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Abstract 
 

The number of agents and the execution time are two  
significant performance factors in mobile agent pla nning. 
Fewer agents cause lower network traffic and consum e 
less bandwidth. Regardless of the number of agents used, 
the execution time for a task must be kept minimal,  which 
means that use of the minimal number of agents must  not 
impact on the execution time unfavorably. As the 
population of the mobile agent application domain grows, 
the importance of these two factors also increases.  

After careful review of these two factors, we propo se 
two heuristic algorithms for finding the minimal number  
of traveling agents for retrieving information from  a 
distributed computing environment, while keeping th e 
latency minimal. Although agent planning, specifica lly 
Mobile Agent Planning (MAP), is quite similar to th e 
famous Traveling Salesman Problem (TSP), agent 
planning has a different objective function from th at of 
TSP. TSP deals with optimal total routing cost, whi le 
MAP attempts to minimize the execution time to complete 
tasks of information retrieval. In this paper, we s uggest 
the cost-effective MAP algorithms, BYKY1 and BYKY2, 
which can be used in distributed information retrie val 
systems to find the factors mentioned above. At the  end of 
each algorithm, 2OPT, a well-known TSP algorithm, is 
called to optimize each agent's local routing path.  
Experimental results show that BYKY2 produces near 
optimal performance. These algorithms are more real istic 
and applicable directly to the problem domains than 
those of previous works. 

Keywords: Mobile Agents, Mobile Agent Planning, 
Mobile Computing, Distributed Agent System, Distrib uted 
Information Retrieval 
 

1. Introduction 
 

Mobile agent technology can reduce network traffic, 
overcome network latencies, and enhance robustness and 
fault-tolerant capabilities of distributed applications [1][6]. 
One of the major potential application areas for mo bile 
agents is information retrieval, which involves acc ess to a 

huge amount of data across a network [13][14][15]. 
Instead of transmitting data across the network, an  agent 
migrates to the host where the database is located,  
performs its task there, and then returns to the or iginal 
host bearing a result. Thus, the mobile agent can u tilize 
the bandwidth of the network much more efficiently than 
can be achieved by accessing the distributed database 
remotely using a direct connection. The total compu tation 
time taken can be shortened, especially when data 
transmission is the bottleneck of the task [2][3][11][16]. 
In this domain, information is spread over several hosts 
and it is now common for these hosts to be geograph ically 
separated [9][10]. Should the mobile agents be orde red to 
retrieve information in an information retrieval system, all  
the pertinent nodes have to be specified, and these  nodes 
must be fully covered. 

The number of agents and the execution time are two 
significant performance factors in mobile agent pla nning. 
Using fewer agents causes lower network traffic and  
consumes less bandwidth. Agents consume network 
bandwidth when they travel over the designated set of 
nodes. Badly scheduled agents’ itineraries can caus e 
longer execution times as a result of higher routin g costs. 
The number of agents created for a task also influences 
the total routing cost. Clearly, the greater the number  of 
agents created for a task, the higher the overall r outing 
cost. In order to reduce this overhead, as well as to 
provide better performance, agents must be schedule d 
before they are sent. Research has been carried out on 
information retrieval and agent planning. We will f ocus on 
agent planning techniques in information retrieval that we 
call Mobile Agent Planning (MAP). 

In some papers such as [12], MAP has been recognize d 
as a Traveling Salesman Problem (TSP). It is claime d that 
if the agent's task is to visit all the nodes, then  the problem 
is reduced to the classical TSP, which is known to be NP-
hard. However, TSP and MAP are different in that TS P 
deals with the optimal total routing cost with a given 
number of agents, whereas MAP attempts to minimize the 
execution time to complete the information retrieva l. 
Another difference is that agents can visit any nod e more 
than once in MAP, but normally not in TSP. Being 
different from [5] and [11], where "succeed-stop" a gent 



behavior is used, we deal with "full-visit" behavio r, in 
which the planning covers all the nodes to be visit ed. 

