

Cost Effective Mobile Agent Planning for Distribute d Information Retrieval

Jin-Wook Baek, Jae-Heung Yeo, Gyu-Tae Kim, Heon-Young Yeom
School of Computer Science and Engineering

Seoul National University
{jwbaek, jhyeo, gtkim, yeom}@dcslab.snu.ac.kr

Abstract

The number of agents and the execution time are two
significant performance factors in mobile agent pla nning.
Fewer agents cause lower network traffic and consum e
less bandwidth. Regardless of the number of agents used,
the execution time for a task must be kept minimal, which
means that use of the minimal number of agents must not
impact on the execution time unfavorably. As the
population of the mobile agent application domain grows,
the importance of these two factors also increases.

After careful review of these two factors, we propo se
two heuristic algorithms for finding the minimal number
of traveling agents for retrieving information from a
distributed computing environment, while keeping th e
latency minimal. Although agent planning, specifica lly
Mobile Agent Planning (MAP), is quite similar to th e
famous Traveling Salesman Problem (TSP), agent
planning has a different objective function from th at of
TSP. TSP deals with optimal total routing cost, whi le
MAP attempts to minimize the execution time to complete
tasks of information retrieval. In this paper, we s uggest
the cost-effective MAP algorithms, BYKY1 and BYKY2,
which can be used in distributed information retrie val
systems to find the factors mentioned above. At the end of
each algorithm, 2OPT, a well-known TSP algorithm, is
called to optimize each agent's local routing path.
Experimental results show that BYKY2 produces near
optimal performance. These algorithms are more real istic
and applicable directly to the problem domains than
those of previous works.

Keywords: Mobile Agents, Mobile Agent Planning,
Mobile Computing, Distributed Agent System, Distrib uted
Information Retrieval

1. Introduction

Mobile agent technology can reduce network traffic,
overcome network latencies, and enhance robustness and
fault-tolerant capabilities of distributed applications [1][6].
One of the major potential application areas for mo bile
agents is information retrieval, which involves acc ess to a

huge amount of data across a network [13][14][15].
Instead of transmitting data across the network, an agent
migrates to the host where the database is located,
performs its task there, and then returns to the or iginal
host bearing a result. Thus, the mobile agent can u tilize
the bandwidth of the network much more efficiently than
can be achieved by accessing the distributed database
remotely using a direct connection. The total compu tation
time taken can be shortened, especially when data
transmission is the bottleneck of the task [2][3][11][16].
In this domain, information is spread over several hosts
and it is now common for these hosts to be geograph ically
separated [9][10]. Should the mobile agents be orde red to
retrieve information in an information retrieval system, all
the pertinent nodes have to be specified, and these nodes
must be fully covered.

The number of agents and the execution time are two
significant performance factors in mobile agent pla nning.
Using fewer agents causes lower network traffic and
consumes less bandwidth. Agents consume network
bandwidth when they travel over the designated set of
nodes. Badly scheduled agents’ itineraries can caus e
longer execution times as a result of higher routin g costs.
The number of agents created for a task also influences
the total routing cost. Clearly, the greater the number of
agents created for a task, the higher the overall r outing
cost. In order to reduce this overhead, as well as to
provide better performance, agents must be schedule d
before they are sent. Research has been carried out on
information retrieval and agent planning. We will f ocus on
agent planning techniques in information retrieval that we
call Mobile Agent Planning (MAP).

In some papers such as [12], MAP has been recognize d
as a Traveling Salesman Problem (TSP). It is claime d that
if the agent's task is to visit all the nodes, then the problem
is reduced to the classical TSP, which is known to be NP-
hard. However, TSP and MAP are different in that TS P
deals with the optimal total routing cost with a given
number of agents, whereas MAP attempts to minimize the
execution time to complete the information retrieva l.
Another difference is that agents can visit any nod e more
than once in MAP, but normally not in TSP. Being
different from [5] and [11], where "succeed-stop" a gent

behavior is used, we deal with "full-visit" behavio r, in
which the planning covers all the nodes to be visit ed.

