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An Exponential Family of Probability Distributions 

for Directed Graphs 

PAUL W. HOLLAND and SAMUEL LEINHARDT* 

Directed graph (or digraph) data arise in many fields, 
especially in contemporary research on structures of so- 
cial relationships. We describe an exponential family of 
distributions that can be used for analyzing such data. A 
substantive rationale for the general model is presented, 
and several special cases are discussed along with some 
possible substantive interpretations. A computational al- 
gorithm based on iterative scaling procedures for use in 
fitting data is described, as are the results of a pilot sim- 
ulation study. An example using previously reported em- 
pirical data is worked out in detail. An extension to mul- 
tiple relationship data is discussed briefly. 

KEY WORDS: Random digraphs; Networks; Sociome- 
try; Generalized iterative scaling. 

1. INTRODUCTION 

A directed graph or "digraph" (Harary, Norman, and 
Cartwright 1965) is specified by a (finite) set of points, 
or nodes, which we shall index by 1, 2, . . . , g, (g = 
total number of nodes) and a set of directed lines, or 
edges, that connect certain pairs of these nodes. We as- 
sume that there are no edges that connect a node to itself 
and that there is at most one edge connecting any two 
distinct nodes in a given direction. Figure 1 illustrates a 
digraph with five nodes (g = 5) and nine directed edges. 

Directed graphs arise in many fields, but the applica- 
tions that motivate our work are studies of social net- 
works in anthropology, sociology, social psychology, and 
related disciplines (Leinhardt 1977; Holland and Lein- 
hardt 1979b). In these applications, the nodes usually 
represent people, and the directed edges represent di- 
rected relationships that can obtain between these peo- 
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ple. For example, some of the earliest quantitative re- 
search on social networks was done by Moreno (1934), 
who called his studies of the friendship patterns obtaining 
between group members "sociometric" studies. In this 
case there is a directed edge from node i to node j if 
individual i says that individual j is a friend. If we interpret 
Figure 1 as the digraph of friendship in a group of five 
people, then person 1 says that persons 2 and 5 are his 
or her friends, while person 2 says that person 3 is a 
friend, and so on. 

The sociometric studies of Moreno have been gener- 
alized in a variety of ways; we use the term sociometric 
to refer to any study of the structure of social relation- 
ships, regardless whether the nodes represent people or 
other social actors such as corporations, government 
agencies, and other institutional entities. The many dif- 
ferent kinds of scientific questions that are of interest in 
sociometric studies range from identifying patterns of 
regularities among the friendship choices in the original 
Moreno studies to relating communication patterns to the 
output of work groups. The key element of such studies 
is their focus on the pattern of relationships between the 
actors rather than on the distribution of attributes pos-
sessed by the actors. Sociometric studies have become 
quite common in the sociological, social psychological, 
anthropological, and educational literatures. Examples 
of the substantive concerns of recent sociometric studies 
include political, economic, and social elites (Moore 
1979; Laumann and Pappi 1976; Alba and Moore 1978), 
scientific elites (Breiger 1976; Friedkin 1978; Burt 1980), 
interorganizational connections (Aldritch 1977; Galas- 
kiewicz and Marsden 1978; Fennema and Schijf 1979), 
community structure (Freeman 1968; Fischer et al. 1977), 
ethnography (Wolfe 1978), acquaintance (de Sola Pool 
and Kochen 1978), job opportunities (Granovetter 1974; 
Boorman 1975), mental health (Burns 1974; Tolsdorf 
1976), family organization (Bott 1971 ;Noble 1970), racial 
integration (Schofield and Sager 1977), political processes 
(Barnes 1969), diffusion of innovations (Rogers 1979), and 
mainstreaming or the integration of educable mentally 
retarded children in normal classrooms (Ballard et al. 
1977). Leinhardt (1977) contains a selection of earlier 
studies, while Holland and Leinhardt (1979a) consists 
of reports of more recent research. The journal Social 
Networks regularly publishes research in this area. 
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2 3 In their applied substantive contexts social networks 
are complex social phenomena that exist over time and 

4 4 0
encompass actors who may be free to enter and leave the 
network at will and who do not necessarily share identical 
attributes. Social network research has exhibited the 
usual historical trend of developing procedures for ana-
lyzing more and more realistic situations. The currently 
available methods are typically based on deterministic 
models, and stochastic models are only just becoming

"\ available for many important applications. To locate our 
contribution in the context of social network analysis, we 
propose the following classification of digraph data. The 

5 
scheme reflects, in varying degrees, the types of com-

4 plications that obtain in real social network data. 

Figure 1. Digraph With Five Nodes and Nine Di- a. Single relationship data. A single relationship 0b-
rected Edges served on a set of nodes at a single point in time 

(e.g., "friendship" in a given school classroom 

With all the substantive variety that is present in con-
temporary social network research, it is surprising to 
discover that there is a paucity of statistical tools avail-
able. The aim of this paper is to begin to fill this gap by 
providing a simple, yet flexible, family of probability dis-
tributions that can be used to analyze certain types of 
digraph data. In our opinion the most important aspect 
of the model we present is that it allows for the simul-
taneous estimation of parameters that measure both the 
amount of reciprocation of directed edges between nodes 
(i.e., our parameter p) and the amount of differential 
attractiveness exhibited by each node (i.e.,our parameter 
pj) .  Furthermore, these parameters are directly compa-
rable across digraphs that differ in the number of nodes 
and directed edges they contain. 

In the discussion that follows we use the phrase " i  
relates to j" as shorthand for the more ponderous " i  
stands in the given relationship to j"; similarly, we use 
the terms relation and relationship interchangeably. 
While diagrams like Figure 1 are sometimes useful, for- -
most analytic purposes the adjacency matrix of the di-
graph is more convenient. This is the g-by-g matrix of 
indicator variables, X, defined by 

1 if i relates to j,
Xu  = 0 otherwise. 

We will always set Xii = 0 by convention. The adjacency 
matrix for Figure 1 is given in Figure 2. 

Figure 2. The Adjacency Matrix for Figure 1 

observed during one week in November). 
Time series data. There may be more than one 
point in time at which the relation on the set of 
nodes is observed (e.g., friendship in a school 
classroom observed on the first Monday of Sep-
tember, October, November, and December). 
Covariates. There may be information about nodal' 
attributes in addition to the relationship informa-
tion (e.g., in a classroom study we may also ob-
serve each student's sex, race, etc., as well as his 
or her friendships). 
Valued relationship. Some types of relationships 
exist in varying degrees or strengths rather than 
in an all-or-none fashion (e.g., children may be 
asked to rate the intensity of their friendship with 
each child in a classroom). 
Multiple relationships. There may be more than 
one type of relationship studied on the same set of 
nodes (e.g., the relationship of friendship and the 
relationship of team membership'). 

There are other complications that can arise, but the 
preceding list illustrates those that are important to the 
study of social networks (Davis and Leinhardt 1972). In 
other applied contexts, such as physics (Kinderman and 
Snell 1980) or sample surveys (Frank 1978), other com-
plications may prove to be of greater relevance. Since 
the present work derives its motivation from social net-
work research, we concern ourselves with developing an 
approach that facilitates the incorporation of the com-
plications characterized by cases (b) through (e). We 
focus here on a fundamental framework, a family of par-
ametric probability models that are appropriate for case 
(a), single relationship data. In Section 5 we briefly con-
sider an extension to the multivariate case of several 
adjacency matrices defined on the same set of nodes, 
case (e). 