The number of agents for a task should not be fixed , 
otherwise a trade-off between performance and routing 
cost cannot be made, and consequently, the applicat ion 
system would not be flexible. Instead, we try to fi nd the 
minimum number of agents required, while maximizing  
the performance. These two objectives are extremely  
important in mobile agent systems, since the whole system 
must satisfy both conditions: faster execution time , and 
lower network traffic caused by agents. 

Instead of employing unrealistic assumptions to sol ve 
the problem in polynomial time, it is preferable to try to 
find reasonable heuristic solutions even under the NP-hard 
conditions. In this paper, we suggest two cost-effective 
MAP algorithms named BYKY1 and BYKY2. They can 
be used in distributed information retrieval system s to find 
the two performance factors. Although not a primary goal, 
total routing cost is still important in MAP proble ms, 
since it decides the traveling time of an agent all ocated in 
the local network. Thus, it is desirable to tackle the 
routing cost to a certain degree. This is the reaso n that 
2OPT, a simple TSP algorithm, is employed in the 
proposed algorithms. It optimizes each agent's loca l 
routing path. The experimental results show BYKY2 
produces a near optimal solution. Adopting these 
algorithms, the information retrieval system can retain the 
best performance while achieving a minimum routing cost 
with the minimum number of agents. 

In Section 2, related works are described. Section 3 
and Section 4 describe the cost-effective MAP problem 
and its algorithms, i.e., BYKY1, and BYKY2, 
respectively. In Section 5, experimental results are 
presented and analyzed, and the paper’s conclusion is in 
Section 6. 
 

2. Related Works 
 

Until recent years, the MAP problem has not been 
focused on by many researchers. Simply, it has been 
regarded as an ordinary routing problem such as the  TSP. 
The TSP is clearly NP-hard [8]. Efforts to solve MAP 
have been made using greedy methods, dynamic 
programming, etc. To reduce the agent planning prob lem 
into greedy or dynamic programming, many assumption s 
had to be made. 

Careful consideration must be given in employing th e 
assumptions, since they limit the applicability and  
extensibility of the idea. Brewington et al. [5] formulate a 
method of MAP, namely the Traveling Agent Problem 
(TAP), which is analogous to the TSP [7], to decide the 
sequence of nodes to visit to minimize the total ex ecution 
time until the desired information is found. This formula 
denotes that the agent has to return to the home no de if at 

anytime during its tour success occurs. We call thi s 
succeed-stop behavior. The other important agent 
behavior that came from TSP is making, at the most, one 
visit, which means the agents never revisit nodes. 

Resource allocation is essentially an allocation 
problem. Moizumi [17] explores how agents can 
efficiently spend their time traveling throughout t he 
network completing sets of tasks. He poses the prob lem as 
a traditional ''traveling salesman'' problem in an 
environment where latencies, possibly stochastic, 
represent distances. While the TSP is NP-hard, Moiz umi 
uses dynamic programming to solve the problem in 
polynomial time by assuming that latencies are cons tant. 

While not directly related to mobility, Wellman et al. 
use dynamic programming to derive an algorithm to f ind 
the shortest stochastic cost path through a network  [10]. 
Their algorithm could be applied to Moizumi's probl em if 
the sequence of the tasks to be performed is known. 
Additionally, Wellman et al. augment the algorithm to 
allow path refinements as the algorithm's user trav els. 
 

3. The Cost-Effective Mobile Agent 
Planning(CE-MAP) Problem 
 

Table 1 summarizes the notation used in this paper.  

