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Abstract

As a fundamental task in computer architecture research, performance comparison has been continuously
hampered by the variability of computer performance. In traditional performance comparisons, the impact
of performance variability is usually ignored (i.e., the means of performance observations are compared
regardless of the variability), or in the few cases directlyaddressed witht-statistics without checking the
number and normality of performance observations. In this paper, we formulate a performance comparison as
a statistical task, and empirically illustrate why and how common practices can lead to incorrect comparisons.

We propose a non-parametric Hierarchical Performance Testing (HPT) framework for performance com-
parison, which is significantly more practical than standard t-statistics because it does not require to collect
a large number of performance observations in order to achieve a normal distribution of sample mean. In
particular, the proposed HPT can facilitate quantitative performance comparison, in which the performance
speedup of one computer over another is statistically evaluated. Compared with the HPT, a common practice
which uses geometric mean performance scores to estimate the performance speedup has errors of8.0%

to 56.3% on SPEC CPU2006 or SPEC MPI2007, which demonstrates the necessity of using appropriate
statistical techniques. This HPT framework has been implemented as an open-source software, and integrated
in the PARSEC 3.0 benchmark suite.

Index Terms
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I. INTRODUCTION

A fundamental practice for researchers, engineers and information services is to compare the
performance of two architectures/computers using a set of benchmarks. As trivial as this task may
seem, it is well known to be fraught with obstacles, especially selection of benchmarks [1], [2],
[3] and non-deterministic performance [4]. In this paper, we focus on the issue of non-deterministic
performance. The variability can have several origins, such as stochastic architecture+software be-
havior [5], [6], performance observation bias [7], or even applications themselves. Non-deterministic
performance can be easily observed by repeated performanceobservations. For instance, the geometric
mean performance speedups, over an initial baseline run, of10 subsequent runs of SPLASH-2 on
a commodity computer (Linux OS, 4-core 8-thread Intel i7 920with 6 GB DDR2 RAM) are 0.94,
0.98, 1.03, 0.99, 1.02, 1.03, 0.99, 1.10, 0.98, 1.01.

From a statistical viewpoint, the non-deterministic performance of a computer is a random variable
obeying a certain probability distribution calledperformance distribution. Accordingly, measuring the
performance of a computer can be viewed as a process thatstatistically samplesthe performance
distribution of the computer. We argue thatthe performance comparison of two computers can
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be statistically formulated as the comparison between their performance distributions based on
(statistical) performance sampling. By analyzing and summarizing the collected performance samples,
one may claim that “whether one computer outperforms another”, but reliability of such a comparison
result may severely be hampered by the non-deterministic performance of computers. Even when
two computers/architectures have fairly different performance, such non-determinism can still make
the comparison (e.g., estimating the performance speedup of one computer over another) confusing.
Incorrect comparisons can, in turn, affect research or acquisition decisions, so the consequences are
significant.

A scientific way of addressing the impact of non-deterministic performance is to compute the
confidence for a comparison result. Statistically, the confidence quantitatively specifies how reliable
a proposition is, which is usually a real number in the interval [0, 1]. A larger confidence implies that
the corresponding proposition is more reliable. In order toshow the importance of confidence, here
we present an example in the context of performance comparisons of computers. To be specific, the
performance speedup of one computer over another is traditionally obtained by comparing the geo-
metric mean performance of one computer (over different benchmarks) with that of another, a practice
adopted by SPEC.org [1]. Following this methodology, the performance speedup of PowerEdge T710
over Xserve on SPEC CPU2006, estimated by the data collectedfrom SPEC.org [1], is3.50. However,
after checking this performance speedup with the Hierarchical Performance Testing (HPT) technique
suggested in later parts of this paper, we found that the confidence of such a performance speedup
is only 0.31, which is rather unreliable (≥ 0.95 is the statistically acceptable level of confidence). In
fact, the HPT technique reports that the reliable performance speedup is2.24 (with a confidence of
0.95), implying that the conclusion made by comparing geometricmean performance of PowerEdge
T710 and Xserve brings an error of56.2% for the quantitative comparison.

The above example shows how confidence plays a critical role in the performance comparison
of computers. Nevertheless, we observe that few computer architecture studies yet acknowledge
the importance of confidence for performance comparisons and observations: among 521 papers
surveyed at ISCA (194 papers, 2006–2010), HPCA (158 papers,2006–2010) and MICRO (169
papers, 2006–2009), only 28 papers (5.4%) resort to confidence estimates in order to assess the
variability of performance observations, only 26 (5%) relyupon confidence interval, and only 3
(0.57%) uset-test. In the meantime, some wrongful practices has also plagued the usage of confidence.
For example, parametric statistical techniques like confidence interval andt-test require the sample
mean of the performance observations to be distributed normally, which must be guaranteed by
either a normal performance distribution or a sufficiently-large number of performance observations.
However, such techniques are often incorrectly used when neither of the above preconditions holds.
Such practices may potentially bias performance comparisons, and consequently, sometimes leads to
incorrect decisions.

In this paper, we provide a novel statistical interpretation to performance comparisons of computers,
and review preconditions under which the traditionalt-statistics work correctly. Such preconditions
are carefully evaluated by experiments and data analysis inthe context of computer architecture
research, from which we are able to refine guidelines for correctly using these techniques in day-
to-day practices of performance comparisons. For scenarios that cannot be appropriately tackled
by parametric techniques, we suggest a Hierarchical Performance Testing (HPT) framework which
integratesnon-parametric Statistic Hypothesis Testssuch as Wilcoxon Signed-Rank Test [8], [9].
The most notable merit of the HPT, inherited from non-parametric statistics, is that it works even
when there are only a few performance observations which do not obey any specified distribution
(e.g., normal distribution). For a qualitative performance comparison, the HPT provides confidence
for a proposition like “computerA is faster than computerB”. For a quantitative performance
comparison, it provides the performance speedup of one computer over another as well as the
corresponding confidence. We empirically compare the HPT with a common practice (i.e., using
geometric mean performance measure in performance comparisons) in computer architecture research
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over performance data of commercial computer systems collected from SPEC.org [1]. Compared
with the HPT, the common practice which uses geometric mean performance scores to estimate the
performance speedup of one computer over another has errorsof 8.0% to 56.3% on SPEC CPU2006
or SPEC MPI2007.

In summary, the contributions of this paper are the following. First, we empirically highlight that
traditional performance comparisons can be unreliable because of the non-deterministic nature of
computer performance. As a result, we stress that every performance comparison should come with
a confidence estimate in order to judge whether a comparison result corresponds to a stochastic effect
or whether it is significant enough. Second, we formulate performance comparison as a statistical
task, and investigate in depth why intuitive solutions,t-statistics, are not applicable from a statistical
perspective. The investigation is rooted in intensive experiments or publicly-available performance
data of commercial computer systems. Third, we propose and implement the HPT framework based
on non-parametric statistics, which can provide a sound quantitative estimate of the confidence of a
comparison, independently of the distribution and the number of performance observations. This HPT
framework has been implemented as an open-source software [10], and integrated in the PARSEC
3.0 benchmark suite [11].

The rest of the paper is organized as follows. Section II-B formulates a performance comparison
as a statistical task, and reviews thet-statistics. Section III empirically checks preconditions of t-
statistics, and finds the cases in whicht-statistics are not applicable are quite common. Section IV
introduces the non-parametric hierarchical performance testing framework. Section V empirically
compares the HPT with traditional performance comparison techniques. Section VII reviews the
related work.

II. PERFORMANCE COMPARISON AS ASTATISTICAL TASK

In this section, we formulate performance comparisons of computers as a statistical task, and present
some basic concepts related to this task. Moreover, we also briefly review the classict-statistics in
the context of performance comparisons (of computers).

