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Abstract

We introduce an iterative linear estimator (ILE) for estimating a signal from samples having location

errors and additive noise. We assume that the signals lie in the span of a finite basis and the location

errors and noise are mutually independent and normally distributed. The parameter estimation problem is

formulated as obtaining a maximum likelihood (ML) estimate given the observations and an observation

model. Using a linearized observation model we derive an approximation to the likelihood function.

We then adopt an iterative strategy to develop a computationally efficient estimator, which captures

the first order effect of sample location errors on signal estimation. Through numerical simulations we

establish the efficacy of the proposed estimator for one-dimensional and two-dimensional parametric

signals, comparing the mean squared estimation error against a basic linear estimator. We develop a

numerical approximation of the Cramér-Rao lower bound (CRB) and the Expectation-Maximization (EM)

algorithm, and for a one-dimensional signal compare our algorithm against them. We show that for high

location error variance and small noise variance the mean squared error (MSE) with ILE is significantly

lower when compared to the baseline linear estimator. When compared to EM, our algorithm provides

comparable MSE with a significant reduction in computational time.
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Index Terms

Parameter estimation, iterative estimation, jitter, unknown location, maximum likelihood estimator,

Expectation Maximization, Cramér-Rao lower bound.

I. INTRODUCTION

Pervasive sensing through wireless sensor networks (WSNs) has the potential to transform the way we

monitor our built and natural environments by providing measurements at spatial and temporal scales that

were not possible a few years ago [1], [2]. Furthermore, the compactness of today’s sensors allow them

to be easily attached to mobile platforms such as robots, cars, buoys, humans, and animals to achieve

wide-area coverage [3]. For example, air quality sensors attached to taxicabs can provide emissions data

in urban areas via smartphones. One key application of such mobile WSNs is to reconstruct a spatio-

temporal field such as temperature or chemical concentration. Several approaches have been explored in

the literature for reconstructing such fields in the presence of measurement/modeling errors [4]–[8].

Researchers have studied and developed various localization schemes for mobile platforms. GPS, which

can be used to obtain position information of mobile sensing platforms in outdoor environments like

taxicabs, has an accuracy of few meters [9], [10]. Commercially available differential GPS can further

achieve sub-meter accuracy [11]. Localization of autonomous robots has been studied extensively in

the literature [12]–[16]. Though significant advances have been made in the localization of autonomous

robots, location errors exist and their effect on the reconstruction of a spatio-temporal field monitored by

a system of mobile agents has not received much attention. As the interest in real-world deployment of

mobile WSNs is increasing, the aforementioned problem is expected to be of utmost practical interest.

Tolerating higher sample location errors would in turn allow the use of simpler and less expensive

localization/positioning systems, increasing the feasibility of real-world deployment of mobile sensor

nodes.

Location errors in sampling have been studied in the signal processing community as random time

jitter in analog-to-digital converters (ADC) [17]–[21]. Typically the power consumption of an ADC goes

up with the speed and the accuracy of the clock signals [20]. Hence tolerating higher time jitter through

post processing presents an opportunity for lowering the power of acquisition subsystems. In [17]–[19],

[22] the authors characterize error due to time jitter and study estimation error of bandlimited signals

in the presence of jitter. In [17] the author develops a linear interpolator for processing bandlimited

signals with correlated and uncorrelated time jitter. In [20] the authors implement a nonlinear maximum
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likelihood estimator through Expectation Maximization to mitigate the effect of sample location error in

the reconstruction of bandlimited signals. Likewise, Bayesian approaches through Gibbs sampling and

slice sampling have been explored to nonlinearly post-process the jitter affected samples, showing success

in reducing the effect of time jitter [21]. Nonlinear estimators like the polynomial least squares estimator

has also been explored in the literature [23]. Though nonlinear estimators exhibit improved performance

over linear estimators, in general they suffer from high computational cost and limit the possibility of

developing real-time embedded applications.

In this paper, we develop a computationally efficient estimator to mitigate the effect of sample location

errors in reconstructing signals that lie in a finite-dimensional subspace. The parameter estimation problem

is formulated as obtaining a maximum likelihood estimate given the observations and an observation

model. Using the linear term from a Taylor series expansion, we derive an approximation to the nonlinear

observation model. We then adopt an iterative approach to develop a computationally efficient estimator,

the iterative linear estimator (ILE), which captures the first order effect of sample location errors on

signal estimation. We highlight practical issues in computing the numerical approximation of the complete

likelihood function and show the suitability of Monte Carlo integration over Gauss-Hermite quadrature

for our problem. Using Monte Carlo integration we derive a numerical scheme for finding the Cramér-

Rao lower bound (CRB) and an Expectation Maximization (EM) algorithm to implement the maximum

likelihood estimation.

We present simulations to show the efficacy of our proposed algorithm in improving the estimation error

at low computational cost. When compared with a baseline linear estimator, ILE gives a lower estimation

error and the improvement increases with the variance of the sample location error but decreases with

the number of sampling points. We present statistical properties of our estimator, like contribution of

bias versus variance and the mean computation time. The mean computational time with ILE for the

simulated one-dimensional signals is of the order of 10−2 s which increases to 1 s for the simulated two-

dimensional signals. For a one-dimensional signal, we show that for low additive noise and a reasonable

level of oversampling ILE outperforms EM (in terms of estimation error) while at higher noise and higher

number of samples EM algorithm gives a lower estimation error. We also show that the performance of EM

worsens with decreasing additive noise due to high numerical errors associated with computing integrals

that involve narrow Gaussian distributions, while ILE does not suffer from such issues. Furthermore,

implementation of ILE is around five orders of magnitude faster when compared to EM, making it an

appealing candidate for real-time embedded applications.

Our approach is related to the Taylor-series based vehicle position estimation [24], where the known
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functional relationships between the unknown vehicle position and the known observation stations are

linearized to obtain a linear system of equations which is subsequently solved iteratively until convergence.

