
ON ALMOST AUTOMORPHIC OSCILLATIONS

YINGFEI YI

Abstract. Almost automorphic dynamics have been given a notable amount
of attention in recent years with respect to the study of almost periodically
forced monotone systems. There are solid evidences that these types of dy-
namics should also be of fundamental importance in non-monotone especially
conservative systems due to the interaction of multi-frequencies. This article
will give a preliminary discussion in this regard by reviewing certain known
cases and raising some problems for potential future studies.

1. Introduction

Almost automorphic functions, generating the (Bohr) almost periodic ones, were
first introduced by Bochner ([12]) in 1955 in a differential geometry context, and,
with a minor modification, they were shown in [27, 94] to coincide with the Levitan
class of N -almost periodic functions ([56]). Let T be a locally compact, σ -compact,
Abelian, first countable topological group and let E be a complete metric space. A
function f ∈ C(T,E) is said to be almost automorphic if whenever {tn} is a sequence
such that f(tn + t) → g(t) ∈ C(T,E) uniformly on compact sets, then g(t− tn) →
f(t) uniformly on compact sets, as n → ∞. f becomes almost periodic if any
sequence {tn} admits a subsequence {tn′} such that f(tn′+t) converges uniformly on
T , as n→ ∞. In the literature, the above notion of almost automorphy is referred
to as sequential or continuous almost automorphy. In fact, almost automorphic
functions (and flows) can be defined in an abstract fashion on any topological group
with respect to pointwise net convergence (see [27, 94, 98] for details). A function
is sequential almost automorphic iff it is net almost automorphic and uniformly
continuous ([98]). We choose the sequential notion in this paper because of its
convenience in the applications to differential equations.

An almost periodic function is necessarily almost automorphic, but not vice
versa. One can define Fourier series for both almost periodic and almost auto-
morphic functions valued in a Banach space but the one for an almost periodic
function is unique and converges uniformly in terms of Bochner-Fejer summation,
while the one for an almost automorphic function is in general non-unique and its
Bochner-Fejer sum only converges pointwise ([98]). Although there can be many
Fourier series associated with a given almost automorphic function, one can define
the frequency module of an almost automorphic function in the usual way as the
smallest Abelian group containing a Fourier spectrum - the set of Fourier exponents
associated with a Fourier series, and, it has been shown that such a frequency mod-
ule is uniquely defined ([106]). In the above sense, both almost periodic and almost
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automorphic functions can be viewed as natural generalizations to the periodic ones
in the strongest and the weakest sense respectively.

Almost automorphic minimal flows were first introduced and studied by Veech
([97]-[100]). A flow (E, T ) is called almost automorphic (almost periodic) min-

imal if E is the closure of an almost automorphic (almost periodic) orbit. An
almost automorphic minimal flow contains residually many almost automorphic
points and becomes almost periodic only if every point in E is almost automor-
phic ([98, 100]). Typical examples of almost automorphic minimal sets include the
well known Toeplitz minimal sets in symbolic dynamics ([19, 61]), the Denjoy set
([17]) on the circle, and the Aubry-Mather sets ([5, 62]) on an annulus. Unlike
an almost periodic minimal flow, an almost automorphic one can be non-uniquely
ergodic and can admit positive topological entropy ([61]), and its general measure
theoretical characterization is completely random ([31]). Topologically, while an
almost periodic minimal set is always a compact topological group ([22]), a non-
almost periodic, almost automorphic one is only an almost 1-cover of a topological
group ([98]) and can be topologically complicated ([46]). Hence, on one hand, an
almost automorphic flow resembles an almost periodic one harmonically, but on
the other hand, it presents certain complicated dynamical, topological and mea-
sure theoretical features which are significantly different from an almost periodic
one.

Systematic studies of almost automorphic dynamics in differential equations were
made in a series of recent works of the author with Shen ([89]-[93]) with respect to
almost periodically forced monotone systems which are roughly those admitting no
internal frequencies. Consider a skew-product semi-flow πt over an almost periodic
minimal base flow. Loosely speaking, it has been shown that if πt is fiber-wise
totally monotone (e.g., skew-product flows and semi-flows generated by almost pe-
riodically forced scalar ODEs and almost periodically forced parabolic PDEs in one
space dimension, respectively), then all its minimal sets are almost automorphic
with frequency modules responding to that of the base flow harmonically, and, if it
is fiber-wise strongly monotone (e.g., skew-product flows and semi-flows generated
by cooperative almost periodic systems of ODEs and almost periodically forced
parabolic PDEs in higher space dimensions, respectively), then each linearly stable
minimal set is almost automorphic with frequency module responding to that of the
base flow sub-harmonically, and moreover, a minimal set in the fiber-wise strongly
monotone skew-product semi-flow πt over an almost periodic minimal base flow
becomes almost periodic if it is uniformly stable. It is well known that even in the
simplest almost periodically forced monotone system such as a quasi-periodically
forced scalar ODE with only two frequencies and a linear scalar ODE with limiting
periodic coefficients, almost periodic motions need not exist ([26, 46, 56, 75, 93]).
Thus, the finding of almost automorphic dynamics in [89]-[93] actually shows a fun-
damental phenomenon in almost periodically forced monotone systems, i.e., almost
automorphic solutions largely exist but almost periodic ones need not. We refer
the readers to [85, 93] for references on the study of almost automorphic dynamics
in almost periodically forced differential systems and to [3, 41, 42, 74, 76, 86, 88]
for recent developments in the subject.

Comparing with periodically forced monotone systems in which periodic solu-
tions are generically expected, the existence of almost automorphic solutions in
almost periodically forced monotone systems reflects a general harmonic nature of
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the systems due to the interactions of several frequencies especially when they are
close to the resonance. It is therefore well expected that almost automorphic dy-
namics should also largely exist in almost periodically forced non-monotone systems
(i.e., systems with self-excitations or containing internal frequencies) and even in
autonomous conservative systems. Some examples of periodically forced nonlinear
oscillators and Hamiltonian systems have already supported this assertion but no
systematic investigation is made to the existence of almost automorphic dynamics
in general almost periodically forced non-monotone systems yet. In this article,
we will review some known cases of the existence of almost automorphic dynamics
in non-monotone systems and formulate some general open problems as potential
starting points in the subject. We are also attempting to link the study of almost
automorphic oscillations with other active areas in dynamical systems such as the
almost periodic Floquet theory, Aubry-Mather theory, chaos, Hamiltonian systems,
non-chaotic strange attractors, nonlinear oscillations, and toral flows. Problems
arising in multi-frequency, non-monotone systems are far more complicated and
challenging than those in monotone systems. At this stage, we have more questions
than answers. Therefore, instead of an expository article as it was supposed to
be, the present article is rather a research note, aiming at making some prelimi-
nary discussions in this interesting subject, which is by no means complete or well
thought out.

Throughout the paper, we let (Y,R) be an almost periodic minimal flow and
denote y · t as the orbit of the flow passing through a point y ∈ Y . We will mainly
consider ODEs with almost periodic forcing of the form f(x, y · t), where x ∈ Rn is
a state variable (the global existence of solutions of the ODEs is always assumed).
This is without loss of generality. Suppose that an ODE

(1.1) x′ = F (x, t), x ∈ Rn,

is considered with F being uniformly Lipschitz in x and almost periodic in t
uniformly with respect to x. Let Y = H(F ) = cl{Fτ |τ ∈ R} be the hull of
y0 = F under the compact open topology (hence Y is compact metric), where
Fτ (x, t) ≡ F (x, t + τ). Define f : Rn × Y → Rn: f(x, y) = y(x, 0), y ∈ Y . Then
the time translation y · t = yt defines a natural almost periodic minimal flow (Y,R)
and F (x, t) ≡ f(x, y0 · t). Thus instead of studying the single equation (1.1), we
will consider a family of equations

(1.2) x′ = f(x, y · t), x ∈ Rn,

which consist of the translated and limiting equations of (1.1). To study the dy-
namical behaviors of solutions of (1.1), we note that the equations (1.2) give rise
to a skew-product flow (Rn × Y, πt):

πt(x, y) = (X(x, y, t), y · t),

where X(x, y, t) denotes the solution of (1.2) with the initial value x. Such a
formulation was originated in [67, 84] in studying dynamics of non-autonomous
differential equations (see also [48, 105]). We note that if F is quasi-periodic in
t with k frequencies, then Y ' T k and (Y,R) is topologically conjugated to the
standard quasi-periodic flow on the k-torus.