A. Basic Concepts

From a statistical viewpoint, the non-deterministic performance of a computer is a random vari-
able obeying a certain probability distribution calledperformance distribution. The performance
distribution assigns probability/probability density that the performance metric of a computer takes a
certain value when encountering a random application coming from another probability distribution
called “application distribution”. The application distribution specifies how likely an application is
executed on the computer. Figure 1 illustrates the relationship between a performance distribution
and an application distribution, where the benchmark suite(e.g, SPECint2006 and SPECfp2006)
utilized to evaluate the performance of the computer can be viewed as a representative sample of the
application distribution.

When comparing the performance of two computers, we are implicitly comparing the performance
distributions of two computers over the same application distribution. In theory, there are different
quantitative features to compare two distributions (e.g.,distribution mean or distribution median).
However, close-form density functions of performance distributions are often unknown, thereby
it is hard to analytically deduce such quantitative features. Fortunately, the above task can be
accomplished bystatistical sampling, a process that collects a number of performance observations1

of the performance distribution. The performance observations make up aperformance sampleof
the computer, which can be used to estimate theperformance measure. In practical performance
comparisons, the performance measure (e.g., sample mean) is an indicator of computer performance,

1A performance observation of a computer is the performance score of the computer measured in a run of an application.
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which, in our viewpoint, is an approximation to the corresponding quantitative feature (e.g., distribu-
tion mean) of the performance distribution. Figure 1 depicts the whole statistical task, where upper
blocks represent concepts visible to practitioners, and lower blocks represent hidden but underlying
statistical factors which support the statistical task.
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Fig. 1. Statistical performance comparison.

B. A Review tot-statistics

According to the Law of Large Numbers, if we have an infinite number of performance observations
for each computer, then the performance distribution of each computer as well as its quantitative
features can be accurately captured, and the performance comparison would become straightforward
and accurate. However, limited by the number of performanceobservations that we collect in practice,
performance sampling will always bring in stochastic error. Under this circumstance, it is necessary to
introduce a quantitative indicator calledconfidenceto judge whether a comparison result corresponds
to a stochastic effect or whether it is significant enough to accept.

In practice, the scopes of most commercial computers have never been restricted to specific
benchmark applications only, thereby a performance comparison result obtained on benchmarks shall
be generalizable to broader applications other than benchmarks. From a practical (but not rigorous)
viewpoint, the confidence indicates how likely the comparison result can be generalized to a new
application2. Hence, it is important not only to assess the confidence of a performance comparison,
but also to correctly evaluate this confidence.

Traditionally, t-statistics have long been considered to be powerful in estimating confidences of
performance evaluations of computers[12], [13]. Belonging to parametric statistics,t-statistics rely on
an assumption that data directly come from a specific type of probability distributions called normal
distributions, or can be characterized by normal distributions after certain data transformations.t-
statistics enable two famous statistical inference techniques calledt-test andt-distribution confidence
interval (t-confidence interval for short). This subsection briefly reviews the principle oft-statistics,
as well as preconditions under whicht-statistics correctly work.

Consider a sample{X1, . . . , Xn} with n observations of the same population distribution with
finite mean and variance. The sample meanX̄ and sample standard deviationS are defined by:

X̄ =
1

n
(X1+, . . . ,+Xn), (1)

S =

√

√

√

√

1

n− 1

n
∑

i=1

(Xi − X̄)2. (2)

2This is the case of cross-application comparison, where we care about the performance of each computer on multiple applications.
If talking about a uni-application comparison, the confidence indicates how likely the comparison result obtained on existing runs of
the same application can be generalized to more runs of the same application.
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Statistically,if X̄ obeys a normal distribution, then

T =

√
n(X̄ − µ)

S
(3)

obeys the student’st-distribution withn−1 degrees of freedom, whereµ is the mean of the population
distribution.

The famous paired two-samplet-test is based on the above fact, which directly tells us “oneis
significantly larger than another” or “there is no significant difference between the two”. It was thought
to be useful in performance comparisons of computers [13], because it compares the corresponding
performance of two computers on each benchmark, and summarizes performance gaps on different
benchmarks to statistically compare the mean performance of two computers. Consider two ordered
samples{A1, . . . , An} and{B1, . . . , Bn} obeying two population distributionsA andB, respectively.
Let Di (i = 1, . . . , n) be the difference betweenAi andBi, D̄ andSD be the sample mean and sample
standard deviation of{D1, . . . , Dn}, respectively. IfD̄ obeys a normal distribution, then

T =

√
nD̄

SD

(4)

obeys the student’st-distribution withn − 1 degrees of freedom. Eq. 4 can be viewed as a variant
of Eq. 3, whereX̄ in Eq. 3 is replaced bȳD here. With the abovet-statistics, paired two-sample
t-test statistically compares population means of distributionsA andB. In the context of performance
comparisons of computers,paired two-samplet-test requires that the sample mean of performance
gaps between two computers,D̄, must obey a normal distribution in order to applyt-statistics. In
practice, normally distributed̄D can be achieved with either small-sample or large-sample precon-
ditions:

Small-sample precondition: Performance distributions of both computers are normal;
Large-sample precondition: When performance distributions of one or both computers are
non-normal but are with finite means and variances, the Central Limit Theorem (CLT) states
that the sample mean performance of both computers approximately obeys normal distributions
when the sample sizen (number of performance observations) issufficiently large.

In the next section, we empirically study the above preconditions in the context of computer performance.

III. EMPIRICAL OBSERVATIONS

In this section, we empirically study whether small-sampleand large-sample preconditions oft-
statistics hold under different scenarios of computer architecture research. The central claim of this
section is thatt-statistics cannot be the de facto solution for performancecomparisons of computers.

A. Small-sample Precondition

The small-sample precondition oft-statistics states that the performance distribution of computer-
under-comparison should be normal. In this part, we check this precondition under both uni-application
and cross-application comparison scenarios.

1) Uni-application Performance Distribution:The performance of a computer on every application
is influenced by not only architecture factors (e.g., out-of-order execution, branch prediction, and
chip multiprocessor [14]) but also program factors (e.g., data race, synchronization, and contention
of shared resources [15], [16]). In the presence of these factors, the performance score of a computer
on a same application is usually non-deterministic [4]. Forexample, according to our experiments
using SPLASH-2 [2], the execution time of one run of a benchmark can be up to1.27 times
that of another run of the same benchmark on the same computer. Recent studies managed to
reduce performance variation and simultaneously improve the performance [17], or enforce computer
performance to be distributed normally [18]. Yet it is stillinteresting to empirically study the
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real probability distribution of non-deterministic computer performance, with which we may select
appropriate statistical techniques to facilitate the performance evaluation.
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Fig. 2. Estimating Probability Density Functions (PDFs) onEquake(SPEC CPU2000),Raytrace
(SPLASH-2) andSwaptions(PARSEC) by KPW (black curves above the grey areas) and NNF
(black curves above the white areas), from 10000 repeated runs of each benchmark on the same
computer.

In our experiments, we run both single-threaded (Equake, SPEC CPU2000 [1]) and multi-threaded
benchmarks (Raytrace, SPLASH-2 [2] andSwaptions, PARSEC [3]) on a commodity Linux work-
station with a 4-core 8-thread CPU (Intel i7 920) and 6 GB DDR2RAM. Each benchmark is
repeatedly run for10000 times, respectively. In each run,Equakeuses the “test” input defined
by SPEC CPU2000,Raytraceuses the largest input given by SPLASH-2 (car.env), andSwaptions
uses the second largest input of PARSEC (simlarge). Withoutlosing any generality, we define the
performance score to be the execution time.