The key difference between our work and [24] is that in our case the Taylor-series approximation does

not lead to a linear system of equations as both the function and the location errors are unknown.

A. Notation

Let {φk(x)}Mk=1 be an orthonormal set of continuous and differentiable functions defined on the D-

dimensional domain Q , [−1, 1]D, meaning

〈φk(x), φl(x)〉 =

∫
Q
φk(x)φl(x)dx =

 1, if k = l;

0, if k 6= l.
(1)

We consider signals in the span of {φk(x)}Mk=1:

f(x) =

M∑
k=1

akφk(x). (2)

We denote the L2 norm of the signals as ‖f(x)‖ =
√
〈f(x), f(x)〉. For a vector in D dimensional space

we use the regular L2 norm as ‖x‖ =
√∑D

j=1 x
2
j . The determinant of a matrix M is denoted as |M |.

The signal estimation problem can be defined as obtaining an estimate of ak’s by appropriate sampling

of the signal and employing an estimation algorithm. Note that here we do not restrict our analysis to

bandlimited functions, making our framework suitable for a wide range of spatio-temporal signals fre-

quently encountered in the real-world application of pervasive sensing. We assume uniform arrangements

of the nominal/expected sampling locations with equal spacing between the samples in every dimension.

We assume the location errors to be independent, identically distributed (i.i.d.) Gaussian noise and the

measurement/modeling error to be additive i.i.d. Gaussian noise. We then have the following observation

model: For each i = 1, 2, . . . , N ,

yi = f(xi + zi) + ηi, (3)

where xi is the nominal sensor location, zi ∼ N (0, σ2
z I) is the location error (with per-component

standard deviation σz), ηi ∼ N (0, σ2) is the additive noise (with standard deviation σ) and yi is the

observation. The noise matrix {zTi }Ni=1 and the noise vector {ηi}Ni=1 are independent. In theory, the

Gaussian distribution assumption of location error may lead the sampling points to be outside Q. In

simulations, we ensure the points are in Q by considering location errors to be a fraction of the spacing

between the nominal sampling points. The assumption of Gaussian distribution enables an analytical

treatment of the problem and subsequent derivation of the estimator.
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In matrix and vector notation the observations can be described in the following semilinear form:

y = Φ(X,Z)a + η, (4)

where y = [y1, y2, . . . , yN ]T , a = [a1, a2, . . . , aM ]T , η = [η1, η2, . . . , ηN ]T , X = {xi|i = 1 . . . N},

Z = {zi|i = 1 . . . N} and

Φ(X,Z) =


φ1(x1 + z1) · · · φM (x1 + z1)

φ1(x2 + z2) · · · φM (x2 + z2)
...

. . .
...

φ1(xN + zN ) · · · φM (xN + zN )

 .
For convenience we denote the jth row of Φ(X,Z) as φj(zj)

T = [φ1(xj + zj), . . . , φM (xj + zj)].

From the observation model we can clearly see that the effect of zi on yi is nonlinear and non-trivial to

characterize. We denote the probability density function (pdf) of x by p(x), the pdf of x parametrized by

a nonrandom vector a by p(x;a), and the pdf of x conditioned on a random variable y by p(x|y). We

define expectations similarly. We denote the multivariate normal distribution of a D dimensional vector

x by

N (x;µ,Σ) = |(2π)DΣ|−1/2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (5)

where µ is the mean vector and Σ is the covariance matrix.

B. Parameter Estimation

In parameter estimation, we seek to find an estimate â of a which minimizes a certain cost function.

Typically the cost function is chosen to be the MSE:

C
(
â(y);a

)
= Ey

[
‖â− a‖2

]
. (6)

Using the estimate of the parameters we reconstruct the signal using

f̂(x) =

M∑
k=1

âkφk(x) (7)

As discussed in [25] it is impossible to compute the minimum MSE (MMSE) estimator without prior

knowledge about a. From an application perspective it is important to derive an estimator based only on

the observation model and the actual observations. The maximum likelihood (ML) estimator is one such

estimator which uses the observations and the observations model to find an estimate that maximizes the
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likelihood function l(a;y) , p(y;a). The likelihood function corresponding to the observation model in

(3) can be written as

l(a;y) =

∫
Q
p(y|z;a)p(z)dz =

∫
Q
N (y; Φ(X,Z)a, σ2I)N (z; 0, σ2

zI)dz. (8)

We now have the following definition of the ML estimator:

âML = arg max
a

l(a;y). (9)

Maximizing (8) is not straightforward and does not lead to an analytical solution. In [20] the EM

algorithm is employed to obtain the ML estimate. EM is computationally expensive and may not be

suitable for real-time embedded applications. In this paper, we present an approximation to the observation

model and the subsequent development of ILE and discuss its performance.

C. Outline

In Section II, we discuss the development of ILE. Section III first presents some background and

practical issues related to numerical integration. We then develop a numerical approximation of the

Cramér-Rao lower bound on the variance of any unbiased estimator and an EM approximation for ML

estimation. We present simulations providing comparisons and discussions in Section IV. In conclusion

we summarize the results and our contributions and introduce future research directions.