The number of agents for a task should not be fixed ,
otherwise a trade-off between performance and routing
cost cannot be made, and consequently, the applicat ion
system would not be flexible. Instead, we try to fi nd the
minimum number of agents required, while maximizing
the performance. These two objectives are extremely
important in mobile agent systems, since the whole system
must satisfy both conditions: faster execution time , and
lower network traffic caused by agents.

Instead of employing unrealistic assumptions to sol ve
the problem in polynomial time, it is preferable to try to
find reasonable heuristic solutions even under the NP-hard
conditions. In this paper, we suggest two cost-effective
MAP algorithms named BYKY1 and BYKY2. They can
be used in distributed information retrieval system s to find
the two performance factors. Although not a primary goal,
total routing cost is still important in MAP proble ms,
since it decides the traveling time of an agent all ocated in
the local network. Thus, it is desirable to tackle the
routing cost to a certain degree. This is the reaso n that
2OPT, a simple TSP algorithm, is employed in the
proposed algorithms. It optimizes each agent's loca l
routing path. The experimental results show BYKY2
produces a near optimal solution. Adopting these
algorithms, the information retrieval system can retain the
best performance while achieving a minimum routing cost
with the minimum number of agents.

In Section 2, related works are described. Section 3
and Section 4 describe the cost-effective MAP problem
and its algorithms, i.e., BYKY1, and BYKY2,
respectively. In Section 5, experimental results are
presented and analyzed, and the paper’s conclusion is in
Section 6.

2. Related Works

Until recent years, the MAP problem has not been
focused on by many researchers. Simply, it has been
regarded as an ordinary routing problem such as the TSP.
The TSP is clearly NP-hard [8]. Efforts to solve MAP
have been made using greedy methods, dynamic
programming, etc. To reduce the agent planning prob lem
into greedy or dynamic programming, many assumption s
had to be made.

Careful consideration must be given in employing th e
assumptions, since they limit the applicability and
extensibility of the idea. Brewington et al. [5] formulate a
method of MAP, namely the Traveling Agent Problem
(TAP), which is analogous to the TSP [7], to decide the
sequence of nodes to visit to minimize the total ex ecution
time until the desired information is found. This formula
denotes that the agent has to return to the home no de if at

anytime during its tour success occurs. We call thi s
succeed-stop behavior. The other important agent
behavior that came from TSP is making, at the most, one
visit, which means the agents never revisit nodes.

Resource allocation is essentially an allocation
problem. Moizumi [17] explores how agents can
efficiently spend their time traveling throughout t he
network completing sets of tasks. He poses the prob lem as
a traditional ''traveling salesman'' problem in an
environment where latencies, possibly stochastic,
represent distances. While the TSP is NP-hard, Moiz umi
uses dynamic programming to solve the problem in
polynomial time by assuming that latencies are cons tant.

While not directly related to mobility, Wellman et al.
use dynamic programming to derive an algorithm to f ind
the shortest stochastic cost path through a network [10].
Their algorithm could be applied to Moizumi's probl em if
the sequence of the tasks to be performed is known.
Additionally, Wellman et al. augment the algorithm to
allow path refinements as the algorithm's user trav els.

3. The Cost-Effective Mobile Agent
Planning(CE-MAP) Problem

Table 1 summarizes the notation used in this paper.

Symbols Description
N Number of nodes excluding the home node

r Number of mobile agents employed for a task

H Home node

δ Execution time to complete a task

h1,h2,…,hn Node identifiers

A1,A2,…,Ar Agent identifiers

tour Sequence of nodes visited by an agent
Tour(Ai)

tour of agent Ai, e.g., (i1,i2,…ik) where i j, 1≤ j≤k
is a node index and let (i1,i2,…ik) be tour S i

Comp(hi) Computation time at node hi

Ls(hi,hj) Shortest latency between nodes hi and hj

Union(Si,...,Sj)
Concatenation of tours, where Si,...,Sj represent
tours

TourT(Si) Routing time, namely execution time, for tour S i

First(Si) First entry of tour S i, i.e., i1

Last(Si) Last entry of tour S i, i.e., ik

Table 1. Notations used in this paper.

We introduce three important definitions in Table 1 as
follows:

Definition 1 (The tour of an agent: Tour(Ai)) Tour(Ai) is
the tour of agent Ai, which consists of all the nodes to be
visited for processing an agent's task in order .