To studyuni-applicationperformance distributions of the computer on different benchmarks, we
employ a statistical technique called Kernel Parzen Window(KPW) [19]. The KPW technique
estimates a performance distribution without assuming that the performance distribution is normal
or some specific distribution. Instead, it studies the real performance distribution in a Monte-Carlo
style, and directly estimates the Probability Density Function (PDF) via histogram construction and
Gaussian kernel smoothing. As the reference, we also employa simple technique called Naive
Normality Fitting (NNF) to process the same performance data. The NNF always assumes that
each performance distribution is normal, and directly usesthe mean and standard deviation of a
performance sample (with multiple performance observations) as the mean and standard deviation of
the normal performance distribution. By comparing PDFs obtained by two techniques, we can easily
identify whether or not a performance distribution obeys a normal law. Specifically, if the normal
distribution obtained by the NNF complies with the real performance distribution estimated by the
KPW, then the performance distribution obeys a normal law. Otherwise, it does not.

According to the experimental results illustrated in Figure 2, the normality does not hold for
the performance score of the computer on all three benchmarks, as evidenced by the remarkably
long right tails and short left tails of the estimated performance distributions forEquake, Raytrace
and Swaptions. Such observations are surprising but not counter-intuitive due to the intrinsic non-
determinism of computers and applications. In short, it is hard for a program to execute faster than
a threshold, but easy to be slowed down by various events, especially for multi-threaded programs
which are affected by data races, thread scheduling, synchronization order, and contentions of shared
resources.

As a follow-up experiment, we use a more rigorous statistical technique to study whether execution
times of the27 benchmarks of SPLASH-2 and PARSEC (using “simlarge” inputs) are distributed
normally, where each benchmark is repeatedly run on the commodity computer for10000 times
again. Based on these observations, the Lilliefors test (Kolmogorov-Smirnov test) [20] is utilized to
estimate the confidence that the execution time does not obeythe normal law, i.e., the confidence
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that the normality assumption is incorrect. Interestingly, it is observed that foreverybenchmark of
SPLASH-2 and PARSEC, the confidence that the normality assumption is incorrect is above0.95. Our
observation with SPLASH-2 and PARSEC is significantly different from the observation of Georges et
al. [21] that uni-application performance on single cores (using SPECjvm98) is distributed normally,
suggesting that the non-deterministic performance of multi-threaded programs is fairly different from
that of single-threaded programs.

2) Cross-application Performance Distribution:After studying performance distributions of computers
on single applications, we now consider performance distributions over multiple applications, which
are calledcross-applicationperformance distributions here. Traditionally, there have been assumptions
that performance distributions are normal [12] or log-normal [22]. In this part, we empirically evaluate
such assumptions. Table I presents performance scores (SPEC ratios) of a commodity computer
(BL265+, Intel Xeon X5670, 2.93 GHz) over SPEC CPU2006, where the data is collected from
the SPEC online repository [1]. It can be observed that the SPEC ratios of the computer on most
benchmarks are between 19 and 40. However, the SPEC ratios ona few benchmarks (e.g.,libquantum
andcactusADM) are remarkably high, which prevent the cross-applicationperformance distributions
from being distributed normally. Figure 3 validates that the cross-application performance distributions
of the computer are non-normal using the normal probabilityplot [23]. In each probability plot
presented in Figure 3, if the curve matches well the straightline, then the performance distribution
over the corresponding benchmark suite is normal; if the curve departs from the straight line, then the
performance distribution is not normal. Obviously, none ofthe figures shows a good match between
the curve and straight line, implying that performance distributions of the computer over SPEC
CPU2006, SPECint2006 and SPECfp2006 are not normal. As another piece of statistical evidence,
Lilliefors test [20] concludes that performance distributions of the computer over SPEC CPU2006,
SPECint2006 and SPECfp2006 are non-normal with a confidencelarger than0.95. The above data
analysis shows that the normality of performance distributions is vulnerable to positive performance
outliers (e.g., the remarkably high SPEC CPU2006 ratio of BL265+ onlibquantum). Statistically, the
existence of positive performance outliers implies that the corresponding performance distribution is
skewed and long-tailed, while a normal distribution shouldbe symmetric.

TABLE I
SPEC RATIOS OF BL265+ ON SPECINT2006 (TOP) AND SPECFP2006 (BOTTOM) [1].

SPECint2006 perlbench bzip2 gcc mcf gobmk hmmer
SPEC Ratio 25.9 19.5 26.8 50.4 23.9 47.6

SPECint2006 sjeng libquantum h264ref omnetpp astar xalancbmk
SPEC Ratio 26.6 992.8 37.8 23.6 24.3 39.3

SPECfp2006 bwaves gamess milc zeusmp gromacs cactusADM leslie3d namd dealII
SPEC Ratio 174.5 23.5 52.7 113.1 21.9 279.6 110.3 19.5 40.5

SPECfp2006 soplex povray calculix GemsFDTD tonto lbm wrf sphinx3
SPEC Ratio 33.2 30.3 29.8 73.1 25.0 262.0 49.1 53.1

Instead of directly assuming the normality of performance distributions, Mashey suggested an
alternative assumption that cross-application performance distributions are log-normal [22], i.e.,
performance observations are distributed log-normally3. Although a logarithm transformation can
alleviate the impact of performance outliers as well as the risk of using t-statistics, when the
performance of very few outliers deviates too much from the typical performance of a computer,
the log-normality may still fail to appropriately characterize the performance outlier. Hereinafter
we still take the commodity computer (BL265+, Intel Xeon X5670, 2.93 GHz) as an example, and
analyze whether its SPEC ratio is distributed log-normally. According to Fig. 3, the performance
distribution over SPECfp2006 is almost log-normal (the curve almost matches the straight line), but

3A random variablea is said to obey a log-normal distribution if its logarithmln a is distributed normally.
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Fig. 3. Graphically assessing whether performance distributionsof a commodity computer are normal
(normal probability plots [23], left figures) or log-normal(log-normal probability plots, right figures)
using natural logarithms of SPEC ratios of SPEC CPU2006, SPECint2006 and SPECfp2006.

distributions over SPEC CPU2006 and SPECint2006 are apparently not log-normal. That is because
after a logarithm transformation the SPEC ratio of the computer on the SPECint2006 benchmark
libquantumis still too large to be characterized by a normal distribution.

In summary, performance outliers have already been quite common in performance reports of
latest commodity computers, and have been significant enough to break the normality/log-normality
of computer performance. SPEC CPU2006 reports of most (if not all) commodity computers published
in 2012 at SPEC.org [1] clearly confirm existence of performance outliers. In the era of dark
silicon, this trend will become even more distinct, as specialized hardware accelerators designed for
specific applications may produce more significant performance outliers. Under this circumstance,
the normality cannot be a default assumption for performance distributions of computers.