II. ITERATIVE LINEAR ESTIMATOR (ILE)

Using the Taylor series expansion and keeping only the first order term, we obtain the following

linearization of the observation model:

yi = f(xi) + zTi ∇f(xi) + ηi, (10)

where ∇f(xi) is the gradient of the function calculated at xi. Note that for one-dimensional signals the

linearized observation model takes the following simplified form

yi = f(xi) + zif
′(xi) + ηi. (11)

Since the sum of two independent Gaussian random variables is Gaussian, we can write the marginal

pdf of yi as

p(yi;a) =
1√

2π(σ2 + ‖∇f(xi)‖2σ2
z)

exp

{
− (yi − f(xi))

2

2(σ2 + ‖∇f(xi)‖2σ2
z)

}
. (12)

For one-dimensional signals we replace ‖∇f(xi)‖2 with f ′(xi)2. Note that higher order Taylor expansion,

for example yi = f(xi)+zif
′(xi)+z2

i f
′′(xi)+ηi, will lead to a complicated pdf of yi (square of Gaussian

July 18, 2013 DRAFT



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EFFICIENT PARAMETRIC SIGNAL ESTIMATION FROM SAMPLES WITH LOCATION ERRORS 7

random variable is not Gaussian) and hence it will be difficult to obtain an analytical expression for the

marginal pdf of yi. Since all the observations are independent we have p(y;a) =
N∏
i=1

p(yi;a) and hence

the approximated likelihood function l̂(a;y) can be written as

l̂(a;y) =
1√

(2π)N
N∏
i=1

(σ2 + ‖∇f(xi)‖2σ2
z)

exp

{
−

N∑
i=1

(yi − f(xi))
2

2(σ2 + ‖∇f(xi)‖2σ2
z)

}
. (13)

Our aim is to find an estimator â that maximizes l̂(a|y). Note that f(x) =
M∑
k=1

akφk(x) and ∇f(x) =

M∑
k=1

ak∇φk(x). The derivative of l̂(a;y) with respect to a will still result in a nonlinear set of equations

making the estimation problem difficult.

We now present an iterative strategy to obtain an estimate of a using the linearized likelihood function,

(13). In the absence of sample location error the resulting observation model is linear with additive i.i.d.

Gaussian noise, i.e. y = Φ(X, 0)a + η. The minimum variance unbiased estimator (MVUE) with the

above observation model is

ab =
(
Φ(X, 0)TΦ(X, 0)

)−1
Φ(X, 0)Ty. (14)

We call the estimator defined in (14) the blind estimator (BE). Using ab we can obtain an initial estimate

of the unknown signal as fb(x) using (7) and its gradient ∇fb(x). Using the approximation for the

gradient we write (13) as

l̃(a;y) =
1√

(2π)N
N∏
i=1

(σ2 + ‖∇fb(xi)‖2σ2
z)

exp

{
−

N∑
i=1

(yi − f(xi))
2

2(σ2 + ‖∇fb(xi)‖2σ2
z)

}
. (15)

We take the derivative of the approximated likelihood function (15) to obtain the following linear systems

of equations:

∂l̃(a;y)

∂aj
= 0

⇒
N∑
i=1

yiφj(xi)

σ2 + ‖∇fb(xi)‖2σ2
z

=

M∑
k=1

ak

N∑
i=1

φk(xi)φj(xi)

σ2 + ‖∇fb(xi)‖2σ2
z

∀j = 1 . . .M. (16)

We define

αi = σ2 + ‖∇fb(xi)‖2σz2, (17)
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and

C = diag(1/α1, 1/α2, . . . , 1/αN ). (18)

Solving the above system of linear equations we obtain the following estimator:

aILE = (Φ(X, 0)TCΦ(X, 0))−1Φ(X, 0)TCy. (19)

We implement the estimator in (19) iteratively by using the estimate atILE obtained above to calculate

∇fb(xi) using ∇f(x) =
∑M

k=1 a
t
ILE,k∇φk(x), where t is the current iteration index. αi’s are subse-

quently recalculated which are then used to obtain a new estimate of a using (19) as a(t+1)
ILE . The procedure

is repeated until convergence, i.e., ‖a(t+1)
ILE − atILE‖ 6 ε, where ε is the tolerance for convergence or a

maximum number of iterations have been reached. Algorithm 1 summarizes the steps involved, and the

performance of the estimator is presented in Section IV.

Algorithm 1 Iterative Linear Estimator (ILE) for signal reconstruction under measurement and sampling

location errors
Require: y, X, φk(x)′s ∀k = 1 . . .M , ε (convergence tolerance), P (maximum number of iterations)

Use (14) to find ab

Find f1
b (x) using (7) and compute ∇f1

b (x)

t← 0

ât = ab

repeat

t← t+ 1

Compute αi = σ2 + ‖∇f tb(xi)‖2σz2 ∀i = 1 . . . N

Create Ct = diag(1/α1, 1/α2, . . . , 1/αN )

Compute ât from (19)

Using ât find f (t+1)
b (x) using (7) and compute ∇f (t+1)

b (x)

until ‖ât − â(t−1)‖ 6 ε or t > P

return ât

III. CRAMÉR-RAO LOWER BOUND AND EXPECTATION MAXIMIZATION ALGORITHM

Since for a general choice of basis functions, no closed form solution exists to the likelihood function

given by (8), a numerical method is needed to approximate (8). This numerical approximation is a

July 18, 2013 DRAFT



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EFFICIENT PARAMETRIC SIGNAL ESTIMATION FROM SAMPLES WITH LOCATION ERRORS 9

precursor for either obtaining the CRB or implementing an EM approximation to the ML estimator (9)

as discussed in [20]. In this section we first discuss techniques and issues involved in obtaining an approx-

imation to (8). On the basis of our numerical approximation scheme we then present an approximation

to the CRB and an EM algorithm for ML estimation. We present the formulation and simulation results

for one-dimensional signals and highlight the challenges associated with higher dimensional signals.

