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Abstract— Localisation is required for many ad-hoc sensor network ap-
plications. In this paper we look at the limitations of many of the existing
proposed localisation techniques with regards to coping with non-uniform
anchor distributions and errors in ranging information. We present a
refined approach that uses a combination of mobile anchor scenarios
for anchor information distribution, along with statistical techniques for
performing localisation with inaccurate range data. Simulations with
our refined approach have shown significant reductions (in the order
of magnitude range) to the required processing for performing statistical
localisation over previous attempts, as well as improving the generated
location information in situations with non-total anchor information
coverage, making possible a wider range of applications.

I. INTRODUCTION

Many possible applications have now been thought of for Wireless
Sensor Networks (WSNs), and a significant number of them rely on
location information in order to perform their designated function.
The main purpose of a WSN is information gathering, and gathered
data is only useful if you know what it applies to. For example,
the data “the temperature has gone up by 10 degrees” is not very
useful, but the information “the temperature has gone up by 10
degrees in room 3C” is a lot more interesting. Location information
gives us a context, which allows us to actually use our gathered
data. For example, monitoring room temperature can be used to
control when to switch air-conditioning systems on and off. When
detailed location information is present it might even be possible to
personalise working conditions within a shared office (i.e. individual
settings per cubicle).

Location information is important in many domains, hence various
approaches have been proposed, of which some were even con-
structed and deployed on a large scale (e.g. GPS). Within the WSN
community, specialised localisation algorithms have been developed
that address the problems associated with the lack of infrastructure
(i.e. GPS satellites) and the limited resources leading to incomplete
and inaccurate information. A survey of initial approaches is pre-
sented by Hightower and Borriello in [1]; recent work includes [2],
[3], [4], [5] and [6].

With WSN localisation, some nodes are referred to as “anchor”
nodes, and some are not. The difference is that anchor nodes have
a reliable source of location information, and non-anchor nodes do
not. Many localisation techniques rely on anchors, but others do
not. So called “anchor-free” localisation systems rely on the idea
of building a local co-ordinate system based purely on the existing
topology of the nodes, which provides the nodes with a location
within the local system. In practise however, that location information
would require further processing to integrate it with other co-ordinate
systems (e.g. latitude/longitude). We are concentrating on anchor-
based rather than anchor-free localisation techniques, but there may
be future applications for the integration of anchor-free techniques in
the event that anchors have not yet been introduced into the network.

A major problem with localisation techniques (both anchored and
anchor-free) is acquiring accurate range information between pairs
of sensor nodes. This can be done in a variety of ways, ranging
from simple techniques like Radio Signal Strength Indication (RSSI),
time of flight data for various sensor types (e.g. ultrasound), to
more complex ideas like time of flight difference (which measures
the difference between two incoming signals travelling at different
speeds). In each case, there is generally some error in the ranging
information, which localisation algorithms must be aware of and be
able to work with.

II. MOBILE ANCHOR LOCALISATION

In this section we look at how anchor information can be dis-
tributed across an ad-hoc sensor network, and how mobile anchor
scenarios have several advantages over other methods.

A. Anchor distribution

Most methods for providing location information to a sensor
network start with adding additional localisation hardware (e.g. GPS)
to a small percentage of the nodes in the target area. These anchor
nodes will initially gather accurate location information on their own,
and then transmit this information to their neighbouring nodes. This
approach has a number of major faults:

• Most localisation algorithms based on “spread anchor” scenarios
rely on the anchors being evenly distributed across the sensor
network. This is unlikely unless special care is taken to ensure
of this. Given a small anchor percentage (as in most proposed
applications), there is a high probability that there will be regions
of the sensor grid that have insufficient anchors, leading to
problems in attempting to localise nodes in those regions.

• Anchor nodes are generally more expensive, which creates a
difficult decision regarding the balancing of the application re-
quirements between having improved accuracy (lots of anchors)
and reducing the overall cost of the network (few anchors).