Part of the material in this article has been lectured at the 7th International
Conference on Difference Equations and Applications (ICDEA), Changsha, China,
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2002, the International Conference on Dynamical Methods for Differential Equa-
tions, Medina, Spain, 2002, and the International Workshop on Global Analysis
of Dynamical Systems, Leiden, The Netherlands, 2001. The author would like to
thank the organizers of these conferences for opportunities to present part of the
results contained in this article, in particular the organizers for the 7th ICDEA for
their invitation to write this article.

2. Almost automorphic functions and flows

In this section, unless specified otherwise, we let T be a locally compact, σ-
compact, Abelian, first countable group, and E be a complete metric space.

2.1. Harmonic properties. Fourier theory was first developed in [98] for complex
valued almost automorphic functions. Parallel Fourier theory can be also found in
[56] for N -almost periodic functions.

Theorem 2.1. Let f be an almost automorphic function on T valued in a Banach

space. Then f admits Fourier series (not necessarily unique) whose Bochner-Fejer

sums converge to f pointwise (in fact, uniformly on compact sets).

The theorem was first proved in [98] for complex valued functions and was gen-
eralized in [106] for almost automorphic functions on R valued in a Banach space.
The same proof can be carried over for general T .

Let f be an almost automorphic function on T . Then the topological hull H(f)
is almost automorphic minimal under the ‘time’ translation flow which is an almost
1-cover of its maximal almost periodic factor (Y, T ) (see Theorem 2.3 below). The
almost periodic factor is unique up to flow isomorphism and admits a natural
compact Abelian topological group structure inherited from the flow ([22]), e.g.,
when T = R, Y is a solenoidal group ([2]). Hence the dual group Y ′ is discrete.
We define the frequency module M(f) of f as the subgroup of Y ′ generated by the
Fourier spectrum associated with a Fourier series of f . This is well defined because
of the following theorem which was originally shown in [106] for T = R but also
holds in general.

Theorem 2.2. With respect to any Fourier series of f , M(f) ' Y ′.

The following module containment result can be shown similarly as in [106] for
functions defined on R.

Proposition 2.1. For two almost automorphic functions f, g ∈ C(T,E), M(g) ⊂
M(f) iff whenever f(t+ tn) → f(t) for some sequence {tn} ⊂ T then g(t+ tn) →
g(t), uniformly on compact sets.

2.2. Structural properties. The following result shown in [98] is known as the
Veech almost automorphic structure theorem.

Theorem 2.3. A compact minimal flow (E, T ) is almost automorphic iff it is an

almost 1-1 extension of its maximal almost periodic factor (Y, T ), i.e., there is a

residual subset Y0 ⊂ Y such that each fiber over Y0 is a singleton.
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Let (E, T ), (Y, T ) be as in the above. It is shown in [100] that as long as there
is a y0 ∈ Y corresponding to a singleton fiber, then there are residually many of
them. The set of points in E lying in the singleton fibers consists of precisely
the almost automorphic points, and, E becomes almost periodic iff all points in E
are almost automorphic. Again, as (Y, T ) is almost periodic minimal, Y admits a
compact Abelian group structure inherited from the flow whose dual group Y ′ is
discrete. We thus define the frequency module M(E) of E as the dual group Y ′.
This definition is in consistent with that for an almost automorphic function which
we introduced above.

Theorem 2.4. 1) A function f ∈ C(T,E) is almost automorphic iff it is a

pointwise limit of a sequence of jointly almost automorphic, almost periodic

functions.

2) f ∈ C(T,E) is almost automorphic iff there exists a dense subgroup G
of a compact group G∗, a continuous homomorphism φ : T → G, and a

function g : G∗ → E which is continuous on G such that f = g ◦ φ is

uniformly continuous.

3) If φ : T → D, where D is complete metric, is almost automorphic, g : D →
E is continuous on R(φ), then f = g ◦ φ ∈ C(T,E) is almost automorphic

if it is uniformly continuous.

Part 1) of the theorem was shown in [98] for complex valued (sequential) almost
automorphic functions. Part 2) of the theorem was stated and shown in [96] for
complex valued function f as follows: f is (net) almost automorphic iff there is a
continuous homomorphism φ : T → G, where G is a totally bounded group, and a
complex valued function g which is continuous on G such that f = g ◦ φ. Part 3)
of the theorem was stated and shown in [99] for complex valued functions f, g as
follows: if φ : T → C is (net) almost automorphic and g : R(φ) → C is continuous,
then f = g ◦ φ is (net) almost automorphic. With proper modifications as the
above, all these results can be extended to the ones stated in the theorem by using
similar arguments as originally used in [96, 98, 99].

Parts 2) 3) of the above theorem is particularly useful in constructing non-quasi-
periodic, almost automorphic functions with finite many frequencies. Let ω =
(ω1, ω2, · · · , ωk)
∈ Rk be a given non-resonant vector and f : T k → Rn be a measurable func-
tion which is continuous on an orbit {θ0 + ωt : t ∈ T} of the quasi-periodic flow on
T k with the frequency ω, here T = R or Z. As {ωt : t ∈ R} is embedded into T k

as a dense subgroup (or the map R → T k : t 7→ θ0 + ωt is almost periodic hence
almost automorphic), an immediate application of part 2) or 3) of Theorem 2.4 and
Proposition 2.1 yields the following.

Corollary 2.1. Let f, ω, θ0 be as in the above. Then F (t) = f(θ0 + ωt), t ∈ R or

Z, is almost automorphic whose frequency module M(F ) is contained in M(ω) -

the additive subgroup of R generated by ω1, ω2, · · · , ωk.

Remark 2.1. For each θ ∈ T k, the function f(θ + ωt), where t ∈ R or Z, may be

regarded as a weak quasi-periodic function. Weak quasi-periodic orbits are known

to existence in monotone twist maps on an annulus as orbits lying in the Aubry-

Mather sets ([62]) and in scalar ODEs with quasi-periodic time dependence ([76]).
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The existence of such orbits in these dynamical systems were shown under certain

monotonicity and properties that f : T k → R1 is semi-continuous and admits

bounded directional derivative along ω. Indeed, the semi-continuity implies that f
admits a residual set Y0 of points of continuity, and the directional differentiability

together with the continuous dependence on initial conditions imply the continuity

of f on each orbit {θ0 + ωt} if θ0 ∈ Y0. It is clear that a weak quasi-periodic orbit

f(θ + ωt) becomes almost automorphic precisely when θ is a point of continuity of

f , and becomes quasi-periodic only if f itself is a continuous function on the torus.

It is important to note that the family of weak quasi-periodic orbits such de-

fined always contains almost automorphic ones. This is because of the harmonic

similarity between almost automorphic functions with finite many frequencies and

quasi-periodic ones. Indeed, if θ is not a point of continuity of f , then the function

f(θ+ωt) needs not even be recurrent and needs not admit any Fourier series whose

Bochner-Fejer sum is pointwise convergent, due to the lack of continuity of f on

the set {θ + ωt}.

2.3. Inherit properties. Similar to almost periodic minimal flows ([22]), it was
shown in [9] that an almost automorphic minimal flow (X,T ) also admits an inher-
itance property as follows.

Theorem 2.5. Let S be a syndetic subgroup of T . Then (X,T ) is almost auto-

morphic minimal with maximal almost periodic factor (Y, T ) iff (X,S) is almost

automorphic minimal with maximal almost periodic factor (Y, S).