Symbols Description 
N Number of nodes excluding the home node  

r Number of mobile agents employed for a task 

H Home node 

δ Execution time to complete a task 

h1,h2,…,hn Node identifiers 

A1,A2,…,Ar Agent identifiers 

tour Sequence of nodes visited by an agent 
Tour(Ai) 
 

tour of agent Ai, e.g., ( i1,i2,…ik) where i j, 1≤ j≤k 
is a node index and let ( i1,i2,…ik) be tour S i 

Comp(hi) Computation time at node hi 

Ls(hi,hj) Shortest latency between nodes hi and hj 

Union(Si,...,Sj) 
Concatenation of tours, where Si,...,Sj represent 
tours 

TourT(Si) Routing time, namely execution time, for tour S i 

First(Si) First entry of tour S i, i.e., i1 

Last(Si) Last entry of tour S i, i.e., ik 

Table 1. Notations used in this paper.  

We introduce three important definitions in Table 1  as 
follows: 

Definition 1  (The tour of an agent: Tour(Ai)) Tour(Ai) is 
the tour of agent Ai, which consists of all the nodes to be 
visited for processing an agent's task in order . 

Definition 2  (The smallest latency: Ls(hi,hj)) Ls(hi,hj) is 
the smallest latency between nodes hi and hj, which is 
found by evaluating the shortest paths[8] between a ll pairs. 



Definition 3  (The tour time: TourT(S))  
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where S, S1, and S2  represent tours. 

Figure 1(a) explains the definition 3-(a). Figure 1 (b) 
represents the merging of two tours, S1 and S2, into S, 
where Last(S1) = i k, Last(S2) = i k+1. Tour S consists of 
two sub-tours, S1 and S2. Thus, TourT(S) is defined by the 
addition of all the latencies from H, i1, …, in, H, and the 
computation times at each node. If S1 and S2 are merged 
then TourT(S) has to be reconfigured in accordance with 
definition 3-(b). 

 

 
Figure 1. A tour and merging tours 

 
3.1. Problem definition 

 
We assume that a MAP module knows the network 

statistics and the history via a network monitoring  service. 
This service enables mobile agents to acquire best route 
information for the task. The mobile agent problem can be 
described as follows: 

Mobile Agent Planning Problem - There are n+1 
nodes, (H,h1,h2,h3,…hn), where  H  is the home node and 
the other numbers are node indexes. Each node has a 
computation time required for a mobile agent to 
perform the task at node hi. Latencies for the mobile 
agent to move between each node hi and hj are also 
known. For the home node H, the computation time at 
H, i.e. tH, is equal to zero. The mobile agent problem is 
to minimize the execution time δ, and the number of 
mobile agents r, to successfully complete the task.  

As expressed below, the execution time( δ) can be 
defined by the longest routing time( TourT) among all the 
nodes an agent can visit. This comprises network la tency 
from home ( H) to the node ( i) plus the execution time on 
it.  

nihTourTMax i ≤≤= 0    )},({δ )1(  

A solution to the MAP problem is to find a sequence of 
agents to visit the nodes; this solution consists o f the 
minimum total execution time and the number of agents 
needed. This is a considerably different approach f rom 
that of [11]. 

Two important objectives in MAP are: 1) the minimum 
execution time; and 2) the least network bandwidth 
consumed by agents. The minimum execution time for a 
task is not smaller than that of a special case whe n n 
agents are sent to n different nodes. Therefore, it totally 
depends on the node that has the largest sum of lat ency 
and computation time. The number of agents affects 
network bandwidth. Therefore, the number of agents for a 
task cannot be fixed, otherwise no trade-off betwee n 
execution time and routing cost is possible, and 
consequently, the system would not be flexible. The refore, 
we try to find the minimum number of agents we need to 
prepare just before sending the agents, while achie ving the 
minimum execution time for a task.  

Our goal is to decide the sequence of nodes for eac h 
mobile agent to visit, the minimum number of agents  
needed, and the minimum execution time, i.e., δ, for a task. 
The CE-MAP is formally defined as follows. 

