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Abstract

As a fundamental task in computer architecture researcfgrpgance comparison has been continuously
hampered by the variability of computer performance. Iditranal performance comparisons, the impact
of performance variability is usually ignored (i.e., the ans of performance observations are compared
regardless of the variability), or in the few cases direcettidressed with-statistics without checking the
number and normality of performance observations. In thjsep, we formulate a performance comparison as
a statistical task, and empirically illustrate why and hawnenon practices can lead to incorrect comparisons.

We propose a non-parametric Hierarchical Performancente@tPT) framework for performance com-
parison, which is significantly more practical than staddastatistics because it does not require to collect
a large number of performance observations in order to wehdenormal distribution of sample mean. In
particular, the proposed HPT can facilitate quantitatieef@rmance comparison, in which the performance
speedup of one computer over another is statistically atatli Compared with the HPT, a common practice
which uses geometric mean performance scores to estimatpettiormance speedup has errors’df%
to 56.3% on SPEC CPU2006 or SPEC MPI2007, which demonstrates thessigcef using appropriate
statistical techniques. This HPT framework has been implgred as an open-source software, and integrated
in the PARSEC 3.0 benchmark suite.

Index Terms

Performance comparison, Performance distributiestatistics, Hierarchical performance testing

I. INTRODUCTION

A fundamental practice for researchers, engineers andniafiion services is to compare the
performance of two architectures/computers using a seenthimarks. As trivial as this task may
seem, it is well known to be fraught with obstacles, esphcisg¢lection of benchmarks [1], [2],
[3] and non-deterministic performance [4]. In this papeg focus on the issue of non-deterministic
performance. The variability can have several originshsag stochastic architecture+software be-
havior [5], [6], performance observation bias [7], or ev@placations themselves. Non-deterministic
performance can be easily observed by repeated perfornoéiseevations. For instance, the geometric
mean performance speedups, over an initial baseline ruhQ acfubsequent runs of SPLASH-2 on
a commodity computer (Linux OS, 4-core 8-thread Intel i7 9th 6 GB DDR2 RAM) are 0.94,
0.98, 1.03, 0.99, 1.02, 1.03, 0.99, 1.10, 0.98, 1.01.

From a statistical viewpoint, the non-deterministic parfance of a computer is a random variable
obeying a certain probability distribution callpérformance distributionAccordingly, measuring the
performance of a computer can be viewed as a processstatdgtically sampleshe performance
distribution of the computer. We argue thdéte performance comparison of two computers can
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be statistically formulated as the comparison betweenrtperformance distributions based on
(statistical) performance samplinBy analyzing and summarizing the collected performanogpbes,
one may claim that “whether one computer outperforms amgthet reliability of such a comparison
result may severely be hampered by the non-deterministionpeance of computers. Even when
two computers/architectures have fairly different parfance, such non-determinism can still make
the comparison (e.g., estimating the performance speefdapeocomputer over another) confusing.
Incorrect comparisons can, in turn, affect research oriaitogun decisions, so the consequences are
significant.

A scientific way of addressing the impact of non-determiaigerformance is to compute the
confidence for a comparison result. Statistically, the camice quantitatively specifies how reliable
a proposition is, which is usually a real number in the iraéf¥, 1]. A larger confidence implies that
the corresponding proposition is more reliable. In ordeshiow the importance of confidence, here
we present an example in the context of performance conguerisf computers. To be specific, the
performance speedup of one computer over another is tadlty obtained by comparing the geo-
metric mean performance of one computer (over differencberarks) with that of another, a practice
adopted by SPEC.org [1]. Following this methodology, thdgrenance speedup of PowerEdge T710
over Xserve on SPEC CPU2006, estimated by the data collécedSPEC.org [1], i$.50. However,
after checking this performance speedup with the Hieraathterformance Testing (HPT) technique
suggested in later parts of this paper, we found that the d@emée of such a performance speedup
is only 0.31, which is rather unreliableX 0.95 is the statistically acceptable level of confidence). In
fact, the HPT technique reports that the reliable perfogeaspeedup i8.24 (with a confidence of
0.95), implying that the conclusion made by comparing geometrgan performance of PowerEdge
T710 and Xserve brings an error 86.2% for the quantitative comparison.

The above example shows how confidence plays a critical rolgne performance comparison
of computers. Nevertheless, we observe that few computditecture studies yet acknowledge
the importance of confidence for performance comparisomk aoservations: among 521 papers
surveyed at ISCA (194 papers, 2006-2010), HPCA (158 pa@2&36-2010) and MICRO (169
papers, 2006—-2009), only 28 papers (5.4%) resort to cordaestimates in order to assess the
variability of performance observations, only 26 (5%) reigon confidence interval, and only 3
(0.57%) use-test. In the meantime, some wrongful practices has alguplhthe usage of confidence.
For example, parametric statistical techniques like cemiig interval and-test require the sample
mean of the performance observations to be distributed albrmvhich must be guaranteed by
either a normal performance distribution or a sufficietésgge number of performance observations.
However, such techniques are often incorrectly used whéhereof the above preconditions holds.
Such practices may potentially bias performance compasisand consequently, sometimes leads to
incorrect decisions.

In this paper, we provide a novel statistical interpretatimperformance comparisons of computers,
and review preconditions under which the traditionatatistics work correctly. Such preconditions
are carefully evaluated by experiments and data analysthe@ncontext of computer architecture
research, from which we are able to refine guidelines foremhy using these techniques in day-
to-day practices of performance comparisons. For scendhat cannot be appropriately tackled
by parametric techniques, we suggest a Hierarchical Redioce Testing (HPT) framework which
integratesnon-parametric Statistic Hypothesis Testisch as Wilcoxon Signed-Rank Test [8], [9].
The most notable merit of the HPT, inherited from non-pataimestatistics, is that it works even
when there are only a few performance observations whichadmbey any specified distribution
(e.g., normal distribution). For a qualitative performarammparison, the HPT provides confidence
for a proposition like “computerd is faster than computeB”. For a quantitative performance
comparison, it provides the performance speedup of one stanmver another as well as the
corresponding confidence. We empirically compare the HPth &i common practice (i.e., using
geometric mean performance measure in performance casopajiin computer architecture research
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over performance data of commercial computer systemsatetlefrom SPEC.org [1]. Compared
with the HPT, the common practice which uses geometric meafopnance scores to estimate the
performance speedup of one computer over another has efr81&% to 56.3% on SPEC CPU2006
or SPEC MPI2007.

In summary, the contributions of this paper are the follayviRirst, we empirically highlight that
traditional performance comparisons can be unreliablelse of the non-deterministic nature of
computer performance. As a result, we stress that everpipeaince comparison should come with
a confidence estimate in order to judge whether a comparesuitrcorresponds to a stochastic effect
or whether it is significant enough. Second, we formulatdgperance comparison as a statistical
task, and investigate in depth why intuitive solutiofistatistics, are not applicable from a statistical
perspective. The investigation is rooted in intensive expents or publicly-available performance
data of commercial computer systems. Third, we propose rmptement the HPT framework based
on non-parametric statistics, which can provide a souncdhtifafive estimate of the confidence of a
comparison, independently of the distribution and the nema performance observations. This HPT
framework has been implemented as an open-source softd@fednd integrated in the PARSEC
3.0 benchmark suite [11].

The rest of the paper is organized as follows. Section Il-Bnidates a performance comparison
as a statistical task, and reviews thetatistics. Section Ill empirically checks precondisoof ¢-
statistics, and finds the cases in whichtatistics are not applicable are quite common. Section IV
introduces the non-parametric hierarchical performamstirtg framework. Section V empirically
compares the HPT with traditional performance comparismhriques. Section VII reviews the
related work.