The above inherit property can be easily extended to a Poincaré map associated
with a real compact flow (X,R). Recall that a closed subset Z ⊂ X is a global cross

section of (X,R) if i) all orbits meet Z; ii) there is a positive continuous function
T : Z → R, called first return time, such that z · T (z) ∈ Z and z · t 6∈ Z for all
z ∈ Z and 0 < t < T (z). In case a global cross section Z exists, one can define the
Poincaré map P : Z → Z : z 7→ z · T (z), which is a homeomorphism on Z. The
following can be shown similarly to a special case considered in [9].

Proposition 2.2. Suppose that (X,R) admits a global cross section Z and let

P : Z → Z be the associated Poincaré map. Then (X,R) is almost automorphic

minimal iff (Z, P ) is.

Let P : S1 → S1 be an orientation preserving homeomorphism with irrational
rotation number. Then P has a unique minimal set E which is either topologically
conjugated to a pure rotation ([17]) or is an almost 1-1 extension of a pure rotation
on S1 ([60]), both with zero topological entropy. In any case, E is (discrete) almost
automorphic.

Now consider a C1 fixed-point-free flow πt on the 2-torus T 2. Then πt admits a
Poincaré section and its rotation vector

ω = lim
t→∞

π̃t(y)

t

exists and is independent of y ∈ T 2, where π̃t : R2 → R2 denotes a continuous
lift of πt. We assume further that ω is non-resonant, or equivalently, πt admits no
periodic orbits. An easy application of the Denjoy theory implies that πt admits
a unique minimal set E which is topologically equivalent to a suspension of either
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a pure rotation or a Denjoy Cantor set on the circle (hence E is uniquely ergodic
with zero topological entropy). Applying Proposition 2.2, we further conclude that
E is actually almost automorphic.

Similarly, let f be an area preserving, orientation preserving, boundary compo-
nents preserving, twist homeomorphism of an annulus A. Let ρ0 < ρ1 denote the
rotation numbers of f restricted to the lower and upper boundaries of A, respec-
tively. Then it has been shown in [62] that for any ρ ∈ [ρ0, ρ1] irrational, f admits
a minimal set Mρ which is topologically conjugated to either a pure rotation of
the circle or a Denjoy set of the circle, with the rotation number ρ. Hence, Mρ

is an almost automorphic minimal set. In fact, Fourier series and their pointwise
convergence for the almost automorphic orbits (referred to as quasi-periodic orbits
by Mather) in Mρ were also discussed in [62] which fit in the harmonic nature of
general almost automorphic functions described in Theorem 2.1.

To summarize, we have the following.

Theorem 2.6. A Denjoy minimal set of a circle homeomorphism, a Denjoy mini-

mal set of a toral flow, and Aubry-Mather sets of an area preserving monotone twist

map on an annulus are all almost automorphic minimal sets with zero topological

entropy.

3. Almost periodically forced circle flows

Consider an almost periodically forced circle flow generated by the following
almost periodically forced scalar ODE:

(3.1) φ′ = f(φ, y · t),
where φ ∈ R1, f : R1×Y → R1 is Lipschitz continuous, periodic in the first variable
with period 1. Using the identification φ ≡ φ′ (mod 1), (3.1) clearly generates a
skew-product flow Λt : S1 × Y → S1 × Y :

(3.2) Λt(φ0, y0) = (φ(φ0, y0, t), y0 · t)

when both φ(φ0, y0, t) and φ0 are identified modulo 1, where φ(t) = φ(φ0, y0, t) is
the solution of (3.1) with y = y0, φ(0) = φ0.

3.1. Rotation number and mean motion. Using arguments of [49] and the
Birkhoff ergodic theorem, it is easily seen that the equation (3.1), or equivalently,
the skew-product flow (3.2) admits a well defined rotation number

ρ = lim
t→∞

φ(φ0, y0, t)

t

i.e., the limit exists and is independent of initial values (φ0, y0) ∈ R1 × Y .
We say that the equation (3.1), or equivalently, the skew-product flow (3.2)

admits mean motion if

sup
t∈R1

|φ(φ0, y0, t) − φ0 − ρt| <∞

for all (φ0, y0) ∈ R1 × Y .
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Remark 3.1. 1) It is well known that if either (3.1) is periodically dependent

on time ([38]), i.e., (Y,R) = (S1, R) is a pure rotation of the circle, or almost

periodically dependent on time but admits an almost periodic solution ([25]), then

it always admits mean motion. This is however not the case for general almost

periodic time dependence. As an extreme example, let Y = T k, f ≡ f(ωt) be quasi-

periodic in (3.1), where ω ∈ Rk is a non-resonant frequency vector. Then ρ = [f ] -

the mean value of f , and, it is well known that φ(φ0, t)−φ0−ρt =
∫ t

0
(f(ωs)− [f ])ds

can be unbounded if k > 1 unless some additional conditions are assumed on f and

ω (e.g., f is sufficiently smooth and ω is Diophantine).
2) A natural question here is that under what conditions (3.1) can admit mean

motion. Another question is that whether the mean motion property is generic,

e.g., among the class of real analytic functions f : S1 × T k → R1 endowed with

sup-norm, with (Y,R) = (T k, R) being a fixed Diophantine, quasi-periodic flow.

We do not have answers to these questions but conjecture that the answer to the
second question should be affirmative. Below, we give some equivalent conditions
for mean motion to hold in (3.1).

Proposition 3.1. The equation (3.1) admits mean motion iff there is a (φ0, y0) ∈
R1 × Y such that

|φ(φ0, y0, t) − φ0 − ρt|
is bounded for either t ≥ 0 or t ≤ 0.

Proof. We note that, by the periodicity of f in φ, for any t ∈ R1, y ∈ Y , if
|φ∗1 − φ∗2| < l for some positive integer l, then also

(3.3) |φ(φ∗1, y, t) − φ(φ∗2, y, t)| < l.

Without loss of generality, assume that (φ0, y0) ∈ R1 × Y is such that

sup
t≥0

|φ(φ0, y0, t) − φ0 − ρt| <∞.

Then it follows from the flow property that

sup
t∈R1

|φ(φ∗, y∗, t) − φ∗ − ρt| <∞

for any (φ∗, y∗) ∈ ω(φ0, y0) with respect to the flow (3.2). Hence (3.1) admits mean
motion by (3.3). �

Lemma 3.1. Consider (3.1). Then

|
∫

Y

φ(φ0, y, t)dy − φ0 − ρt| ≤ 4

for any φ0 ∈ R1.

Proof. Again, by the periodicity of f in φ, for any t ∈ R1, y ∈ Y , if φ∗1 ≡ φ∗2
(mod 1), then

(3.4) φ(φ∗1, y, t) − φ∗1 = φ(φ∗2, y, t) − φ∗2,

and, if |φ∗1 − φ∗2| < l for some positive integer l, then (3.3) holds.
Now, fix t, φ0 ∈ R1. For any y ∈ Y , 0 ≤ |s| ≤ |t|, let 0 ≤ φ1, φ2 < 1 be such that

φ1 ≡ φ0, φ2 ≡ φ(φ0, y, s), (mod 1).
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It follows from (3.4) that

φ(φ0, y · s, t) − φ0 = φ(φ1, y · s, t) − φ1,(3.5)

φ(φ0, y, t+ s) − φ(φ0, y, s) = φ(φ2, y · s, t) − φ2.(3.6)

Hence, by (3.3)-(3.6),

|φ(φ0, y, t+ s) − φ(φ0, y, s) − φ(φ0, y · s, t) + φ0|
= |φ(φ2, y · s, t) − φ(φ1, y · s, t) + φ2 − φ1|
≤ |φ(φ2, y · s, t) − φ(φ1, y · s, t)| + |φ2 − φ1| ≤ 4,

i.e.,

(3.7) |
∫ t+s

s

φ′(φ0, y, λ)dλ− φ(φ0, y · s, t) + φ0| ≤ 4.