• The additional anchor hardware is often only useful during the
initial phase of the network setup, and is then mostly surplus to
requirements. An anchor may also have a reduced operational
lifespan due to the power drains of the localisation hardware.

There have been some attempts to fix these problems (Adaptive
Beacon Placement [2] for example), and there are partial fixes, but
a better approach is to look at other ways that location information
can be distributed rather than the use of static anchor nodes.

B. Mobile anchor scenarios

Mobile anchor scenarios [6] are an alternate approach, resolving
a number of the problems with the spread anchor scenarios. This
approach uses a single, large anchor capable of moving along a path.
This large anchor could be carried by a car or a person for example.
The intention is that this larger anchor will have effectively unlimited



power (i.e. can transmit as many messages as needed) because it is
intended to be more easily accessible than the individual sensors,
and so replacing the anchor node’s batteries is less of a problem than
replacing batteries in the sensor nodes.

As the mobile anchor

Fig. 1. Example mobile anchor scenario

moves, it broadcasts its
location at regular in-
tervals (either every few
seconds, or after it has
moved a short distance
from its last broadcast
location), thus creating
a series of “virtual” an-
chors, as in Figure 1.
Each circle represents a
position where the mo-
bile anchor has broad-
cast its current location.

C. Real-world applications

To see how mobile anchor scenarios map onto various applications,
we looked at the structure of these applications, and saw how we
could better utilise the already available resources. The main area
of interest regards the method for the distribution of the sensors.
These methods can be grouped into two categories depending on the
distance from the object that is placing the nodes to the location that
the nodes are being placed.

The simplest scenarios are when the distance is less than the nodes’
radio range (ideally much less). In this case, the placing object itself
(be it a person or a car) is the mobile anchor. This can be achieved by
combining an anchor node with the placing object (either carried by
the person, or attached to the car). It can then broadcast its location
information as it places the nodes, thus providing a path that passes
near all of the nodes.

More complicated are the situations where the nodes are far away
from the placing object, for example when dropping nodes from a
plane (especially from a high altitude, or when obstacles are likely
to block radio signals from the placing object). One solution to
this problem is that the plane could also drop one or more small
robots fitted with localisation equipment. These robots could travel
along a semi-random path around the sensor grid, providing location
information to the sensor nodes as they move around.

D. Advantages

There are several main advantages of mobile anchor scenarios:

• Instead of many anchor nodes (and having to make the trade-offs
regarding how many) we have effectively many anchor nodes,
but for the cost of only one. All of the sensor nodes should
have similar lifetimes, without the additional power drains that
would occur if some of them were also anchors for the network.

• In the complicated scenario with the use of mobile anchor
robots, the cost of the scenario does go up from what would be
possible with more simple scenarios. However, the robots could
also be fitted with additional sensors, so that once they have
finished providing location information to the network, they can
be moved to locations where interesting events are happening to
gather more detailed information.

• In the event that the initial anchor path is not sufficient to
provide good location information for all of the sensor nodes,
we may (depending on the application) be able to do on-the-fly
improvements in bad areas.

III. EXISTING LOCALISATION METHODS

In this section we will have a brief look at other localisation
algorithms, with an emphasis on their capabilities regarding the
handling of inaccurate range information and their ability to handle
non-uniform anchor distributions.

A. Deterministic methods

Langendoen and Reijers [7] studied three localisation algorithms
that can handle a low number of anchors (Euclidean, Hop-Terrain,
Multilateration), and identified a common three-phase structure. First,
information about the anchors is flooded through the network to
determine the (multi-hop) distances between anchors and nodes.
Second, each node calculates its position using the known positions
and estimated ranges of the anchors, for example, by performing a
lateration procedure (as with GPS systems). Third, nodes refine their
positions by exchanging their position estimates and using the one-
hop inter-node ranges. After these three stages, a subset of the nodes
have location information that is considered “good”.