There is a small amount of recent work that is related 

' We will include symmetric relations as a special case of directed 
relations. In this case Xu = Xji for all i ,  j. 
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to the approach we take here. For example, in Holland 
and Leinhardt (1977a,b) we proposed a class of stochastic 
process models that could serve as the basis for extending 
the work reported here to case (b), time series data. 
Wasserman (1 977, 1979, 1980) and Galaskiewicz and 
Wasserman (1979) developed that work further. Serensen 
and Hallinan (1976) and Hallinan (1978) reported related 
methodological and empirical research. Recently, Fien- 
berg and Wasserman (1979, 1981) also considered prob- 
ability models for social network data, using ideas that 
are closely related to ours. They studied cases (c) and 
(e), covariates and multiple relationships. Case (d), val- 
ued relations, was recently studied using analysis of var- 
iance models by Warner, Kenny, and Stoto (1979) and 
Kenny and Nasby (1980). 

Although the literature contains little on the problem 
of fitting and estimating parametric probability models 
for digraph data, there is an extensive body of work on 
the analysis of social network data. This literature falls 
roughly into three types-tests of randomness, pattern 
detection, and measures of structure. 

Examples of tests of randomness include the work of 
Katz (1951) on the distribution of the number of isolates 
in a random digraph, White's (1977) work on the random 
distribution of zero blocks in an adjacency matrix, and 
Holland and Leinhardt's (1978) work on the distribution 
of triads in a random graph. Examples of pattern detec- 
tion methods include the many clique-finding algorithms 
(Nosanchuk 1963; Alba 1973; Roistacher 1974), block- 
modeling procedures (White, Boorman, and Breiger 
1976; and Boorman and White 1976; Arabie, Boorman, 
and Levitt 1978; Light and Mullins 1979) and spatial rep- 
resentations of digraphs (Levine 1972). Measures of 
structure are exemplified by structural measures of bal- 
ance (Harary, Norman, and Cartwright 1965), connectiv- 
ity (Luce 1950; Barnes 1966; Doreian 1974) and centrality 
(Moxley and Moxley 1974; Freeman 1977,1979). Reviews 
of all three of these topics can be found in Burt (1980) 
and Leik and Meeker (1975). 

2. THE PIDISTRIBUTION 

We base our model on two empirical observations that 
have been made repeatedly in studies of social net-
works-from friendship among individuals to interlocks 
among the directors of corporations. To state these two 
observations precisely, we need to develop more nota- 
tion. Let M denote the number of pairs {i, j) for which 
Xu = Xji = 1. Then M may be computed as 

M = xijxji. (1) 
i<j  

Thus M is the number of reciprocated or symmetric or 
mutual relationships in X.2 The in-degree of node j is 

Moreno (1934) tends to use the term mutuality. Davis (1977) employs 
symmetry. In Katz and Powell (1955) and Katz, Tagiuri, and Wilson 
(1958), they are used interchangeably. We use reciprocity. 

so that X+j  is the number of nodes i for which Xg = 1. 
The in-degrees {X+j) form a set of numbers with mean, 
X,and variance, V(in), defined by 

and 

respectively. The out-degree of node i is 

xi+= 2 x,. 
j= l 

The mean of the out-degrees is also X , and their variance, 
V(out), is defined in obvious analogy to (4). 

In the earliest sociometric studies, Moreno (1934) 
found that M and V(in) usually exceeded their "chance" 
expected values. To Moreno, empirical sociometric data 
always seemed to exhibit a "surplus" of mutual rela- 
tionships, while some individual group members always 
managed to attract a "surplus" of choices (Moreno and 
Jennings 1938). Moreno posited a simple null model for 
X in which all adjacency matrices with out-degrees agree- 
ing with those in the data are equally likely. We denote 
this probability distribution by conditioning on {Xi+). The 
chance expectations of M and V(in) under this null dis- 
tribution may be shown to be 

and 

- ((g - 2)V(out)/(g - 1)2). 

The purpose of comparing M and V(in) to (6) and (7) (and 
other similar types of comparisons) is to show that the 
digraph's observed edges are not distributed randomly 
and that, in fact, they exhibit expected nonrandom be- 
havior. From intuition and substantive theoretical con- 
sideration, many social relationships can be expected to 
be reciprocated (see Newcomb 1979; Jones and Gerard 
1967; Davis 1968), and in these cases we would expect 
X to exhibit nonrandomness by having a value for M 
larger than the expected value given by (6). Other types 
of social relationships, (e.g., "power") can be expected 
to be nonreciprocated (French 1956; Friedell 1967), and 
in such cases we would expect M to be smaller than (6). 
Similarly, from intuition, it should not be surprising that 
nodes are differentially attractive and that some are in- 
volved in more relational ties than are others (Hopkins 
1964). This leads to an expectation about the distribution 
of in-degrees-in Moreno's (1934) terms there will be 
"stars" (nodes that attract many relations) and "iso- 

i 
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lates" (nodes that attract no relation^).^ This will result 
in large values of V(in) that are larger than the expected 
value given in (7). 

From these empirical observations and substantive the- 
oretical predictions, we wanted to construct a family of 
distributions for X with parameters that allow us to con- 
trol the probability of observing different values of M and 
{X,). Exponential families of distributions are natural 
cho~cesto consider for this purpose, since they explicitly 
tie sufficient statistics to parameters. To be more precise, 
let G denote the set of all g-by-g adjacency matrices so 
that X may be thought of as a random matrix taking values 
in G (see Katz and Powell 1955). Let x denote a generic 
point of G; then let p,(x) be the probability function4 on 
G given by 

where m, x+  + ,xi+ ,  and x + ~are the values of M, X+ + , 
Xi+,  and X+j  computed from x. In (8), p, 0, a i ,  and pj 
are parameters with ai and pj subject to the identifying 
constraint a+  = p + = 0. These parameters control the 
probability of observing X with specific values of M, X+j, 
and Xi+.  The function K(p, 0, {ai), {pj)) in (8) is a nor- 
malizing constant that insures that p,(x) sums to 1 over 
all x in G. Generally speaking, one can always get this 
far with an exponential family, but unless K can be com- 
puted explicitly, little more can be done. Fortunately, 
there is a simple derivation of (8) from basic assumptions 
that leads to a formula for K as well as to a deeper un- 
derstanding of the model. We shall develop (8) from this 
alternative point of view before we proceed further. 

2.1 Derivation of the pl Distribution 

We first decompose X into its (i)dyads or pairs, Dij 
= (Xij, Xji) for i <j. The distribution ofXmay be specified 
by giving the joint distribution of the pairs, DI2 ,  D13, and 
so on. To describe the joint distribution of the {Do), we 
first assume that the D, are all statistically independent. 
This independence assumption means that p l  cannot ex- 
press tendencies toward transitivity, cliquing, hierarchy, 
and so on, other than those already implied by tendencies 
toward reciprocation and differential attraction. In this 
sense, p l  is essentially a null model that is more realistic 
than models that do not express tendencies toward re- 
ciprocation and differential attraction. However, in Hol- 
land and Leinhardt (1978) we present empirical evidence 

Strictly speaking, one can only expect literal isolates when choice 
volume is small. 

We denote the probability function in (8)by pl(.x) to emphasize our 
view that it is the first or simplest family of distributions on digraphs 
that might be considered for social network data. This is because it 
expresses the two elementary social tendencies of reciprocation and 
differential attraction. 
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that the assumption of dyad independence may be sat- 
isfied in a substantial number of groups studied by social 
network analysts. Thus in addition to providing a null 
model, the p ,  family of distributions may also provide 
adequate models for representing certain types of em- 
pirical data. Finally, we point out that it appears to be 
difficult to relax the independence assumption and to re- 
tain the tractability of the model. 

Having assumed that the {D,) are independent, we 
need only specify the distribution of each D,, i < j ,  in 
order to completely specify the distribution of X. This is 
done by specifying values of mu, a,, and n, where 

and 

m u +  a - +  a , . +  n , =  forall (12)r~ J I  1, i < j .  