[I. PERFORMANCE COMPARISON AS ASTATISTICAL TASK

In this section, we formulate performance comparisons offgters as a statistical task, and present
some basic concepts related to this task. Moreover, we ailstlybreview the classi¢-statistics in
the context of performance comparisons (of computers).

A. Basic Concepts

From a statistical viewpoint, the non-deterministic parfance of a computer is a random vari-
able obeying a certain probability distribution callpeérformance distributionThe performance
distribution assigns probability/probability densityatithe performance metric of a computer takes a
certain value when encountering a random application cgririmm another probability distribution
called “application distributiori. The application distribution specifies how likely an apption is
executed on the computer. Figure 1 illustrates the relshipnbetween a performance distribution
and an application distribution, where the benchmark s(étg, SPECint2006 and SPECfp2006)
utilized to evaluate the performance of the computer cani®eed as a representative sample of the
application distribution.

When comparing the performance of two computers, we areigitiplcomparing the performance
distributions of two computers over the same applicatiairdiution. In theory, there are different
guantitative features to compare two distributions (edgstribution mean or distribution median).
However, close-form density functions of performance ribistions are often unknown, thereby
it is hard to analytically deduce such gquantitative featuréortunately, the above task can be
accomplished btatistical samplinga process that collects a number of performance obsengatio
of the performance distribution. The performance obsewmatmake up gerformance samplef
the computer, which can be used to estimate gheformance measurdn practical performance
comparisons, the performance measure (e.g., sample ngean)imdicator of computer performance,

1A performance observation of a computer is the performanoeesof the computer measured in a run of an application.
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which, in our viewpoint, is an approximation to the corrasgag quantitative feature (e.g., distribu-
tion mean) of the performance distribution. Figure 1 deptbe whole statistical task, where upper
blocks represent concepts visible to practitioners, amgtdlocks represent hidden but underlying
statistical factors which support the statistical task.
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Fig. 1. Statistical performance comparison.

B. A Review ta-statistics

According to the Law of Large Numbers, if we have an infinitentner of performance observations
for each computer, then the performance distribution ohesamputer as well as its quantitative
features can be accurately captured, and the performamspacson would become straightforward
and accurate. However, limited by the number of performartservations that we collect in practice,
performance sampling will always bring in stochastic ertinder this circumstance, it is necessary to
introduce a quantitative indicator callednfidencdo judge whether a comparison result corresponds
to a stochastic effect or whether it is significant enoughdoegpt.

In practice, the scopes of most commercial computers haverrngeen restricted to specific
benchmark applications only, thereby a performance coisgraresult obtained on benchmarks shall
be generalizable to broader applications other than beadtenFrom a practical (but not rigorous)
viewpoint, the confidence indicates how likely the comparisesult can be generalized to a new
application?. Hence, it is important not only to assess the confidence @frfopnance comparison,
but also to correctly evaluate this confidence.

Traditionally, ¢-statistics have long been considered to be powerful inmesiing confidences of
performance evaluations of computers[12], [13]. Beloggm parametric statisticg;statistics rely on
an assumption that data directly come from a specific typeaabability distributions called normal
distributions, or can be characterized by normal distidng after certain data transformatiorts.
statistics enable two famous statistical inference tepies called-test andi-distribution confidence
interval (-confidence interval for short). This subsection brieflyieas the principle of-statistics,
as well as preconditions under whi¢tstatistics correctly work.

Consider a samplé X, ..., X,,} with n observations of the same population distribution with
finite mean and variance. The sample méarand sample standard deviatiéhare defined by:

_ 1
X = E<X1+""’+X”>’ (1)

S = nilg;(xi—xy. 2)

2This is the case of cross-application comparison, wherease @bout the performance of each computer on multiple egijons.
If talking about a uni-application comparison, the confiteeindicates how likely the comparison result obtained dstieg runs of
the same application can be generalized to more runs of the saplication.
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Statistically,if X obeys a normal distributiqrthen

S
obeys the studentisdistribution withn—1 degrees of freedom, wheyeis the mean of the population
distribution.

The famous paired two-sampigest is based on the above fact, which directly tells us “sne
significantly larger than another” or “there is no significdifference between the two”. It was thought
to be useful in performance comparisons of computers [1&}abse it compares the corresponding
performance of two computers on each benchmark, and sumesgserformance gaps on different
benchmarks to statistically compare the mean performaht@mcomputers. Consider two ordered
samples{A,..., A, } and{By, ..., B,} obeying two population distributiond andB, respectively.
Let D; (i = 1,...,n) be the difference betweety, and B;, D andSy, be the sample mean and sample

standard deviation of Dy, ..., D, }, respectively. IfD obeys a normal distribution, then
AL (4)
Sp

obeys the student’sdistribution withn — 1 degrees of freedom. Eq. 4 can be viewed as a variant
of Eq. 3, whereX in Eq. 3 is replaced byD here. With the above-statistics, paired two-sample
t-test statistically compares population means of distidms .4 and5. In the context of performance
comparisons of computerpaired two-sample-test requires that the sample mean of performance
gaps between two computer®, must obey a normal distribution in order to applhstatistics In
practice, normally distributed can be achieved with either small-sample or large-sampeqpr
ditions:
Small-sample precondition: Performance distributions of both computers are normal,
Large-sample precondition: When performance distributions of one or both computees ar
non-normal but are with finite means and variances, the @ehimit Theorem (CLT) states
that the sample mean performance of both computers appateiyrobeys normal distributions
when the sample size (number of performance observationsksigficiently large

In the next section, we empirically study the above predioms in the context of computer performance.

I1l. EMPIRICAL OBSERVATIONS

In this section, we empirically study whether small-samguhel large-sample preconditions ©6f
statistics hold under different scenarios of computer itgcture research. The central claim of this
section is that-statistics cannot be the de facto solution for performatmaparisons of computers.

A. Small-sample Precondition

The small-sample precondition éfstatistics states that the performance distribution ofoter-
under-comparison should be normal. In this part, we cheskpttecondition under both uni-application
and cross-application comparison scenarios.

1) Uni-application Performance DistributionThe performance of a computer on every application
is influenced by not only architecture factors (e.g., outiafer execution, branch prediction, and
chip multiprocessor [14]) but also program factors (e.@tadrace, synchronization, and contention
of shared resources [15], [16]). In the presence of thederiaahe performance score of a computer
on a same application is usually non-deterministic [4]. Ewample, according to our experiments
using SPLASH-2 [2], the execution time of one run of a benalkm@an be up tol.27 times
that of another run of the same benchmark on the same comfReeent studies managed to
reduce performance variation and simultaneously imprbegerformance [17], or enforce computer
performance to be distributed normally [18]. Yet it is stifiteresting to empirically study the
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real probability distribution of non-deterministic contpu performance, with which we may select
appropriate statistical techniques to facilitate the grenfince evaluation.

x10° Equake, SPEC CPU2000 (10000 Runs) 16X 10 Raytrace, SPLASH-2 (10000 runs) 16X 10 Swaptions, PARSEC (10000 Runs)
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Fig. 2. Estimating Probability Density Functions (PDFs) &quake(SPEC CPU2000)Raytrace
SPLASH-2) andSwaptions(PARSE bTy KPW (black curves above the grey areas) and NNF
black tcurves above the white areas), from 10000 repeatesl ofi each benchmark on the same
computer.