A. Numerical Integration

Since the observations and the location errors are independent, (8) can be written as

l(a;y) =

N∏
i=1

∫
zi

N (yi;φi(zi)
Ta, σ2)N (zi; 0, σ2

zI)dzi =

N∏
i=1

p(yi;a). (20)

Numerical approximation of the marginal pdf of the observations yi, p(yi;a), involves estimating the D

dimensional integral

p(yi;a) =

∫
· · ·
∫

zi,1...zi,D

N (yi;φi(zi)
Ta, σ2)N (zi,1; 0, σ2

z)dzi,1 . . .N (zi,D; 0, σ2
z)dzi,D, (21)

where zi = [zi,1, zi,2, . . . , zi,D]T is the sample location error at the sampling point xi. Clearly the

complexity of estimation grows with the dimension of the signal. For a one-dimensional signal the

marginal has a simpler expression:

p(yi;a) =

∫
zi

N (yi;φi(zi)
Ta, σ2)N (zi; 0, σ2

z)dzi = Ezi [N (yi;φi(zi)
Ta, σ2)]. (22)

There are two major approaches to obtain a numerical approximation to the marginal pdf (22). The

first method, called quadrature integration, approximates the weighted integral with a weighted sum [26],

i.e.,

p(yi;a) ≈
J∑

j=1

p(yi|zi,j ,a)wj , (23)

where zi,j’s are the abscissas, wj’s are the weights, J is the number of points for the quadrature integration

and p(yi|zi,j ,a) = N (yi;φi(zi,j)
Ta, σ2). Since zi is normally distributed, the appropriate choice of

abscissas and weights are derived through the Gauss-Hermite quadrature (GHQ) rule [26]. Using a

Cartesian product of the one-dimensional quadrature grid for evaluating multidimensional integrals leads

to an exponential increase in the computational complexity (number of function evaluations ∼ JD).

Though use of sparse grids provides improved performance, the complexity still increases significantly

with the dimension [27].
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Monte Carlo integration (MCI) approximates the integration by first generating S samples of zi from

its distribution and uses the samples (zi,s) to approximate the integral as

p(yi;a) ≈ 1

S

S∑
s=1

p(yi|zi,s,a). (24)

It is known that the approximation error is proportional to var(f)/
√
S, where var(f) is the variance of

the function to be integrated. Though the error is independent of the dimension of the problem [28], the

variance (var(f)) can grow exponentially with the dimension, requiring an exponential increase in the

number of samples for achieving a desired accuracy. Use of quasi-Monte Carlo integration can further

improve the performance for higher dimensional integrals [28].

We present an example of comparing the performance of GHQ and MCI in computing the numer-

ical approximation of the marginal pdf (22) for a one-dimensional signal. We chose 1, sin(kx) and

cos(kx) as the choice of basis functions for a specific frequency, k, and create an orthonormal set

{φ1(x), φ2(x), φ3(x)} from them [8]. We chose a = [0.5, 1,−1]T and f(x) = 0.5φ1(x)+φ2(x)−φ2(x).

For a specific sampling location, say xi = 0 and k = {1, 5, 10} we evaluate the performance of GHQ and

MCI. We first generate 105 samples of yi according to (3) and generate histograms to obtain an empirical

estimate of the pdf of yi. We use an open source code [29] to implement GHQ (23) with J = 128. For

MCI, we first generate 104 samples of zi by sampling from a zero mean normal distribution and given

standard deviation (σz) and estimate the pdf by (24). Fig. 1a,b,c shows that as the frequency of the signal

increases the MCI outperforms GHQ. Similarly, Fig. 1a,d shows that for the same frequency, k = 1, as

the sample location error (σz) increases, MCI provides a better approximation of the pdf compared to

GHQ. In the rest of the paper we employ MCI for approximating marginal pdfs and expectations.

B. CRB and its Numerical Approximation

The CRB provides a lower bound on the variance of any unbiased estimator. The CRB(a) is defined

as the trace of the inverse of the Fisher information matrix Iy(a). Under certain regularity conditions

[30], Iy(a) satisfies the following:

Iy(a) , E

[(
∂ log l(a;y)

∂a

)(
∂ log l(a;y)

∂a

)T
]

= −E
[
∂2 log l(a;y)

∂a∂aT

]
, (25)

where the expectation is taken with respect to p(y;a) (20). Using (20), log l(a;y) =
N∑
i=1

log p(yi;a),

hence we can write (25) as

Iy(a) =

N∑
i=1

E

[(
∂ log p(yi;a)

∂a

)(
∂ log p(yi;a)

∂a

)T
]
. (26)
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Now ∂ log p(yi;a)/∂a = (1/p(yi;a))(∂p(yi;a)/∂a) where we compute p(yi,a) from (24). We can write

∂p(yi;a)

∂a
≈ 1

S

S∑
s=1

{(
yi − φi(zi,s)

Ta
)
φi(zi,s)

σ2
N (yi;φi(zi,s)

Ta, σ2)

}
, (27)

=⇒ ∂ log p(yi;a)

∂a
≈ 1

S∑
s=1

p(yi|zi,s,a)

S∑
s=1

{(
yi − φi(zi,s)

Ta
)
φi(zi,s)

σ2
N (yi;φi(zi,s)

Ta, σ2)

}

, d(yi). (28)

Using (26), (28) and MCI we have

Iy(a) ≈
N∑
i=1

E
[
d(yi)d(yi)

T
]
≈ 1

S

N∑
i=1

S∑
s=1

d(yi,s)d(yi,s)
T , (29)

where yi,s are generated from p(yi;a).

Hence for any unbiased estimator â we have

var(â) ≥ CRB(a) = trace(Iy(a)−1). (30)

C. An EM algorithm for ML Estimation

EM is a classical approach to approximating ML estimators in the presence of incomplete or unobserved

data [31]. The observation vector y in (8) depends on the unobserved location errors, z. Instead of

implementing (9), EM maximizes the following lower bound of the likelihood function at the current

estimate a(t−1):

Q
(
a;a(t−1)

)
= E

[
log p(y, z;a)|y;a(t−1)

]
. (31)

Under certain regularity conditions the EM algorithm is guaranteed to converge to a local maximum of

the likelihood function (8) [20], [31]. Using (8) we can write

log p(y, z;a) = − 1

2σ2
‖y − Φ(X,Z)a‖2 − 1

2σ2
z

‖z‖2 +K, (32)

where K is a constant terms not relevant to the optimization problem. Substituting (32) into (31) gives

Q
(
a;a(t−1)

)
=− 1

2σ2

(
‖y‖2 − 2yTE

[
Φ(X,Z)|y;a(t−1)

]
a + aTE

[
Φ(X,Z)TΦ(X,Z)|y;a(t−1)

]
a
)