In (9) mu is the probability that the dyad i,  j is a mutual 
or reciprocated pair; in (10) au  is the probability that the 
dyad i ,  j is an asymmetric or nonreciprocated pair; in 
(11) no is the probability that the dyad i ,  j is a null pair: 
The probability distribution of X may be expressed in the 
following way: 

This may be reexpressed as follows to emphasize the 
exponential form of (13): 

where 

and 

and in (16) we interpret nji = no for i >j. The exponential 
or "natural" parameters, po and 0,, are equivalent to the 
original set of parameters m,, ao, and nu when these are 
subjected to the constraint specified by (12). 

The parameter, p,, is a log-odds ratio, and a little al- 
gebra reveals that it gives the log of the increase in the 
odds that Xo = 1 due to Xji = 1, that is, 

Thus po measures the "force of reciprocation" in the 
sense that if p, is positive and if Xji = 1, then we are 
more likely to also observe that X, = 1. 

The parameter, 0,, is a log-odds. Again, a little algebra 
shows that 
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Thus Oij measures the probability of an asymmetric dyad 
between i and j, given that Xji = 0. 

As it stands, the distribution in (14) is not the same as 
that given as p ,  (.) in (8). In fact, (14) is a more general 
family of distributions for X than (8) is, but it has too 
many parameters to be useful for many statistical pur- 
poses. To obtain (8) from (14), we impose restrictions on 
pij and 0,. We set 

pij = p for all i <j , (19) 

and 

Oij = 0 + a, + pj for all i # j , (20) 

where 

Assumptions (19) and (20) lead to the following formula 
for p,(x): 

where the nu are functions of the parameters p, 0, {a,), 
and {pj), given in (24) and (25). 

The restriction (19) has the interpretation that the 
"force of the reciprocation" is independent of the nodes 
involved. With this restriction, p may be interpreted as 
the average tendency toward reciprocation for all pairs 
of nodes. It is natural to consider weakening restriction 
(19) when generalizingp, (.). We will not pursue this here. 
Restriction (20) implies that the probability that Xu = 1 
given Xji = 0 (as measured by the odds in (18)) is the 
product of a factor for node i and another factor for node 
j. It is analogous to logit models in more standard statis- 
tical problems involving binary data (Cox 1970). 

It is also useful to solve for mu, aij, and nij in terms of 
the exponential parameters. This yields 

where 

Equations (24) and (25) express nij explicitly as a function 
of the exponential parameters and may be used to derive 
a formula for K ( . )in (8). 

We have already discussed one possible interpretation 
of the parameter p in p ,  (.). Possible interpretations of the 
other parameters, 0, a,,  and pj, follow. If we set p, {a,), 
and {pj) all equal to zero, then the resulting distribution 
on G is equivalent to assuming that the Xij are all inde- 
pendent and identically distributed (iid) indicator variables 
with p = P(Xij = 1) and 0 = log,(pl(l - p)). In this 

Table 1: Selected Special Cases of p, 

Parameter Values Interpretation 

= p, = O  : The uniform distribution over G in which 
all digraphs are equally likely. 

= 0 : XI, are iid,.0 = loge (pI(1 - p)). 
: D , l a r e i i d ; m , , = m , a , l = a l , = a ,  

nil = n a n d m  + 2a + n = 1. 
: XI, are iid in each row of X; 

0 + ai = loge (piI(1 - PO), 
: XI, are iid in each column of X; 

0 + PI = loge PI/(^ - pi)). 
: XI, are independent: logit of p,, 

is additive. 
: XI, = XI, and the graph is symmetric. 
: X,,X,, = 0 and the digraph is 

asymmetric. 

sense, 0 governs the density of ones in X or edges in the 
digraph. Therefore, we refer to 0 as a density param- 
eter.5 If we let 0 and {a,) be nonzero (but keep p and 
{pj) zero), then the resulting distribution on G is equiv- 
alent to assuming that the Xu are iid in each row of X 
with a common pi = P(Xij = 1). In this case, 0 + a, 
= log,(p,l(l - pi), so that a, governs differences in the 
distributions of the out-degrees of X. Hence we may call 
a, a productivity parameter since, if ai is large and pos- 
itive, node i will tend to have a relatively large out-degree 
or will appear to "produce" relational ties (see Duck 
1977). If a, is large and negative, then node i will produce 
relatively few ties and Xi+ will tend to be zero or small. 
If we allow 0 and pj to be nonzero (but keep p and a, 
zero), then the resulting distribution on G is equivalent 
to assuming that the Xij are iid in each column of X with 
common pj = P(Xij = 1). In this case, 0 + pj = log,(pjl 
(1 - pj)), so that pj governs differences in the distribu- 
tions of the in-degrees, X+j. Hence we may call pj an 
attractiveness parameter since, if pj is large and positive, 
node j will tend to have a large in-degree or will appear 
to "attract" relational ties (see Berscheid and Walster 
1977; Huston 1974). If pj is large and negative, then node 
j will attract few ties and X + j  will tend to be zero or small. 

In the preceding discussion we indicated how setting 
various exponential parameters of p l  to zero corresponds 
to easily interpreted distributions on G. We summarize 
these and other special cases of p l  in Table 1. 

2.2 Simulated Digraphs From the p, Distribution 

To provide an informal feeling for the types of digraphs 
that the p,  distribution will generate, we present in Figure 
3 four simulated adjacency matrices for four different sets 
of parameter combinations. It is easy to simulate random 
digraphs from p,(x) because the Dij = (X,., Xji) are in- 
dependent. We used the following procedure. For spec- 
ified values of p, 0, {a,), and {pj), calculate mu, aij, and 
nij from (22), (23), and (24). A pseudorandom number 

This is similar to Loomis and Proctor's (1951) notion of "gross 
expansiveness" in the affective sociometric context. The term density 
seems more context free. 
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a. Matrices 

Case 1 Case 2 

Case 3 Case 4 

b. Parameter values and summary statistics 

Case 
I 

8 
I 

P (J-1 Pi 

Figure 3. Four Examples of Digraphs Simulated From the p, Distribution 
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from the uniform distribution is then used to simulate one 
of the four events: Du = (1, l ) ,  (1,0), 0,1), or (0,O). Repeat 
this operation independently for all g(g - 1)/2 dyads, D,, 
and X is thereby simulated. 

In Figure 3 all four cases have been chosen to make 
E(* = 3.0, a commonly observed value in empirical data 
(see, e.g., Bjerstedt 1956). The parameter combinations 
are chosen to emphasize different features of the p l  
distribution. 

In case 1 all parameters except 0 are set to zero. The 
observed values of M .and V(in) for this case are near 
their expected values, given X i + ,  because p = 0 and pj 
= 0. 

In case 2 there is differential attraction, with nodes 1, 
2, and 3 being the most highly attractive, and nodes 8, 
9, and 10 the least. Here p = 0, and therefore M is near 
its null expected value. Since pj # 0 the digraph exhibits 
differential attraction, and therefore V(in) exceeds its null 
expectation by more than a factor of two. 

Case 3 has p = 2 and the same set of nonzero pj as in 
case 2. Thus both reciprocity and differential attraction 
are present. Here both M and V(in) exceed their null 
expected values by nearly factors of two. 

Case 4 is the same as case 3 except that p = -2, so 
there is a tendency away from reciprocation. Here M is 
less than half its null expected value, while V(in) exceeds 
its null expected value by more than a factor of two. 