Euclidean [3] uses basic geometric reasoning (triangles) to
progress distance information from the anchors to the nodes in the
network, and uses lateration to calculate the position estimates; no
refinement is included in the algorithm. Euclidean’s basic safety mea-
sure against inaccurate range information is to discard “impossible”
triangles generated in phase 1. Unfortunately, this happens quite
often, leaving many nodes in phase 2 without enough information to
calculate their position (distances to at least 3 anchors are required).
The end result is that Euclidean is only able to derive an accurate
position for a small fraction of the nodes in the network.

Hop-Terrain [3], [4] avoids the range error problem to a large
extent by using only topological information in phase 1. The distance
to an anchor is determined by counting the number of hops to it, and
multiplying that by an average-hop distance. Next, the node positions
are estimated by means of a lateration procedure. In the refinement
phase, Hop-Terrain switches to using the measured (inaccurate)
ranges to neighbouring nodes. To avoid erroneous position estimates
affecting neighbours too much, the refinement phase uses confidence
values derived from the lateration procedure . Hop-terrain works
well for a regular network topology in which nodes are evenly
distributed. This however is not the case for the majority of mobile
anchor scenarios, resulting in the algorithm becoming increasingly
less accurate as the regularity assumption starts to break down.

Multilateration [5] proceeds by summing the distances along
each multi-hop path in phase 1. To account for the accumulated
inaccuracies it does not perform a lateration procedure, but instead
uses each distance to specify a bounding box centred around the
associated anchor, in which the node may be located. In phase 2, these
bounding boxes are simply intersected and the position estimate is
set to the centre of the intersection box, followed by a refinement
procedure in phase 3. Multilateration’s effectiveness with varying
errors in range measurements will depend on the exact nature of
the errors. If many of the measured distances are larger than the
true distances, then Multilateration should be able to cope with the
problem (as the true distance will still fall within the bounding box).
In the case of underestimated ranges, however, Multilateration is
forced to discard possible location information due to contradictions
between ranges with varying errors.

B. Statistic-based Localisation

One technique that attempts to do more with inaccurate ranging
information is Statistic-based Localisation. The initial work on this
was performed by Sichitiu and Ramadurai [6]. It assumes that while



the incoming range data has errors, these errors can be modelled
with a probability distribution based on the incoming data (either
from a sensor or the Radio Signal Strength Information (RSSI)
from the radio [6]). This model can be worked out either from
manufacturer-supplied data for the sensor providing range data, or
from experimental data [8].

Given that a node has a series of ranges to anchors, and that for
each range you have an error model, these models can be combined
to calculate a “map” of the most likely locations for this node by
calculating probabilities for each location at discrete intervals across
the sensor grid. Figure 2 shows a visualisation of an example map,
and Algorithm 1 has more details about how the maps are generated.
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Fig. 2. Visualisation of a local probability map

Statistic-based localisation has two main problems however. Firstly,
the large amount of computation required to create the maps and
secondly, the requirement for the nodes to be at one-hop distances
from the anchors (achieved in [6] by using a mobile anchor with a
very dense path). This is required because [6] does not have a method
for distributing anchor information received by one node to another,
and so only anchor nodes can send their distance information.

IV. REFINED STATISTIC-BASED LOCALISATION

We made a number of changes to Statistic-based localisation.
These make significant improvements to the basic algorithm, making
it a more useful algorithm for applications with limited resources
(i.e. most proposed sensor node applications). In this section, and in
Algorithm 2, we detail the improved algorithm that we used in our
experiments.

