected by partic-
ular selection method, fES is d-dimensional feature subset selected
by ES method, and dimtotal is the total feature dimension.

The overall similarity ratios for the Bayes and the SVM classifi-
ers are presented in Table 10. According to the average similarities,
the most similar feature subsets to the exhaustive search are pro-
vided by GSFS method for both classifiers. Although basic SFS and
SBS methods are much faster than the others, they could not get
close to the exhaustive search in terms of neither accuracy nor sim-
ilarity due to nesting effect.

6. Conclusions

Despite an extensive number of research reports about the PQ
event classification, there is still a lack of analysis regarding how
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well the constructed or proposed features perform given a partic-
ular classifier. This work starts with a relatively large feature vec-
tor (containing features from wavelets, harmonics, and local
statistics), and selects the more useful feature subsets using sev-
eral feature selection methods. The experiments are repeated for
Bayes and SVM classifiers. The results indicate that the selected
features are strongly related to the number of desired features
and the utilized classifier. Furthermore, there is hardly any sig-
nificant relation whether a feature that is selected for a vector
of N elements should also be selected for a vector of N + 1 ele-
ments, or not.

The work carried out here also contains an information about
what sorts of feature selection methods should be adopted in case
of computational restrictions – which are almost always the case
due to limited computer resources and extensive data sets. The
observations are in par with the reports in this field (Kudo & Sklan-
sky, 2000), which state that SFFS and PTA methods are good com-
promises in terms of good accuracy and fair computational load
with respect to ES.

Incorporation of several other features is possible as extensions
of this work. However, the observed arbitrary feature efficiency
behavior indicates the necessity of a thorough analysis of any
new feature that may be possibly introduced in the field of PQ
event classification, and the attraction of attention to this matter
remains the main scope of this work.
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