Although these four examples do not exhaust the pos- 
sibilities, they illustrate how, by varying the values of the 
parameters of the p l  distribution, we are able to inde- 
pendently vary tendencies toward reciprocation and dif- 
ferential attraction. Any structural features that may be 
detected in these simulated digraphs are either implied 
by tendencies towards reciprocation and differential at- 
traction or are accidents of chance. Similar remarks are 
in order when structural features are observed in empir- 
ical data that fit a p l  model. 

3. ESTIMATION AND TESTING USING THE pl 
DISTRIBUTION 

In order to use p l  (x) for data analysis, we need to be 
able to estimate the parameters ofpl(x), that is, the vector 

n = (p, 0, (XI, .. . , a g , P l , .  . . , Pg) .  (26) 

Since a+  = p+ = 0, n ranges over a (2g)-dimensional 
space. We shall denote the maximum likelihood estimates 
(MLE) of these parameters by .ir or 6, 6 ,  &, and bj. 

If X is the observed adjacency matrix, then the likeli- 
hood function is 

where 

Since p l  is an exponential family, the likelihood equa- 
tions, found by differentiating (27) with respect to the 
parameters and setting the resulting system equal to zero, 
must have the form "sufficient statistics equal their ex- 
pected values." Thus the likelihood equations that are 
needed to find the MLE of n are 

Note that in (29) and (30) we have expanded the defini- 
tions of mu and aij. For i >j we set mu = mji and let mii 
= 0. We also set aii = 0 and expand nu to a full g-by-g 
matrix by setting nu = nji for i <j and nii = 0. Thus (mu), 
(a,), and (nu) are all g-by-g matrices with zero main di- 
agonals; (mu) and (nu) are also symmetric. These con- 
ventions simplify the subsequent discussion. 

The MLE of n is the solution to the system (28), (29), 
and (30). 

There are two approaches that are commonly used to 
solve such systems-one direct and one indirect. The 
direct approach, exemplified by Newton-method itera- 
tions, Fisher's method of scoring, and various weighted 
least squares iterations, sets up an iterative system of 
approximations to .ir. The indirect approach sets up an 
iterative system of approximations to mii, do, and A, 
(defined by (22), (23), (24), .with .ir substituted for n). For 
this problem, generalized iterative scaling, described and 
analyzed by Darroch and Ratcliff (1972), is the natural 
candidate for the indirect approach. 

There are two main drawbacks to the direct approach 
here. First, there are, potentially, a large number of pa- 
rameters-2g-and this will result in large matrices (2g 
by 2g) and the need for careful numerical methods in the 
iterations. Second, it is easy to have cases in which one 
or more of the fij = -- (e.g., if X + j  = 0). This situation 
causes nonconvergence in Newton-method and related 
approaches unless they have special adjustments to deal 
with it. 

The indirect approach-generalized iterative scaling- 
suffers from neither of these two drawbacks. The largest 
matrices that arise are g by g, and the computations done 
on them are simple row and column multiplications. 
When bj = - -oc, the corresponding rfi, or dij are zero, 
and iterative scaling automatically adjusts for this. We 
used a version of iterative scaling to estimate .ir and will 
describe the algorithm here. 

3.1 An Iterative Scaling Algorithm6 
We have tried several variants of iterative scaling for 

fitting the p l  distribution to data. The following algorithm 

FORTRAN code for these algorithms is available from the authors. 
The code was developed on a DEC-20 machine. Other algorithms have 
been developed since this work was initiated (e.g., Fienberg and Was- 
serman 1979). 
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was suggested to us by Y. Wang. It is quite simple and 
can be shown to converge to the MLE by using the meth- 
ods described by Darroch and Ratcliff (1972). 

Let ( m i n ) ) ,  (aij'")), and (nij'"))be the nth iterates in a 
sequence of approximations to the MLE's, (mu) ,  (Ciij), 
and (AQ).We begin with initial values (mij(')), (a+')), and 
(nij")),which satisfy (22),  (23), and (24) for some set of 
values 0(", p("), {a/'"}, {pj" ')}.  For example, if we set mij'" 
= a.'O) = nij'o) = ,25 for all i # j ,  and mii(o) = aii(")= 

rJ 

nii(') = 0 ,  then these initial values satisfy (22), (23), and 
(24),with 8'") = P = = pjn) = 0.  The iterations 
proceed in cycles of four steps, which we call the row 
step, the column step, the mutual step, and the normal- 
izing step, respectively. 

The row step: For all i # j ,  

where 

The column step: For all i # j ,  

where 

and 

The mutual step: For all i # j ,  

where 

and 

The normalizing step: For all i f j ,  

mij(n +4)  = mij(n +3)/Rij(n+3 )  
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where 

The full algorithm consists of chaining together these 
four steps into a single cycle and repeating the cycle until 
convergence. The output of the normalizing step is used 
as the initial values for the row step in the next cycle. 
Our experience with the algorithm suggests that it is a 
practical way to fit the p ,  distribution to adjacency mat- 
rices for which g is as large as 60. We have had no ex- 
perience with fitting larger matrices, but we do not expect 
that they would create problems beyond the obvious ones 
involved with storage and machine time. 

The algorithm just described fits the fullp, distribution. 
However, we are also interested in fitting submodels of 
p l  (e.g., those described in Sec. 2) to data. For example, 
the submodel ofp, for which p = 0 is important for testing 
hypotheses about p. It may be estimated by maximum 
likelihood in a number of ways. One way is to leave out 
the mutual step in the algorithm just described. We can 
then obtain the MLE's of mu,  a#,  and nu for p ,  with p 
= 0.  We have also used the following algorithm for fitting 
the p = 0 case. Let. 

and 

When p = 0 ,  the Xij  are independent And pij satisfies 

The likelihood equations for this submodel of p ,  may be 
expressed in terms of the pu.  They are 

The algorithm creates a sequence of iterates, pij'") and 
gij("),that converge to di j and Gij .  There are three steps 
to each cycle of this algorithm: a row step, a column step 
and a normalizing step. 

The row step: For all i # j ,  

The column step: For all i # j ,  

The normalizing step: For all i # j ,  

pi j (n+3)  = Pij( n + 2 ) / ~ . , ( n + 2 )
rJ (51) 

where 
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This algorithm is related to the usual iterative scaling 
algorithm used to fit the model of "no three-factor inter- 
action" to a three-way contingency table. The initial val- 
ues for this algorithm for fitting p l  with p = 0 are p$') 
= q.XO)= .50, 

Another important submodel of p l  requiring iterative 
methods for its estimation by maximum likelihood sets 
pj = 0, j = 1, . . . , g. This submodel can be estimated 
by dropping the column step from the first algorithm de- 
scribed before, and using mJ") = r~ = n&" = .25 as aJO) 
the initial values. 

Those submodels of pl(x) described in Section 2, in 
which p = 0 and either ai = 0 or pj = 0, do not need 
iterative methods for their estimation. For example, if p 
= 0 and pj = 0 but 0 and a are free to vary, then the 
MLE of pi = P(XO= 1) is 

Under this model, mu, do, and ti0 may be computed di- 
rectly from (54). 

3.2 Testing Hypotheses Within the pl Distribution 

The algorithms just described may be used to obtain 
MLE's of mu, au,  and nu for the full p l  distribution and 
for various submodels that we defined by setting certain 
parameter values to zero. These submodels correspond 
to hypotheses within the p l  distribution that have inter- 
esting substantive interpretations. We will consider these 
hypotheses 

Ho: p = 0, {pj = 0); 0, {ai) unconstrained, (55) 

H I: p = 0; 0, {ai), {pj) unconstrained, (56) 

HZ:  {pj = 0); 0, p, {ai) unconstrained, (57) 

H3: 0, p, {ai), {pj) all unconstrained. (58) 

The hypothesis H3 corresponds to the full p1 distribution 
with no constraints on the parameter values. In Ho, only 
0 and the {ai) are unconstrained. Ho corresponds to the 
assumption that each node produces directed edges at 
random and that there are no tendencies for reciprocation 
(p = O), nor is any node more attractive than any other 
(pj = 0). H1 extends Ho to allow the nodes to be differ- 
entially attractive, while H2 extends Ho to allow a ten- 
dency toward (or away from) reciprocation. 