Cost-Effective MAP:  
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In expression (2), let w be a value larger than the total 
routing cost, namely the sum of the tour times all of the 
agents that appeared in the second term of (2). Therefore, 
expression (2) has two targets: 1) the minimum number of 
agents; and 2) the minimum overhead, i.e., the total 
routing cost. The lines from (3) to (5) are constraints fo r 
this objective function. In expression (3), the routing co st 
of each agent is always smaller than this minimum, 
namely δ. This means that a given task can always be 
completed within the minimum, which is determined by 
the node with the largest sum of latency and computation 
time. Expression (4) requires that each node be processed 
exactly once. Since this problem is NP-hard, we must 
develop cost-effective solutions based on heuristics. 

Figure 2(a) shows a network configuration that can be 
partitioned into two parts. The weight of an edge 
represents the expected latency for the connection 
between a pair of nodes. The computation time on a node 



appears on the corresponding node. The minimum 
execution time is never smaller than 50 ms , since the node 
h1 has the maximum routing cost of the configuration.  The 
execution time for node h1 is 50 ms (=10+30+10), 
whereas the costs for nodes 2 and 3 are 21 ms  and 25 ms,  
respectively. Here, the minimum number of agents fo r the 
example is two. The first agent covers node h1 as shown in 
Figure 2(b), and the second agent covers nodes h2 and h3 
as shown in Figure 2(c). The total execution time i s 88 ms 
(=50+38). Note that the sequence in the tour taken by the 
second agent is ( H,h3,h1,h2,H). Due to usage of the 
shortest path over all pairs, the second agent makes use of 
a bypass rather than the direct connection between node h2 
and h3. Thus, Tour(A1) = (h 1), and Tour(A2) = (h 3,h2). 

 
Figure 2. An example network configuration  

 

4. The Proposed Planning Methods 
 

In this chapter, we suggest two cost-effective MAP 
methods in detail. Assuming that such network stati stics as 
the latency and bandwidth of the links between host s, and 
the load on each host are collected by a network 
monitoring module in the system, we could obtain al l the 
latencies between existing links. We assume that th e 
network latencies vary. We also assume that the age nts are 
created only at home and are not cloned in other no des. 
We do not consider any probability of success in 
retrieving the required data at each node, as was d one in 
[11]. 
 
4.1. Preprocessing: all pairs shortest path 
 

One of our goals is to find the lower bound of 
execution time. The number of participating agents must 
not affect this lower bound. The fastest way to com plete a 
task is to send agents one by one to each node 
simultaneously. Then the execution time depends tot ally 
on the slowest link between a node and home. The time 
value comprises the network latency and the computa tion 
time. How can we find the latencies of all the poss ible 
pairs of nodes? This is not a simple job, since we have to 
search all the combinatorial links of any two selec ted 
nodes. Without this information, there is no way to  find 

the lower bound of the execution time. To get the 
latencies of all pairs of nodes, our algorithms, be fore 
entering the main body, process the all-pairs short est-path 
algorithm, and construct a shortest-latency network  graph. 
Refer back to Figure 2(c). The graph shows a bypass  of an 
agent. Although the latency on the direct link betw een 
nodes h2 and h3 is 100 ms , the agent is able to take an 
indirect tour of (H,h3,h1,h2,H), instead of (H,h3,h2,H). The 
cost of the former is 38 ms while the cost of the latter is 
128 ms . This process is required as a pre-processing stag e 
before the start of our algorithms. 
 
4.2. The algorithms 
 

Providing that all the smallest latency information  
between any two nodes hi and hj, Ls(hi,hj), is available as 
described in the previous section, the algorithm pr oceeds 
as follows: 

1. Sort the nodes in decreasing order of the routing 
time of each node hi, which is  TourT(h i). 

2. Set the threshold δ, with the execution time of the 
first node in the sorted list. 

3. Partition the given network into several parts b y 
gathering nodes so that the execution time of each 
part does not exceed the threshold and build a 
routing path for each partition. 