In our experiments, we run both single-threadeduyake SPEC CPU2000 [1]) and multi-threaded
benchmarksRaytrace SPLASH-2 [2] andSwaptions PARSEC [3]) on a commodity Linux work-
station with a 4-core 8-thread CPU (Intel i7 920) and 6 GB DDRAM. Each benchmark is
repeatedly run forl0000 times, respectively. In each rufquakeuses the “test” input defined
by SPEC CPU2000Raytraceuses the largest input given by SPLASH-2 (car.env), Saptions
uses the second largest input of PARSEC (simlarge). Withagihg any generality, we define the
performance score to be the execution time.

To studyuni-applicationperformance distributions of the computer on differentdenarks, we
employ a statistical technique called Kernel Parzen Wind&WwW) [19]. The KPW technique
estimates a performance distribution without assuming tive performance distribution is normal
or some specific distribution. Instead, it studies the reafggmance distribution in a Monte-Carlo
style, and directly estimates the Probability Density Riomc(PDF) via histogram construction and
Gaussian kernel smoothing. As the reference, we also emglsymple technique called Naive
Normality Fitting (NNF) to process the same performanceaddihe NNF always assumes that
each performance distribution is normal, and directly udes mean and standard deviation of a
performance sample (with multiple performance obsermali@s the mean and standard deviation of
the normal performance distribution. By comparing PDFsawi®d by two techniques, we can easily
identify whether or not a performance distribution obeysoanmal law. Specifically, if the normal
distribution obtained by the NNF complies with the real periance distribution estimated by the
KPW, then the performance distribution obeys a normal lathe@vise, it does not.

According to the experimental results illustrated in Fey®, the normality does not hold for
the performance score of the computer on all three benclepask evidenced by the remarkably
long right tails and short left tails of the estimated pariance distributions foEquake Raytrace
and Swaptions Such observations are surprising but not counter-intiitiue to the intrinsic non-
determinism of computers and applications. In short, itasdhfor a program to execute faster than
a threshold, but easy to be slowed down by various eventecisly for multi-threaded programs
which are affected by data races, thread scheduling, sgndation order, and contentions of shared
resources.

As a follow-up experiment, we use a more rigorous statistezzhnique to study whether execution
times of the27 benchmarks of SPLASH-2 and PARSEC (using “simlarge” inpate distributed
normally, where each benchmark is repeatedly run on the amityncomputer for10000 times
again. Based on these observations, the Lilliefors tesinfiigorov-Smirnov test) [20] is utilized to
estimate the confidence that the execution time does not thigeyormal law, i.e., the confidence
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that the normality assumption is incorrect. Interestinglys observed that foeverybenchmark of
SPLASH-2 and PARSEC, the confidence that the normality aggamis incorrect is above.95. Our
observation with SPLASH-2 and PARSEC is significantly dif& from the observation of Georges et
al. [21] that uni-application performance on single congsir{g SPECjvm98) is distributed normally,
suggesting that the non-deterministic performance ofirtluieaded programs is fairly different from
that of single-threaded programs.

2) Cross-application Performance Distributiodfter studying performance distributions of computers
on single applications, we now consider performance thstions over multiple applications, which
are calleccross-applicatiorperformance distributions here. Traditionally, thereednbgen assumptions
that performance distributions are normal [12] or log-nak{2]. In this part, we empirically evaluate
such assumptions. Table | presents performance scoresC($&Hs) of a commodity computer
(BL265+, Intel Xeon X5670, 2.93 GHz) over SPEC CPU2006, whire data is collected from
the SPEC online repository [1]. It can be observed that thEGSRatios of the computer on most
benchmarks are between 19 and 40. However, the SPEC ratm$wnbenchmarks (e.dibquantum
andcactusADMN are remarkably high, which prevent the cross-applicapierformance distributions
from being distributed normally. Figure 3 validates that tihoss-application performance distributions
of the computer are non-normal using the normal probabpitt [23]. In each probability plot
presented in Figure 3, if the curve matches well the strdigkt then the performance distribution
over the corresponding benchmark suite is normal; if theecdeparts from the straight line, then the
performance distribution is not normal. Obviously, nondle figures shows a good match between
the curve and straight line, implying that performance rthstions of the computer over SPEC
CPU2006, SPECInt2006 and SPECfp2006 are not normal. Ada@nptece of statistical evidence,
Lilliefors test [20] concludes that performance distribas of the computer over SPEC CPU2006,
SPECIint2006 and SPECfp2006 are non-normal with a confidlemger than0.95. The above data
analysis shows that the normality of performance distidng is vulnerable to positive performance
outliers (e.g., the remarkably high SPEC CPU2006 ratio o2&+ onlibquantun). Statistically, the
existence of positive performance outliers implies that¢brresponding performance distribution is
skewed and long-tailed, while a normal distribution shoogdsymmetric.

TABLE |
SPEC RTI0OS OFBL265+ oN SPEGNT2006 (ToP) AND SPEG-P2006 (BoTTOM) [1].

SPECIint2006| perlbench bzip2 gce mcf gobmk hmmer

SPEC Ratio 259 19.5 26.8 50.4 23.9 47.6

SPECint2006| sjeng libquantum h264ref omnetpp  astar  xalancbmk

SPEC Ratio 26.6 992.8 37.8 23.6 24.3 39.3
SPECfp2006| bwaves gamess milc zeusmp gromacs cactusADM leslie3d nametalll d
SPEC Ratio | 174.5 235 52.7 113.1 21.9 279.6 110.3 19.5 40.5
SPECfp2006| soplex povray calculix GemsFDTD tonto Ibm wrf sphinx3
SPEC Ratio | 33.2 30.3 29.8 73.1 25.0 262.0 49.1 53.1

Instead of directly assuming the normality of performanc&ridbutions, Mashey suggested an
alternative assumption that cross-application perfowgeadistributions are log-normal [22], i.e.,
performance observations are distributed log-normalBithough a logarithm transformation can
alleviate the impact of performance outliers as well as tisk of using ¢-statistics, when the
performance of very few outliers deviates too much from t@cal performance of a computer,
the log-normality may still fail to appropriately characee the performance outlier. Hereinafter
we still take the commodity computer (BL265+, Intel Xeon X6 2.93 GHz) as an example, and
analyze whether its SPEC ratio is distributed log-normallgcording to Fig. 3, the performance
distribution over SPECfp2006 is almost log-normal (theveualmost matches the straight line), but

3A random variables is said to obey a log-normal distribution if its logarithima is distributed normally.
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Fig. 3. Graphicall assessing whether performance distributidrsscommodity computer are normal
(normal probability plots [23], left figures) or Iog-norn‘(dxbg-normal Erobabl ity plots, right figures)
using natural logarithms of SPEC ratios of SPEC CPU2006,C3E006 and SPECfp2006.

distributions over SPEC CPU2006 and SPECint2006 are apihareot log-normal. That is because
after a logarithm transformation the SPEC ratio of the compon the SPECint2006 benchmark
libquantumis still too large to be characterized by a normal distriduti

In summary, performance outliers have already been quitentan in performance reports of
latest commodity computers, and have been significant éntaugreak the normality/log-normality
of computer performance. SPEC CPU2006 reports of most {ilhacommodity computers published
in 2012 at SPEC.org [1] clearly confirm existence of perfanoe outliers. In the era of dark
silicon, this trend will become even more distinct, as spiemed hardware accelerators designed for
specific applications may produce more significant perforweaoutliers. Under this circumstance,
the normality cannot be a default assumption for perforraatistributions of computers.