Definition 2 (The smallest latency: Ls(hi,hj)) Ls(hi,hj) is
the smallest latency between nodes hi and hj, which is
found by evaluating the shortest paths[8] between a ll pairs.

Definition 3 (The tour time: TourT(S))
=)(STourT

)(

)(

..........)2,1(

.....................)(

)),2(),1(())2(,())1(,()2()1(

),(),(*2 111

b

a

SSSif

hSif

SLastSFirstLsSLastHLsSFirstHLsSTourTSTourT

hComphHLs





=
=

+−−+
+

U

where S, S1, and S2 represent tours.

Figure 1(a) explains the definition 3-(a). Figure 1 (b)
represents the merging of two tours, S1 and S2, into S,
where Last(S1) = i k, Last(S2) = i k+1. Tour S consists of
two sub-tours, S1 and S2. Thus, TourT(S) is defined by the
addition of all the latencies from H, i1, …, in, H, and the
computation times at each node. If S1 and S2 are merged
then TourT(S) has to be reconfigured in accordance with
definition 3-(b).

Figure 1. A tour and merging tours

3.1. Problem definition

We assume that a MAP module knows the network

statistics and the history via a network monitoring service.
This service enables mobile agents to acquire best route
information for the task. The mobile agent problem can be
described as follows:

Mobile Agent Planning Problem - There are n+1
nodes, (H,h1,h2,h3,…hn), where H is the home node and
the other numbers are node indexes. Each node has a
computation time required for a mobile agent to
perform the task at node hi. Latencies for the mobile
agent to move between each node hi and hj are also
known. For the home node H, the computation time at
H, i.e. tH, is equal to zero. The mobile agent problem is
to minimize the execution time δ, and the number of
mobile agents r, to successfully complete the task.

As expressed below, the execution time(δ) can be
defined by the longest routing time(TourT) among all the
nodes an agent can visit. This comprises network la tency
from home (H) to the node (i) plus the execution time on
it.

nihTourTMax i ≤≤= 0)},({δ)1(

A solution to the MAP problem is to find a sequence of
agents to visit the nodes; this solution consists o f the
minimum total execution time and the number of agents
needed. This is a considerably different approach f rom
that of [11].

Two important objectives in MAP are: 1) the minimum
execution time; and 2) the least network bandwidth
consumed by agents. The minimum execution time for a
task is not smaller than that of a special case whe n n
agents are sent to n different nodes. Therefore, it totally
depends on the node that has the largest sum of lat ency
and computation time. The number of agents affects
network bandwidth. Therefore, the number of agents for a
task cannot be fixed, otherwise no trade-off betwee n
execution time and routing cost is possible, and
consequently, the system would not be flexible. The refore,
we try to find the minimum number of agents we need to
prepare just before sending the agents, while achie ving the
minimum execution time for a task.

Our goal is to decide the sequence of nodes for eac h
mobile agent to visit, the minimum number of agents
needed, and the minimum execution time, i.e., δ, for a task.
The CE-MAP is formally defined as follows.

Cost-Effective MAP:

riATourTourTwrMinimize
ri

i ≤≤≤+ ∑
≤≤

1 ,))((
1

δ)2(

Subject to
riATourTourT i ≤≤≤ 1 ,))((δ)3(

jiATourATournATour ji

r

i
i ≠==

=

,)()(,|)(|
1

φIU)4(

nihTourT i ≤≤= 1)),(max(δ)5(

In expression (2), let w be a value larger than the total
routing cost, namely the sum of the tour times all of the
agents that appeared in the second term of (2). Therefore,
expression (2) has two targets: 1) the minimum number of
agents; and 2) the minimum overhead, i.e., the total
routing cost. The lines from (3) to (5) are constraints fo r
this objective function. In expression (3), the routing co st
of each agent is always smaller than this minimum,
namely δ. This means that a given task can always be
completed within the minimum, which is determined by
the node with the largest sum of latency and computation
time. Expression (4) requires that each node be processed
exactly once. Since this problem is NP-hard, we must
develop cost-effective solutions based on heuristics.