4. Run a TSP algorithm to optimize each routing pat h. 
5. Allocate and send an agent for each partition. 

We developed two algorithms named BYKY1 and 
BYKY2 that perform the same task, but use a slightl y 
different partitioning (step 3) method. They are di fferent 
in that the latter is more dynamic than the former.  BYKY1 
tries to find the next possible partition by calcul ating all 
the latencies always from home, whereas BYKY2 
searches the next node from the current node where the 
agent resides. The first algorithm, BYKY1 is presented in 
Figure 3. At the end of the algorithm, it calls a T SP 
program. We use the 2OPT algorithm [4] because it is 
simple and effective. It produces an asymptotically 
optimal routing path for each given network partiti on. If 
more than one node has the same TourT value, the 
selection of the node is arbitrary. 

Note that each node is ordered in decreasing order of 
the execution time of each tour. BYKY1 estimates th e 
agents' traveling time by adding the costs of the next 
adjacent set of nodes in the sorted list. Exceeding  the 
threshold is not allowed in calculating the traveli ng time. 
As described above, the threshold δ is the execution time 
of the first node in the sorted list. The cost for each node 
is the cost of the round-trip time from home. In contrast, 
BYKY2 adds the cost of a different set of nodes. Th e 
node selected by BYKY2 always has the minimum 



traveling time from the last added node, not from h ome. 
Thus, the results of these two algorithms may have 
different routing paths for a given agent. Figure 4  is the 
algorithm for BYKY2.  

 Algorithm 1. The Planning Algorithm BYKY1 

1 Phase 1. Sorting the nodes  

2 
 

Sort the nodes in terms of the tour time, TourT by 
decreasing order 

3 
 

Let the sequence (h a1,ha2,ha3,…,han) as the resulting 
sequence 

4 δ = TourT(h a1) 

5 Phase 2. Planning agents  

6 for j = 1 to n 
7 { 
8 Tour(j) = phi 
9 for k = j to n 

10 { 
11 

 
if h ak  is not “processed” and TourT(Union(A j, 

(hak)) ≤ δ 
12 Union(Aj,(hak)); 
13 mark h ak as “processed” 
15 } // end of inner for-loop 
16 if A j = φ  terminate 
17 } // end of outer for-loop 

18 Phase 3. Optimization of Agent’s local path  

19 For each agent A i 

20 2OPT(Ai) 

Figure 3. The BYKY1 algorithm 

 Algorithm 2. The Planning Algorithm BYKY1  

1 Phase 1. Same as the phase 1 in the Algorithm 1.  

2 Phase 2. Planning agents  

3 for j = 1 to n  
4 { 
5 Tour(Aj) = φ 
6 Select “unprocessed” h ak where k is minimum 
7 Union(Tour(Aj),(hak)); mark h ak as “processed” 
8 while(TRUE)  
9 { 

10 
 

sorts nodes in terms of {L s(hak,hal)|1 ≤ l ≤ n and 
hal is “unprocessed”} by increasing order 

11 
let the sequence (h b1,hb2,…,hbm) be the resulting 
sequence 

12 previous_k = k 
13 for x = 1 to m { 
14 if TourT(Union(A j,hbx) ≤ δ { 

15 Union(Aj,hbx); mark h bx as “processed” 
16 find k where ak = bx 
17 break for-loop 
18 } // end of if 
19 } // end of inner for-loop 
20 if previous_k = k break while-loop 
21 } // end of while-loop 
22 if Tour(A j) = φ, terminate 
23 } // end of outer for-loop 

24 Phase 3. Same as the phase 3 in the Algorithm 1.  

Figure 4. The BYKY2 algorithm 
 

5. Simulation 
 
5.1. Simulation environment 
 

The simulation is based on a practical perspective of 
the mobile agent environment for the distributed 
information retrieval system, which means that all the 
simulation measurements and assumptions are chosen for 
surroundings that are more realistic. Network topol ogy 
and computation time are the two major measurement 
factors for the simulation. The network topology is  one of 
the following: 