B. Large-sample Precondition

So far we have empirically shown that the performance thistions of computers cannot be uni-
versally characterized by normal distributions. Accogdio the large-sample precondition, however,
it is still possible to obtain a normally distributed samphean of performance observations (in
order to applyt-statistics) given a sufficiently large number of obsevadi as guaranteed by the
Central Limit Theorem (CLT). The classical version of theTGtontributed by Lindeberg and Lévy
[24] states that, when the sample sizés sufficiently large, the sample mean approximately obeys
a normal distribution. Nevertheless, in practice, it islaac how large the sample size should be
to address the requirement of “a sufficiently large samgie’this part, we empirically show that
the appropriate sample size for applying the CLT is usualty large to be compatible with current
practices in computer performance observations.
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In order to obtain a large number of performance observsatiiDataSets [25] is used in our
experiments. A notable feature of KDataSets is that it @esi1000 distinct data sets for each of 32
different benchmarks (MiBench [26]), providing a total &2,800 distinct runs. We collect detailed
performance scores (measured in Instruction-Per-Cyefe) bf a Linux workstation (with 3GHz Intel
Xeon dualcore processor, 2GB RAM) over 32,000 different losmrations of benchmarks and data
sets of KDataSets [25]. With the 32000 performance scoresestimate probability distributions of
IPC and IPC’s natural logarithm, which are illustrated igutie 4. Clearly, both IPC and IPC’s natural
logarithm are not distributed normally, which well comglieur discussions in previous subsections.
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Fig. 4. Probability Density Functions (PDFs) of the performan&t%land Iofg-performance (right) of
Intel Xeon dualcore Linux workstation, estimated from K&@éts. The performance of the computer
is measured by the Instruction-Per-Cycle (IPC).

Percentage of Successful Normality Approximations
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Fig. 5. Percentage of successful normality approximation witlpeesto the sample size.

Now we study in detail what is a sufficient sample size for gy the CLT on the above
performance distribution. To be specific, for every fixed peatsizen € {20, 40, 80, ..., 980, 1000},
we conduct 100 trials and estimate the percentage of sdatessmality approximations among the
100 trials. In each trial, we colledt0, 000 samples, each of which is comprisedofperformance
scores randomly selected out of the 32,000 performances¢aith replacement). As a consequence,
we get10,000 observations of sample mean, which are sufficient to reliaéntify whether the
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Percentage of Successful Log—normality Approximations
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Fig. 6. Percentage of successful log-normality approximatior wispect to the sample size.

sample mean is distributed normally. After that, we use anadity test (Lilliefors test) to detect
whether the sample mean is distributed normally at the Bogmice level of0.05 (i.e., whether the
normality approximation is successful).

Fig. 5 depicts percentages of successful normality apprations with respect to different sample
sizes. Clearly, the sample mean is not distributed norngiltgn a small (e.g.n = 20,40) sample
size. When the sample size growslt#), the chance that the sample mean is not distributed normally
is abover0%. Even when the sample size grows ug 00, the sample mean still take2a% chance
to depart from the normality. The above observations impbt a2 sample with several hundreds of
performance observations is necessary to get a normaltsibdited sample (arithmetic) mean, at
least for the studied computer on this benchmark suite.

In addition, we also explore the sufficient sample size ineorid approximate a log-normally
distributed sample mean. The experimental setting is theeda the one introduced above, except
that performance data of KDataSets are pre-processed lgyaattom transformation. We illustrate the
percentage of successful log-normality approximationsim 6. Compared with the percentage of
successful normality approximations illustrated in Figtte percentage of successful log-normality
approximations is much smaller under the same sample sizpri§ingly, the log-normality approx-
imations cannot be successful when the sample size is sniadie420. Even when the sample size
is 1000, the percentage of successful log-normality approxinmatis only 20%. An explanation to
such observations is that the logarithm transformation ath desults in a distribution with larger
negative skew (refer to Figure 4 for the log-performancérithistion with the long left tail),* which
even differs more from a normal distribution (compared wiite original performance distribution).
Applying the CLT on such a skewed distribution may have taunega large sample size.

The common insight gained from the above experiments is tiatnumber of performance
observations (i.e., sample size) for approximating nofiogdnormal distributions with the CLT is
very large (e.g., several hundreds), thus can rarely becatellil in day-to-day practices using only
20-30 benchmarks (with one to a few data sets each).

C. A Practical Example

We have empirically studied several fundamental stasiktissues closely related to the effec-
tiveness of parametric techniques likéest, and the key observation is that preconditions (nbrma
performance distributions or sufficiently large perforroaisamples) required by such techniques may
not hold in computer architecture research. Here we offeexample showing how-test fails to
present a reasonable comparison result when neither ofatopditions holds.

“The logarithm transformation can be utilized to reduce thpact of outliers having extremelgrge values, but may even enhance
the impact of outliers having vergmall values.
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TABLE I
SPEC RTIOS OFBL265+ AND CELSIUS R5500N SPEGQNT2006 [1].

SPECIint2006 | perlbench bzip2 gce mcf gobmk hmmer
BL265+ 25.9 195 26.8 50.4 23.9 47.6
CELSIUS R550 18.5 154 14.1 215 18.6 14.9
SPECint2006 sjeng libquantum h264ref omnetpp  astar  xalancbmk
BL265+ 26.6 992.8 37.8 23.6 24.3 39.3
CELSIUS R550 16.9 212.9 29.3 15.0 14.3 24.8

In this example, we compare the performance of BL265+ (IXebn X5670, 2.93 GHz) and
CELSIUS R550 (Intel Xeon E5440, 2.83Hz) over SPECint200& BPEC ratios of the computers,
collected from SPEC.org [1], are presented in Table I, eespely. Clearly, the performance distri-
butions of both computers are non-normal due to the outkefopmance oribquantum and sizes
of both performance samples are only 12 (far from enough p@iyeng the CLT). In other words,
preconditions required by pairgetest do not hold. Voluntarily ignoring that fact, we incectly use
the pairedi-test, and get the conclusion “BL265+ does not significaatiyperform CELSIUS R550
at the significance level.05 (the confidence level.95)". This conclusion apparently contradicts the
straightforward fact that BL265+ outperforms CELSIUS R®®&ll 12 benchmarks of SPECint2006.
A detailed explanation to the failure ottest is as following. In this exampleétest does a brute-force
normality fitting® to a right-skewed non-normal performance distributiorg @rcorrectly stretches
the left part of the right-skewed distribution to achieveyanmetric distribution. In this process, the
large standard deviation originally contributed by thEjuantumperformance outlier is thought to
be symmetrically distributed at both left and right sides] ¢he left tail is elongated, which produces
an illusion that the computer even takes a high probabilithdave negative SPEC ratio. Such absurd
arguments eventually lead to the incorrect comparisoritrdaulsummary, it is important to correctly
use statistical techniques in performance comparisons.