Figure 2(a) shows a network configuration that can be
partitioned into two parts. The weight of an edge
represents the expected latency for the connection
between a pair of nodes. The computation time on a node

appears on the corresponding node. The minimum
execution time is never smaller than 50 ms , since the node
h1 has the maximum routing cost of the configuration. The
execution time for node h1 is 50 ms (=10+30+10),
whereas the costs for nodes 2 and 3 are 21 ms and 25 ms,
respectively. Here, the minimum number of agents fo r the
example is two. The first agent covers node h1 as shown in
Figure 2(b), and the second agent covers nodes h2 and h3
as shown in Figure 2(c). The total execution time i s 88 ms
(=50+38). Note that the sequence in the tour taken by the
second agent is (H,h3,h1,h2,H). Due to usage of the
shortest path over all pairs, the second agent makes use of
a bypass rather than the direct connection between node h2
and h3. Thus, Tour(A1) = (h 1), and Tour(A2) = (h 3,h2).

Figure 2. An example network configuration

4. The Proposed Planning Methods

In this chapter, we suggest two cost-effective MAP
methods in detail. Assuming that such network stati stics as
the latency and bandwidth of the links between host s, and
the load on each host are collected by a network
monitoring module in the system, we could obtain al l the
latencies between existing links. We assume that th e
network latencies vary. We also assume that the age nts are
created only at home and are not cloned in other no des.
We do not consider any probability of success in
retrieving the required data at each node, as was d one in
[11].

4.1. Preprocessing: all pairs shortest path

One of our goals is to find the lower bound of
execution time. The number of participating agents must
not affect this lower bound. The fastest way to com plete a
task is to send agents one by one to each node
simultaneously. Then the execution time depends tot ally
on the slowest link between a node and home. The time
value comprises the network latency and the computa tion
time. How can we find the latencies of all the poss ible
pairs of nodes? This is not a simple job, since we have to
search all the combinatorial links of any two selec ted
nodes. Without this information, there is no way to find

the lower bound of the execution time. To get the
latencies of all pairs of nodes, our algorithms, be fore
entering the main body, process the all-pairs short est-path
algorithm, and construct a shortest-latency network graph.
Refer back to Figure 2(c). The graph shows a bypass of an
agent. Although the latency on the direct link betw een
nodes h2 and h3 is 100 ms , the agent is able to take an
indirect tour of (H,h3,h1,h2,H), instead of (H,h3,h2,H). The
cost of the former is 38 ms while the cost of the latter is
128 ms . This process is required as a pre-processing stag e
before the start of our algorithms.

4.2. The algorithms

Providing that all the smallest latency information
between any two nodes hi and hj, Ls(hi,hj), is available as
described in the previous section, the algorithm pr oceeds
as follows:

1. Sort the nodes in decreasing order of the routing
time of each node hi, which is TourT(h i).

2. Set the threshold δ, with the execution time of the
first node in the sorted list.

3. Partition the given network into several parts b y
gathering nodes so that the execution time of each
part does not exceed the threshold and build a
routing path for each partition.

4. Run a TSP algorithm to optimize each routing pat h.
5. Allocate and send an agent for each partition.

We developed two algorithms named BYKY1 and
BYKY2 that perform the same task, but use a slightl y
different partitioning (step 3) method. They are di fferent
in that the latter is more dynamic than the former. BYKY1
tries to find the next possible partition by calcul ating all
the latencies always from home, whereas BYKY2
searches the next node from the current node where the
agent resides. The first algorithm, BYKY1 is presented in
Figure 3. At the end of the algorithm, it calls a T SP
program. We use the 2OPT algorithm [4] because it is
simple and effective. It produces an asymptotically
optimal routing path for each given network partiti on. If
more than one node has the same TourT value, the
selection of the node is arbitrary.

Note that each node is ordered in decreasing order of
the execution time of each tour. BYKY1 estimates th e
agents' traveling time by adding the costs of the next
adjacent set of nodes in the sorted list. Exceeding the
threshold is not allowed in calculating the traveli ng time.
As described above, the threshold δ is the execution time
of the first node in the sorted list. The cost for each node
is the cost of the round-trip time from home. In contrast,
BYKY2 adds the cost of a different set of nodes. Th e
node selected by BYKY2 always has the minimum

traveling time from the last added node, not from h ome.
Thus, the results of these two algorithms may have
different routing paths for a given agent. Figure 4 is the
algorithm for BYKY2.