B. Large-sample Precondition

So far we have empirically shown that the performance distributions of computers cannot be uni-
versally characterized by normal distributions. According to the large-sample precondition, however,
it is still possible to obtain a normally distributed samplemean of performance observations (in
order to applyt-statistics) given a sufficiently large number of observations, as guaranteed by the
Central Limit Theorem (CLT). The classical version of the CLT contributed by Lindeberg and Lévy
[24] states that, when the sample sizen is sufficiently large, the sample mean approximately obeys
a normal distribution. Nevertheless, in practice, it is unclear how large the sample size should be
to address the requirement of “a sufficiently large sample”.In this part, we empirically show that
the appropriate sample size for applying the CLT is usually too large to be compatible with current
practices in computer performance observations.
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In order to obtain a large number of performance observations, KDataSets [25] is used in our
experiments. A notable feature of KDataSets is that it provides 1000 distinct data sets for each of 32
different benchmarks (MiBench [26]), providing a total of 32,000 distinct runs. We collect detailed
performance scores (measured in Instruction-Per-Cycle, IPC) of a Linux workstation (with 3GHz Intel
Xeon dualcore processor, 2GB RAM) over 32,000 different combinations of benchmarks and data
sets of KDataSets [25]. With the 32000 performance scores, we estimate probability distributions of
IPC and IPC’s natural logarithm, which are illustrated in Figure 4. Clearly, both IPC and IPC’s natural
logarithm are not distributed normally, which well complies our discussions in previous subsections.
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Fig. 4. Probability Density Functions (PDFs) of the performance (left) and log-performance (right) of
Intel Xeon dualcore Linux workstation, estimated from KDataSets. The performance of the computer
is measured by the Instruction-Per-Cycle (IPC).
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Fig. 5. Percentage of successful normality approximation with respect to the sample size.

Now we study in detail what is a sufficient sample size for applying the CLT on the above
performance distribution. To be specific, for every fixed sample sizen ∈ {20, 40, 80, . . . , 980, 1000},
we conduct 100 trials and estimate the percentage of successful normality approximations among the
100 trials. In each trial, we collect10, 000 samples, each of which is comprised ofn performance
scores randomly selected out of the 32,000 performance scores (with replacement). As a consequence,
we get10, 000 observations of sample mean, which are sufficient to reliably identify whether the
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Fig. 6. Percentage of successful log-normality approximation with respect to the sample size.

sample mean is distributed normally. After that, we use a normality test (Lilliefors test) to detect
whether the sample mean is distributed normally at the significance level of0.05 (i.e., whether the
normality approximation is successful).

Fig. 5 depicts percentages of successful normality approximations with respect to different sample
sizes. Clearly, the sample mean is not distributed normallygiven a small (e.g.,n = 20, 40) sample
size. When the sample size grows to100, the chance that the sample mean is not distributed normally
is above70%. Even when the sample size grows up to500, the sample mean still takes a21% chance
to depart from the normality. The above observations imply that a sample with several hundreds of
performance observations is necessary to get a normally distributed sample (arithmetic) mean, at
least for the studied computer on this benchmark suite.

In addition, we also explore the sufficient sample size in order to approximate a log-normally
distributed sample mean. The experimental setting is the same to the one introduced above, except
that performance data of KDataSets are pre-processed by a logarithm transformation. We illustrate the
percentage of successful log-normality approximations inFig. 6. Compared with the percentage of
successful normality approximations illustrated in Fig. 5, the percentage of successful log-normality
approximations is much smaller under the same sample size. Surprisingly, the log-normality approx-
imations cannot be successful when the sample size is smaller than420. Even when the sample size
is 1000, the percentage of successful log-normality approximations is only 20%. An explanation to
such observations is that the logarithm transformation of data results in a distribution with larger
negative skew (refer to Figure 4 for the log-performance distribution with the long left tail),4 which
even differs more from a normal distribution (compared withthe original performance distribution).
Applying the CLT on such a skewed distribution may have to require a large sample size.

The common insight gained from the above experiments is thatthe number of performance
observations (i.e., sample size) for approximating normal/log-normal distributions with the CLT is
very large (e.g., several hundreds), thus can rarely be collected in day-to-day practices using only
20-30 benchmarks (with one to a few data sets each).

C. A Practical Example

We have empirically studied several fundamental statistical issues closely related to the effec-
tiveness of parametric techniques liket-test, and the key observation is that preconditions (normal
performance distributions or sufficiently large performance samples) required by such techniques may
not hold in computer architecture research. Here we offer anexample showing howt-test fails to
present a reasonable comparison result when neither of its preconditions holds.

4The logarithm transformation can be utilized to reduce the impact of outliers having extremelylarge values, but may even enhance
the impact of outliers having verysmall values.
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TABLE II
SPEC RATIOS OF BL265+ AND CELSIUS R550ON SPECINT2006 [1].

SPECint2006 perlbench bzip2 gcc mcf gobmk hmmer
BL265+ 25.9 19.5 26.8 50.4 23.9 47.6
CELSIUS R550 18.5 15.4 14.1 21.5 18.6 14.9

SPECint2006 sjeng libquantum h264ref omnetpp astar xalancbmk
BL265+ 26.6 992.8 37.8 23.6 24.3 39.3
CELSIUS R550 16.9 212.9 29.3 15.0 14.3 24.8

In this example, we compare the performance of BL265+ (IntelXeon X5670, 2.93 GHz) and
CELSIUS R550 (Intel Xeon E5440, 2.83Hz) over SPECint2006. The SPEC ratios of the computers,
collected from SPEC.org [1], are presented in Table II, respectively. Clearly, the performance distri-
butions of both computers are non-normal due to the outlier performance onlibquantum, and sizes
of both performance samples are only 12 (far from enough for applying the CLT). In other words,
preconditions required by pairedt-test do not hold. Voluntarily ignoring that fact, we incorrectly use
the pairedt-test, and get the conclusion “BL265+ does not significantlyoutperform CELSIUS R550
at the significance level0.05 (the confidence level0.95)”. This conclusion apparently contradicts the
straightforward fact that BL265+ outperforms CELSIUS R550onall 12 benchmarks of SPECint2006.
A detailed explanation to the failure oft-test is as following. In this example,t-test does a brute-force
normality fitting5 to a right-skewed non-normal performance distribution, and incorrectly stretches
the left part of the right-skewed distribution to achieve a symmetric distribution. In this process, the
large standard deviation originally contributed by thelibquantumperformance outlier is thought to
be symmetrically distributed at both left and right sides, and the left tail is elongated, which produces
an illusion that the computer even takes a high probability to have negative SPEC ratio. Such absurd
arguments eventually lead to the incorrect comparison result. In summary, it is important to correctly
use statistical techniques in performance comparisons.

IV. NON-PARAMETRIC HIERARCHICAL PERFORMANCE TESTING FRAMEWORK

One crucial branch of statistical inference is called Statistical Hypothesis Test (SHT). Generally
speaking, an SHT is a procedure that makes choices between two opposite hypotheses (propositions),
NULL (default) hypothesis and alternative hypothesis. TheNULL hypothesis represents the default
belief, i.e., our belief before observing any evidence, andthe alternative hypothesis (often the claim
we want to make) is a belief opposite to the NULL hypothesis. In performance comparison, a typical
NULL hypothesis may be “computerA is as fast as computerB”, and a typical alternative hypothesis
may be “computerA is faster than computerB”. At the beginning of an SHT, one assumes the NULL
hypothesis to be correct, and constructs a statistic (say,Z) whose value can be calculated from the
observed data. The value ofZ determines the possibility of observing the current data when assuming
the NULL hypothesis holds, which is critical for making a choice between the NULL hypothesis
and the alternative hypothesis. The possibility is quantified asp-value (or significance probability)
[27], which is a real value between0 and 1 that can simply be considered as a measure ofrisk
associated with thealternativehypothesis. Thep-value is an indicator for decision-making: when
thep-value is small enough, the risk of incorrectly rejecting the NULL hypothesis is very small, and
the confidence of the alternative hypothesis (i.e.,1 − p-value) is large enough. For example, in an
SHT, when thep-value of the NULL hypothesis “computerA is as fast as computerB” is 0.048, we
only have a 4.8% chance of rejecting the NULL hypothesis whenit actually holds. In other words,
the alternative hypothesis “computerA is faster than computerB” has confidence1−0.048 = 0.952.
Closely related to thep-value, significance levels act as scales of a ruler for thep-value (frequently-
used scales include 0.001, 0.01, 0.05, and 0.1). A significance levelα ∈ [0, 1], can simply be viewed

5When the sample size is small (< 30), fitting a normal distribution is achieved by fitting at-distribution.
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as the confidence level1−α. As a statistical convention, a confidence no smaller than0.95 is often
necessary for reaching the final conclusion.