V. NON-PARAMETRIC HIERARCHICAL PERFORMANCE TESTING FRAMEWORK

One crucial branch of statistical inference is called Statal Hypothesis Test (SHT). Generally
speaking, an SHT is a procedure that makes choices betweenpposite hypotheses (propositions),
NULL (default) hypothesis and alternative hypothesis. NidLL hypothesis represents the default
belief, i.e., our belief before observing any evidence, tr@alternative hypothesis (often the claim
we want to make) is a belief opposite to the NULL hypothesigpérformance comparison, a typical
NULL hypothesis may be “computet is as fast as computés”, and a typical alternative hypothesis
may be “computer is faster than computes”. At the beginning of an SHT, one assumes the NULL
hypothesis to be correct, and constructs a statistic gayyhose value can be calculated from the
observed data. The value gfdetermines the possibility of observing the current dataméssuming
the NULL hypothesis holds, which is critical for making a a® between the NULL hypothesis
and the alternative hypothesis. The possibility is quatifasp-value (or significance probability)
[27], which is a real value betweeh and 1 that can simply be considered as a measureisi
associated with thalternative hypothesis. The-value is an indicator for decision-making: when
the p-value is small enough, the risk of incorrectly rejecting the NULyplothesis is very small, and
the confidence of the alternative hypothesis (iles; p-value) is large enough. For example, in an
SHT, when thep-value of the NULL hypothesis “computed is as fast as computds” is 0.048, we
only have a 4.8% chance of rejecting the NULL hypothesis wih@ctually holds. In other words,
the alternative hypothesis “computéris faster than computds” has confidenca — 0.048 = 0.952.
Closely related to the-value, significance levels act as scales of a ruler forpgheilue (frequently-
used scales include 0.001, 0.01, 0.05, and 0.1). A signidiegavela € [0, 1], can simply be viewed

*When the sample size is smalk (30), fitting a normal distribution is achieved by fittingtadistribution.
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as the confidence levél— «. As a statistical convention, a confidence no smaller thah is often
necessary for reaching the final conclusion.

Probably the most well-known parametric SHTs are the family-tests. Rather than sticking to
the well-knownt-test, we introduce a Hierarchical Performance TestingT(HiPamework, which
does not dictate for small-sample or large-sample pretiondast-test.

A. General Flow

In computer architecture research, we often need to contpaneerformance of two computers on
a number of benchmark applications, where each applicaiocom for multiple times on a computer.
Designed for such comparison tasks, the HPT combines tHerpance comparisons at both uni-
application and cross-application levels. For each simglplication, the HPT employs Wilcoxon
Rank-SunTest [9] to check whether the performance difference of tanmputers on that application
is significant enough (i.e., the corresponding significalesel is small enough), in other words,
whether the observed superiority of one computer over anaghreliable enough. Only significant
(reliable) differences, identified by the SHTs in uni-apation comparisons, can be taken into account
by the comparison over different benchmarks, while thosgymficant differences will be ignored
(i.e., the insignificant differences are set(pin the comparison over different benchmarks. Based
on uni-application performance observations, the Wilecogigned-Ranklest [8], [9] is employed
to statistically compare the cross-application perforceanf two computers. Through these non-
parametric SHTs, the HPT can quantify confidences of pedoca comparisons. In this subsection,
the technical details of the HPT will be introducéd.

Let us assume that we are comparing two computeesd B over a benchmark suite consisting
of n benchmark applications. Each computer repeatedly runs applicationm times (SPEC.org
setsm = 3 [1]). Let the performance scores af and B at their j-th runs on thei-th benchmark
be a; ; andb; ; respectively. Then the performance samples of the conguter be represented by
performance matriceS = [a; j]nxm aNdSp = [b; j|nxm, respectively. For the corresponding rows of
Sx and Sp (e.g., ther-th rows of the matrices; = 1,...,n), we carry out the Wilcoxon Rank-Sum
Test to investigate whether the difference between theopeence scores oft and B is significant
enough. The concrete steps of Wilcoxon Rank-Sum Test aréotiosving:

e Let the NULL hypothesis of the SHT be’, o: the performance scores of and B on ther-th
benchmark are equivalent to each otheet the alternative hypothesis of the SHT bé/;: the
performance score aoft is higher than that of5 on ther-th benchmarkor “ H, »: the performance
score ofB is higher than that ofdA on ther-th benchmark depending on the motivation of carrying
out the SHT. Define the significance level be; we suggest setting, = 0.05 for m > 5 and0.10

for the rest cases.

e Sorta,1,ar9,...,07m,br1,0:2,...,b-,, IN ascending order, and assign each of the scores the
corresponding rank (fror to 2/m). In case two or more scores are the same, but their origamisr

are different, renew the ranks by assigning them the aves@geeir original ranks. Afterwards, for

A and B, their rank sums (on theth benchmark) can be defined as:

Ra,T = Z Rank,(am»), Rb,T = Z Rankf(bﬂj)v
j=1 J=1

where Rank(-) provides the rank of a performance score onthié benchmark.
e Caselm < 12]%: When the alternative hypothesis of the SHTHs,, we reject the NULL hypothesis
and acceptd,; if R, , is no smaller thanthe critical value (right tail, Wilcoxon Rank-Sum Test)

Users who are not interested in mathematical details of treparametric SHTs can omit the rest of this subsection.

"For example, if two scores are boih, and their original ranks arg and 6 respectively, then both of them obtain a rank5d3.

8In statistics, whenn < 12, the critical values for Wilcoxon rank sum test are caladadirectly. Whenn > 12, the corresponding
critical values are often estimated by studying the appnaxé distribution of the rank sum.
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under the significance level,. When the alternative hypothesis of the SHTHS,, we reject the
NULL hypothesis and accef » if R, is no smaller tharthe critical value under the significance
level o [28].

e Case[m > 12]: Define two new statistics, . and z, , as follows:

- R.- — sm(2m + 1) - Ry, — 3m(2m +1)

Sm?(2m + 1) +m?(2m + 1)

Under the NULL hypothesisz, . and z,, approximately obey the standard normal distribution
N(0,1). When the alternative hypothesis of the SHTHs;, we reject the NULL hypothesis and
acceptH, if z, . is no smaller tharthe critical value (right tail, standard normal distrilmrt) under
the significance level; when the alternative hypothesis of the SHTHS,, we reject the NULL
hypothesis and accept. » if z,, is no smaller tharthe critical value under the significance level
[28].

After carrying out the above SHT with respect to th¢h benchmark4{ =1,...,n), we are able
to assign the difference (denoted by) between the performance of and B. Concretely, if the
SHT accepts, ; or H,, with a promising significance level (e.d.,01 or 0.05), then we let

d; = mediad a1, ar2,...,a;,} —mediadb,1,b,2,...,b;m}, T=1,...,n.

Otherwise (if the NULL hypothesiél,, has not been rejected at a promising significant level), we
let d, = 0, i.e., we ignore the insignificant difference between thdgosmance scores oft and B.
dy,ds, ..., d, will then be utilized in the following Wilcoxon Signed-Rarilest for the performance
comparison over different benchmarks:

e Let the NULL hypothesis of the SHT beH: the general performance of is equivalent to that
of B”; let the alternative hypothesis of the SHT bé/* the general performance ofl is better
than that of B” or “ Hy: the general performance dB is better than that of4”, depending on the
motivation of carrying out the SHT.

e Rankd;,ds, ..., d, according to an ascending order of their absolute valuesase two or more
absolute values are the same, renew the ranks by assigm@ngttie average of their original ranks.
Afterwards, for A and B, their signed-rank sums can be defad

Ri= ) Rankd)+ Z Rank(d;),

i:d; >0 ’Ld =0
Rp = ) Rankd,) + Z Rank(d;),
i:d; <0 zd =0

where Rankd;) provides the rank of the absolute valuedf which was described above.
eCasg[n < 25]°: When the alternative hypothesis of the SHTHs, we reject the NULL hypothesis
and accepid; if Rp is no larger thanthe critical value (one-side Wilcoxon Signed-Rank Testjem
the significance levely; When the alternative hypothesis of the SHTHSs, we reject the NULL
hypothesis and accepi, if R4 is no larger thanthe critical value under the significance level
The critical values of Wilcoxon Signed-Rank Test are awddan statistics books [28].

eCasg[n > 25]: Define two new statistics, and zg as

R4 — in(n —+ 1) Rp — in(n -+ 1)
ZA = , 2B — .
\/in(n +1)(2n+1) \/2—14n(n +1)(2n+1)

Under the NULL hypothesis;, andzz approximately obey the standard normal distributhé(0, 1).