Tests for reciprocation have previously been based on 
testing HZ against Ho. This is implicit, for example, in the 
work of Katz and Wilson (1956). This approach assumes 
that the attractiveness parameters, pj, are all zero. For 
example, the procedure of comparing M to E(M I {Xi+)) 
from (6) may be justified by the fact that the uniformly 
most powerful unbiased test of Ho against H2 may be 
shown to be based on the conditional distribution of M 
given {Xi+) under Ho (see Lehmann 1959, p. 134). As- 
suming the relevant normal approximations hold, this is 
the same as comparing M to E(M I {Xi+)) and rejecting 
Ho for HZ if this difference is large compared to the con- 

ditional standard deviation of M given {Xi+) under H,. 
See Katz and Wilson (1956) for this variance calculation. 

The problem with the procedure just outlined is that 
in many applications there is often evidence that pj f 0. 
Thus to test for reciprocation within the p l  distribution, 
it is more natural to test H I  against H3. An important use 
of the p l  distribution is to allow us to form the likelihood 
ratio test for H I  against H3. The MLE's of mu, aO, and 
n0 may be easily computed under either H I  or H3 by the 
algorithms just described. If mu, d,, and &are the MLE's 
under H3 and mu*, au*, ni,* are MLE's under H I ,  then 
the usual log-likelihood ratio (LLR) statistic for this prob- 
lem is 

LLR = -2 loge(X) = L, + L, + L, , (59) 

where X denotes the likelihood ratio and, 

L, = 2 xxuX,i log, 
i<j 

The reference distribution of LLR from (59) might be 
expected to be chi squared on one degree of freedom, but 
the standard theory does not apply in this case. The rel- 
evant "sample size" is g(g - I), which will be large in 
many applications, but there are 2g - 1 nuisance param- 
eters, 0, {ai), {pj), that are being estimated and they may 
affect the null distribution of LLR under H I .  We have 
not explored the theoretical analysis of this distribution 
problem but have performed a small pilot simulation 
study7 (1,000 replications per case) to see if the chi- 
squared distribution on one degree of freedom is plau- 
sible. Table 2 summarizes these preliminary simulation 
results. There are eight sets of parameter values used in 
the simulation; these are described in Table 2a. In cases 
A-10 and B-10, g = 10, in A-20 and B-20, g = 20, in 
A-30 and B-30, g = 30, in A-40 and B-40, g = 40. In 
the A cases all parameters except 0 are zero. In order to 
examine the effect of differential attractions on the dis- 
tribution of LLR for the B cases, p and ai were set to 
zero, but the p, are not all zero. 

Although this pilot study is too small to give definitive 
results (because of the small number of parameter sets 
studied, i.e., 8), some useful conclusions and conjectures 
can be drawn from it. First of all, there is consistent 
evidence across the eight cases for a modest bias in the 
use of the one-degree-of-freedom chi-squared distribution 
for the likelihood ratio test of H I  against H3. All of the 

'Our procedure employed a FORTRAN coded algorithm, RANGEN, 
to generate random graphs from p ,  as described in Section 2. The code 
uses the FORTRAN-20 uniform random number generator (RAN) as 
implemented on the DEC-20 computer. 
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means exceed one, with an average mean of 1.17. All of 
the eight variances exceed two, with an average variance 
of 2.87. All of the eight medians equal or exceed the chi- 
squared values of .45, with average median value .52. 
Fifteen of the sixteen obtained percentage values equal 
or exceed the corresponding chi-squared values. The av- 
erage of the obtained percentages for the nominal 5 per- 
cent chi-squared point is 7.25 percent. The average for 
the 10 percent point is 12.50 percent. All of this is con- 
sistent with the hypothesis that the correct reference dis- 
tribution for this likelihood ratio test has a slightly heavier 
upper tail than the chi-squared distribution with one de- 
gree of freedom. The degree of this bias, however, ap- 
pears to vary somewhat across the eight cases studied. 
It is never so large as to make the use of the chi-squared 
distribution seriously suspect, and it appears to become 
smaller as g increases. In Section 4 we investigate an 
empirical digraph and obtain a value for the LLR statistic 
of 30.4 for g = 18. These pilot simulation results suggest 
that this value is highly significant. 

Two important dimensions are varied in this simulation 
study-the number of nodes, g ,  and the values of the 
"nuisance" parameters pj. '  We expected that as g in-
creased, the agreement with the chi-squared distribution 
would improve. As mentioned previously, this seems to 
be true. If the means for the A-g and B-g cases are av- 
eraged, we obtain values of 1.33, 1.18, 1.15, and 1.03 as 
g varies from 10 to 40-an apparent tendency to approach 
the chi-squared values of one as g increases. A similar 
trend can be observed in the other A ,  B-g averages dis- 
played in Table 2b. To study the effect of varying values 
of the nuisance parameters, we averaged the entries in 
Table 2b separately from the A cases and the B cases. 
These values are also given in Table 2b. There is a slight 
tendency for the A cases to be more in agreement with 
the chi-squared results than are the B cases. This suggests 
that the values of the nuisance parameters do have a 
modest effect on the distribution of the likelihood ratio 
statistic. 

These results, while based on a pilot study, are reas- 
suring, and although more detailed simulation studies and 
theoretical analyses need to be carried out, we do not 
anticipate any surprises. We intend to report the results 
of a more extensive simulation study elsewhere. Our main 
conclusion from this pilot study is that the chi-squared 
distribution on one degree of freedom is adequate for 
crude evaluations of the significance levels of the likeli- 
hood ratio test of H I  against H 3 .  

Other likelihood ratio tests of hypotheses withinp, may 
be constructed: for example, a test of { p j  = 0) that does 
not also assume that p = 0 is obtained by forming the 
likelihood ratio statistic for testing H2 against H3. We 
have not explored the behavior of this test statistic to see 
if the chi-squared distribution on g - 1 degrees of free- 
dom is a reasonable approximation to its distribution 
under HZ.  More research is needed to clarify the use of 
likelihood tests in these circumstances. 
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Table 2. Summary of Pilot Simulations of the Log- 

likelihood Ratio Statistic (L LR) for Testing H, 

Versus H3 in 8 Cases of the Null Hypothesis 


(1,000 replications for each case) 


a. Parameter Values for Simulation Casesa 

Case g 0 P a P 

1.5 for l 5 j s 3  
8-10 	 10 -.go6 0 0 0 f o r 3 < j < 8  


-1.5 fo r8  5 js  10 


1.5 fo r1  s j 5 6  
8-20 	 20 -2.100 0 0 0 f o r 6 < j < 1 5  


-1.5 for 1 5 s  js  20 


b. Summary Statistics for Simulated Values of 
the Likelihood Ratio Statistic 

Case Mean Variance Median 	% 2 3.84 % 2 2.71 

Chi-squared 1 df 1 2 

A-1 0 1.26 3.06 

A-20 1.15 2.42 

A-30 1.14 2.78 

A-40 1.04 2.17 


8-10 1.39 4.65 

8-20 1.21 3.01 

8-30 1.16 2.69 

8-40 1.01 2.14 


Overall Average 1.1 7 2.87 

A-average 1.15 2.61 

8-average 1.19 3.12 


A, 8-10 average 1.33 3.86 

A, 8-20 average 1.18 2.72 

A, 8-30 average 1.1 5 2.74 

A, 8-40 average 1.03 2.16 


a Values of 0 are chosen so that the expected value of X IS three 

3.3 Testing the Fit of the pl Distribution 

We have two suggestions for ascertaining whether an 
observed adjacency matrix X is well represented by the 
pl  distribution. The first is the time-honored study of 
residuals, while the second uses approximate test statis- 
tics that we developed elsewhere (Holland and Leinhardt 
1975a,b and 1978). In the example in Section 4 we will 
illustrate how the fitted p l  distribution can be used for 
residual analysis. In the remainder of this section we 
discuss how the tests proposed in Holland and Leinhardt 
(1975 and 1978) can be used to provide goodness-of-fit 
tests of pl . 
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The natural way to test the fit of an exponential family 
of distributions is to embed it in a larger family of dis- 
tributions and perform the corresponding tests. For ex- 
ample, let p2(x) be a new probability distribution over G 
having the form 