A. Bounding boxes

If a node has received a position estimate from an anchor then
it knows it is in radio contact with that anchor, and so therefore
it must be within radio range of that anchor. So, we can limit the
space of possible locations for that node to a circle centred on the
anchor’s location with radius equal to the radio range. For practical
purposes (significant speed improvements) we use a bounding box
rather than a circle, with each side equal to 2*radio range, and the
anchor in the centre (Figure 3a). (The basic concept of bounding
boxes has previously been analysed in [9], but not in combination
with statistic-based localisation.) This results in a larger region, but
we still have the guarantee that all feasible locations for the node are
located within the box, while keeping the box size to a minimum.
This currently assumes a circular radio model, but for radios with
non-circular transmission spaces, we can calculate the minimum box
that contains the entire possible transmission space, and so be still
able to use this methodology.

When a node receives location information from an additional
anchor, it knows that it must be within the bounding boxes for
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Fig. 3. Bounding Boxes

both anchors. Therefore, we can reduce the bounding box for the
node to the intersection of both of these boxes (Figure 3b, and
Algorithm 2, step 2). A bounding box is defined by two points,
its Top-Left and Bottom-Right corners. Note that the probability
visualisation in Figure 4 only shows a partial grid (as opposed to
Figure 2 which shows basic Statistic-based localisation, and uses a
complete grid). This partial grid is the section of the complete sensor
grid corresponding to the bounding box for this particular node.

Experimental results for testing the reduction in the size of the
calculated sensor grid, show an average reduction in the number of
required calculations by a factor of 8 when we use bounding boxes.
Also, with the additional optimisation of not doing calculations for the
nodes with the largest bounding boxes, we could improve this result
further. For example, by not performing any calculation for nodes
with bounding boxes where (width∗height) > (3∗RadioRange), we
reduce the overall calculation load by an additional factor of 3.

B. Limited broadcast

To get around the problem of needing anchors within one-hop of
the sensor nodes, we perform a limited broadcast of calculated node
location information - limited by only broadcasting if we exceed
a minimum probability threshold for the quality of our location
information (currently set in our implementation to 0.003). The
node effectively acts as an additional “pseudo” anchor, but with two
changes from normal anchors.

Firstly, location information is broadcast with a confidence value
(gained from the local probability map), and the error model used
by nodes receiving this information will be scaled accordingly, as
shown in Algorithm 2, step 3a with the use of Confidenceanchor in
the generation of PDFrssi. This confidence value is a weighting value
for use in the statistical models i.e. a node with confidence 1.0 (an
anchor) will have twice the effect of a node with confidence 0.5.

Secondly, with pseudo anchors, the bounding box is broadcast as
well, and the box used by receiving nodes is not just a square centred
on the node (as for anchors), but a rectangle equal to the bounding box
size, plus radio range in each direction (Figure 3c). This is because the
bounding box contains all locations the pseudo anchor could possibly
be in, and so increasing it by the radio range creates a box in which
nodes that can hear this pseudo anchor could possibly be located.



Algorithm 1 Statistic-based localisation [6]
1) Initially, the local probability “map” is set to a constant value across the entire sensor grid, as all locations are considered to be equally

likely at the start of the algorithm.
PosEst(x,y) = c ∀(x,y) ∈ [(xmin,xmax)× (ymin,ymax)]

2) Incoming anchor information is processed as follows:

a) The incoming anchor location is used to create a “constraint” function on the possible locations of the node
PDFrssi = N ∼ (EstimatedDistanceanchor,RadioRangingVariance)
Constraint(x,y) = PDFrssi(distance((x,y),(xanchor,yanchor))) ∀(x,y) ∈ [(xmin,xmax)× (ymin,ymax)]

b) The node applies Bayesian inference to its current map to generate an improved map
NewPosEst(x,y) =

OldPosEst(x,y)×Constraint(x,y)
∑xmax

xmin ∑ymax
ymin

OldPosEst(x,y)×Constraint(x,y) ∀(x,y) ∈ [(xmin,xmax)× (ymin,ymax)]

3) Finally, the weighted average of all of the data in the map is used to calculate the estimated position of this node
(x̂, ŷ) = (∑xmax

xmin ∑ymax
ymin x×PosEst(x,y),∑xmax

xmin ∑ymax
ymin y×PosEst(x,y))