®In statistics, whem < 25, the critical values for Wilcoxon signed rank test are clatd directly. Whem > 25, the corresponding
critical values are often estimated by studying the appnaxé distribution of the signed rank sum.
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Hence, when the alternative hypothesis of the SHTHis we reject the NULL hypothesis and
acceptH; if zz is no larger thanthe critical value (lower tail, standard normal distrilaur) under
the significance levely; when the alternative hypothesis of the SHTHs, we reject the NULL
hypothesis and accepi, if z4 is no larger thanthe critical value under the significance levelFor
the comparison over different benchmarks, the outputs ®HRT, including the comparison result
and its confidence, are finally presented by the above Wilt®igned-Rank Test. Formally, given a
fixed significance level for the HPT, we utilizeCon fidence(HPT: S, = Sp) > r to represent the
following conclusion made by the HPTAoutperformsB with the confidence”, wherer =1 —a.

B. Statistical Performance Speedup Testing

So far we have shown how to carry out qualitative performacm®parisons with the HPT. In
addition to qualitative comparisons, in most cases we ane nmberested in quantitative comparison
results such as “Computeris more thany times faster than Computét”, where~ > 1 is defined as
thespeedup-under-testraditionally, such kind of arguments are often obtainedaily by comparing
the means of performance scores with respect to computensd B. Taking the SPEC convention
as an example, if the mean (geometric) SPEC ratiosl a$ ten times that ofB, then one would
probably conclude thatA4 is ten times faster thal”. Such a quantitative comparison is dangerous
since we do not know how much we can trust the result. Fortlyyahe HPT framework offers two
solutions for tackling speedup arguments. The first satutejuires us to specify the concrete value
of v before the test. Afterwards, we shrink performance scofeomputerA by transforming the
corresponding performance matrdy to S,/ (without losing generality, we employ normalized
performance ratio as performance score with respect to leaethmark, where a larger performance
score means better performance). Considering a virtuapoten with performance matris 4 /v, if
the HPT framework states that the virtual computer outperéocomputerB with a confidencer,
then we claim A is more thany times faster tharB with a confidence”. In general, if we specify
a more (less) conservative speedufpefore speedup testing, the corresponding speedup argumen
will have a larger (smaller) confidence Users should keep a balance between the speedup and the
corresponding confidence, so as to make a convincing yetooetonservative conclusion.

Algorithm 1: r-speedup testing

float speedup_testing(r, Sa, Sg)
begin
floaty = 1;
booleanh = 1;
while h do
if HPT(Sa/v,SB) > r then
h=1;
v =v+0.01;
end
else break;
end
return -;

end

In many cases, instead of deciding a speedupefore the statistical test, one would like to
know the largest speedup that results in a reliable comparis@ultgfor a given confidence). To
address this need, our HPT framework also offers an aligenatay of estimating the speedup and
corresponding confidence. Guided by the above notion, wadtly define the-Speedup (computer
A over computerB, r-SpeedupA, B)) to be

1
sup {*y > 1; con fidence (HPT: ;SA - SB) > 7“} .
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To be specific, the-Speedup of computer A over computer B is the largest speetidpover B
having a confidence above The algorithm of computing the-Speedup is presented in Algorithm 1,
where the precision is set to 2 decimals, a@hé7'(X,Y’) presents the confidence that the computer
w.r.t. the performance sampl€ outperforms the computer w.r.t. the performance samiplé&iven
the confidence levet (e.g.,r = 0.95), the r-Speedup can be viewed as a quantitative indicator of
performance speedup with the guarantee of confidenddeanwhile, it can also act as a single-
number performance metric as the geometric mean, whichbeilliscussed in Section VI.

We contribute two implementations of the HPT, including gem-source software [10] and a
toolkit in the latest version of PARSEC benchmark suite (B&& 3.0 [11]). Users can easily use
them without acquiring the mathematical details.

C. An Example of Quantitative Performance Comparison

TABLE Il
STATISTICAL QUANTITATIVE COMPARISON OF COMPUTERSX AND Y OVER SPLASH-2
(Speedup: 1.76).
S Med. || Stat. Diff. Rank [| Med. Sy
Win. (dr)
1.barnes 053 054 054 053 054 054 Y -0.50 10 1.04 | 1.00 1.05 1.04 103 104
2.cholesky 0.97 095 093 096 0.96 0.96 Y -0.03 3 0.99 | 1.00 098 1.01 0.99 0.98
3.fft 0.74 076 0.74 0.78 0.76 0.76 Y -0.27 6.5 1.03 | 1.00 103 1.02 105 1.03
4.fmm 1.07 103 105 102 1.0% 1.05 Tie 0(0.01) 1.5 1.04 | 1.00 1.05 1.04 104 105
5.lu-con 1.29 126 127 127 1.2% 1.27 X 0.27 6.5 1.00 | 1.00 1.01 1.02 098 1.00
6.lu-ucon 146 148 138 153 1.5% 1.48 X 0.49 9 0.99 | 1.00 0.96 1.04 0.87 0.99
7.ocean-con || 1.17 1.15 094 116 1.13 1.15 X 0.17 5 0.98 | 1.00 091 1.00 0.98 0.86
8.ocean-uconf| 1.95 198 192 193 1.93 193 X 0.95 13 0.98 | 1.00 0.98 097 0.90 0.98
9.radiosity 101 101 101 099 101 1.01 Tie 0(0.01) 1.5 1.00 | 1.00 1.00 1.00 1.00 1.00
10.radix 247 251 253 244 211 247 X 1.50 14 097 | 1.00 086 095 1.03 0.97
11.raytrace 141 139 143 121 1.37 1.39 X 0.32 8 1.07 | 1.00 1.09 1.07 114 1.07
12.volrend 092 094 092 092 0.93 0.92 Y -0.08 4 1.00 | 1.00 1.00 1.00 1.00 1.00
13.water-ns 164 166 159 164 163 1.64 X 0.69 11 095 | 1.00 095 0.84 093 0.96
14.water-sp 184 183 178 180 1.77 1.80 X 0.80 12 1.00 | 1.00 1.02 098 087 104

In this subsection, the quantitative performance comparigf two commodity computersX
(Linux OS, 4-core 8-thread Intel i7 920 with 6 GB DDR2 RAM) amd(Linux OS, 8-core AMD
Opteron 8220 with 64 GB DDR2 RAM) is presented as an examplapplying the HPT. In our
experiments, each SPLASH-2 benchmark (8 threads) is regigatun 5 times on each computer,
using default workloads of SPLASH-2. By specifying the shgeunder-test to be1.76, we use the
HPT to test how reliable the proposition “Computéris more thanl.76 times faster than Computer
Y is over SPLASH-2. Testing such a proposition is equivalentesting “ComputerX is faster
than Computer™” over SPLASH-2, whereX is a virtual computer whose performance scores are
always 1/1.76 of the corresponding scores of the real coanpXt Table Il presents the details of
the comparison. To be specific, all performance scores amaalized to the first run of computer
Y on each benchmark. In conducting quantitative comparig@ndivide all performance scores of
X by 1.76 times (we store these reduced scores ), and utilize the HPT to compare the reduced
scores against those of compubér(stored inSy). For ther™® benchmark £ = 1,...,n), “Stat.
Win.” indicates the winner whose performance on tife benchmark is significantly (with 8.95
confidence) better. We indicateX™ if the reduced performance ok still wins, and we indicate
“Y” if the performance ofY” wins over the reduced performance &t In case there is no definite
winner, we indicate “Tie”. “Med.” indicates the median ofettiive performance scores (ef and
B), “Diff.” shows the (significant) difference between the dien performance scores of and B,
“Rank” shows the rank of the absolute value &f According to the HPT, the virtual computer
X beats computeF” significantly on 8 benchmarks, ties on 2 benchmarks, lose4 benchmarks.
Following the flow introduced in Section IV-A, the HPT condks that “ComputeiX is faster than
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ComputerY” with a 0.95 confidence”, suggesting that “Comput&ris more thanl.76 times faster
than Computel” with a 0.95 confidence” (i.e., th®.95-Speedup of ComputeX over Computer”
is 1.76 over all SPLASH-2 benchmarks).