− 1

2σ2
z

E
[
‖z‖2|y;a(t−1)

]
+K. (33)

Since (33) is quadratic in a, taking its derivative with respect to a and equating it to 0 gives the following

system of linear equations:

E
[
Φ(X,Z)TΦ(X,Z)|y;a(t−1)

]
a = E

[
Φ(X,Z)|y;a(t−1)

]T
y. (34)
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Hence the EM estimate of a at t is

ât = E
[
Φ(X,Z)TΦ(X,Z)|y;a(t−1)

]−1
E
[
Φ(X,Z)|y;a(t−1)

]T
y. (35)

As discussed in [20], we can separate the expectations in (34) into univariate expectations:

E
[
Φ(X,Z)TΦ(X,Z)|y;a(t−1)

]
=

N∑
i=1

E
[
φi(zi)φi(zi)

T |y;a(t−1)
]
, (36)

E
[
Φ(X,Z)|y;a(t−1)

]T
y =

N∑
i=1

E
[
φi(zi)|y;a(t−1)

]
yi. (37)

The expectations are with respect to p(z|y;a(t−1)) =
N∏
i=1

p(zi|yi;a(t−1)). Hence each univariate expecta-

tion is calculated with respect to p(zi|yi;a(t−1)) = p(yi|zi;a(t−1))p(zi)/p(yi;a
(t−1)) where p(yi|zi;a(t−1)) =

N (yi;φi(zi)
Ta(t−1), σ2). Given a(t−1) we compute p(yi;a(t−1)) from (24). Each univariate expectation

is of the form
∫
zi
g(zi)N (yi;φi(zi)

Ta(t−1), σ2)N (zi; 0, σ2
z)dzi, which can be approximated by MCI. We

have the following approximations to the expectations in (36) and (37):

E
[
Φ(X,Z)TΦ(X,Z)|y;a(t−1)

]
≈

N∑
i=1

1

Sp(yi;a(t−1))

S∑
s=1

φi(zi,s)φi(zi,s)
T p(yi|zi,s;a(t−1)), (38)

E
[
Φ(X,Z)|y;a(t−1)

]T
y ≈

N∑
i=1

yi

Sp(yi;a(t−1))

S∑
s=1

φi(zi,s)p(yi|zi,s;a(t−1)). (39)

Eqn. 35 is then employed to obtain the current estimate at. The aforementioned steps are repeated until

convergence, i.e., ‖at − a(t−1)‖ 6 ε or a maximum number of iterations have been reached. Algorithm

2 summarizes the steps involved in the EM implementation of ML estimation.

IV. NUMERICAL SIMULATIONS

In this section we present simulation results on the performance of ILE. It is important to note that

ILE is not an unbiased estimator, so we study its bias and variance apart from the MSE. We perform

simulations with both one- and two-dimensional basis functions and present performance in terms of

the MSE and computational time. We also present a detailed argument for the stability of ILE. We then

present comparisons of the ILE with the CRB for unbiased estimators and the EM approximation of

the ML estimator for one-dimensional basis functions highlighting the computational advantage of our

algorithm. Note that Matlab was used for all the simulations and the parallel processing toolbox was

used when multiple simulations were needed for a given set of parameters.
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Algorithm 2 Expectation Maximization for maximum likelihood estimation of signal coefficients under

measurement and sampling location errors
Require: y, X, φk(x)′s ∀k = 1 . . .M , ε (convergence tolerance), P (maximum number of iterations)

Use (14) to find ab

t← 0

ât = ab

repeat

t← t+ 1

Compute p(yi; â(t−1)) by (24)

Approximate E
[
Φ(X,Z)TΦ(X,Z)|y; â(t−1)

]
by (38)

Approximate E
[
Φ(X,Z)|y; â(t−1)

]T
y by (39)

Find ât using (35)

until ‖ât − â(t−1)‖ 6 ε or t > P

return ât

A. Performance of ILE

We implement numerical simulations with two classes of basis functions. Eqn. 14 presents the baseline

blind linear estimator against which we compare the performance of ILE. In all the simulations we

generate xi’s on a uniform grid. For one-dimensional signals we place N samples at an equidistant

spacing of ∆x = 2/N and xi = (i−0.5)∆x for i = 1, . . . , N . Similarly for two-dimensional simulations

we have samples at [(i − 0.5)∆x, (j − 0.5)∆y]T for i = 1, . . . , N , j = 1, . . . , N , ∆x = ∆y = 2/N

and total number of samples = N2.

We now describe the parameters used for simulation studies. As mentioned before, the measurement

errors are assumed to be i.i.d Gaussian variables with known variance. Here we assume the variance to

be a certain fraction of the maximum value of the function, i.e. σ = (γ/100) max |f(x)|. Similarly we

assume the variance of the position error to be a fraction of the spacing between the sampling points,

i.e. σz = (p/100)∆x. Though the sample location error was assumed to have a Gaussian distribution, in

simulations we used the following hard thresholding on the values of zi’s: zi = sign(zi) min{|zi|,∆x/2}.

This ensures that the sample location, say, xi + zi is lower than xi+1 + zi+1 and we have an ordered set

of samples. Hence, in simulations, a higher σz would lead to a distribution close to a uniform distribution

on
[
− ∆x

2
,
∆x

2

]
.
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For one-dimensional simulations we first have ψ0(x) = 1, ψk(x) = sin(kx) ∀k = 1 to 5 and ψk(x) =

cos((k − 5)x) ∀k = 6 to 10. We use Gram-Schmidt orthonormalization [8] to generate 11 orthonormal

basis functions φk(x)’s and call it the set of trigonometric basis functions. Similarly, we create an

orthonormal set of 10 polynomial basis functions from ψk(x) = xk ∀k = 0 to 9. For each combination

of the parameters, p, γ and N , 1000 simulations were carried out in a parallel fashion using Matlab’s

parfor. For trigonometric basis functions ‖a‖ = 2.917, for polynomial basis functions ‖a‖ = 4.283 and

we chose ε = 10−4, P = 200. We compute the mean and the standard deviation of the squared estimation

error
(
‖â− a‖2

)
. We compare the squared estimation error with ILE, the blind estimator (14) and the

following least square estimator with known sample location error:

âKLE =
(
Φ(X,Z)TΦ(X,Z)

)−1
Φ(X,Z)Ty. (40)

Fig. 2 presents the performance of the ILE for trigonometric basis functions and Fig. 3 for polynomial

basis functions. Fig. 2a and Fig. 3a show that as the sample location error, σz , is increased the ILE

performs better compared to the blind estimator. The estimation error with ILE is comparable to BE for

low values of p(σz), but with increase in p, ILE outperforms BE. As expected, Fig. 2b and Fig. 3b show

that the estimation error decreases with increase in N . Interestingly, the difference between estimation

error with ILE and BE is higher for lower N and at higher N the difference between them is negligible.

As expected, the estimate from (40) does not depend on sample location error (σz).

We have the following relationship for the MSE:

E
[
‖â− a‖2

]
=

M∑
k=1

E
[
(âk − ak)2

]
=

M∑
k=1

(
E
[
(âk − E[âk])2

]
+ (E[âk]− ak)2

)

=

M∑
k=1

(
var(âk) + bias2

k

)
= variance + bias2. (41)

We use the 1000 simulations for each parameter set and compute the bias and the variance of ILE. We

define Λ = bias/
√

variance. Fig. 4 plots the variation of Λ for trigonometric basis functions with the

variation in p for various combinations of γ and N . We observe that the contribution of bias to the

overall estimation error increases with p and the effect is more pronounced at higher N and at lower

γ. Recall that σ = (γ/100) max |f(x)| and hence higher γ implies higher additive noise. We observe a

similar variation of Λ with polynomial basis functions.

For polynomial basis functions, Fig. 5 shows the variation of the mean computational time for our

algorithm with the variation in simulation parameters (p, γ and N ). We observe that the mean com-

putational time increases with p and are similar for different values of γ. Furthermore, we observe an
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interesting trend with N = 50, where there is a sharp increase in computational time with p. We observe

a similar trend with trigonometric basis functions. Note that the computational time is of the order of

10−2 s. Typically the number of iterations for convergence is around 5 except for N = 50 where at high

p the number of iterations required is around 30.

Similarly, we create a set of two-dimensional orthonormal polynomial basis functions from the follow-

ing set of basis functions: ψ = {1, x1, x2, x1x2, x
2
1, x

2
2, x

2
1x2, x1x

2
2, x

2
1x

2
2, x

3
1, x

3
2}. We have ‖a‖ = 2.398.

From Fig. 6, we observe a trend similar to the one-dimensional case where the ILE outperforms BE with

increase in p(σz) and the difference between ILE and BE decreases with N . The mean computational time

is of the order of 1s and shows a trend similar to the one-dimensional signals. Though the computational

time increased by two orders of magnitude, our method is still suitable for estimating a slowly varying

higher dimensional field.

B. Convergence and Stability of ILE

In this section we show the numerical stability of ILE, which ensures that the estimate does not diverge

with iterations. We first assume that the N ×M matrix Φ(X, 0) is of rank M . This is a reasonable

assumption given we have orthonormal basis functions, we sample at distinct locations, and N ≥ M .

Note that if the aforementioned assumption does not hold, then the blind estimator (14) does not exist

and ILE terminates at the initialization (Algorithm 1).

We denote the singular values of Φ(X, 0) by {sk}Mk=1 with s1 ≥ s2 ≥ . . . ≥ sM > 0. At the

current iteration, t, we have Ct given by (18). We obtain ∇f tb(xi) from the previous estimate â(t−1)

by ∇f tb(xi) =
∑M

k=1 â
(t−1)
k ∇φk(xi). We define βk = maxx∈Q ‖∇φk(x)‖. We have ‖β‖ =

∑M
k=1 β

2
k

and ‖β‖ < ∞ as the basis functions are continuous and differentiable and the domain Q is closed and

bounded. Using Cauchy-Schwarz inequality we have:

‖∇f tb(x)‖ =

√√√√√ D∑
j=1

(
M∑
k=1

â
(t−1)
k

∂φk(x)

∂xj

)2

≤

√√√√ D∑
j=1

(
M∑
k=1

(â
(t−1)
k )2

M∑
k=1

(
∂φk(x)

∂xj

)2
)

=

√√√√ D∑
j=1

(
‖â(t−1)‖2

M∑
k=1

(
∂φk(x)

∂xj

)2
)

= ‖â(t−1)‖

√√√√ D∑
j=1

M∑
k=1

(
∂φk(x)

∂xj

)2

= ‖â(t−1)‖

√√√√ M∑
k=1

D∑
j=1

(
∂φk(x)

∂xj

)2

= ‖â(t−1)‖

√√√√ M∑
k=1

‖∇φk(x)‖2

≤ ‖â(t−1)‖‖β‖. (42)
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Hence for i = 1, . . . , N , ‖∇f tb(xi)‖ ≤ ‖â(t−1)‖‖β‖. According to (14), we initialize ILE with â0 = ab,

so we have:

‖â0‖ = ‖
(
Φ(X, 0)TΦ(X, 0)

)−1
ΦT (X, 0)y‖

≤ ‖
(
Φ(X, 0)TΦ(X, 0)

)−1 ‖‖ΦT (X, 0)‖‖y‖ =
1

s2
M

s1‖y‖ <∞. (43)

For the first iteration of ILE (t = 1), every diagonal entry of C1 satisfies:

C1
i,i =

1

σ2 + ‖∇f1
b (xi)‖2σz2

=⇒ 1

σ2 + ‖â0‖‖β‖σz2
≤ C1

i,i ≤
1

σ2
. (44)

Using (43) we get:

0 <
s2
M

σ2s2
M + s1‖y‖‖β‖σz2

≤ C1
i,i ≤

1

σ2
. (45)

Note that the above lower bound of C1
i,i holds true for any finite norm initialization of ILE, i.e., ‖â0‖ <∞.