Probably the most well-known parametric SHTs are the familyof t-tests. Rather than sticking to
the well-knownt-test, we introduce a Hierarchical Performance Testing (HPT) framework, which
does not dictate for small-sample or large-sample precondition ast-test.

A. General Flow

In computer architecture research, we often need to comparethe performance of two computers on
a number of benchmark applications, where each applicationis run for multiple times on a computer.
Designed for such comparison tasks, the HPT combines the performance comparisons at both uni-
application and cross-application levels. For each singleapplication, the HPT employs Wilcoxon
Rank-SumTest [9] to check whether the performance difference of two computers on that application
is significant enough (i.e., the corresponding significancelevel is small enough), in other words,
whether the observed superiority of one computer over another is reliable enough. Only significant
(reliable) differences, identified by the SHTs in uni-application comparisons, can be taken into account
by the comparison over different benchmarks, while those insignificant differences will be ignored
(i.e., the insignificant differences are set to0) in the comparison over different benchmarks. Based
on uni-application performance observations, the Wilcoxon Signed-RankTest [8], [9] is employed
to statistically compare the cross-application performance of two computers. Through these non-
parametric SHTs, the HPT can quantify confidences of performance comparisons. In this subsection,
the technical details of the HPT will be introduced.6

Let us assume that we are comparing two computersA andB over a benchmark suite consisting
of n benchmark applications. Each computer repeatedly runs each applicationm times (SPEC.org
setsm = 3 [1]). Let the performance scores ofA andB at their j-th runs on thei-th benchmark
be ai,j and bi,j respectively. Then the performance samples of the computers can be represented by
performance matricesSA = [ai,j ]n×m andSB = [bi,j ]n×m, respectively. For the corresponding rows of
SA andSB (e.g., theτ -th rows of the matrices,τ = 1, . . . , n), we carry out the Wilcoxon Rank-Sum
Test to investigate whether the difference between the performance scores ofA andB is significant
enough. The concrete steps of Wilcoxon Rank-Sum Test are thefollowing:
• Let the NULL hypothesis of the SHT be “Hτ,0: the performance scores ofA and B on theτ -th
benchmark are equivalent to each other”; let the alternative hypothesis of the SHT be “Hτ,1: the
performance score ofA is higher than that ofB on theτ -th benchmark” or “Hτ,2: the performance
score ofB is higher than that ofA on theτ -th benchmark”, depending on the motivation of carrying
out the SHT. Define the significance level beατ ; we suggest settingατ = 0.05 for m ≥ 5 and0.10
for the rest cases.
• Sort aτ,1, aτ,2, . . . , aτ,m, bτ,1, bτ,2, . . . , bτ,m in ascending order, and assign each of the scores the
corresponding rank (from1 to 2m). In case two or more scores are the same, but their original ranks
are different, renew the ranks by assigning them the averageof their original ranks7. Afterwards, for
A and B, their rank sums (on theτ -th benchmark) can be defined as:

Ra,τ =

m
∑

j=1

Rankτ (aτ,j), Rb,τ =

m
∑

j=1

Rankτ (bτ,j),

where Rankτ (·) provides the rank of a performance score on theτ -th benchmark.
• Case[m < 12]8: When the alternative hypothesis of the SHT isHτ,1, we reject the NULL hypothesis
and acceptHτ,1 if Ra,τ is no smaller thanthe critical value (right tail, Wilcoxon Rank-Sum Test)

6Users who are not interested in mathematical details of the non-parametric SHTs can omit the rest of this subsection.
7For example, if two scores are both50, and their original ranks are5 and6 respectively, then both of them obtain a rank of5.5.
8In statistics, whenm < 12, the critical values for Wilcoxon rank sum test are calculated directly. Whenm ≥ 12, the corresponding

critical values are often estimated by studying the approximate distribution of the rank sum.
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under the significance levelατ . When the alternative hypothesis of the SHT isHτ,2, we reject the
NULL hypothesis and acceptHτ,2 if Rb,τ is no smaller thanthe critical value under the significance
level α [28].
• Case[m ≥ 12]: Define two new statisticsza,τ andzb,τ as follows:

za,τ =
Ra,τ − 1

2
m(2m+ 1)

√

1

12
m2(2m+ 1)

, zb,τ =
Rb,τ − 1

2
m(2m+ 1)

√

1

12
m2(2m+ 1)

.

Under the NULL hypothesis,za,τ and zb,τ approximately obey the standard normal distribution
N (0, 1). When the alternative hypothesis of the SHT isHτ,1, we reject the NULL hypothesis and
acceptHτ,1 if za,τ is no smaller thanthe critical value (right tail, standard normal distribution) under
the significance levelα; when the alternative hypothesis of the SHT isHτ,2, we reject the NULL
hypothesis and acceptHτ,2 if zb,τ is no smaller thanthe critical value under the significance levelα
[28].

After carrying out the above SHT with respect to theτ -th benchmark (τ = 1, . . . , n), we are able
to assign the difference (denoted bydτ ) between the performance ofA and B. Concretely, if the
SHT acceptsHτ,1 or Hτ,2 with a promising significance level (e.g.,0.01 or 0.05), then we let

dτ = median{aτ,1, aτ,2, . . . , aτ,m} − median{bτ,1, bτ,2, . . . , bτ,m}, τ = 1, . . . , n.

Otherwise (if the NULL hypothesisHτ,0 has not been rejected at a promising significant level), we
let dτ = 0, i.e., we ignore the insignificant difference between the performance scores ofA andB.
d1, d2, . . . , dn will then be utilized in the following Wilcoxon Signed-RankTest for the performance
comparison over different benchmarks:
• Let the NULL hypothesis of the SHT be “H0: the general performance ofA is equivalent to that
of B”; let the alternative hypothesis of the SHT be “H1: the general performance ofA is better
than that ofB” or “H2: the general performance ofB is better than that ofA”, depending on the
motivation of carrying out the SHT.
• Rankd1, d2, . . . , dn according to an ascending order of their absolute values. Incase two or more
absolute values are the same, renew the ranks by assigning them the average of their original ranks.
Afterwards, for A and B, their signed-rank sums can be definedas:

RA =
∑

i:di>0

Rank(di) +
1

2

∑

i:di=0

Rank(di),

RB =
∑

i:di<0

Rank(di) +
1

2

∑

i:di=0

Rank(di),

where Rank(di) provides the rank of the absolute value ofdi, which was described above.
•Case[n < 25]9: When the alternative hypothesis of the SHT isH1, we reject the NULL hypothesis
and acceptH1 if RB is no larger thanthe critical value (one-side Wilcoxon Signed-Rank Test) under
the significance levelα; When the alternative hypothesis of the SHT isH2, we reject the NULL
hypothesis and acceptH2 if RA is no larger thanthe critical value under the significance levelα.
The critical values of Wilcoxon Signed-Rank Test are available in statistics books [28].
•Case[n ≥ 25]: Define two new statisticszA andzB as

zA =
RA − 1

4
n(n+ 1)

√

1

24
n(n+ 1)(2n+ 1)

, zB =
RB − 1

4
n(n + 1)

√

1

24
n(n+ 1)(2n+ 1)

.

Under the NULL hypothesis,zA andzB approximately obey the standard normal distributionN (0, 1).