Let T 6= 0. An application of Frobine’s theorem yields

|φ0 −
∫ t

0

1

T
φ(φ0, y, λ)dλ+

∫ t

0

φ(φ0, y, T + s)

T
ds− 1

T

∫ t

0

φ(φ0, y · s, t)ds|

= | 1
T

∫ T

0

∫ t+s

s

φ′(φ0, y, λ)dλds−
1

T

∫ T

0

φ(φ0, y · s, t)ds+ φ0| ≤ 4.(3.8)

Since

lim
T→∞

φ(φ0, y, T + s)

T
= ρ

uniformly in y ∈ Y , s ∈ [0, t], and, by the Birkhoff ergodic theorem,

lim
T→∞

1

T

∫ T

0

φ(φ0, y · s, t)ds =

∫

Y

φ(φ0, y, t)dy,

the lemma is proved by passing limit T → ∞ in (3.8). �

Theorem 3.1. (3.1) admits mean motion iff there is a (φ0, y0) ∈ R1 ×Y such that

|φ(φ0, y0, t) −
∫

Y

φ(φ0, y, t)dy|

is bounded for t ≥ 0 or t ≤ 0.

Proof. This follows immediately from Proposition 3.1 and Lemma 3.1. �

3.2. Mean motion and almost automorphic dynamics. One significance for
having mean motion is that it actually implies the existence of almost automorphic
dynamics in the skew-product flow (3.2).

First, we consider the following almost periodically forced scalar ODE

(3.9) x′ = f(x, y · t),
where x ∈ R1, f : R1×Y → R1 is Lipschitz continuous. Let πt : R1×Y → R1×Y :

(3.10) πt(x0, y0) = (x(x0, y0, t), y0 · t)
be the skew-product flow generated by (3.9), where x(t) = x(x0, y0, t) denotes
the solution of (3.9) with y = y0 and x(0) = x0. As (3.9) forms a special class of
almost periodically forced, 1-dimensional, scalar parabolic PDEs with the Neumann
boundary condition, the following lemma follows from the corresponding result in
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[91, 93]. As the proofs for the scalar ODE case is much less involved than the
parabolic PDE case, we include them here for the readers’ convenience.

Lemma 3.2. Let E be a minimal set of (3.10). Then the following holds.

1) (E,R) is almost automorphic and in fact an almost 1-1 extension of (Y,R);
2) E is uniquely ergodic iff Y0 admits full Haar measure, where Y0 ⊂ Y is the

residual set corresponding to the singelton fibers.

3) Let x(x0, y0, t) be an almost automorphic solution of (3.9) for some y0 ∈ Y .

Then M(x) ⊂ M(f).

Proof. Let p : R1 × Y → Y be the natural projection and define

aM (y) = max{x : (x, y) ∈ E ∩ p−1(y)}, am(y) = min{x : (x, y) ∈ E ∩ p−1(y)}.
1) Let 2E be furnished with Hausdorff metric. Since the map h : Y → 2E:

y 7→ E ∩ p−1(y) is upper semi-continuous, the points of continuity of h form a
residual subset Y0 ⊂ Y . Fix a y ∈ Y0 and let tn → ∞ be such that πtn

(aM (y), y) →
(am(y), y). By the continuity of h at y, there is a sequence of points (xn, y) ∈
E ∩ p−1(y) such that πtn

(xn, y) → (aM (y), y). Now, by taking limits to both side
of the inequalities

x(xn, y, tn) ≤ x(aM (y), y, tn),

we obtain that aM (y) ≤ am(y). Hence aM (y) = am(y) and E∩p−1(y) is a singleton.
2) Let µ denote the Haar measure on Y . If µ(Y0) = 1, then E is clearly uniquely

ergodic. Now suppose that µ(Y0) = 0 (note that Y0 is invariant). Then the func-
tionals lM,m : C(E) → R,

lM,m(f) =

∫

Y

f(aM,m(y), y)dµ

would define two distinct invariant measures on E.
3) follows immediately from 1) and Proposition 2.1. �

Remark 3.2. 1) If (3.9) is periodically dependent on time, then each minimal set

of its associated skew-product flow becomes periodic (hence is uniquely ergodic and

admits zero topological entropy). We conjecture that in the almost periodic time

dependent case, the skew-product flow associated with (3.9) can have almost auto-

morphic minimal sets which are non-uniquely ergodic and admit positive topological

entropy.

2) Assume that (3.9) is quasi-periodically dependent on time, i.e., (Y,R) =
(T k, R) : y · t = y + ωt is a quasi-periodic flow on the k-torus for some k with

the toral frequency ω ∈ Rk. It was shown in [76] that if (3.9) admits a bounded

solution x(t) for some y = y0, then it has two families of weak quasi-periodic so-

lutions x−(y + ωt), x+(y + ωt), y ∈ T k, in the sense of Remark 2.1, such that

x−, x+ : T k → R1 are lower and upper semi-continuous respectively, and,

inf x(t) ≤ x−(y) ≤ x+(y) ≤ supx(t), y ∈ T k,(3.11)

x−(y0 + ωt) ≤ φ(t) ≤ x+(y0 + ωt), t ∈ R.(3.12)

Moreover, if y0 ∈ T k is a point of continuity for x− (x+ resp.), then x−(y0 + ωt)
(x+(y0 + ωt) resp.) becomes almost automorphic.
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Theorem 3.2. Assume that (3.1) admits mean motion and let E ⊂ S1 × Y be a

minimal set of the skew-product flow (3.2). Then the following holds.

1) E is almost automorphic with M(E) being the additive subgroup of R gen-

erated by ρ and M(Y ).
2) E is uniquely ergodic iff its set of almost automorphic points admits full

measure with respect to an invariant measure on E.

Proof. 1) Consider the change of variable x = φ−ρt. This transforms the equation
(3.1) into

(3.13) x′ = f(x+ ρt, y · t) − ρ

which generates a skew-product flow πt on R1 × Y or R1 × (S1 × Y ), in the same
way as (3.10), depending on whether ρ ∈ M(Y ).

Since (3.1) admits mean motion,
∫ t

0

(f(Λt(φ0, y0)) − ρ)dt

is bounded for all (φ0, y0) ∈ E. It follows from [33] that there is a continuous
function H : E → R1 such that

φ(φ0, y0, t) − φ0 − ρt = H(Λt(φ0, y0)) −H(φ0, y0) =

∫ t

0

(f(Λt(φ0, y0)) − ρ)dt,

i.e.,

(3.14) φ(φ0, y0, t) −H(Λt(φ0, y0)) = φ0 −H(φ0, y0) + ρt

for all t ∈ R1 and all (φ0, y0) ∈ E. We note that either H(E)×Y orH(E)×(S1×Y )
is a minimal set of πt, which by Lemma 3.2 is almost automorphic. It follows
from (3.14) and the definition of almost automorphic minimal set that E is almost
automorphic.

Let M be the additive subgroup of R generated by ρ and M(Y ). If (φ0, y0) ∈ E is
an almost automorphic point, then x(t) = H(Λt(φ0, y0)) is an almost automorphic
solution of (3.13) for y = y0. It follows from Lemma 3.2 that M(x) ⊂ M. Since
Λt(φ0, y0) = (x(t)+ ρt+φ0 −x(0), y0 · t), we have by Proposition 2.1 that M(E) =
M(Λt(φ0, y0)) = M.

2) follows from 1) and Lemma 3.2 2). �

We now consider a special case of (3.1) in which Y = T k and (Y,R) is a quasi-
periodic minimal flow with non-resonant toral frequency ω = (ω1, ω2, · · · , ωk). In
this case, more can be said about the structure of a minimal set of (3.2).

Corollary 3.1. Consider (3.1) with (Y,R) = (T k, R) being the quasi-periodic

minimal flow on T k with the frequency ω. Assume that (3.1) admits mean motion

and let E be a minimal set of (3.2). Then there is an almost periodic minimal flow

(X,R), a quasi-periodic minimal flow (Ŷ , R), and flow epimorphisms p : (E,R) →
(X,R), q : (X,R) → (Ŷ , R) for which the following holds.

1) p is almost 1-1 and q is open.