Since C1 is a diagonal matrix with all its diagonal entries greater than zero, C1 is positive definite, i.e.,

C1 � 0. We now make use of the following lemma [32]:

Lemma. Let A be an m × n matrix of full row rank, and let D+ denote the set of positive definite

diagonal n× n matrices. Then,

sup
D∈D+

‖
(
ADAT

)−1
AD‖ = max

J∈J (A)
‖A−TJ ‖,

where J (A) is the collection of sets of column indices associated with nonsingular m×m submatrices

(AJ ) of A.

After the first iteration of ILE, we have:

â1 = (Φ(X, 0)TC1Φ(X, 0))−1Φ(X, 0)TC1y

=⇒ ‖â1‖ ≤ ‖(Φ(X, 0)TC1Φ(X, 0))−1Φ(X, 0)TC1‖‖y‖

≤ max
J∈J (Φ(X,0))

‖Φ(X, 0)−1
J ‖‖y‖ = G‖y‖ <∞, (46)

where J (Φ(X, 0)) is the collection of sets of row indices associated with nonsingular M×M submatrices

of Φ(X, 0) and G = maxJ∈J (Φ(X,0)) ‖Φ(X, 0)−1
J ‖ and is finite.

Since ‖â1‖ is finite, from (42), (44), (46) and t = 2, we have ‖∇f2
b (xi)‖ ≤ G‖y‖‖β‖, C2 � 0 and

hence ‖â2‖ ≤ G‖y‖. Extending the argument in (44) and (46) to future iterations, we can claim that
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Ct � 0 and ‖ât‖ ≤ G‖y‖ ∀t. Hence, ILE is a stable estimator and the estimate is guaranteed to have a

finite norm.

ILE may however converge to different âs with different initialization. Numerically, we studied the

variance in the convergence of ILE by random initialization of a from a zero mean Gaussian distribution

with standard deviation of 100. Fig. 7 shows the standard deviation of the converged ||â|| with 1000

different random initializations for different values of p, γ and N = {100, 200}. We observe that the

standard deviation is acceptable and is within 6% of ||a|| even at high levels of noise (γ = 10, p = 100).

C. Comparison of ILE with CRB and EM algorithm

We perform simulations with the one-dimensional trigonometric basis functions as described before

to compare the performance of ILE with the CRB and the EM approximation of the ML estimator. The

CRB gives the minimum achievable variance of an unbiased estimator. On the other hand EM is a state

of the art approach to implement ML estimation for problems with missing data [31].

Since EM involves approximation of integrals through MCI (Section III-C), computational times are

high. As discussed in Section III-A, the number of computations and hence computational time may

scale up exponentially with the dimension of the signal. Here we only present comparison with a one-

dimensional signal and we further perform 250 simulations (as opposed to 1000) for each combination

of the simulation parameters for both ILE and EM. Fig. 8 shows the variation of the moving average

of the squared estimation error with the iteration number for seven randomly chosen simulation settings.

In all the cases we observe that the moving average reaches close to its final value after around 250

simulations implying that 250 iterations are sufficient to quantify the mean performance of ILE.

Fig. 9 compares the squared estimation error with ILE, BE (14) and EM (Section III-C) with the

variation in p. For all the simulations, we chose trigonometric basis functions as described in IV-A and

‖a‖ = 5.823. We further compare the squared estimation errors with the CRB (Section III-B) which

is the minimum achievable variance of any unbiased estimator. We observe that for low additive noise

(γ = 1), ILE outperforms EM while at higher noise (γ = 5), the EM algorithm gives a lower estimation

error. Interestingly, Fig. 9a shows that as p increases, EM performs worse when compared to BE. The EM

algorithm uses the marginal and conditional probabilities of the observations yis to iteratively calculate an

estimate of a. The conditional probability p(yi|zi;a(t−1)) = N (yi;φi(zi)
Ta(t−1), σ2) is a function of the

noise level (σ = (γ/100) max |f(x)|). The normally distributed conditional probability p(yi|zi;a(t−1))

gets narrower and eventually assumes a Kronecker δ function as γ → 0. This causes higher numerical

errors when conditional expectations are calculated (Section III-C). Fig. 10 shows the marginal distribution
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of yi calculated through MCI (Eqn. 24) with different values of γ for one-dimensional trigonometric basis

functions with ||a|| = 3.4528 and xi = 0. Since EM involves numerical evaluation of expectations that

involve N (yi;φi(zi)
Ta(t−1), σ2), the numerical error in the calculation of these expectations increases

with decreasing γ, worsening the performance of EM with decreasing noise. On the other hand, ILE

does not suffer from such issues making it a more suitable choice for signal estimation under low noise

levels or high SNR.

The mean computational time for EM is of the order of 103 s while for ILE is of the order of 10−2 s.

Fig. 11 shows the variation in the squared estimation error with ILE and EM for N = 50 and N = 100.

It also shows the comparison with CRB. We observe that for a lower number of samples ILE outperforms

EM with increase in p and for a higher number of samples their performance is comparable. Note that

here the unknown vector (a) is 11 dimensional, so N = 50 refers to a reasonable level of oversampling

while N = 100 implies high oversampling. Hence for low additive noise and a reasonable level of

oversampling, ILE clearly outperforms EM in both the MSE and the computational time. Even for higher

additive noise and number of samples, ILE is comparable to EM with a significant improvement in the

computational time making ILE an appealing candidate for real-time embedded applications like mobile

sensor networks for environmental monitoring.