9In statistics, whenn < 25, the critical values for Wilcoxon signed rank test are calculated directly. Whenn ≥ 25, the corresponding
critical values are often estimated by studying the approximate distribution of the signed rank sum.
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Hence, when the alternative hypothesis of the SHT isH1, we reject the NULL hypothesis and
acceptH1 if zB is no larger thanthe critical value (lower tail, standard normal distribution) under
the significance levelα; when the alternative hypothesis of the SHT isH2, we reject the NULL
hypothesis and acceptH2 if zA is no larger thanthe critical value under the significance levelα. For
the comparison over different benchmarks, the outputs of the HPT, including the comparison result
and its confidence, are finally presented by the above Wilcoxon Signed-Rank Test. Formally, given a
fixed significance levelα for the HPT, we utilizeConfidence(HPT : SA ≻ SB) ≥ r to represent the
following conclusion made by the HPT: “A outperformsB with the confidencer”, wherer = 1−α.

B. Statistical Performance Speedup Testing

So far we have shown how to carry out qualitative performancecomparisons with the HPT. In
addition to qualitative comparisons, in most cases we are more interested in quantitative comparison
results such as “ComputerA is more thanγ times faster than ComputerB”, whereγ ≥ 1 is defined as
thespeedup-under-test. Traditionally, such kind of arguments are often obtained directly by comparing
the means of performance scores with respect to computersA andB. Taking the SPEC convention
as an example, if the mean (geometric) SPEC ratios ofA is ten times that ofB, then one would
probably conclude that “A is ten times faster thanB”. Such a quantitative comparison is dangerous
since we do not know how much we can trust the result. Fortunately, the HPT framework offers two
solutions for tackling speedup arguments. The first solution requires us to specify the concrete value
of γ before the test. Afterwards, we shrink performance scores of computerA by transforming the
corresponding performance matrixSA to SA/γ (without losing generality, we employ normalized
performance ratio as performance score with respect to eachbenchmark, where a larger performance
score means better performance). Considering a virtual computer with performance matrixSA/γ, if
the HPT framework states that the virtual computer outperforms computerB with a confidencer,
then we claim “A is more thanγ times faster thanB with a confidencer”. In general, if we specify
a more (less) conservative speedupγ before speedup testing, the corresponding speedup argument
will have a larger (smaller) confidencer. Users should keep a balance between the speedup and the
corresponding confidence, so as to make a convincing yet not-too-conservative conclusion.

Algorithm 1: r-speedup testing

float speedup testing(r, SA, SB)
begin

float γ = 1;
booleanh = 1;
while h do

if HPT (SA/γ, SB) ≥ r then
h = 1;
γ = γ + 0.01;

end
else break;

end
return γ;

end

In many cases, instead of deciding a speedupγ before the statistical test, one would like to
know the largest speedup that results in a reliable comparison result (for a given confidencer). To
address this need, our HPT framework also offers an alternative way of estimating the speedup and
corresponding confidence. Guided by the above notion, we formally define ther-Speedup (computer
A over computerB, r-Speedup(A,B)) to be

sup

{

γ ≥ 1; confidence

(

HPT :
1

γ
SA ≻ SB

)

≥ r

}

.
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To be specific, ther-Speedup of computer A over computer B is the largest speedupof A over B
having a confidence abover. The algorithm of computing ther-Speedup is presented in Algorithm 1,
where the precision is set to 2 decimals, andHPT (X, Y ) presents the confidence that the computer
w.r.t. the performance sampleX outperforms the computer w.r.t. the performance sampleY . Given
the confidence levelr (e.g.,r = 0.95), the r-Speedup can be viewed as a quantitative indicator of
performance speedup with the guarantee of confidencer. Meanwhile, it can also act as a single-
number performance metric as the geometric mean, which willbe discussed in Section VI.

We contribute two implementations of the HPT, including an open-source software [10] and a
toolkit in the latest version of PARSEC benchmark suite (PARSEC 3.0 [11]). Users can easily use
them without acquiring the mathematical details.

C. An Example of Quantitative Performance Comparison

TABLE III
STATISTICAL QUANTITATIVE COMPARISON OF COMPUTERSX AND Y OVER SPLASH-2

(Speedup: 1.76).

S
X̃

Med. Stat. Diff. Rank Med. SY

Win. (dτ )
1.barnes 0.53 0.54 0.54 0.53 0.54 0.54 Y -0.50 10 1.04 1.00 1.05 1.04 1.03 1.04
2.cholesky 0.97 0.95 0.93 0.96 0.96 0.96 Y -0.03 3 0.99 1.00 0.98 1.01 0.99 0.98
3.fft 0.74 0.76 0.74 0.78 0.76 0.76 Y -0.27 6.5 1.03 1.00 1.03 1.02 1.05 1.03
4.fmm 1.07 1.03 1.05 1.02 1.05 1.05 Tie 0(0.01) 1.5 1.04 1.00 1.05 1.04 1.04 1.05
5.lu-con 1.29 1.26 1.27 1.27 1.25 1.27 X̃ 0.27 6.5 1.00 1.00 1.01 1.02 0.98 1.00
6.lu-ucon 1.46 1.48 1.38 1.53 1.55 1.48 X̃ 0.49 9 0.99 1.00 0.96 1.04 0.87 0.99
7.ocean-con 1.17 1.15 0.94 1.16 1.13 1.15 X̃ 0.17 5 0.98 1.00 0.91 1.00 0.98 0.86
8.ocean-ucon 1.95 1.98 1.92 1.93 1.93 1.93 X̃ 0.95 13 0.98 1.00 0.98 0.97 0.90 0.98
9.radiosity 1.01 1.01 1.01 0.99 1.01 1.01 Tie 0(0.01) 1.5 1.00 1.00 1.00 1.00 1.00 1.00
10.radix 2.47 2.51 2.53 2.44 2.11 2.47 X̃ 1.50 14 0.97 1.00 0.86 0.95 1.03 0.97
11.raytrace 1.41 1.39 1.43 1.21 1.37 1.39 X̃ 0.32 8 1.07 1.00 1.09 1.07 1.14 1.07
12.volrend 0.92 0.94 0.92 0.92 0.93 0.92 Y -0.08 4 1.00 1.00 1.00 1.00 1.00 1.00
13.water-ns 1.64 1.66 1.59 1.64 1.63 1.64 X̃ 0.69 11 0.95 1.00 0.95 0.84 0.93 0.96
14.water-sp 1.84 1.88 1.78 1.80 1.77 1.80 X̃ 0.80 12 1.00 1.00 1.02 0.98 0.87 1.04

In this subsection, the quantitative performance comparison of two commodity computers,X
(Linux OS, 4-core 8-thread Intel i7 920 with 6 GB DDR2 RAM) andY (Linux OS, 8-core AMD
Opteron 8220 with 64 GB DDR2 RAM) is presented as an example ofapplying the HPT. In our
experiments, each SPLASH-2 benchmark (8 threads) is repeatedly run 5 times on each computer,
using default workloads of SPLASH-2. By specifying the speedup-under-testγ to be1.76, we use the
HPT to test how reliable the proposition “ComputerX is more than1.76 times faster than Computer
Y ” is over SPLASH-2. Testing such a proposition is equivalentto testing “ComputerX̃ is faster
than ComputerY ” over SPLASH-2, whereX̃ is a virtual computer whose performance scores are
always 1/1.76 of the corresponding scores of the real computer X. Table III presents the details of
the comparison. To be specific, all performance scores are normalized to the first run of computer
Y on each benchmark. In conducting quantitative comparison,we divide all performance scores of
X by 1.76 times (we store these reduced scores inSX̃), and utilize the HPT to compare the reduced
scores against those of computerY (stored inSY ). For theτ th benchmark (τ = 1, . . . , n), “Stat.
Win.” indicates the winner whose performance on theτ th benchmark is significantly (with a0.95
confidence) better. We indicate “X̃” if the reduced performance ofX still wins, and we indicate
“Y ” if the performance ofY wins over the reduced performance ofX. In case there is no definite
winner, we indicate “Tie”. “Med.” indicates the median of the five performance scores (ofA and
B), “Diff.” shows the (significant) difference between the median performance scores ofA andB,
“Rank” shows the rank of the absolute value ofdτ . According to the HPT, the virtual computer
X̃ beats computerY significantly on 8 benchmarks, ties on 2 benchmarks, loses on4 benchmarks.
Following the flow introduced in Section IV-A, the HPT concludes that “Computer̃X is faster than
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ComputerY with a 0.95 confidence”, suggesting that “ComputerX is more than1.76 times faster
than ComputerY with a 0.95 confidence” (i.e., the0.95-Speedup of ComputerX over ComputerY
is 1.76 over all SPLASH-2 benchmarks).