V. EXPERIMENTAL EVALUATIONS
A. Comparisons Using the Geometric Mean Performance

TABLE IV
QUANTITATIVE PERFORMANCE COMPARISONS BASED ONSPEC CPU2006 (3P) AND SPEC
MPI12007 (BoTTOM), WHERE 0.95-SPEEDUP IS OBTAINED BY THEHPT, GM-SPEEDUP IS
OBTAINED BY COMPARING THE GEOMETRIC MEANSPECRATIOS OF COMPUTERS AND
HPT-CONFIDENCE IS ESTIMATED BY THEHPT.

Part |I: SPEC CPU2006 Al-A2 B1-B2 Ci1-C2 D1-D2 E1-E2 F1-F2 G1-G2
0.95-Speedup 2.64 2.24 1.39 2.45 1.76 1.54 1.15
HPT-Confidence 0.95 0.95 0.95 0.95 0.95 0.95 0.95
GM-Speedup 3.35 3.50 1.70 3.26 1.98 1.67 1.27
Speedup Error +26.9% +56.3% +22.3% +33.1% +12.5% +8.4%  +10.4%
HPT-Confidence 0.18 0.31 0.33 0.17 0.12 0.68 0.15
Confidence Loss -81.1% -67.4% -65.3% -82.1% -87.4% -28.4% -84.2%
Part Il: SPEC MPI2007 H1-H2 11-12 J1-J2 K1-K2 L1-L2 M1-M2 N1-N2
0.95-Speedup 1.63 1.87 1.92 1.34 2.15 1.12 1.70
HPT-Confidence 0.95 0.95 0.95 0.95 0.95 0.95 0.95
GM-Speedup 1.76 2.09 2.10 154 2.39 1.33 1.94
Speedup Error +8.0% +11.4% +9.7% +15.1% +11.3% +19.0% +14.3%
HPT-Confidence 0.39 0.10 0.42 0.58 0.63 0.83 0.53
Confidence Loss -58.9% -89.5% -55.8% -38.9% -33.™% -12.6% -44.2%

In traditional quantitative comparisons, Geometric Me&M] of the performance scores of
a computer over different benchmarks is often utilized ttneste the performance speedup of
one computer over another. In most cases, such comparisattsiepresented without confidence
estimates, are unreliable. We perform the following morteesive experiments: we collect SPEC
CPU2006 reports of 14 computer systems (named as Al, AX31,,G2 for short) and SPEC
MPI12007 reports of another 14 computer systems (named a#i®1,., M1, M2 for short) from
SPEC.org [11° We analyze both the.95-Speedup (performance speedup estimated by the HPT, with
the guaranteed confident&5) and GM-Speedup for each computer pair, and present resulable
IV. It can be observed from Table IV that the GM-Speedup ishargthan the).95-Speedup on all
14 pairs of computer systems, and the largest error betweeGM-Speedup and.95-Speedup can
be 56.3%. Meanwhile, compared with the acceptable confidgh@g, the loss of confidence brought
by the unreliable GM-Speedup ranges frath6% to 89.5%, showing that alll4 GM-Speedups are
rather unreliable.

B. Comparisons Usingrtest

Let us first recall the example presented in Section IlI-C.chsarly shown by Table 1l, BL265+
outperforms CELSIUS R550 on all benchmarks of SPECint2Mgeover, performance distributions
of both computers are non-normal due to the outlier perfacaaonlibquantum and sizes of both
performance samples are only 12 (far from enough for inwgkite CLT), which suggest that paired
t-test is not applicable here. However, if voluntarily igmgyr that fact and sticking to pairetitest,
we get the incorrect and counter-intuitive conclusion “Bb2 does not significantly outperform
CELSIUS R550 at the confidence levieb5”.

Names of the 28 computers are listed in supplement material.
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In contrast, the HPT is much more robust in the presence dbqmeance outliers. According to
the HPT, BL265+ outperforms CELSIUS R550 with the confidehcehich well complies with our
intuition. In addition, the HPT also concludes that BL2654 i1 times faster than CELSIUS R550
with the confidence).95, i.e., the0.95-speedup of BL265+ over CELSIUS R5501ist1.

In the rest of this subsection, the outputs (confidence-speedup) of HPT are quantitatively
compared against outputs of pairedest. From a statistical viewpoint, we are conducting ‘lapp
to-orange” comparisons because HPT ardst are built on different statistics. Regardless of the
statistical rigor, however, such comparisons are still mmegful since they may reveal how incorrect
usage oft-test misleads the belief of practitioners.

TABLE V
COMPARISONS OF CONFIDENCES OBTAINED BY THEHPT AND PAIRED ¢-TEST (TorP: SPEC
CPU2006; BbTTOM: SPEC MPI12007)WHERE HPT-CONFIDENCE IS OBTAINED BY THEHPT,
AND ¢t-CONFIDENCE IS OBTAINED BY THE PAIRED?¢-TEST. ACCORDING TO THE STATISTICAL
CONVENTION, THE CONFIDENCES IN BOLD ARE THE ACCEPTABLE ONE$> 0.95), AND THE REST
ARE UNACCEPTABLE ONES(< 0.95).

Part I: SPEC CPU2006 | A1-A2 B1l-B2 C1-C2 Di1-D2 E1-E2 F1-F2 G1-G2
Speedup 2.64 2.24 1.39 2.45 1.76 1.54 1.15
HPT-Confidence 0.95 0.95 0.95 0.95 0.95 0.95 0.95
t-Confidence 0.91 0.95 0.96 0.94 0.89 0.87 0.52
Confidence Loss -4.2% 0% 0% -1.1%  -6.3%  -84%  -45.3%
Part 1l: SPEC MPI12007 | H1-H2 11-12 J1-J2 K1-K2 L1-L2 M1-M2 N1-N2
Speedup 1.63 1.87 1.92 1.34 2.15 1.12 1.70
HPT-Confidence 0.95 0.95 0.95 0.95 0.95 0.95 0.95
t-Confidence 0.93 0.96 0.96 0.96 0.96 0.93 0.94
Confidence Loss -2.1% 0% 0% 0% 0% -2.1% -1.1%

Following the last subsection, our empirical study stilagzes SPEC CPU2006 scores of 14
computer systems (Al, A2,..., G1, G2), and SPEC MPI2007escof another 14 computer systems
(H1, H2,..., N1, N2). By fixing the performance speedup focregair of computers, Table V
compares confidences obtained by the HPT with those obtdigepairedt-test. For the first 7
computer pairsi-test rejects 5 out of the 7 speedup results obtained by tfie ¢He to the inaccurate
t-Confidence. Interestingly, for the second 7 computer pBiPST-Confidence anttConfidence match
much better, and-test only rejects 3 out of the 7 speedup results obtainedh&yHPT.