•  All the nodes are located in a sub-network (LAN) 
•  Each sub-network includes exactly on node (WAN) 
•  Each sub-network includes more than one node 
    (Clustered-WAN) 

The network topology is related to the way we assign 
the latencies to each pair of nodes in a network. When all 
the nodes that agents must visit are in a local sub-net work 
(LAN), we perceive that the standard deviation of t he 
latencies that exists between each pair of nodes in  the 
network is very small. In this case, the only facto r we must 
take into account is the computation time for the n odes. 
Thus, the problem space is drastically reduced. In contrast, 
if all the nodes are scattered over a wide area network 
(WAN) such as the Internet, the latencies will be a rbitrary. 
In this case, the search space of the problem would  be 
larger than that of the former. The last topology i s a 
mixture of the two (Clustered-WAN). This topology 
consists of several sub-networks distributed over a  wide 
area network. If we choose two nodes in this topolo gy, 
they may be located in either the same sub-network or 
different ones. Thus, the number of agents needed m ay be 
related, but not necessarily so, to the number of sub-
networks. In summary, the latencies measured in the  
experiment for all the different topologies are as listed in 
Table 2.  

 



Communication Type Average Latency Range 
Intera-LAN 3ms ~ 15ms 
Inter-LAN 15ms ~ 200ms 

Table 2. Latency ranges 
 
We can classify the computation behaviors into two 

types: simple retrieval query, and complex query. S imple 
retrieval query requires a small computation time. 
Headline newsgathering is of this type. Complex query 
such as meta-search requires a relatively large amo unt of 
computation time. This type of retrieval requires a n 
extensive search and summarizing process. Simple 
retrieval query has a computation time range of 1~50 ms , 
whereas complex query consumes 500~10,000 ms. Table 
3 shows the "Clustered-WAN" configuration. The 
numbers of nodes are 13, 14, 15, and 16. They are 
clustered into four subnets (clusters). 

 
# of Nodes  # of Clusters  Cluster Configurations 

13 4 4+3+3+3 
14 4 4+4+3+3 
15 4 4+4+4+3 
16 4 4+4+4+4 

Table 3. Number of nodes and cluster configuration 
 
The simulation was performed under the environment 

described so far: three types of topology and two k inds of 
query with four different numbers of nodes. Since the 
optimal solution with more than 16 nodes requires a 
tremendous amount of search space and time, and is 
difficult to perform in reality, our experiment is performed 
with a maximum of 16 nodes. Instead, with up to 300  
nodes, the experiment is performed to find the numb er of 
agents, the latency costs consumed by all the agents, and 
the actual planning time by BYKY1 and BYKY2 for a 
given task. This is compared with the worst-case 
algorithm that launches as many agents as there are  nodes. 

The simulation was performed on three different kin ds 
of machine: Sun Sparc 10; Intel Pentium III 500MHz with 
64MB RAM; and one Intel Celleron 533MHz with 64MB 
RAM. All the results gathered and presented from th ose 
machines were averaged to reflect the average compu ting 
environment. Note, that as the computing power incr eases, 
the calculated performance definitely improves. 
 
5.2. Simulation Results 
 

Table 4 shows the number of agents and the total co st 
required for each combinatorial configuration, as f ound by 
three different algorithms: BYKY1, BYKY2, and 
Optimal; number of nodes; network topology (LAN, 
WAN, Clustered-WAN); and query type (Simple and 
Complex). 

The optimal solution represents the fact that the s imple 
computation type requires more agents than that of the 
complex one in the LAN configuration. This is becau se 
the simple one consumes less time ( 1~50 ms ) than the 
complex one ( 500~10,000 ms). In this case, the total 
computation time is evenly distributed. Since the t ask 
must be completed under a fixed latency, the number  of 
agents is close to the number of nodes that provide  
information retrieval services. 