V. EXPERIMENTAL EVALUATIONS

A. Comparisons Using the Geometric Mean Performance

TABLE IV
QUANTITATIVE PERFORMANCE COMPARISONS BASED ONSPEC CPU2006 (TOP) AND SPEC

MPI2007 (BOTTOM), WHERE 0.95-SPEEDUP IS OBTAINED BY THEHPT, GM-SPEEDUP IS
OBTAINED BY COMPARING THE GEOMETRIC MEANSPECRATIOS OF COMPUTERS, AND

HPT-CONFIDENCE IS ESTIMATED BY THEHPT.

Part I: SPEC CPU2006 A1-A2 B1-B2 C1-C2 D1-D2 E1-E2 F1-F2 G1-G2
0.95-Speedup 2.64 2.24 1.39 2.45 1.76 1.54 1.15
HPT-Confidence 0.95 0.95 0.95 0.95 0.95 0.95 0.95

GM-Speedup 3.35 3.50 1.70 3.26 1.98 1.67 1.27
Speedup Error +26.9% +56.3% +22.3% +33.1% +12.5% +8.4% +10.4%
HPT-Confidence 0.18 0.31 0.33 0.17 0.12 0.68 0.15
Confidence Loss -81.1% -67.4% -65.3% -82.1% -87.4% -28.4% -84.2%

Part II: SPEC MPI2007 H1-H2 I1-I2 J1-J2 K1-K2 L1-L2 M1-M2 N1-N2
0.95-Speedup 1.63 1.87 1.92 1.34 2.15 1.12 1.70
HPT-Confidence 0.95 0.95 0.95 0.95 0.95 0.95 0.95

GM-Speedup 1.76 2.09 2.10 1.54 2.39 1.33 1.94
Speedup Error +8.0% +11.4% +9.7% +15.1% +11.3% +19.0% +14.3 %
HPT-Confidence 0.39 0.10 0.42 0.58 0.63 0.83 0.53
Confidence Loss -58.9% -89.5% -55.8% -38.9% -33.7% -12.6% -44.2%

In traditional quantitative comparisons, Geometric Mean (GM) of the performance scores of
a computer over different benchmarks is often utilized to estimate the performance speedup of
one computer over another. In most cases, such comparison results, presented without confidence
estimates, are unreliable. We perform the following more extensive experiments: we collect SPEC
CPU2006 reports of 14 computer systems (named as A1, A2,. . . ,G1, G2 for short) and SPEC
MPI2007 reports of another 14 computer systems (named as H1,H2,. . . , M1, M2 for short) from
SPEC.org [1].10 We analyze both the0.95-Speedup (performance speedup estimated by the HPT, with
the guaranteed confidence0.95) and GM-Speedup for each computer pair, and present resultsin Table
IV. It can be observed from Table IV that the GM-Speedup is higher than the0.95-Speedup on all
14 pairs of computer systems, and the largest error between the GM-Speedup and0.95-Speedup can
be56.3%. Meanwhile, compared with the acceptable confidence0.95, the loss of confidence brought
by the unreliable GM-Speedup ranges from12.6% to 89.5%, showing that all14 GM-Speedups are
rather unreliable.

B. Comparisons Usingt-test

Let us first recall the example presented in Section III-C. Asclearly shown by Table II, BL265+
outperforms CELSIUS R550 on all benchmarks of SPECint2006.Moreover, performance distributions
of both computers are non-normal due to the outlier performance onlibquantum, and sizes of both
performance samples are only 12 (far from enough for invoking the CLT), which suggest that paired
t-test is not applicable here. However, if voluntarily ignoring that fact and sticking to pairedt-test,
we get the incorrect and counter-intuitive conclusion “BL265+ does not significantly outperform
CELSIUS R550 at the confidence level0.95”.

10Names of the 28 computers are listed in supplement material.
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In contrast, the HPT is much more robust in the presence of performance outliers. According to
the HPT, BL265+ outperforms CELSIUS R550 with the confidence1, which well complies with our
intuition. In addition, the HPT also concludes that BL265+ is 1.41 times faster than CELSIUS R550
with the confidence0.95, i.e., the0.95-speedup of BL265+ over CELSIUS R550 is1.41.

In the rest of this subsection, the outputs (confidence orr-speedup) of HPT are quantitatively
compared against outputs of pairedt-test. From a statistical viewpoint, we are conducting “apple-
to-orange” comparisons because HPT andt-test are built on different statistics. Regardless of the
statistical rigor, however, such comparisons are still meaningful since they may reveal how incorrect
usage oft-test misleads the belief of practitioners.

TABLE V
COMPARISONS OF CONFIDENCES OBTAINED BY THEHPT AND PAIRED t-TEST (TOP: SPEC

CPU2006; BOTTOM: SPEC MPI2007),WHERE HPT-CONFIDENCE IS OBTAINED BY THEHPT,
AND t-CONFIDENCE IS OBTAINED BY THE PAIREDt-TEST. ACCORDING TO THE STATISTICAL

CONVENTION, THE CONFIDENCES IN BOLD ARE THE ACCEPTABLE ONES(≥ 0.95), AND THE REST
ARE UNACCEPTABLE ONES(< 0.95).

Part I: SPEC CPU2006 A1-A2 B1-B2 C1-C2 D1-D2 E1-E2 F1-F2 G1-G2
Speedup 2.64 2.24 1.39 2.45 1.76 1.54 1.15
HPT-Confidence 0.95 0.95 0.95 0.95 0.95 0.95 0.95
t-Confidence 0.91 0.95 0.96 0.94 0.89 0.87 0.52
Confidence Loss -4.2% 0% 0% -1.1% -6.3% -8.4% -45.3%

Part II: SPEC MPI2007 H1-H2 I1-I2 J1-J2 K1-K2 L1-L2 M1-M2 N1-N2
Speedup 1.63 1.87 1.92 1.34 2.15 1.12 1.70
HPT-Confidence 0.95 0.95 0.95 0.95 0.95 0.95 0.95
t-Confidence 0.93 0.96 0.96 0.96 0.96 0.93 0.94
Confidence Loss -2.1% 0% 0% 0% 0% -2.1% -1.1%

Following the last subsection, our empirical study still analyzes SPEC CPU2006 scores of 14
computer systems (A1, A2,. . . , G1, G2), and SPEC MPI2007 scores of another 14 computer systems
(H1, H2,. . . , N1, N2). By fixing the performance speedup for each pair of computers, Table V
compares confidences obtained by the HPT with those obtainedby paired t-test. For the first 7
computer pairs,t-test rejects 5 out of the 7 speedup results obtained by the HPT, due to the inaccurate
t-Confidence. Interestingly, for the second 7 computer pairs, HPT-Confidence andt-Confidence match
much better, andt-test only rejects 3 out of the 7 speedup results obtained by the HPT.