2) M(E) = M(X) = M(Ŷ ) and equals

{n0ρ+ n1ω1 + · · · + nkωk : n0, n1, · · · , nk ∈ Z}.
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3) If ρ is rationally independent of ω, then X is a (k + 1)-solenoid and Ŷ is

a (k + 1)-torus. If ρ is rationally dependent of ω, then X is a k-solenoid

and Ŷ is a k-torus. In fact, if n0 is the smallest positive number such that

n0ρ+n1ω1 + · · ·+nkωk = 0, for some relatively prime numbers n1, · · · , nk,

then Ŷ is an n0-fold cover of Y = T k.

Proof. 1) Let X be a maximal almost periodic factor of E. The existence of p :
(E,R) → (X,R) follows from Theorem 2.3. In fact, consider the proximal relation

P (E) = {(e1, e2) ∈ E ×E : inf
t∈R1

d(Λt(e1),Λt(e2)) = 0},

where d denotes the standard metric on S1×Y . Then P (E) is a closed (in particular,
an equivalence), equivariance relation, and, X can be chosen to be E/P (E) with
flow being induced by Λt.

Define q : X → S1 × Y ,

q(p(φ0, y0)) = (φ0 −H(φ0, y0), y0) (mod 1), (φ0, y0) ∈ E.

We need to verify that q is well defined. Let (e1, e2) ∈ P (E). Then it is clear that
there is a sequence tn → ∞ and φ1, φ2 ∈ S1, y0 ∈ Y such that e1 = (φ1, y0), e2 =
(φ2, y0), and, d(Λtn

(e1),Λtn
(e2)) → 0. It follows from (3.14) that φ1 −H(φ1, y0) =

φ2 −H(φ2, y0) (mod 1).

Define Ŷ = q(X) and the flow on (Ŷ , R) by

(q ◦ p(φ0, y0)) · t = (φ(φ0, y0, t) −H(Λt(φ0, y0), y0 · t) (mod 1), (φ0, y0) ∈ E.

It follows from (3.14) that (Ŷ , R) is a parallel flow with the frequency vector

(ρ, ω), which further shows that Ŷ is either a k + 1 or a k-torus and (Ŷ , R) is
quasi-periodic.

As an epimorphism between two almost periodic flows, q is clearly an open map.
2) By definition, M(E) = M(X). Since (Ŷ , R) is quasi-periodic with the fre-

quency (ρ, ω), we have

M(Ŷ ) = M ≡ {n0ρ+ n1ω1 + · · · + nkωk : n0, n1, · · · , nk ∈ Z}.
But by Theorem 3.2 1), M(E) = M. We thus have M(E) = M(X) = M(Ŷ ) = M.

3) follows from 2) and the fact that

dimX = rankX ′ = rankM(X) = rankM = dimY.

�

Remark 3.3. 1) Consider (3.1) with periodic time dependence, i.e., (Y,R) =
(S1, R) is a pure rotation of the circle. Then the conclusions of both Theorem 3.2
and Corollary 3.1 hold without any condition, because the existence of mean motion

for (3.1) is automatic in the case of periodic time dependence (Remark 3.1 1)). In

fact, since the Poincaré map in this case is a circle diffeomorphism, this fact also

follows from the classical Denjoy theory and Theorem 2.6. As each Denjoy minimal

set admits zero topological entropy, so does each almost automorphic minimal set

of (3.10) in the periodic time dependent case.

2) We note that the flow Λt can well have almost automorphic dynamics without

admitting mean motion. An example was given in [47] in which an equation of

type (3.1) with limit periodic time dependence was constructed so that the respective

skew-product flow admits an almost automorphic minimal set as an almost 1-1



ON ALMOST AUTOMORPHIC OSCILLATIONS 13

extension of the base flow but the corresponding rotation number is not contained

in the frequency module of the base (compare to Theorem 3.2 1)). However, this

should be a non-generic case as we conjectured earlier.

3) In the case of Corollary 3.1, the skew-product flow Λt is a toral flow on T k+1

whose rotation set is however a single point (ρ, ω). Toral flows and maps have been

extensively studied in cases that rotation sets have non-empty interiors in which

having positive topological entropy was shown to be typical (see [28, 55, 59] and

references therein) but little has been known for cases of ‘thin’ or singleton rotation

sets, except for certain cases of nearly quasi-periodic, ‘twist’ toral flows in which the

existence of quasi-periodic orbits was shown in Moser’s twist theorem ([69]). In this

regard, Corollary 3.1 seems to suggest that almost automorphic dynamics should be

an important subject to look into in toral flows with ‘thin’ or singleton rotation sets.

4) Assume the conditions of Corollary 3.1. The result of [76] (see Remark 3.2 2)),
when applying to (3.13), implies that any solution φ(t) of (3.1) corresponds to two

weak quasi-periodic solutions of the form

φ±(t) = ρt+ x±(φ0 + ρt, y + ωt), φ0 ∈ S1, y ∈ T k,

where x± : T k+1 → R1 are semi-continuous functions lying in between inf(φ(t) −
ρt − φ0) and sup(φ(t) − ρt − φ0). Moreover, a such weak quasi-periodic solution

becomes almost automorphic if (φ0, y) ∈ T k+1 is a point of continuity of x±.

5) The study of almost automorphic dynamics for the almost periodically forced

skew-product circle flow (3.2) is also closely related to the Floquet theory for a two

dimensional, almost periodic linear system of ODEs of the form

(3.15) x′ = a(y · t)x, x ∈ R2, tr(a) ≡ 0.

It is well known that Floquet theory does not hold for such a system in general

because the linear skew-product flow (cocycle) generated by (3.15) can well have

interval Sacker-Sell spectrum ([82]). On one hand, there are cases where Floquet

theory does hold (see [45, 93] for certain almost periodic cases and [21, 39, 51,
53, 73, 104] for recent develop in quasi-periodic reducibility), and, on the other

hand, as proposed by Johnson ([45]) one can seek for weak Floquet forms concerning

finding an almost automorphic (not almost periodic) strong Perron transformation

which transforms (3.15) into a canonical (upper triangular or diagonal) form with

almost periodic coefficients. In the later case, an almost automorphic strong Perron

transformation is determined by an almost automorphic minimal set (if it exists)
of the skew-product circle flow of the form (3.2) which is generated by the angular

equation associated with the polar-angle reduction of (3.15). We refer the readers

to [45, 85] for more discussions in this regard.

4. Almost automorphic oscillations

Multi-frequency oscillations arise naturally in many electrical and mechanical
systems. Physical examples include electric networks, power systems, quasi-periodic
velocity field of fluid flows, plasma dynamics, mechanical vibrations and coupled
biological oscillators, etc., among which almost periodically forced second order
oscillators form an important class. In engineering applications, periodic oscillations
are referred to as harmonic oscillations and almost periodic ones are interpreted as
harmonic oscillations covered with small ‘noise’. Accordingly, almost automorphic
oscillations can be regarded as harmonic ones covered with big ‘noise’.
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There have been extensive studies on periodically forced second order oscilla-
tors on issues such as strange attractors, period doubling cascades, mode locking,
quasi-periodicity, intermittency, etc. (see [15, 16, 34, 36] and references therein).
Concerning almost periodically forced second order oscillators, attention has been
mainly on the existence of almost periodic oscillations (e.g., [4, 10, 16, 69]) and
chaotic dynamics (e.g., [8, 7, 14, 101]). In general, as suggested by recent numer-
ical works, (e.g., [13, 14, 18, 35, 80, 81]), typical non-chaotic dynamics of almost
periodically (in particular, quasi-periodically) forced nonlinear, second order oscil-
lators can be far more complicated than almost periodic ones. Here we would like to
argue that almost automorphic dynamics should be a main (if not the only) factor
largely responsible for such non-chaotic dynamical complexities arising in almost
periodically (even periodically) forced second order oscillators.

4.1. Linear and quasi-linear oscillators. Consider an almost periodic linear
oscillator

(4.1) ẍ+ a(y · t)ẋ + b(y · t)x = f(y · t), y ∈ Y,

where a, b, f ∈ C(Y ). In terms of the phase variable u = (x, ẋ), the equation (4.1)
becomes the linear planar system

(4.2) u̇ = A(y · t)u+B(y · t),
where

A(y) =

(

0 1
−b(y) −a(y)

)

, B(y) =

(

0
−f(y)

)

.