 Algorithm 1. The Planning Algorithm BYKY1

1 Phase 1. Sorting the nodes

2

Sort the nodes in terms of the tour time, TourT by
decreasing order

3

Let the sequence (h a1,ha2,ha3,…,han) as the resulting
sequence

4 δ = TourT(h a1)

5 Phase 2. Planning agents

6 for j = 1 to n
7 {
8 Tour(j) = phi
9 for k = j to n

10 {
11

if h ak is not “processed” and TourT(Union(A j,

(hak)) ≤ δ
12 Union(Aj,(hak));
13 mark h ak as “processed”
15 } // end of inner for-loop
16 if A j = φ terminate
17 } // end of outer for-loop

18 Phase 3. Optimization of Agent’s local path

19 For each agent A i

20 2OPT(Ai)

Figure 3. The BYKY1 algorithm

 Algorithm 2. The Planning Algorithm BYKY1

1 Phase 1. Same as the phase 1 in the Algorithm 1.

2 Phase 2. Planning agents

3 for j = 1 to n
4 {
5 Tour(Aj) = φ
6 Select “unprocessed” h ak where k is minimum
7 Union(Tour(Aj),(hak)); mark h ak as “processed”
8 while(TRUE)
9 {

10

sorts nodes in terms of {L s(hak,hal)|1 ≤ l ≤ n and
hal is “unprocessed”} by increasing order

11
let the sequence (h b1,hb2,…,hbm) be the resulting
sequence

12 previous_k = k
13 for x = 1 to m {
14 if TourT(Union(A j,hbx) ≤ δ {

15 Union(Aj,hbx); mark h bx as “processed”
16 find k where ak = bx
17 break for-loop
18 } // end of if
19 } // end of inner for-loop
20 if previous_k = k break while-loop
21 } // end of while-loop
22 if Tour(A j) = φ, terminate
23 } // end of outer for-loop

24 Phase 3. Same as the phase 3 in the Algorithm 1.

Figure 4. The BYKY2 algorithm

5. Simulation

5.1. Simulation environment

The simulation is based on a practical perspective of
the mobile agent environment for the distributed
information retrieval system, which means that all the
simulation measurements and assumptions are chosen for
surroundings that are more realistic. Network topol ogy
and computation time are the two major measurement
factors for the simulation. The network topology is one of
the following:

• All the nodes are located in a sub-network (LAN)
• Each sub-network includes exactly on node (WAN)
• Each sub-network includes more than one node
 (Clustered-WAN)

The network topology is related to the way we assign
the latencies to each pair of nodes in a network. When all
the nodes that agents must visit are in a local sub-net work
(LAN), we perceive that the standard deviation of t he
latencies that exists between each pair of nodes in the
network is very small. In this case, the only facto r we must
take into account is the computation time for the n odes.
Thus, the problem space is drastically reduced. In contrast,
if all the nodes are scattered over a wide area network
(WAN) such as the Internet, the latencies will be a rbitrary.
In this case, the search space of the problem would be
larger than that of the former. The last topology i s a
mixture of the two (Clustered-WAN). This topology
consists of several sub-networks distributed over a wide
area network. If we choose two nodes in this topolo gy,
they may be located in either the same sub-network or
different ones. Thus, the number of agents needed m ay be
related, but not necessarily so, to the number of sub-
networks. In summary, the latencies measured in the
experiment for all the different topologies are as listed in
Table 2.

Communication Type Average Latency Range
Intera-LAN 3ms ~ 15ms
Inter-LAN 15ms ~ 200ms

Table 2. Latency ranges

We can classify the computation behaviors into two

types: simple retrieval query, and complex query. S imple
retrieval query requires a small computation time.
Headline newsgathering is of this type. Complex query
such as meta-search requires a relatively large amo unt of
computation time. This type of retrieval requires a n
extensive search and summarizing process. Simple
retrieval query has a computation time range of 1~50 ms ,
whereas complex query consumes 500~10,000 ms. Table
3 shows the "Clustered-WAN" configuration. The
numbers of nodes are 13, 14, 15, and 16. They are
clustered into four subnets (clusters).