p2(x) = exp{SZ(x) + prn + Ox++ 

(61) 

where everything in (61) is just like p ,  in (8), except that 
6 is a new parameter and Z(x) is a new sufficient statistic 
(or real-valued function of the matrix x). The p2 distri- 
bution contains the p ,  distribution as a special case, and 
thus the natural goodness-of-fit test of p l  is the test of 6 
= 0 in p2 (where all the other parameters in p2 are allowed 
to vary freely). 

The form ofp, depends on the function Z(x). The choice 
of Z(x) depends on the type of departure from p I  that the 
analyst wishes to be able to detect. There are several 
considerations in choosing Z(x). For example, any choice 
of Z(x) that can be expressed as a linear combination of 
m,  {xi+), and {x +,) will yield a family, p2, that would be 
identical to p , .  Another consideration in the choice of 
Z(x) is the tractability of the resulting p2 distribution. We 
have not succeeded in finding a function Z(x) that leads 
to a tractable pz and that uses information from x that is 
more complicated than the dyads, DU.Nonetheless, for- 
mulating goodness-of-fit tests ofp,  in terms of embedding 
p ,  in a larger family is useful because, regardless of what 

Type : ( 1  

Type : (9) 

i-i 0-0 0-0 0-0 

* 

Z(x) is, the form of the uniformly most powerful unbiased 
(UMPU) test of 6 = 0 is easy to describe. From Lehmann 
(1959, p. 134) it follows that the UMPU test of 6 = 0 
against 6 f 0 is based on the conditional distribution of 
Z(x) given M, {Xi+), and {X+,), under the uniform dis- 
tribution over G. Thus if Z(x) has an approximate normal 
conditional distribution given M, {Xi+), and {X+i), then 
the UMPU test of 6 = 0 will reject if 

is extreme, where e is the conditional mean and s is 
the conditional standard deviation of Z(x), given M, 
{Xi+), and {X,,). Thus in order to obtain a goodness- 
of-fit test of p , ,  we need to find a Z(x) that reflects the 
types of departures from p ,  that interest us and for 
which the conditional distribution of Z(x), given M, 
{Xi+), and {X+,), is adequately represented by a normal 
approximation. 

In Holland and Leinhardt (1975 and 1978) we have 
discussed tests of the form given in (62) where Z(x) is a 
function of the "triad census" of x. The triad. census of 
x is defined as follows. Each of the (:) distinct triples 
of nodes defines a triad of the original digraph. There are 
16 possible nonisomorphic triads of a digraph. These are 
displayed in Figure 4. The triad census of x is the 16 
vector whose ith entry gives the number of triples of 
nodes of x of the ith triad type. We have suggested using 
linear combinations of the counts in a triad census as 
possible choices for Z(x) because they reflect information 

i-i 0-0 a--i a-0 

T r i o d  isomorphism classes a r e  coded by three d ig i ts .  The f i rs t  d igi t  indicates t h e  number o f  

reciprocoted or mutual  poirs (M), the second the number of osymmetric pairs ( A ) ,  and the third 

t h e  number  o f  nu1 l  poirs or poirs  w i thout  t i e s  ( N ) .  T r a i l i n g  le t te rs  dist inguish among closses 

that  d i f f e r  because o f  o r i e n t a t i o n s  o f  osymmetr ic  p o i r s .  See H o l l a n d  and Le inhardt  ( 1 9 7 0 ) .  

Figure 4. The 16 Triad Isomorphism Classes for a Digraph* 
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in x that goes beyond the dyads. Furthermore, because 
linear combinations of triad counts are sums, it is rela- 
tively easy to calculate means, variances, and covari- 
ances. Finally, normal approximations are plausible 
when the triad frequencies are large. In Holland and Lein- 
hardt (1970) we considered test statistics of the form 

where T is the 16 vector of triad counts of x and w is a 
weighting vector. In earlier reports we used weighting 
vectors that yielded wrT equal to the number of intran- 
sitivities in x (i.e., i, j ,  k form an intransitivity if Xu = 1, 
Xjk = 1 but Xik = 0). We call this test statistic ~(intran) 
(Holland and Leinhardt 1971, 1972). In Holland and Lein- 
hardt (1970) (I. and Z were the conditional mean vector 
and covariance matrix of T given M and X. In Holland 
and Leinhardt (1975) we proposed a method that can 
be used to obtain approximate values for the conditional 
mean vector and covariance matrix of T given M, X, 
V(in), V(out), and the correlation of (Xi+, X+i)  or 
COR(out,in). While this method is approximate and does 
not go all the way to the full conditioning of T on M, 
{Xi+}, and {X+j}, it appears to be a useful step in the right 
direction. 

In Holland and Leinhardt (1978) we proposed the test 
statistic T2(max) defined by 

T2(max) = max T ~ ( w )  (64)
W 

where T(W) is defined in (63). This test statistic may also 
be used to tes tp l .  Instead of loading all the discriminating 
power of the test in one direction, as T(W) does (i.e., that 
defined by the weighting vector), T2(max) is able to detect 
any sufficiently large departure from pl  that may be ex- 
pressed as linear combinations of triad counts. The null 
distribution for T2(max) is chi-squared distributed if the 
conditional asymptotic normality of T holds. The degrees 
of freedom for T2(max) depend on the level of condition- 
ing. If p and Z used in (63) are the conditional moments 
of T given M, X, V(in), V(out), and COR(out,in), then the 
degrees of freedom for T2(max) are 16 - 1 - 5 = 10. 

At present, T(W) and T2(max) are the only tools we 
know of for formally testing the goodness of fit of the 
unrestricted p l  distribution to an observed adjacency 
matrix. Further research is necessary to substantiate and 
refine our suggestion to use ~ ( w )  and T2(max) in this way. 
In Section 4 we illustrate the use of T(W) and T2(max) to 
test the fit of p l  to an empirical example. 

4. AN EMPIRICAL EXAMPLE 

Figure 5 gives the adjacency matrix for friendship data 
originally gathered by Sampson (1969) in a study of the 
interpersonal ties among 18 members of a monastery. 
The matrix in ,Figure 5 is taken from White, Boorman, 
and Breiger (1976), who rearranged the rows and columns 
of X to emphasize blocks of high and low edge density. 
The out-degrees in Figure 5 are all three or four because 
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White, Boorman, and Breiger used only the top three 
friendship choices of a complete ranking in which ties 
were allowed. We have not investigated whether varying 
the number of top choices alters the conclusions of the 
analysis. 