The system (4.2) clearly generates a skew-product flow πt on R2×Y . The following
was stated in [93], Remark 4.3.

Proposition 4.1. Assume that for some y0 ∈ Y ,
∫ t

0 a(y0 · s)ds is bounded and the

equation (4.1) corresponding to y0 has a bounded solution with bounded derivative,

then there is an almost automorphic minimal set E ⊂ R2×Y of the flow πt satisfying

M(E) ⊂ M(Y ).

The proposition implies the existence of almost automorphic solutions in (4.1)
for residually many y ∈ Y which harmonically respond to the external frequencies
(the frequency module of Y ). The existence of almost automorphic dynamics in the
case described in the proposition is particularly significant when the homogeneous
part of (4.2) admits a nontrivial bounded solution and an unbounded solution for
all y (especially when its Sacker-Sell spectrum is a non-degenerate interval) since
the existence of almost periodic ones are not generally expected in this case.

Consider the quasi-linear case

(4.3) ẍ+ αẋ = f(x, y · t),
where α 6= 0 is a constant. The equations generate a planar skew-product flow,
again denoted by πt, on R2 × Y , the same way as above. It is shown in [77]
that such equations need not admit any almost periodic solutions and the usual
upper-lower solutions techniques for periodic time dependence are not applicable
to (4.3) to yield the existence of almost periodic solutions. Nevertheless, using the
approach in [83], one can obtain almost automorphic solutions of (4.3) for some y
(or equivalently, an almost automorphic minimal set of πt) in between upper and
lower solutions.
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In the case that f is quasi-periodic time dependent in (4.3), i.e., (Y,R) =
(T k, R) : y · t = y + ωt, for some k, is a quasi-periodic flow on the torus T k

with toral frequency ω ∈ Rk, the following was shown in [76].

Theorem 4.1. Assume that for some y0 ∈ T k the equation (4.3) has a bounded

solution x(t) such that

f(x1, y) − f(x2, y)

x1 − x2
≥ −α

2

4

for all inf x(t) ≤ x2 < x1 ≤ supx(t) and y ∈ T k. Then (4.3) admits two families

of weak quasi-periodic solutions x−(y + ωt), x+(y + ωt), y ∈ T k, satisfying (3.11),
(3.12), where x−, x+ : T k → R1 are lower and upper semi-continuous, respectively.

As remarked in Remark 2.1, each continuity point y0 ∈ T k of x± yields an
almost automorphic solution of (4.3) for y = y0, which then gives rise to an almost
automorphic minimal set of the skew-product flow (R2×T k, R) generated by (4.3).

4.2. Damped nonlinear oscillators. Below, we let ε ∈ [−ε0, ε0] be a small pa-
rameter.

There are two types of almost periodically forced nonlinear oscillators for which
the results in the previous section can be applied naturally. One type concerns a
damped, perturbative, nonlinear oscillator of the form:

(4.4) x′′ + a(x, x′) = εb(x, x′, y · t), x ∈ R1,

where a : R2 → R1 is C1, b : R2 × Y → R1 are uniformly Lipschitz in y ∈ Y and
C1 in other variables whose derivatives are also continuous in y ∈ Y .

Proposition 4.2. Suppose that as ε = 0 (4.4) admits a hyperbolic periodic solution.

Then for ε sufficiently small it has an integral manifold on which the equation

reduces to the form

(4.5) φ′ = 1 + εf(φ, y · t, ε),
where f : S1 × Y × [−ε0, ε0] → R1 is C1 in φ, ε and Lipschitz in y.

Proof. The condition implies that the unperturbed part of the system

(4.6)

{

u′ = v,
v′ = −a(u, v) + εb(u, v, y · t)

admits an invariant normally hyperbolic cycle. Let φ ∈ S1 be an angular coordinate
parameterizing the cycle and I be an associated normal coordinate. Then in the
vicinity of the cycle there is a change of coordinate of the form

(

u

v

)

= h(φ) + g(I, φ, y · t),

where h : S1 → R2, g : R1 × S1 × Y → R2 are C1 in φ, Lipschitz in y, and
g(0, φ, y) ≡ 0, under which (4.6) has the form

(4.7)

{

I ′ = λI + g̃(I, φ) + εg̃(I, φ, y · t, ε),
φ′ = 1 + f̃(I, φ) + εf̃(I, φ, y · t, ε),

where λ 6= 0, g̃ = O(|I |2), f̃ = O(|I |), and, for fixed I , ε, all terms are multiple
periodic with periods 1 ([105]). The proposition now follows from the general
integral manifolds theorem ([37, 105]). �
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Example (van der Pol equation): A special case of (4.4) is the following quasi-
periodically forced van der Pol equation

(4.8) x′′ − α(1 − x2)x′ + x = εb(x, x′, y · t), x ∈ R1,

which models an electric circuit with a triode valve, the resistive properties of which
change with current, where α > 0 is a constant and b is as in (4.4). It is well known
that the skew-product system associated with (4.8) admits a normally hyperbolic,
asymptotically stable limit cycle for ε = 0, hence admits an integral manifold
with flow governed by an equation of form (4.5). Thus, by Theorems 3.2, if for ε
sufficiently small (4.5) admits mean motion, then almost automorphic oscillations
will occur in the skew-product flow on R2 × Y generated by the system associated
with (4.8). �

Another type of application of the Theorem 3.2 concerns damped, almost period-
ically forced non-linear oscillators which admit certain periodic structures. Consider
the following system

(4.9) x′′ + βx′ + a(x, y · t) = εb(x, x′, y · t), x ∈ R1,

where β > 0 is a constant, a : S1 × Y → R1, b : S1 × R1 × Y → R1 are bounded,
uniform Lipschitz in y and C1 in other variables whose derivatives are uniformly
bounded. We re-write (4.9) into the following equivalent system

(4.10)

{

φ′ = ψ,
ψ′ = −βψ − a(φ, y · t) + εb(φ, ψ, y · t),

where φ ∈ S1.
The following result is a slight generalization of a similar result contained in [87]

for the quasi-periodic case.

Proposition 4.3. Let α = supS1×Y |∂a
∂φ

|. If β > 2
√
α, then as ε sufficiently small,

(4.12) admits an attracting integral manifold on which the equation reduces to the

form

(4.11) φ′ = f(φ, y · t, ε),
where f : S1 × Y × [−ε0, ε0] → R1 is C1 in φ, ε and Lipschitz in y.

Proof. We only show the existence and Lipschitz continuity of the integral manifold.
After reversing time t→ −t, (4.10) becomes

(4.12)

{

φ′ = −ψ,
ψ′ = βψ + a(φ, y · (−t)) − εb(φ, ψ, y · (−t)).

Fix η > 0, 0 < α′ < α such that

β −
√

β2 − 4(α− α′)

2
< η < min{β −

√
α,
β +

√

β2 − 4(α− α′)

2
}.

One can certainly make ε sufficiently small so that

α+ εγ((η + α′

β
+ 2) + ε(η + α′

β
))

β − η
≤ η,

α+ εγ

(β − η)2
+
εγ

β
< 1,(4.13)

where γ = Lip b.
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Let X be the set of Lipschitz continuous functions h on S1 × Y with max |h| ≤
K ≡ (max |a| + εmax |b|)/β and Lipφh ≤ η,Lipyh ≤ η + α′/β. With the sup-norm
‖ · ‖, X is a complete metric space.

Define mapping T : X → X :
(4.14)

Th(φ0, y0) = −
∫ ∞

0

e−βs(a(φ(s), y0 · (−s))−εb(φ(s), h(φ(s), y0 · (−s)), y0 · (−s)))ds,

where φ(t) = φ(φ0, y0, h, t) is the solution of

(4.15)

{

φ′ = −h(φ, y0 · (−t)),
φ(0) = φ0.