of Nodes # of Clusters Cluster Configurations

13 4 4+3+3+3
14 4 4+4+3+3
15 4 4+4+4+3
16 4 4+4+4+4

Table 3. Number of nodes and cluster configuration

The simulation was performed under the environment

described so far: three types of topology and two k inds of
query with four different numbers of nodes. Since the
optimal solution with more than 16 nodes requires a
tremendous amount of search space and time, and is
difficult to perform in reality, our experiment is performed
with a maximum of 16 nodes. Instead, with up to 300
nodes, the experiment is performed to find the numb er of
agents, the latency costs consumed by all the agents, and
the actual planning time by BYKY1 and BYKY2 for a
given task. This is compared with the worst-case
algorithm that launches as many agents as there are nodes.

The simulation was performed on three different kin ds
of machine: Sun Sparc 10; Intel Pentium III 500MHz with
64MB RAM; and one Intel Celleron 533MHz with 64MB
RAM. All the results gathered and presented from th ose
machines were averaged to reflect the average compu ting
environment. Note, that as the computing power incr eases,
the calculated performance definitely improves.

5.2. Simulation Results

Table 4 shows the number of agents and the total co st
required for each combinatorial configuration, as f ound by
three different algorithms: BYKY1, BYKY2, and
Optimal; number of nodes; network topology (LAN,
WAN, Clustered-WAN); and query type (Simple and
Complex).

The optimal solution represents the fact that the s imple
computation type requires more agents than that of the
complex one in the LAN configuration. This is becau se
the simple one consumes less time (1~50 ms) than the
complex one (500~10,000 ms). In this case, the total
computation time is evenly distributed. Since the t ask
must be completed under a fixed latency, the number of
agents is close to the number of nodes that provide
information retrieval services.

In contrast, when the computation time at each node is
large (complex query), the total computation time m ay
depend upon some nodes that take large computation
times. Then the agents, which cover the other nodes that
consume less time, can visit more nodes under the s ame
latency; thus, they require fewer agents.

BYKY1 BYKY2 OPTIMAL # of
nodes

Topo
logy

Query
Type #agens cost #agents cost #agents cost

Simple 12 2,720 12 2,720 12 2,720
LAN

Complex 9 73,706 9 73,725 9 73,699

Simple 10 5,735 7 4,756 7 4,635
WAN

Complex 8 56,661 7 56,226 7 56,010

Simple 9 4,319 8 4,056 6 3,295

13

Clustered
-WAN Complex 6 39,784 6 39,761 6 39,029

Simple 13 2,940 13 2,940 13 2,940
LAN

Complex 10 82,878 10 82,897 10 82,871

Simple 12 6,139 10 5,309 9 5,130
WAN

Complex 9 61,749 8 61,223 8 61,098

Simple 11 4,756 9 4,253 9 4,242

14

Clustered
-WAN Complex 7 44,399 7 44,092 7 43,568

Simple 14 3,165 14 3,165 14 3,165
LAN

Complex 7 58,955 7 58,897 7 58,868

Simple 11 6,903 9 5,639 7 4,851
WAN

Complex 10 80,581 9 79,981 9 79,550

Simple 10 5,128 9 4,658 9 4,512

15

Clustered
-WAN Complex 13 98,269 12 97,984 7 97,826

Simple 15 3,389 15 3,389 15 3,389
LAN

Complex 7 59,623 7 59,557 7 59,520

Simple 11 6,929 10 6,103 8 6,000
WAN

Complex 10 85,965 9 85,328 9 84,976

Simple 9 5,161 7 4,359 7 4,300

16

Clustered
-WAN Complex 13 99,771 12 99,688 12 99,618

Table 4. The number of agents and total cost

In general, the Clustered-WAN requires fewer agents
than the LAN. The WAN is in the middle. This result can
be explained by the difference in the latencies that exist in
each network topology. The latency of inter-LAN
communication varies more than intra-LAN latency. T he
Clustered-WAN is a mixture of LAN and inter-LAN
communication, resulting in the biggest time gap be tween
nodes. Under this biased time gap, some agents spen d
their time on a few nodes while others can cover re latively
more nodes during the same given amount of time. No tice
that there is no difference resulting from using different
algorithms in the LAN. The result says that in the LAN
configuration, the complex agent planning algorithm does
not affect the performance. Thus, in this case, the simplest
way to deploy agents may be to send an agent to eac h
node.