In contrast, when the computation time at each node  is 
large (complex query), the total computation time m ay 
depend upon some nodes that take large computation 
times. Then the agents, which cover the other nodes that 
consume less time, can visit more nodes under the s ame 
latency; thus, they require fewer agents. 

BYKY1 BYKY2 OPTIMAL # of 
nodes 

Topo 
logy 

Query 
Type #agens cost #agents cost #agents cost 

Simple 12 2,720 12 2,720 12 2,720 
LAN 

Complex 9 73,706 9 73,725 9 73,699 

Simple 10 5,735 7 4,756 7 4,635 
WAN 

Complex 8 56,661 7 56,226 7 56,010 

Simple 9 4,319 8 4,056 6 3,295 

13 

Clustered 
-WAN Complex 6 39,784 6 39,761 6 39,029 

Simple 13 2,940 13 2,940 13 2,940 
LAN 

Complex 10 82,878 10 82,897 10 82,871 

Simple 12 6,139 10 5,309 9 5,130 
WAN 

Complex 9 61,749 8 61,223 8 61,098 

Simple 11 4,756 9 4,253 9 4,242 

14 

Clustered 
-WAN Complex 7 44,399 7 44,092 7 43,568 

Simple 14 3,165 14 3,165 14 3,165 
LAN 

Complex 7 58,955 7 58,897 7 58,868 

Simple 11 6,903 9 5,639 7 4,851 
WAN 

Complex 10 80,581 9 79,981 9 79,550 

Simple 10 5,128 9 4,658 9 4,512 

15 

Clustered 
-WAN Complex 13 98,269 12 97,984 7 97,826 

Simple 15 3,389 15 3,389 15 3,389 
LAN 

Complex 7 59,623 7 59,557 7 59,520 

Simple 11 6,929 10 6,103 8 6,000 
WAN 

Complex 10 85,965 9 85,328 9 84,976 

Simple 9 5,161 7 4,359 7 4,300 

16 

Clustered 
-WAN Complex 13 99,771 12 99,688 12 99,618 

Table 4. The number of agents and total cost 

In general, the Clustered-WAN requires fewer agents 
than the LAN. The WAN is in the middle. This result  can 
be explained by the difference in the latencies that exist in 
each network topology. The latency of inter-LAN 
communication varies more than intra-LAN latency. T he 
Clustered-WAN is a mixture of LAN and inter-LAN 
communication, resulting in the biggest time gap be tween 
nodes. Under this biased time gap, some agents spen d 
their time on a few nodes while others can cover re latively 
more nodes during the same given amount of time. No tice 
that there is no difference resulting from using different 
algorithms in the LAN. The result says that in the LAN 
configuration, the complex agent planning algorithm does 
not affect the performance. Thus, in this case, the simplest 
way to deploy agents may be to send an agent to eac h 
node. 



In all cases, BYKY2 performs slightly better than 
BYKY1. They differ in how they find the next node t o 
visit from the current position. BYKY1 always selec ts the 
farthest node from home, while BYKY2 selects the 
nearest node from the current node. In the LAN 
configuration, both algorithms look similar. However, 
they show different behaviors between the WAN and 
Clustered-WAN configurations. The information on the 
distance of a node from home alone may not be suffi cient 
for the calculation, since the new node may not be close to 
the current node, resulting in longer travel time f or the 
new distance. Consequently, BYKY1 always shows 
performance worse or equal to that of BYKY2. In a 
network with n nodes, BYKY1 has time complexity 
O(nlogn), while for BYKY2 this is O(n2logn). As the 
network size grows, the gap in algorithm execution time 
grows. In contrast, Table 4 shows that as the numbe r of 
nodes increases, the difference between those two 
algorithms decreases. Thus, we may be able to use 
BYKY1, the cheaper one, in certain configurations. 