Table 3 gives some summary information computed 
from the matrix in Figure 5. It is evident that recipro- 
cation is high-M is nearly three times its null expected 
value. The in-degree distribution does not seem to be 
markedly different from the chance prediction because 
V(in) is only 1.2 times its null expected value. The test 
statistic ~(intran) is significantly negative (-4.92), indi-
cating a tendency toward a transitive structure. Since 
there is statistical evidence for both reciprocation and 
transitivity, we would expect to see a reasonable level 
of cliquing in these data. This supports the division of 
these data into blocks found by White, Boorman, and 
Breiger. The large value of ~'(rnax), 38.37, suggests that 
pl  does not fit this set of data well. The ratio i int trans))^] 
T2(max) is .63, indicating that the tendency towards tran- 
sitivity and reciprocation accounts for most of the struc- 
ture detected by T2(max). (See Holland and Leinhardt 
1971; Davis and Leinhardt 1972; Leinhardt 1972 for dis- 
cussions of transitivity and cliquing.) 

Table 4 gives the fitted expected values of Xu under 
the p l  distribution, that is, au = mu + du, for the adja- 
cency matrix in Figure 5. 

Table 5 gives the residuals, ru = Xu - ou,  i f j. In 
Table 6 we have formed the distribution of the nonzero 
residuals from Table 5. The left-most column of Table 6 
gives the tenths digit for the residuals. These range from 
9 down to -4 since the residuals range from .94 down 
to - -47. The second column of Table 6 gives the number 
of residuals with the specified tenths digit, and the third 
column gives the corresponding percentage. The bulk of 
the residuals are negative, corresponding to the fact that 
X has more zeros than positive values. Six of the positive 
residuals are .90 or larger. Figure 6 contains coded re- 
siduals in which all those .70 or larger are coded "+ ," 
those - .70 or smaller are coded "-" (there are none in 
this example), and all those between .69 and - -69 are 
left blank. These coded residuals may be interpreted as 
"unexpected" ties (for +) and "unexpected" nonties 
(for -). They are unexpected in the sense that they are 
not what the p l  distribution would predict based on the 
observed in- and out-degrees and reciprocation. Most of 
the relational ties in this example are "unexpected" be-
cause of the clean-cut pattern of cliquing. The six most 
unexpected ties (i.e., residuals -90 or greater) are (6,7), 
(6,l I), (7,4), (1 1,12), (13,14), and (14,12). Except for 

Table 3. Some Summary Information for Adjacency 

Matrix in Figure 5 


v v 
g x (out) ( in )  M E(V(in) lXi+) E ( ~ X I + )  ~ ( i n t r a n )  ~ ~ ( m a x )  



-- - - - 

Holland and Leinhardt: An Exponential Family of Probability Distributions 

Figure 5. Adjacency Matrix From Sampson (1969) As Presented in White, Boorman, and Breiger (1976). 
Dashed Lines Indicate High and Low Tie-Density Blocks Found by White et al. Left-most Column and Upper- 
most Row Are the Indices of i and j, Respectively 

(6,11), these are all "within-block ties" from the point Table 7 gives the parameter estimates of p, a;, and pj 
of view of the blocks identified by White, Boorman, and for these data. The value of 6 = 3.10 means that the odds 
Breiger (1976), and except for (13, 14) these are all non- ratio in (17) is 22.2, indicating a 22-fold increase in the 
reciprocated ties. These support the block structure odds that X, = 1 when Xji = 1 over the value obtained 
found by White et al. when Xji = 0. 

Table 4. Fitted Expected Values of Xi i  From Figure 5 for the p, Distributiona 

pi, x 100 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 p i ,  

~ + j 0 6 4 2 4 2 2 6 4 6 2 2 5 1 2 3 2 3 5 6 = p + + 

a The decimal points have been left off the entries in the body of the table. The marginal totals have not been so altered. 
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Table 5. Residuals, ri, = Xi, - oi,, From Figure 5 and Table 4, Multiplied by 100 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

This estimate of p assumes the {ai) and the { p j )  are of nodes DU = (XU, Xji) for i # j. His table has the form 
not equal to zero. It can be contrasted with an alternative 
estimate, which assumes the {ai) and {pj) equal zero. This Total
alternative estimate derives from Davis's (1977) sugges- 
tion that one could summarize an adjacency matrix X by 
forming the 2-by-2 table of the frequencies of the pairs 2N g(g-l)-X++ 

(65) 

g(g- 1) 

where M, as before, is the number of reciprocated paris, 
A is the number of nonreciprocated pairs, and N = 

- M - A is the number of null pairs. Davis pro- 
using contingency table measures of association to obtain 
measures of particular structural effects for digraph data. 
His proposed measure of reciprocation is a monotonic 
function of the log-cross-product ratio in the 2-by-2 table 
in (65), that is, 

We have denoted this by b because, under the submodel 
of p ,  that assumes that {ai) = {pj) = 0, b is the MLE of 

Table 6. Distribution of Residuals in Table 5 

Tenths Digit Frequency Percent 
9 6 2% 
8 14 5 

Codes 

+ = rij r .70. 
0 = main diagonal 

-4 5 2Figure 6. Coded Residuals From Table 5 (Xii = 0 by 
289 lm%

convention) 

(:) 
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p. When the a;and pj differ from zero, b may be a mis- 
leading measure of reciprocation because it ignores dif- 
ferential attraction among the nodes. Indeed, in the case 
at hand b = 2.30, corresponding to an odds ratio of 10.0. 
Thus, while these two estimates of p both indicate a large 
value for this parameter, the difference between them 
illustrates the effect of simultaneously estimating p, {ai),  
and { P j )  

In Table 7 we have estimated P I  as - because this 
is the required value for p + = X+ = 0. The other f i j  
have been parameterized so that they sum to zero. In this 
example, there is a near-monotonic relationship between 
f i j  and X+j.The exception to monotonicity occurs in the 
estimate of p for node 16. Although node 16 and node 18 
both receive three choices, @I6 = - .25, while f i l s  = 0. 
Thus an estimate of the relative attractiveness of nodes 
16 and 18 assuming p = 0 would imply no difference 
between the two individuals, while an estimate assuming 
p # 0 implies that node 18 is more attractive than node 
16. In other empirical situations the divergence from 
monotonicity may be more extreme. Comparison of the 
ai with the Xi+ indicates that these are definitely not 
monotonically related. 

These results and those for i, and b illustrate the im- 
portance of p , .  Fitting p,  to data involves the simulta- 
neous estimation of p, 0, {a;),and { p j )  Earlier analyses 
have at best estimated analogs of p and { p j )  separately. 
This implicitly assumes that the nonestimated parameters 
are all zero. The differences we have observed in this 
empirical example suggest that assuming that parameter 
values equal zero may be misleading. 

The value of the log-likelihood ratio statistic for the 
test of p = 0 (i.e., H I  versus H 3  in Section 3, Eqs. 56 
and 58) is LLR = 30.41. When referred to the chi-squared 
distribution with one degree of freedom, this is statisti- 
cally significant at the usual levels, as mentioned earlier 
in the simulation study of Section 3. This supports rejec- 
tion of H I and gives inferential support to the previously 
indicated evidence of high reciprocation in these data. 

Table 8 gives the triad census for this example along 
with the approximate expected values of the triad census 
conditional on X, M, V(out), V(in), and COR(out,in). The 
value of T2(max) is 38.37. This value exceeds the .005 
cut-off level of the chi-squared distribution on 10 degrees 
of freedom. Thus, although the agreement between the 
observed and expected triad frequencies looks remark- 

Table 7, Estimates of p, 0, ai, and p, for Data in 

Figure 4 (6 = 3.14, 6 = -2.50) 


Table 8. Triad Census for Data in Figure 5 With 

Expected Values Conditional on g, )?, M, V(in), 


V(out), and COR(out, in) 


Expected Value 
Triad Typea Triad Census (0) (E) 0-E 

a See Figure 4 for this code 

ably good, the discrepancy is statistically significant. This 
demonstrates the difficulty encountered in performing 
"eyeball" analyses of surpluses and deficits of triads. 
Given the large value of intra trans)-that is, 24.21 out of 
a maximum of 38.37-most of the discrepancies between 
the observed and expected values in Table 8 are asso- 
ciated with the single degree of freedom given by intran- 
sitivity. This is especially hard to "eyeball" because it 
corresponds to a specific linear combination of the triad 
frequencies. 