We first check that T is well defined. Let h ∈ X . It is easy to see that ‖Th‖ ≤ K
and

Lipφ0
(Th) ≤

∫ ∞

0

e−βs(α+ εγη + εγ)Lipφ0
φ(s)ds,(4.16)

Lipy0
(Th) ≤

∫ ∞

0

e−βs((α + εγη)Lipy0
φ(s) + ε(α′ + η + 2γ))ds.(4.17)

Using (4.15) and applying Gronwall’s inequality ([38]), we have Lipφ0,y0
φ(t) ≤ eηt,

which, when substituting into (4.16), (4.17) yields that

Lipφ0
(Th) ≤ η, Lipy0

(Th) ≤ η +
α′

β
.

Next, we show that T is a uniform contraction mapping. Let hj ∈ X and
φj(t) = φ(φ0, y0, hj , t) be the solution of (4.15) with h := hj for j = 1, 2 respectively.
An application of Gronwall’s inequality yields that

|φ1(t) − φ2(t)| ≤ ‖h1 − h2‖teηt.

It then follows from (4.14) that

‖Th1 − Th2‖ ≤
∫ ∞

0

e−βs((α+ εγ)|φ1(s) − φ2(s)| + εγ‖h1 − h2‖)ds

≤
∫ ∞

0

e−βs((α+ εγ)seηs + εγ)ds‖h1 − h2‖

= (
α+ εγ

(β − η)2
+
εγ

β
)‖h1 − h2‖.

Thus, by (4.13), T is a uniform contraction mapping.
Now, let h∗ be the fixed point of T . It is easy to see from (4.14) that

M = {(h∗(φ, y), φ, y) : φ ∈ S1, y ∈ Y }
is an (topological) invariant manifold of the skew-product flow generated by (4.12),
i.e., h∗(φ, y · (−t)) defines an integral manifold of (4.12) with flow governed by the
equation

φ′ = −h∗(φ, y · (−t)).
Changing t back to −t, we then have

φ′ = h∗(φ, y · t)
which is invariant to the system (4.10).
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To show that M is attracting, we let x = ψ − h(φ, y · t). By (4.10),

x′ = −βx+ εb(φ, h(φ, y · t), y · t).
It follows from Gronwall’s inequality that

|x(t)| ≤ x(0)e−(β−O(ε))t → 0, as t → ∞.

�

The following example was considered in [87] with respect to quasi-periodic forc-
ing, which also holds in the case of almost periodic forcing.

Example (Josephson junction): A particular case of (4.7) is the almost periodically
forced Josephson junction equation, or, Damped pendulum:

(4.18) x′′ + βx′ + sinx = F (y · t)
which arises in many applications ranging from supersensitive detectors to super-
fast computers, where F : Y → R1 is a Lipschitz function. By considering the
change of variable x → 2πx, the equation (4.18) becomes

x′′ + βx′ +
sin 2πx

2π
=
F (y · t)

2π

which is in the form of (4.9) with b ≡ 0 and

a(x, y) ≡ 1

2π
(sin 2πx− F (y)).

Applying Proposition 4.3 to (4.18) for α = 1, we then obtain a desired integral
manifold for β > 2, with flow governed by an equation in the form of (4.11). Thus,
by Theorems 3.2 the skew-product flow generated by the system associated with
(4.18) will admit almost automorphic oscillations as long as it admits mean motion.

As observed in [87], mean motion holds on the integral manifold above when ‖F‖
is sufficiently small. To see this, we note that when F ≡ 0, the integral manifold
clearly contains a relative equilibrium φ = 0 which is also hyperbolic. It follows that
as long as ‖F‖ is sufficiently small the skew-product flow on the integral manifold
admits an almost periodic minimal set which is an 1-cover of the base. Hence by
Remark 3.2 1) the skew-product flow on the integral manifold admits mean motion
with rotation number ρ = 0. �

Remark 4.1. Equations (4.8), (4.18) have been used as models to numerically

study the existence of so-called non-chaotic strange attractors which typically arise

in damped, quasi-periodically forced oscillators such as the Josephson junction and

van der Pol (e.g., [14, 35, 81]). Roughly speaking, a non-chaotic strange attractor

is one which is geometrically strange (it is neither a finite set, a closed curve, a

smooth surface, nor a volume bounded by a piecewise smooth closed surface) but

not dynamically chaotic (i.e., the Lyapunov exponents on the attractor are non-

positive).
In the case that mean motion exists the above discussions suggest that basic

dynamics on a non-chaotic strange attractor of almost periodically forced Josephson

junction or van der Pol are almost automorphic (i.e., such an attractor is formed

by almost automorphic minimal sets along with ‘connecting orbits’). The topological

structure of such an attractor will depend on whether the respective rotation number

is in resonant with the forcing frequencies. As an almost 1-1 extension of a solenoid
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as Corollary 3.1 suggests, an almost automorphic minimal set on such a non-chaotic

strange attractor can be a fractal (geometric complexity) and be almost everywhere

non-locally connected (topological complexity). Therefore, the structures of almost

automorphic minimal sets should be responsible for part of the complexity of a non-

chaotic strange attractor.

To be able to capture the full complexity of a non-chaotic strange attractor, one

should also consider the existence of weak quasi-periodic orbits lying in the attractor

(see Remark 3.3 4), because, as shown in [76], an quasi-periodically forced system

can have a complicated attractor with ‘simple’ almost automorphic orbits.

4.3. Chaotic almost automorphic oscillations. Consider a planar system of
the form

(4.19) u̇ = f(u) + εg(u, y · t), u ∈ R2.

Assume that for ε = 0 (4.19) is a Hamiltonian system admitting a hyperbolic equi-
librium u0 along with a homoclinic orbit u = γ(t). It follows that the skew-product
flow (R2 × Y, πt) generated by (4.19) admits a smooth family of almost periodic
minimal sets Λε which are 1-covers of Y and skew-hyperbolic (i.e., hyperbolic in
the u-direction, see e.g., [105]).

Define the Melnikov functional

M(y)(t) =

∫ ∞

−∞

f(γ(s)) ∧ g(γ(s), y · (t+ s))ds.

Suppose that the zero set

Z = {y ∈ Y : M(y)(0) = 0}
is simple, i.e.,

d

dt
M(y)(t)|t=0 6= 0

for all y ∈ Z. Then Z is a global cross section for the flow on Y ([66]). Hence
Σ = R2 × Z is a global cross section for the skew-product flow πt on R2 × Y . Let
Ψ : R2 × Z → R2 × Z be the induced Poincaré map.

Theorem 4.2. ([66]) Suppose that Z is simple. Then there exists an ε0 > 0 such

that for every 0 < |ε| < ε0 there is a positive integer n0 such that for all n ≥ n0

there is a compact invariant set Ωn ⊂ R2 ×Z of Ψ whose dynamics is topologically

conjugated to the skew-shift map A⊗ η on the Bernoulli bundle Σ×Z, where A is

the full shift on the space of Σ of bi-infinite sequences on n symbols and η is the

Poincaré map on Y based on the global cross section Z.

Chaotic almost automorphic minimal sets have been known to largely exist in
symbolic flows. It was first observed in [30, 60] that almost automorphic symbolic
flows can exhibit positive topological entropy and lack unique ergodicity. Recently,
Toeplitz sequences as a special class of almost automorphic sequences have received
considerable attention (see [1, 19, 20, 32, 43, 44, 60, 78, 103] and references therein).
While regular Toeplitz sequences are uniquely ergodic with zero topological entropy,
it was shown that irregular Toeplitz sequences are typically not uniquely ergodic
and exhibit positive topological entropy, though they may also be uniquely ergodic
with positive entropy ([32, 43]).
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In [9], chaotic almost automorphic symbolic arrays were also shown to be mainly
responsible for the complexity (e.g., spatial chaos) of certain lattice dynamical
systems. As a particular case, we have the following result for symbolic sequences.

Theorem 4.3. Consider the full shift dynamics A on the space Σ of bi-infinite

sequences of n-symbols. Let Σ+ denote the space of half infinite sequences of the

same symbols. Then the following holds.