In all cases, BYKY2 performs slightly better than
BYKY1. They differ in how they find the next node t o
visit from the current position. BYKY1 always selec ts the
farthest node from home, while BYKY2 selects the
nearest node from the current node. In the LAN
configuration, both algorithms look similar. However,
they show different behaviors between the WAN and
Clustered-WAN configurations. The information on the
distance of a node from home alone may not be suffi cient
for the calculation, since the new node may not be close to
the current node, resulting in longer travel time f or the
new distance. Consequently, BYKY1 always shows
performance worse or equal to that of BYKY2. In a
network with n nodes, BYKY1 has time complexity
O(nlogn), while for BYKY2 this is O(n2logn). As the
network size grows, the gap in algorithm execution time
grows. In contrast, Table 4 shows that as the numbe r of
nodes increases, the difference between those two
algorithms decreases. Thus, we may be able to use
BYKY1, the cheaper one, in certain configurations.

Figure 5 shows the required number of agents for th ree
different algorithms: BYKY1, BYKY2, and Worst. The
numbers of agents of BYKY1 and BYKY2 are 35% and
46% fewer than for the Worst case on average.

���������������������
�� �� �� �� �� �� �� �� 	� ��� ��� ��� ��� ��� ��� ��� ��� ��� �	� ��� � �� ��� ��� ��� ��� ��� ��� ��� �	� ���
 ��
�������������

�� �� � �� �� � � � �!
 Figure 5. Comparison of the number of agents

The calculated routing costs are depicted in Figure 6.

BYKY1 and BYKY2 reduce the cost down to 15%. An
85% reduction in total routing cost is a significant
enhancement in agent planning technology. In partic ular,
these performance enhancements can be obtained by
allowing only a few seconds before launching the ag ents.
The computation times for the algorithms are indicated in
Table 5. It shows that BYKY1 and BYKY2 spend 3.43
and 5.92 seconds respectively for the 300-node Clustered-
WAN configuration. Compared to the performance a ta sk
can attain, these time consumptions are acceptable in
every kind of agent planning. As indicated in Figur e 6, the
results of BYKY1 and BYKY2 are very similar to each
other, since the experiment is performed under Clus tered-
WAN and Complex query-type conditions.

������������������������������������
�� �� �� �� �� �� �� �� 	� ��� ��� ��� ��� ��� ��� ��� ��� ��� �	� ��� � �� ��� ��� ��� ��� ��� ��� ��� �	� ���" #$ %#&'()*+,-./0/+12*34+5

67 87 9 67 87 : ; #<(=

Figure 6. Comparison of the costs

of nodes 10 20 30 40 50 60 70 80 90 100

BYKY1 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.10 0.13

BYKY2 0.00 0.00 0.01 0.02 0.03 0.05 0.08 0.12 0.17 0.23

of nodes 110 120 130 140 150 160 170 180 190 200

BYKY1 0.16 0.21 0.27 0.33 0.42 0.52 0.62 0.74 0.88 1.03

BYKY2 0.30 0.37 0.50 0.58 0.75 0.90 1.06 1.29 1.50 1.75

of nodes 210 220 230 240 250 260 270 280 290 300

BYKY1 1.19 1.38 1.57 1.76 2.01 2.26 2.49 2.79 3.07 3.43

BYKY2 2.06 2.40 2.70 3.05 3.48 3.93 4.36 4.86 5.42 5.92

Table 5. The planning time of BYKY1 and BYKY2

In the near future, according to the fruits of the current
research on mobile agent technology, a great many
network applications will be designed and run using
mobile agents. In this world, as extracted from Fig ure 6, it
is clear that the suggested MAP methods can reduce
tremendously the burden on the network of the heavy
traffic caused by so many moving agents.