Algorithm 2 Refined Statistic-based localisation
Abbreviations used here: TL = Top-Left corner of a bounding box, BR = Bottom-Right corner, R = Radio Range of the nodes

1) Initially, the bounding box for a node is set to [(−∞,∞)× (−∞,∞)].
2) As (pseudo-)anchor information comes in, the bounding box for this node is intersected with the existing bounding box (see Figure 3

for examples of bounding boxes, including a diagram of this step in Figure 3b)
NewBox(T L,BR) = [(Max(AnchorTLx −R,OldBoxT Lx), Max(AnchorT Ly −R,OldBoxT Ly))×

(Min(AnchorBRx +R,OldBoxBRx), Min(AnchorBRy +R,OldBoxBRy))]
3) Once information from at least two (pseudo-)anchors have been received, and the minimum waiting period since the last incoming

anchor has passed, then we initialise the local map to a constant value
PosEst(x,y) = c ∀(x,y) ∈ BoundingBox

and then each of the incoming (pseudo-)anchors that we have received so far is processed as follows:

a) The incoming anchor information is used to create a “constraint” function on the possible locations of the node
PDFrssi = N ∼ (EstimatedDistanceanchor,RadioRangingVariance/ConfidenceAnchor)
Constraint(x,y) = PDFRSSI(distance((x,y),(xanchor,yanchor))) ∀(x,y) ∈ BoundingBox

b) The node then multiplies each value in the map by the constraint function to generate an improved map
NewPosEst(x,y) = OldPosEst(x,y)×Constraint(x,y) ∀(x,y) ∈ BoundingBox

4) The location on the map with the highest probability is determined (this is the most-likely location for this node)
(x̂, ŷ) = maxarg{PosEst(x,y) |(x,y) ∈ BoundingBox}

5) Finally, the map is normalised to provide an externally-usable probability value

NormConstant = ∑BoundingBoxBRx
BoundingBoxT Lx

∑
BoundingBoxBRy

BoundingBoxT Ly
PosEst(x,y)

FinalPosEst(x,y) = PosEst(x,y)/NormConstant ∀(x,y) ∈ BoundingBox

This box will be larger than a box generated from an anchor node,
because the location information is less accurate. However, this larger
box may still be useful to other nodes in reducing their bounding
boxes, and hence reducing the amount of computation that they need
to perform.

Nodes that have position information, but do not exceed the
probability threshold are considered “bad”. These nodes have some
position information, but either the information is insufficient, or it is
of too low a quality to be fully usable. These do not broadcast their
location information to other nodes.In our experiments comparing
this multi-hop method with the original single-hop method, we see a
similar average error in the locations of the good nodes, but a 38%
average increase in the number of good nodes.

C. Symmetry problem

There are a number of situations where we will have multiple
points that have equally high probabilities (or certainly very similar,
and within the bounds of statistical error). One of the most likely
instances of this problem is when the mobile anchor is travelling in a
straight line. As the distributions of the broadcast anchors cross over
equally on both sides of the line, a pair of possible good points will
be created, each one equally far away from the line, but on opposite
sides. Figure 4 is an example of this, showing the local probability

map for a node with this particular problem.
The broadcasting of information from nodes with good location

data reduces the symmetry problem, as this creates additional pseudo-
anchors, allowing the possible locations for the node to be “pulled”
in the direction of the correct point. However, in the event that
the mobile anchor’s path is a straight line, and that there are
insufficient “good” nodes in the local area to broadcast pseudo-anchor
information, then the problem still occurs. One solution is to avoid
choosing straight paths for the mobile anchor - simple possibilities
include curved paths, or using a “wobbly” path rather than a perfect
straight line. Corners and curved sections on the mobile anchor’s path
reduces the chances of the symmetry problem considerably.