Figure 5 shows the required number of agents for th ree 
different algorithms: BYKY1, BYKY2, and Worst. The 
numbers of agents of BYKY1 and BYKY2 are 35% and 
46% fewer than for the Worst case on average. 
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The calculated routing costs are depicted in Figure  6. 

BYKY1 and BYKY2 reduce the cost down to 15%. An 
85% reduction in total routing cost is a significant 
enhancement in agent planning technology. In partic ular, 
these performance enhancements can be obtained by 
allowing only a few seconds before launching the ag ents. 
The computation times for the algorithms are indicated in 
Table 5. It shows that BYKY1 and BYKY2 spend 3.43 
and 5.92 seconds respectively for the 300-node Clustered-
WAN configuration. Compared to the performance a ta sk 
can attain, these time consumptions are acceptable in 
every kind of agent planning. As indicated in Figur e 6, the 
results of BYKY1 and BYKY2 are very similar to each  
other, since the experiment is performed under Clus tered-
WAN and Complex query-type conditions. 
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Figure 6. Comparison of the costs 
 

# of nodes 10 20 30 40 50 60 70 80 90 100 

BYKY1 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.10 0.13 

BYKY2 0.00 0.00 0.01 0.02 0.03 0.05 0.08 0.12 0.17 0.23 

# of nodes  110 120 130 140 150 160 170 180 190 200 

BYKY1 0.16 0.21 0.27 0.33 0.42 0.52 0.62 0.74 0.88 1.03 

BYKY2 0.30 0.37 0.50 0.58 0.75 0.90 1.06 1.29 1.50 1.75 

# of nodes  210 220 230 240 250 260 270 280 290 300 

BYKY1 1.19 1.38 1.57 1.76 2.01 2.26 2.49 2.79 3.07 3.43 

BYKY2 2.06 2.40 2.70 3.05 3.48 3.93 4.36 4.86 5.42 5.92 

Table 5. The planning time of BYKY1 and BYKY2 

In the near future, according to the fruits of the current 
research on mobile agent technology, a great many 
network applications will be designed and run using  
mobile agents. In this world, as extracted from Fig ure 6, it 
is clear that the suggested MAP methods can reduce 
tremendously the burden on the network of the heavy  
traffic caused by so many moving agents. 
 

6. Conclusions 
 

We proposed two MAP algorithms that can be used in 
a distributed information retrieval system that uses mobile 
agents. By simulations, we showed that a significan t 
improvement has been made by the proposed cost-
effective MAP algorithms. We know the minimum 
execution time can be obtained when an agent is dep loyed 
for each node. The proposed planning algorithms try  to 
find the minimum number of agents, and the total ro uting 
cost consumed by those agents while preventing the total  
execution time from exceeding the minimum. In most 
cases, algorithm BYKY2 found near-optimal solutions  in 
the number of agents. These solutions drastically c ut down 
the total computation time of the information retri eval 
system using mobile agent technology. 

Experimental parameters were the combinations of 
network topology, the query type for information re trieval 
on each node, and the number of nodes. The results show 
that when all the nodes are in a local area network , 
regardless of the degree of the problem's complexity, the 
required number of agents was almost the same as th e 
number of nodes. Consequently, complex planning 
algorithms do not have a significant effect on the 
performance in this configuration. In this particul ar case, a 



good strategy might be launching an agent on each n ode. 
In all other cases, as the computation time of a no de grows, 
and/or the network latencies are not uniformly dist ributed, 
more precise algorithms such as BYKY1 and BYKY2 are  
highly recommended. 

In our experiments, we assumed that the sizes of 
mobile agents were fixed on each node. We can calcu late 
the latency values including the time needed to transmit 
the agents. If the size of a mobile agent is being increased 
while retrieval operations are performed, then the 
effective bandwidth varies from link to link. Since  this 
problem is included in the several considerations, we have 
prepared future works include various planning 
mechanisms. 
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