6. Conclusions

We proposed two MAP algorithms that can be used in
a distributed information retrieval system that uses mobile
agents. By simulations, we showed that a significan t
improvement has been made by the proposed cost-
effective MAP algorithms. We know the minimum
execution time can be obtained when an agent is dep loyed
for each node. The proposed planning algorithms try to
find the minimum number of agents, and the total ro uting
cost consumed by those agents while preventing the total
execution time from exceeding the minimum. In most
cases, algorithm BYKY2 found near-optimal solutions in
the number of agents. These solutions drastically c ut down
the total computation time of the information retri eval
system using mobile agent technology.

Experimental parameters were the combinations of
network topology, the query type for information re trieval
on each node, and the number of nodes. The results show
that when all the nodes are in a local area network ,
regardless of the degree of the problem's complexity, the
required number of agents was almost the same as th e
number of nodes. Consequently, complex planning
algorithms do not have a significant effect on the
performance in this configuration. In this particul ar case, a

good strategy might be launching an agent on each n ode.
In all other cases, as the computation time of a no de grows,
and/or the network latencies are not uniformly dist ributed,
more precise algorithms such as BYKY1 and BYKY2 are
highly recommended.

In our experiments, we assumed that the sizes of
mobile agents were fixed on each node. We can calcu late
the latency values including the time needed to transmit
the agents. If the size of a mobile agent is being increased
while retrieval operations are performed, then the
effective bandwidth varies from link to link. Since this
problem is included in the several considerations, we have
prepared future works include various planning
mechanisms.

7. References

[1] Y. Aridor and M. Oshima. Infrastructure for mobile
agents: requirements and design. In Proc. on Int’l
Workshop on Mobile Agents , 1998.
[2] A. Athan and D. Duchamp. Agent-mediated message
passing for constrained environments. In USENIX Mobile
and Location-Independent Computing Symposium , 1993.
[3] S. Bandyopadhyay and K. Paul, Evaluating the
performance of mobile agent-based message
communication among mobile hosts in large ad hoc
wireless network. In Proc. of 2 nd ACM Int’l Workshop on
Modeling, Analysis and Simulation of Wireless and
Mobile Systems, August 1999.
[4] H. Braun. On traveling salesman problems by gen etic
algorithms. In Workshop on Parallel Problem Solving
from Nature , pages 129-133, 1990.
[5] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G.
Cybenko and D. Rus. Mobile agents in distributed
information retrieval, In Intelligent Information Agents ,
pages 355-395, 1999.
[6] Willian R. Cockayne and Michael Zyda. Mobile
Agents. Manning Publications Co., 1998.

[7] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Complet eness.
Freeman, 1979.
[8] Ellis Horowitz, Sartaj Sahni. Fundamentals of
Computer Algorithms. Computer Science Press, 1989.
[9] O. de Kretser, A. Moffat, T. Shimmin, and J. Zobel.
Methodologies for distributed information retrieval . In
Proc. of the Eighteenth Int’l Conference on Distrib uted
Computing Systems, pages 26-29, May 1998.
[10] L. Miller, J. Yang, V. Honavar, and J. Wong.
Intelligent mobile agents for information retrieval and
knowledge discovery from distributed data and knowl edge
sources. In Proc. of the IEEE Information Technology
Conference, 1998.
[11] K. Moizumi. Mobile Agent Planning Problems . PhD
thesis, Dartmouth College, 1998.
[12] K. Moizumi and G. Cybenko. The Traveling Agent
Problem. Mathematics of Control, Signals and Systems ,
January 1998.
[13] G. P. Picco, A. Fuggetta and G. Vigna.
Understanding code mobility. IEEE Transaction on
Software Engineering, January 1998.
[14] G. P. Picco, A. Carzaniga, and G. Vigna. Desig ning
distributed applications with mobile code paradigms . In
Proc. of 19 th Int’l Conf. on Software Engineering , July
1997.
[15] D. Rus, R. Gray, and D. Kotz. Autonomous and
adaptive agents that gather information. In AAAI '96
International Workshop on Intelligent Adaptive Agen ts,
August 1996.
[16] K. K. Sabnani, T. F. La Porta, T. Woo, and R.
Ramjee. Experiences with network-based user agents for
mobile applications. Mobile Networks and Applications ,
1998.
[17] M. P. Wellman, M. Ford, and K. Larson. Path
planning under time-dependent uncertainty. In Proc. of
the Eleventh Conference on Uncertainty in AI , pages 532-
539, August 1995.