A node can determine whether or not it is likely to have multiple
possible positions, based on its local probability map, by calculating
the average of all of the anchor locations the node knows about
(weighted according to their confidence values), and seeing how
much each anchor’s location differs from their average location in
each separate axis. This allows the node to check whether its known
anchors are mostly arranged along a straight line, or whether they
have a more varied path. If there is a significantly greater total
difference from the average point in one axis than another (indicating
a mostly straight path), then the node will also test the other possible
good points. These points can be found by taking the averaged anchor
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Fig. 4. Equal points

location, then looking at the points that are on the opposite side of
the average point from the calculated most-likely location for this
node. An average of the most-likely location and the other possible
points (weighted according to their individual confidences) becomes
the node’s estimate of its true location.

If the sum of the confidences for the most-likely point and the best
of the other candidate points, divided by a scaling factor, is above the
standard threshold for transmission of the calculated location, then
we transmit both locations. The scaling factor varies according to the
degree of difference between the two confidences i.e. how good the
second confidence is compared to the first.

ScalingFactor = 2× confidence(Best)+confidence(SecondBest)
confidence(Best)

If the node decides to transmit its current guesses, then the
confidences for both points are transmitted, and the node is treated
as two separate nodes by its neighbours, one at each of the two
possible points, but each with a reduced confidence (compared to the
calculated confidence for the point).

D. Heavy data-processing

One downside of statistic-based methods is the amount of data
processing required to calculate the local maps. The bounding boxes
reduce this significantly (a factor of 8), by eliminating many regions
that this node can not be located at. For best results, there should be
a waiting period for a short amount of time (e.g. 5 seconds) after the
last piece of anchor information has been received, before calculating
the local map, in order to work with the smallest possible bounding
box. This will slow down the calculation of this node’s location,
but given that it is necessary to re-calculate the data if we receive
another anchor, this can reduce the amount of redundant calculations
significantly. The waiting period should be calibrated such that if we
have not seen a new anchor for that amount of time, then we are
unlikely to receive more anchor information in the near future. Good
values for this would be at least as large as the interval between
broadcasts of the mobile anchor.

The energy costs associated with statistic-based localisation are
higher than for most localisation techniques, due to the large number
of probability calculations required (Lateration being a notable excep-
tion, due to the use of matrix multiplications), but this additional cost
is in most cases a one-off initialisation cost. Simulation results show
an increase in processing time for refined statistic-based localisation
over deterministic techniques ([3], [4], [5]) by approximately a factor
of two; an increase from ~5 to ~10 seconds on a typical node CPU
(Texas Instruments MSP430) and an average bounding box taken
from experimental testing. This order of processing time is not an
unacceptable start-up cost for a long running application, given the
significant improvements in the derived location information. The

probability calculations can also be performed by many nodes at the
same time without additional costs, as opposed to other localisation
techniques requiring large numbers of radio messages (which would
exhibit increased numbers of packet collisions if several nodes are
transmitting at the same time). Refined Statistic-based localisation
has been deliberately optimised towards reduced radio traffic with
this aim in mind.

V. RESULTS

Using the Positif simulation framework for localisation algorithm
testing [7], we have performed a series of comparison tests between
our refined statistic-based method, and three deterministic localisation
techniques (Euclidean [3], Hop-Terrain [4] and Multilateration [5]),
using a mobile anchor scenario in all cases, and with a variety of
ranging errors between nodes.

In each case, all of the algorithms have been tested with the
same set of data, and each result is the average of 10 runs of the
simulation with varying random-number seeds. The ranging error is
modelled as a Gaussian distribution, with the mean as the actual
range, and the range variance as a percentage of the radio range.
The internal model of the refined statistic algorithm in all cases is
set to a Gaussian distribution with the mean as the incoming range
information, and the estimated range variance set to 20% of the radio
range. In all scenarios, there are 226 sensor nodes randomly placed,
with a uniform distribution, within a square area. The mobile anchor
is modelled as a formation of 111 “virtual” anchors within this sensor
grid. The grid has a size of 100x100, and the radio range is set to
14 providing the nodes with an average connectivity of 19.