1) There is a dense set Λ ⊂ R of irrational numbers such that for any given

ρ ∈ (0, logn) and γ ∈ Λ there exists a residual set R ⊂ Σ+ such that

each ω ∈ R corresponds to an almost automorphic minimal set M(ω) of

(Σ, A) which has the (discrete) circle rotation (S1, γ) as its maximal al-

most periodic factor, is not uniquely ergodic and has topological entropy

h(M(ω)) > ρ.
2) Given a prime number p there is a residual set R ⊂ Σ+ such that each

ω ∈ R corresponds to an almost automorphic minimal set M(ω) of (Σ, A)
which has the p-adic odometer group (∆,⊕) as its maximal almost periodic

factor, is not uniquely ergodic and has topological entropy h(M(ω)) = logn.

The theorem says that the response of chaos in symbolic dynamics to almost au-
tomorphic sequences can be made optimal: there are almost automorphic sequences
with one frequency whose orbit closures admit topological entropy arbitrarily close
to the maximal entropy of the system and there are almost automorphic sequences
with infinitely many frequencies whose orbit closures attain the maximal entropy.
Recall that having infinitely many periodic sequences is a main feature of chaos
in symbolic dynamics. A chaotic almost automorphic sequence attaining maximal
entropy should be the (non-uniform) limit of these periodic ones. This links the
two commonly adopted definitions of chaos for symbolic dynamics, i.e., the one
defined by positive topological entropy and the one requires sensitivity dependence
on initial conditions, topological transitivity, and a dense set of periodic orbits.

In the periodically forced case, the Melnikov functional above reduces to the
classical Melnikov function. It is known that if the Melnikov function admits a
simple zero then the Poincaré map associated with (4.19) admits Smale horseshoe
which is topologically conjugated to the full shift on two symbols ([36]).

Using Proposition 2.2 and Theorem 4.3, we then have the following.

Theorem 4.4. Consider the skew-product flow (R2×Y, πt) generated by (4.19) with

periodic time dependence, i.e., (Y,R) = (S1, R) is a pure rotation of the circle. If

Z is simple, then there is an ε0 > such that the following holds for all 0 < |ε| ≤ ε0.

1) There is a dense set Λ ⊂ R of irrational numbers such that for any given

ρ ∈ (0, log 2), γ ∈ Λ there is an almost automorphic minimal set Eε, with

M(Eε) being the additive subgroup of R generated by {γ, 1}, which is an

almost 1-cover of the 2-torus, is not uniquely ergodic and has the topological

entropy h(Eε) > ρ.
2) Given a prime number p, there is an almost automorphic minimal set Eε,

with M(Eε) being the additive subgroup of R generated by P = {1/pl :
l = 0, 1, · · · }, which is an almost 1-cover of the 2-solenoid, is not uniquely

ergodic and has the topological entropy h(Eε) = log 2.
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Remark 4.2. The above result shows the existence of rather chaotic almost auto-

morphic oscillations in periodically forced nonlinear oscillators of form (4.19) if the

Melnikov function admits a simple zero. A natural problem is to extend Theorem 4.3
to Bernoulli bundles then use Theorem 4.2 to obtain chaotic almost automorphic

oscillations in the almost periodically forced case.

4.4. Hamiltonian systems. Hamiltonian systems is an area in which the ex-
istence of almost automorphic dynamics is much less understood, especially for
higher degrees of freedom. The well known Denjoy and Aubry-Mather theories
have already given strong evidence for such existence in the case of lower degrees
of freedom.

As shown in [70], given an area preserving, orientation preserving, boundary
components preserving, twist homeomorphism φ of the annulus A = {(x, u) ∈
S1 × R1, a ≤ u ≤ b}, there exists a time periodic Hamiltonian H(x, u, t), (x, u) ∈
S1 × R1 of period 1, with Hx|u=a,b = 0, Huu > 0, whose Poincaré map of the
associated motion agrees with φ. This, when coupled with Proposition 2.2 and
Theorem 2.6, provides an evidence for the existence of almost automorphic solutions
of two frequencies in Hamiltonian systems of one and one-half degrees of freedom.

Remark 4.3. Given a time quasi-periodic Hamiltonian system H(x, u, ωt), (x, u) ∈
S1 × R1 with k (> 1) frequencies ω ∈ Rk, a natural problem is to develop a varia-

tional technique to show the existence of almost automorphic minimal sets (higher
dimensional analogue to the Aubry-Mather sets) of k+1 frequencies (ρ, ω), where ρ
is a rotation number, in the associated Hamiltonian skew-product flow under suit-

able conditions.

This problem is already significant when H(x, u, ωt) takes the special form
u2/2 + V (x, ωt), corresponding to the second order undamped, quasi-periodic time
dependent, nonlinear oscillator

(4.20) ẍ+ Vx(x, ωt) = 0, x ∈ S1, V ∈ C∞(T k+1, R1),

which can be viewed as a degenerate elliptic equation on the k+ 1-torus. The exis-
tence of Aubry-Mather (in fact, almost automorphic) action minimizing solutions
for an elliptic equation on k+1-torus has been shown in [71, 72] using a variational
approach. Similar to [71], a crucial step in tackling the above problem with respect
to (4.20) would be to obtain the mean motion property, i.e., for any lifted solution
x(t) ∈ R1 of (4.20) or equivalently any minimizer of the respective Lagrangian there
is a unique rotation number ρ such that |x(t) − ρt| is bounded. This is also closely
related to the action-minimizing problems in Hamiltonian systems of higher degrees
of freedom (see [63, 64, 65]).

An easier problem is to consider a variational problem for (4.20) without assum-
ing the periodic dependence of V on x. It seems that under reasonable conditions
one can obtain almost automorphic dynamics of the respective skew-product flow
which respond to ω harmonically. We will discuss this problem in more detail
elsewhere.
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Almost automorphic dynamics can also exist in Poisson-Hamilton systems de-
fined on a Poisson manifold rather than a symplectic one. In action-angle coordi-
nates, such a system has the form

(4.21)

(

ẏ

ẋ

)

= J(y, x)∇H(y, x), y ∈ Rl, x ∈ Tn,

where J is called a structure matrix - a skew-symmetric matrix-valued function
satisfying the Jacobi identity (see [57, 58] and references therein). Now let us
consider the action-angle-angle case (i.e. l = 1, n = 2) with Hyy 6= 0 for all (x, y)
and

J =





0 −αa(y) −βa(y)
αa(y) 0 −γ
βa(y) γ 0



 ,

where α, β, γ are constants, |α|+|β|+|γ| 6= 0, and a(y) 6= 0 for all y. Then it is clear
that each energy surface ME = {H(y, x) = E} is an invariant 2-torus. Moreover,
if (α, β) is non-resonant, then the flow on any such invariant 2-torus ME admits
neither fix points nor periodic orbits. By Theorem 2.6, ME admits a unique 2-
frequency almost automorphic minimal set which is not necessarily almost periodic
in general. However, for certain nearly integrable case, it was shown in [58] that if
(α, β) is Diophantine, then the majority of these 2-tori will be quasi-periodic.

Remark 4.4. 1) A related problem is to develop a variational framework for

Poisson-Hamilton systems and use it to study the existence of almost automorphic

dynamics.

2) Almost automorphic dynamics may exist even in quasi-periodically forced or

autonomous, nearly integrable Hamiltonian systems, as possible intermediate orbits

in between KAM tori and stochastic layers. Such intermittency has been investigated

numerically as the so-called Cantori whose topological natures are quite similar to

that of almost automorphic minimal sets. The existence of non-KAM intermedi-

ate orbits has been theoretically justified in [40] based on an idea of J. C. Yoccoz

as the so-called Lagrangian tori using a topological approach for fixed small non-

integrable Hamiltonian perturbations and in [11] using a variational approach when

the perturbations increase in sizes and the KAM theory becomes invalid. Indeed, the

approach of taking weak limits to KAM tori adopted in [40] is in spirit quite similar

to Theorem 2.4 1) in obtaining almost automorphic functions (and minimal sets).
It would be interesting to know whether some of these immediate orbits can actually

be almost automorphic. Linking this problem with Theorem 2.4 1), an immediate

question is whether some KAM tori form a joint almost automorphic sequence.
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