We can easily explain the above observation after checking the normality of the data. While
SPEC CPU2006 scores of the first 14 computer systems (A1, A2,.. . , G1, G2) are generally not
distributed normally according to Lilliefors test [20], there is no significant statistical evidence that
SPEC MPI2007 scores of any of the second 14 computer systems (H1, H2,. . . , N1, N2) arenot
distributed normally. In other words, the usage oft-test is incorrect for the first 7 computer pairs,
but is correct for the second 7 computer pairs. Whent-test is correctly used, it is not strange that
confidences provided by the HPT andt-test almost coincide with each other. A similar trend can
also be observed from Table VI, where we compare performancespeedups obtained byt-test against
those obtained by HPT at the same confidence level0.95. For the first 7 computer pairs, the speedup
error of pairedt-test ranges from1.4% to 21.6%, which highlights the impact of using inappropriate
statistical techniques on the outcome of performance comparisons. For the second 7 computer pairs,
speedups provided by the HPT andt-test again coincide well with each other. The insights gained
here are two-fold. First, it is important to choose appropriate statistical techniques to fit statistical
characteristics of data. Second, the HPT is very robust against the validity of normality, and is a
promising solution to performance comparisons in the presence/absence of normality.
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TABLE VI
COMPARISONS OF0.95-PERFORMANCE SPEEDUPS OBTAINED BY THEHPT AND PAIRED t-TEST

(TOP: SPEC CPU2006; BOTTOM: SPEC MPI2007),WHERE EACH SPEEDUP HAS A CONFIDENCE
OF 0.95 FOR EACH TECHNIQUE.

Part I: SPEC CPU2006 A1-A2 B1-B2 C1-C2 D1-D2 E1-E2 F1-F2 G1-G2
0.95-Speedup (HPT) 2.64 2.24 1.39 2.45 1.76 1.54 1.15

0.95-Speedup (Pairedt-test) 2.07 2.28 1.41 2.39 1.59 1.38 1.04
Speedup Error -21.6% +1.8% +1.4% -2.45% -9.7% -10.4% -9.6%

Part II: SPEC MPI2007 H1-H2 I1-I2 J1-J2 K1-K2 L1-L2 M1-M2 N1-N2
0.95-Speedup (HPT) 1.63 1.87 1.92 1.34 2.15 1.12 1.70

0.95-Speedup (Pairedt-test) 1.60 1.87 1.93 1.35 2.16 1.09 1.67
Speedup Error -1.8% 0% +0.5% +0.7% +0.5% -2.7% -1.8%

VI. SINGLE-NUMBER PERFORMANCE METRIC?

Using a single-number performance metric for each computeris the most intuitive way of con-
ducting cross-application performance comparisons of computers, where the metric can be geometric
mean performance, harmonic mean performance, arithmetic mean performance and so on. In such a
comparison, the computer with a larger value of the single-number metric is considered to outperform
the counterpart with a smaller value of the same metric, and the cross-application speedup of the
first over the second is directly estimated as the quotient between their values under the metric.

Although single-number performance metrics have been widely used in computer architecture
research, their effectiveness must be reconsidered when wedeem the confidence to be a critical
dimension of performance comparisons. In our viewpoint, each comparison result must be provided
with the corresponding confidence, no matter which single-number performance metric is utilized by
the performance comparison. However, in practice there arecases in which the usage of a single-
number performance metric excludes rigorous estimate of confidence. More specifically, in common
scenarios of computer architecture research where the number of performance observations is small
(e.g., 10-20), rigorously estimating confidence of a comparison result induced by a single-number
metric can even be plainly impossible. For example, when theperformance distribution is not log-
normally distributed and the number of benchmark applications is small (e.g., 10-20), it is infeasible
to achieve a normally distributed sample mean of the logarithms of performance observations,
thereby the confidence of the comparison usinggeometric mean performancecannot be rigorously
estimated witht-statistics. Other statistical techniques like permutation test or bootstrap require even
more performance observations, which are not applicable either. Under the above circumstance, the
confidence of the comparison using geometric mean performance is hard (if possible) to be rigorously
estimated, and the risk of drawing incorrect conclusion cannot be controlled. In order to gain statistical
rigor, researchers may either give up the traditional metric “geometric mean”, or increase the number
of performance observations to make the CLT applicable (cf.Section III-B).

In contrast, the HPT works well given small performance samples, and enables statistically rig-
orous cross-application comparison without explicitly using a single-number performance metric of
each computer. It conducts a performance comparison between two computers using nonparametric
statistics of theperformance gapbetween two computers, and outputs a quantitative comparison
result as0.95-speedup of one computer over another. Embedded with the confidence information,
the comparison result would be much more reliable than results offered by single-number metrics in
many cases. Our central claim is that the HPT is a statistically rigorous replacement of traditional
single-number performance metrics under various scenarios of performance comparisons.

VII. RELATED WORK

Performance comparisons of computers traditionally rely upon one single-number metric (e.g.,
geometric mean and harmonic mean) [29], [30], [31], [22], [32], though this approach can be
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rather unreliable. Having realized the importance of statistical inference, Lilja suggested to introduce
several parametric statistical methods (e.g, confidence interval) to evaluate computer performance
[12]. Alameldeen and Wood carried out in-depth investigations on the performance variability of
multi-threaded programs, and they suggested to use the confidence interval andt-test, two parametric
techniques, in order to address the issue of variability [4]. Sitthi-amornet al. found that computer
performance is mostly normally distributed on SPEC CPU2000[13]. Similar observations were made
in Java performance evaluation conducted by Georges et al. [21], who found that uni-application
performance (SPECjvm98) on several single-core computerscan, in general, be characterized using
normal distributions. While valid, their observation doesnot seem to generalize to the broader case of
multi-core systems and multi-threaded applications, based on our own experiments. Iqbal and John’s
empirical study [33] generally supported the log-normality for characterizing the SPEC performance
of computers. However, their experiments were conducted after removing all “outlier benchmarks”
in SPEC CPU2006. They also proposed a performance ranking system [33]. But unlike Wilcoxon
test which uses rank information to construct statistics for computing confidence, the system directly
offers a performance ranking without presenting the corresponding confidence.

In computer architecture research, statistical techniques have already been used to cope with
various issues other than performance comparisons. For instance, statistical techniques were used for
sampling simulation [34], principal components analysis was used to evaluate the representativeness
of benchmarks [3], [35], and regression techniques were used to model the design space of processors
[36], [37], [38], [39]. Therefore, the computer architecture community is already largely familiar with
complex statistical tools, so that embracing a more rigorous performance observation and comparison
process is only a logical extension of the current trend.

VIII. C ONCLUSION

In this paper, we formulate performance comparisons of computers as statistical tasks, and highlight
the importance and impact of variability in performance observations and comparisons, as well as
the risk of inappropriately using traditional single-number performance metric andt-statistics. We
empirically check conditions under whicht-statistics work appropriately, and reveal thatt-statistics
do not suit current practices of computer performance comparisons.

We propose the HPT framework for achieving both a rigorous and practical comparison of com-
puter performance. In HPT, we adopt non-parametric SHTs that require neither normal performance
distributions nor sufficiently large numbers of performance observations. Besides the benefits for
performance comparisons, we have implemented the HPT as an easy-to-use open-source software
and integrated the framework in PARSEC 3.0 benchmark suite [11], requiring no mathematical
background.
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