5. A GENERALIZATION 

We have developed the p ,  distribution for data on a 
single relationship observed at one point in time, case 
(a) of Section 1. Although such data represent by far the 
most common kind of data studied by social network 
analysts (Davis and Leinhardt 1972), probably the next 
most common form consists of one-time observations of 
multiple relationships, case (e) of Section 1. Together 
with the increase in theoretical richness that multiple re- 
lationship data provide (see, e.g., White, Boorman, and 
Breiger 1976; and Boorman and White 1976), the fre- 
quency with which these data are collected would indi- 
cate that extending p ,  to the multiple relationship case 
is a natural next step. Because of its importance, the 
straightforwardness of its development, and the way in 
which it illustrates the utility of p , ,  we briefly discuss 
such an extension here. Of course, extensions of p ,  that 
incorporate other complications, such as those repre- 
sented by cases (b) through (d) of Section 1, are also 
important for social network analysis, but their devel- 
opment here is precluded by space limitations. 

5.1 Multiple Relationship Digraph Data 

Suppose that two different adjacency matrices are ob- 
served for the same set of nodes; denote them x and y, 
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respectively. Then x and y are both g-by-g zero-one ma- 
trices and their rows and columns are in correspondence 
(i.e., x, and y, refer to two different relationships between 
the same two nodes, i and j).There are many examples 
of multiple relationship (or multiple generator) data in 
social network research. For example, in studies of 
friendship it is common to collect information on "dis- 
like" as well as "like." In Sampson's (1969) study of the 
social relationships among members of a monastery, he 
reports data on no less than eight different types of re- 
lationships. In this section we shall be content to gen- 
eralize pl(x) to the "bivariate" case of two adjacency 
matrices, x and y, since this illustrates the essential fea- 
tures of the general case and allows us to address an 
important substantive issue, the correlation of x and y. 

Suppose, to begin, that X and Yare two random g-by- 
g adjacency matrices that are statistically independent and 
that both have p ,  distributions with possibly different 
parameter values. The joint distribution of X and Y is 
thus 

where k is the product of the two normalizing constants 
and M(x) and M(y) are the numbers of mutual or recip- 
rocated pairs in x and y, respectively.' Even this simple 
distribution illustrates an important consideration in the 
analysis of multivariate digraph data. If we set pjl = pJ2 
for j = 1, . . . , g so that the attractiveness parameters 
are the same for the two random digraphs, then, if the 
pj vary widely, the entries in X and Y will exhibit an 
apparent positive correlation. This is because a node that 
has a high pjl will have a high pj2 and will tend to attract 
relational ties of both types, X and Y. The apparent cor- 
relation between X and Y that is due to similar parameter 
values is analogous to similar statistical artifacts in other 
settings-the ecological correlation fallacy, for example. 

To introduce a "true" correlation between X and Y, 
it is convenient to proceed as we did for pl(x) by con- 
sidering the pairs (i, j). We may decompose X, Y into 

vectors 

DJ2' = (X,, Xji, Yo, Yji) (68) 

where i < j. 
In (68) DJ2) has a superscript two to remind us that it 

Producing random matrices from a bivariate p ,  distribution proceeds 
along lines similar to those described earlier for the univariate case. We 
have developed a FORTRAN routine on a DEC-20 computer that pro- 
duces pairs of random adjacency matrices from a bivariate p, distri-
bution with specified parameter values. 

(:) 
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is the two-relation analog of D, defined in Section 2. DJ2) 
can have any of 16 possible values. It may happen that 
the relationships X and Y are mutually exclusive in the 
sense that X, = 1 implies that Y, = 0 andX, = 0 implies 
that Y, = 1. For example, like and dislike will often have 
this property in classroom sociometric studies of friend- 
ship. In the case of mutually exclusive relations, DJ2) 
has zero probability of taking on certain values (such as 
(1, 1, 1, 1)). 

To generalize p l  (x) to the case of two relationships, we 
first assume that the.vectors DJ2) are all independent, as 
we did for Do in the theoretical development of pl(x). 
Then, to specify the joint distribution of X and Y, we 
need only specify the values of the 16 probabilities that 
DJ2) takes on its 16 possible values. We let 

q,(t, U,  v, W) = p(DJ2) = (t, u, v, w)) (69) 

for i < j and  t, u, v, w = 0,l .  We also set 

1 if - t 9 JI = u y = v y.. = w' J - x.. 0 , J l  
0 otherwise (70) 

for i < j and t ,  u, v, w = 0, 1, x and y E G. The I,(.) 
functions may be expressed in terms of products of x,, 
1 - xu, xji, and so on. For example, 

The joint probability distribution of (X, Y) is given by 

Equation (72) is the bivariate version of (13) in the de- 
velopment of the univariate case in Section 2. We may 
reexpress (72) in the following way that emphasizes its 
exponential form: 

In (73) the O's, p's, and +'s are the logs of products and 
ratios of the qi; s. 

Just as we simplified (14) to (21) by placing restrictions 
on pi, and O,, so too can we simplify (73) by placing 
restrictions on the O's, p's, and +'s. For example, a po- 
tentially useful model for (X, Y) that introduces true cor- 
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relation between X and Y (in 67) without going to the full 
parameterization in (73) is obtained by making the fol- 
lowing restrictions: 

The resulting bivariate distribution for (X, Y) has the fol- 
lowing exponential form: 

where M(x) = xi<jxi j~j i ,M(y) = Ei<jyijyji and R(x, y) 
= xi<jxijyji, C(x, y) = xi,jxijy,, and K in (79) is the 
normalizing constant. We denoted the distribution in (79) 
by p,(x, y) because it is a bivariate version of p ,  in the 
sense that if p12 = O I 2  = 0, then p,(x, y) = pl(x) p,(y) 
as given in (67). Thus a submodel of p l  (x, y) is the case 
of independent X and Y where each follows the p ,  dis- 
tribution. This leads naturally to tests of correlation be- 
tween X and Y that are not confounded by the artifactual 
correlation introduced by the p's that was described ear- 
lier (see Hubert and Baker 1978; and Katz and Powell 
1953). 

The substantive importance of tests of correlation be- 
tween digraphs rests on the fact that social network an- 
alysts typically assume or hypothesize that the structural 
properties of one social relationship have implications for 
the properties of another. Thus Homans (1950), for ex- 
ample, argues that affective ties and interactional ties are 
positively associated. An investigator of this proposition 
could proceed by studying the correlation of a group's 
digraph of friendship relations with its digraph of inter- 
action. Similarly, one might study the proposition that 
liking and influence are inversely related (French 1956; 
and Hopkins 1964) by studying the correlation between 
a group's digraph of friendship relations and its digraph 
of influence relations. 

6. CONCLUDING REMARKS 

We believe that the study of statistical models for di- 
graph data is an important area for future statistical re- 
search. This paper has concentrated on introducing an 
approach that is useful for applications in the study of 
social networks. With these beginnings, it is likely that 

related problems can be identified in other fields of ap- 
plication and that eventually a consistent statistical meth- 
odology for analyzing relationship data will be developed, 
one that possesses the flexibility and completeness of 
methods that currently exist for analyzing attribute data. 

[Received April 1979. Revised May 1980.1 
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