We can easily explain the above observation after checkimegnormality of the data. While
SPEC CPU2006 scores of the first 14 computer systems (Al, AZ31, G2) are generally not
distributed normally according to Lilliefors test [20],ete is no significant statistical evidence that
SPEC MPI2007 scores of any of the second 14 computer systdinsH2,..., N1, N2) arenot
distributed normally. In other words, the usagetdegst is incorrect for the first 7 computer pairs,
but is correct for the second 7 computer pairs. Whéeest is correctly used, it is not strange that
confidences provided by the HPT amndest almost coincide with each other. A similar trend can
also be observed from Table VI, where we compare performapeedups obtained liytest against
those obtained by HPT at the same confidence lewsl. For the first 7 computer pairs, the speedup
error of pairedt-test ranges from.4% to 21.6%, which highlights the impact of using inappropriate
statistical techniques on the outcome of performance cosge. For the second 7 computer pairs,
speedups provided by the HPT antiest again coincide well with each other. The insights gdin
here are two-fold. First, it is important to choose apprafgristatistical techniques to fit statistical
characteristics of data. Second, the HPT is very robustnhagéne validity of normality, and is a
promising solution to performance comparisons in the pres@bsence of normality.
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TABLE VI
COMPARISONS OF0).95-PERFORMANCE SPEEDUPS OBTAINED BY THEIPT AND PAIRED ¢-TEST
(Tor: SPEC CPU2006; BTTOM: SPEC MPI2007)WHERE EACH SPEEDUP HAS A CONFIDENCE
OF 0.95 FOR EACH TECHNIQUE

Part I: SPEC CPU2006 Al-A2 B1-B2 C1-C2 D1-D2 EI1-E2 F1-F2 G1-G2
0.95-Speedup (HPT) 2.64 2.24 1.39 2.45 1.76 1.54 1.15
0.95-Speedup (Pairetttest) | 2.07 2.28 1.41 2.39 1.59 1.38 1.04
Speedup Error -21.6% +1.8% +1.4% -245% 9% -104% -9.6%

Part 1l: SPEC M PI12007 H1-H2 11-12 J1-J2 K1-K2 L1-L.2 M1-M2 N1-N2
0.95-Speedup (HPT) 1.63 1.87 1.92 1.34 2.15 1.12 1.70
0.95-Speedup (Pairetitest) | 1.60 1.87 1.93 1.35 2.16 1.09 1.67
Speedup Error -1.8% 0% +0.5% +0.7% +05% 2%  -1.8%

VI. SINGLE-NUMBER PERFORMANCE METRIC?

Using a single-number performance metric for each compaténe most intuitive way of con-
ducting cross-application performance comparisons ofprders, where the metric can be geometric
mean performance, harmonic mean performance, arithmetamnmerformance and so on. In such a
comparison, the computer with a larger value of the singledmer metric is considered to outperform
the counterpart with a smaller value of the same metric, &redctoss-application speedup of the
first over the second is directly estimated as the quotietwdsn their values under the metric.

Although single-number performance metrics have been lwideed in computer architecture
research, their effectiveness must be reconsidered whedeem the confidence to be a critical
dimension of performance comparisons. In our viewpointheaomparison result must be provided
with the corresponding confidence, no matter which singieMper performance metric is utilized by
the performance comparison. However, in practice therecases in which the usage of a single-
number performance metric excludes rigorous estimate wiidence. More specifically, in common
scenarios of computer architecture research where the eruailperformance observations is small
(e.g., 10-20), rigorously estimating confidence of a congpar result induced by a single-number
metric can even be plainly impossible. For example, whenpgréormance distribution is not log-
normally distributed and the number of benchmark applicetiis small (e.g., 10-20), it is infeasible
to achieve a normally distributed sample mean of the logast of performance observations,
thereby the confidence of the comparison usgegmetric mean performan@annot be rigorously
estimated witht-statistics. Other statistical techniques like permotatest or bootstrap require even
more performance observations, which are not applicalereiUnder the above circumstance, the
confidence of the comparison using geometric mean perfarenarhard (if possible) to be rigorously
estimated, and the risk of drawing incorrect conclusiomcabe controlled. In order to gain statistical
rigor, researchers may either give up the traditional mméggeometric mean”, or increase the number
of performance observations to make the CLT applicableSettion IlI-B).

In contrast, the HPT works well given small performance dasypand enables statistically rig-
orous cross-application comparison without explicitlyngsa single-number performance metric of
each computer. It conducts a performance comparison betia®e computers using nonparametric
statistics of theperformance gapbetween two computers, and outputs a quantitative congraris
result as0.95-speedup of one computer over another. Embedded with thideane information,
the comparison result would be much more reliable than tesdflered by single-number metrics in
many cases. Our central claim is that the HPT is a statiticglorous replacement of traditional
single-number performance metrics under various scenafigperformance comparisons.

VIl. RELATED WORK

Performance comparisons of computers traditionally rgdpruone single-number metric (e.g.,
geometric mean and harmonic mean) [29], [30], [31], [22]2][3though this approach can be
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rather unreliable. Having realized the importance of stiatl inference, Lilja suggested to introduce
several parametric statistical methods (e.g, confidentsvial) to evaluate computer performance
[12]. Alameldeen and Wood carried out in-depth investimyai on the performance variability of
multi-threaded programs, and they suggested to use theleon® interval and-test, two parametric
techniques, in order to address the issue of variability $ifthi-amornet al. found that computer
performance is mostly normally distributed on SPEC CPUZQ3). Similar observations were made
in Java performance evaluation conducted by Georges e2H, \ho found that uni-application
performance (SPECjvm98) on several single-core compugtarsin general, be characterized using
normal distributions. While valid, their observation does seem to generalize to the broader case of
multi-core systems and multi-threaded applications, ¢haseour own experiments. Igbal and John’'s
empirical study [33] generally supported the log-nornyaidr characterizing the SPEC performance
of computers. However, their experiments were conductest a#émoving all “outlier benchmarks”
in SPEC CPU2006. They also proposed a performance rankistgmy[33]. But unlike Wilcoxon
test which uses rank information to construct statisticsctomputing confidence, the system directly
offers a performance ranking without presenting the cpoeding confidence.

In computer architecture research, statistical techiciu@ve already been used to cope with
various issues other than performance comparisons. FHamices, statistical techniques were used for
sampling simulation [34], principal components analysaswsed to evaluate the representativeness
of benchmarks [3], [35], and regression techniques werd tesmodel the design space of processors
[36], [37], [38], [39]. Therefore, the computer architegwcommunity is already largely familiar with
complex statistical tools, so that embracing a more rigeqmerformance observation and comparison
process is only a logical extension of the current trend.

VIIl. CONCLUSION

In this paper, we formulate performance comparisons of aaerp as statistical tasks, and highlight
the importance and impact of variability in performance evlations and comparisons, as well as
the risk of inappropriately using traditional single-nuenlperformance metric andstatistics. We
empirically check conditions under whiahstatistics work appropriately, and reveal thedtatistics
do not suit current practices of computer performance coisqas.

We propose the HPT framework for achieving both a rigorous practical comparison of com-
puter performance. In HPT, we adopt non-parametric SHTisrdtire neither normal performance
distributions nor sufficiently large numbers of performanmambservations. Besides the benefits for
performance comparisons, we have implemented the HPT asgnt@use open-source software
and integrated the framework in PARSEC 3.0 benchmark suii¢, [requiring no mathematical
background.
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