V. CONCLUSION

In this paper we addressed the problem of estimating a parametric signal from samples with location

errors and independent additive noise. Such problems are encountered as time jitter in ADCs where

tolerating a higher jitter leads to a lower-power hardware. As interest in the use of mobile sensor platforms

for environmental monitoring increases, addressing the effect of localization errors on the estimation of

spatio-temporal fields will become increasingly important. We formulate the signal estimation problem as

of finding deterministic parameters by representing the signal in the span of a finite basis. The parameter

estimation is then formulated as finding the maximum likelihood estimator. We derive an approximation

of the likelihood function through linearizing the observation model and then employ an iterative strategy

to develop a computationally efficient iterative linear estimator. We highlight practical issues in computing

the numerical approximation of the complete likelihood function and show the suitability of Monte Carlo

integration over Gauss-Hermite quadrature for our problem. Using MCI we derive a numerical scheme

for finding the Cramér-Rao lower bound and an Expectation Maximization algorithm to implement the

maximum likelihood estimation. We present simulations to show the suitability of our proposed algorithm

in improving the estimation error at low computational cost and also present a detailed argument for
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the stability of ILE. When compared with the estimator with no information (BE), ILE gives a lower

estimation error and its performance increases with the variance of the sample location error (p) but

decreases with the number of sampling points (N ). We numerically demonstrate that the contribution of

the bias in the overall estimation error increases with p and N but decreases with the variance of the

additive Gaussian noise (γ). The mean computation time for ILE for the one-dimensional signal is of

the order of 10−2 s which increases to 1 s for the two-dimensional signal. For a one-dimensional signal,

we show that for low additive noise and a reasonable level of oversampling, ILE outperforms EM while

at higher additive noise and higher number of samples EM algorithm gives a lower estimation error. We

further show that the performance of EM worsens with decreasing additive noise due to high numerical

errors associated with computing integrals that involve narrow Gaussian distributions, while ILE does

not suffer from such issues. Further, ILE is around five orders of magnitude faster when compared to

EM making it an appealing candidate for real-time embedded applications.

In our future work, we would like to use the posterior estimate of the location errors, zi’s, through our

linearized observation model to explore further improvement of the estimation error. We would also like to

study how the algorithm presented here can be incorporated in the frameworks for adaptive path planning

of mobile sensor nodes for the application of spatio-temporal field mapping. Further, we aim to conduct

experimental studies with a set of mobile platforms equipped with a sensor (for example light sensor) to

understand the applicability and suitability of our algorithm. We hope that such computationally efficient

estimators can become and integral component of mobile WSNs, allowing real time improvement of field

estimates, improving path planning and reducing sampling at less important locations.
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Fig. 1. Comparison of the histogram of the sample yi (Hist) with numerical approximation of the pdf through Gauss Hermite

quadrature (GHQ) and Monte Carlo integration (MCI); σ = 0.053, (a) k = 1, σz = 0.01; (b) k = 5, σz = 0.01; (c)

k = 10, σz = 0.01; (d) k = 1, σz = 0.075.

July 18, 2013 DRAFT



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

EFFICIENT PARAMETRIC SIGNAL ESTIMATION FROM SAMPLES WITH LOCATION ERRORS 24

0 20 40 60 80 100

0

0.01

0.02

0.03

0.04

 p

m
e

a
n
||
â
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Fig. 2. Comparison of the mean of the squared estimation error ‖â − a‖2 with ILE, BE and KLE for trigonometric basis

functions. The error bars indicate 1/2 standard deviations. (a) Comparison of the performance with the variation in p. Solid

line corresponds to γ = 1, dashed line γ = 3, dotted line γ = 5 and for all the simulations N = 200. (b) Comparison of the

performance of ILE against BE with the variation in N . The percentage sample location error (p) is indicated on the left of

each set of plots and γ = 1.
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Fig. 3. Comparison of the mean of the squared estimation error ‖â − a‖2 with ILE, BE and KLE for polynomial basis

functions. The error bars indicate 1/2 standard deviations. (a) Comparison of the performance with the variation in p. Solid

line corresponds to γ = 1, dashed line γ = 3, dotted line γ = 5 and for all the simulations N = 100. (b) Comparison of the

performance of ILE against BE with the variation in N . The percentage sample location error (p) is indicated on the left of

each set of plots and γ = 1.
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Fig. 4. Comparison of Λ with the variation in p for (a) N = 50; (b) N = 100; (c) N = 250.
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Fig. 5. Variation of the mean of the computational time for ILE with % sample location error (p) for different % additive

noise (γ) and the number of sampling points (N ).
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Fig. 6. Comparison of the mean of the squared estimation error ‖â−a‖2 with ILE, BE and KLE for two-dimensional polynomial

basis functions. The error bars indicate 1/2 standard deviations. (a) Comparison of the performance with the variation in p.

Solid line corresponds to γ = 1, dashed line γ = 3, dotted line γ = 5 and for all the simulations N = 25. (b) Comparison of

the performance of ILE against BE with the variation in N . The percentage sample location error (p) is indicated on the left of

each set of plots and γ = 1.
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Fig. 7. Variation of the normalized standard deviation of the norm of the converged parameter estimates (std||â||/||a||) with p

for one-dimensional polynomial basis functions and for (a) N = 100 and (b) N = 200.
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Fig. 8. Variation of the moving average of the squared estimation error with the iteration number for seven randomly chosen

simulation settings with the one-dimensional polynomial basis functions.
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Fig. 9. Comparison of the mean of the squared estimation error ‖â − a‖2 with ILE, BE and EM with the variation in p.

The error bars indicate 1/2 standard deviations. The approximated CRB is presented by the black line. For all the simulations

N = 50 and (a) γ = 1; (b) γ = 5.
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Fig. 10. Marginal probability distribution of yi for one-dimensional trigonometric basis functions with ||a|| = 3.4528 and

xi = 0. (a) γ = 1, (b) γ = 0.1, (c) γ = 0.01 and (d) γ = 0.001
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Fig. 11. Comparison of the mean of the squared estimation error ‖â−a‖2 with ILE and EM with the variation in N . The error

bars indicate 1/2 standard deviations. The approximated CRB is presented by the black line. For all the simulations γ = 1.
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