For the sake of brevity, we have only shown one of the mobile
anchor scenarios we have tested - a generic “square” formation, with
a mobile anchor moving along a square path around the centre of
the grid. The straight lines of this topology have been deliberately
chosen to cause difficulties to the refined statistic algorithm.

Figure 5 is a visualisation of the individual node locations for an
example experiment performed using the refined statistic algorithm.
The nodes marked with a “•” are anchor nodes, the others are sensor
nodes; the ones marked with a “*” are good nodes, nodes marked
with a “+” are bad nodes, and the “4” nodes have no position data
at all. Lines attached to nodes show the path from a node’s true
position to where it thinks it is. The longer the line, the less accurate
the estimated position. Note that, in general, the Statistic algorithm
does an accurate job of classifying the nodes into good and bad
ones, but occasionally generates both false positives (good nodes
with long lines) and false negatives (bad nodes with short lines).
These anomalies generally occur outside the area directly covered by
the mobile anchor. Since the node classification is largely correct,
applications should be able to exploit that knowledge.

In Figure 6, we show the average accuracy of the good nodes for
all of the algorithms. The Statistic algorithm provides information
about bad nodes (as opposed to the other algorithms, which only
give a node as either “good” or un-positioned), so we also show
the accuracy for a weighted average of both good and bad nodes.
Figure 7 shows the average percentages of positioned nodes in each
of these cases. Note the poor coverage (generally less than 50% of
the nodes obtain a position estimate), as a result of the non-uniform
anchor distribution.

In most cases the Statistic algorithm has the lowest percentage
error in its “good” positions. Euclidean only outperforms it under
ideal circumstances (i.e. no range errors); in all other cases (error
variance ≥ 5%) the Statistic algorithm provides (much) more accurate
position estimates. In general, localisation algorithms can trade-off
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accuracy for coverage [7]. The Statistic algorithm, however, combines
high accuracy with reasonable coverage. For low error variances, the
Statistic algorithm has similar numbers of good nodes as the Hop-
Terrain and Multilateration algorithms, and only at higher values
the statistic algorithm classifies more nodes as being bad. The
combination of the Statistic good and bad nodes however, gives a
comparable level of error to the other algorithms, but with up to a
doubled number of positioned nodes.

VI. CONCLUSIONS AND FUTURE WORK

We presented here an approach that can provide good location
information, even with non-uniform anchor distributions and consid-
erable inaccuracies in the incoming ranging data. Refined Statistic-
based localisation provides a good solution to the problem of local-
isation even in small, resource-limited sensor networks. We showed
that we can calculate accurate position data for a high percentage of
the sensor nodes in a network. We have improved both the quality
and quantity of positioned nodes in sensor networks, both versus the
earlier Statistic-based and deterministic localisation methods.

All of this has been tested using mobile anchor scenarios, which we
have shown to be a realistic and usable method for the distribution
of anchor data, as well as a cost-effective one - both in terms of
energy costs for the sensor nodes of the network, and in terms of the
necessary hardware required to create the sensor network. Getting rid
of the errors in sensor measurements is hard, but that is the price of
gathering data from the real world. With statistical approaches, we
have shown that it is possible to work around these errors, and derive
good location information. Statistical approaches are somewhat more
computationally expensive, but given the significant improvements in
the location information, and that the computational expense results
in a reduced level of required radio traffic during the localisation
process (which increases the capability of other nearby nodes to do
radio-dependent work efficiently during the localisation process), we
believe that the trade-offs are worth it.

In the future, we hope to expand on our work here to attempt
to further improve the location information that can be gathered, by
integrating more accurate models of various ranging sensors, and also
testing to see whether a combined model from several sensors may
improve accuracy.
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